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Despite recent advances, guaranteeing the correctness of large-scale distributed applications without com-

promising performance remains a challenging problem. Network and node failures are inevitable and, for

some applications, careful control over how they are handled is essential. Unfortunately, existing approaches

either completely hide these failures behind an atomic state machine replication (SMR) interface, or expose

all of the network-level details, sacrificing atomicity. We propose a novel, compositional, atomic distributed

object (ADO) model for strongly consistent distributed systems that combines the best of both options. The

object-oriented API abstracts over protocol-specific details and decouples high-level correctness reasoning

from implementation choices. At the same time, it intentionally exposes an abstract view of certain key

distributed failure cases, thus allowing for more fine-grained control over them than SMR-like models. We

demonstrate that proving properties even of composite distributed systems can be straightforward with our

Coq verification framework, Advert, thanks to the ADO model. We also show that a variety of common

protocols including multi-Paxos and Chain Replication refine the ADO semantics, which allows one to freely

choose among them for an application’s implementation without modifying ADO-level correctness proofs.
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1 INTRODUCTION

It is difficult to guarantee correctness and efficiency of a distributed systems at the same time
because even the simplest distributed systems employ sophisticated protocols to coordinate failure-
prone nodes over an unreliable network. To further complicate matters, modern applications are
often built from a combination of distributed systems [Dean 2009], which necessitates reasoning
about interleaving and concurrent interactions between them.
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Distributed systems offer varying reliability and consistency guarantees [Tanenbaum and van
Steen 2006], but in this paper we focus on strongly consistent protocols, including consensus (e.g.,
multi-Paxos [Renesse and Altinbuken 2015], and Raft [Ongaro and Ousterhout 2014]), and some
instances of primary backup (e.g., Chain Replication [Renesse and Schneider 2004]) because even
weakly consistent systems rely on them to handle critical operations. Unless otherwise specified,
we use the term łdistributed systemž to refer to this class of protocols.

These protocols are specified in terms of operations in an asynchronous, unreliable network and
can be quite complex [Boichat et al. 2003; Lamport 2001; Lampson 2001; Renesse and Altinbuken
2015]. Recognizing that this low-level network-based interface is not well suited for building and
reasoning about distributed applications, developers often use higher-level abstractions such as file
systems [MacCormick et al. 2004], databases [Chang et al. 2006], and state machine replication
(SMR) [Schneider 1990]. These greatly simplify application-level reasoning by hiding internal
details (e.g., the transient, intermediate states that arise from network failures) behind an atomic
interface. However, this black-box approach makes it impossible to express or reason about systems
with optimizations that łopen upž the underlying protocols and rely on such details [Gray and
Lamport 2006; Zhang et al. 2015].
Because bugs in distributed systems can cause critical failures [The AWS Team 2011; Treynor

2011] and exhaustive testing is often impractical, formal verification is required to be sure of an
application’s correctness. In existing verification frameworks for distributed systems [Hawblitzel
et al. 2015a; Krogh-Jespersen et al. 2020; Sergey et al. 2017; Wilcox et al. 2015], developers either
write applications in terms of asynchronous network events and prove that they are equivalent to
some atomic specification, or they use an atomic SMR-like interface built on an existing verified
consensus protocol such as multi-Paxos or Raft. The former option offers much more flexibility in
terms of implementation and optimization than the latter, which is limited to the choices made by
the verified consensus protocol. On the other hand, network-based specifications blend application-
and protocol-level reasoning (e.g., proving that a distributed queue behaves correctly vs. proving the
linearizability of Paxos), which complicates both, and reduces the generality of the specifications
and proofs by closely tying them to a specific implementation.

In this paper we present the novel atomic distributed object (ADO) model as a happy medium be-
tween the simplicity of SMR and the expressive power of network models. The ADO model defines
an atomic semantics that faithfully captures the common high-level behaviors of strongly consistent
distributed protocols, including important cases such as nondeterministic failures and transient
states, while abstracting away irrelevant protocol-specific details such as packet interleaving and
quorum sizes. This allows an application to swap its implementation for any strongly consis-
tent protocol without modifying its ADO-level specification or proofs. Protocols with standard
network-based specifications can also be shown to implement the ADO model through contextual
refinement [Filipovic et al. 2010; Liang et al. 2013], which means that properties of the high-level
model carry down to the implementation. ADO applications can also be trivially lifted to an
SMR-like semantics in case the developer does not need the additional detail provided (Section 3.2).

Like a standard sequential or concurrent object, an ADO has private state that can be atomically
accessed and updated through a public interface of user-defined methods. There are, however,
fundamental differences between concurrent and distributed objects [Waldo et al. 1994], which
the ADO model reflects. For instance, due to a combination of replicated state and an unreliable
network, methods may nondeterministically fail to reach certain servers, temporarily creating
inconsistent states. Even if an application hides these from clients, how partial failures are handled
heavily influences the consistent state that is eventually reached. Therefore, to offer application
designers precise control over intermediate states, the ADO interface also includes push and pull

operations inspired by the push/pull shared memory model [Gu et al. 2016, 2018].
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Table 1. Comparison between distributed system verification frameworks.
∗ Only one or the other at a time (specifications use either SMR or network model).
† Ironclad [Hawblitzel et al. 2014] demonstrates how to translate Dafny into the BoogieX86 verifiable assembly.

Atomic

Interface

Exposes

Failures

Horizontal

Composition

Vertical

Composition

Verified

Executable

Advert ✓ ✓ ✓ ✓ C ✓

IronFleet ✓
∗

✓
∗ × ✓ C# ×†

Verdi ✓
∗

✓
∗ × ✓ OCaml ×

Disel × ✓ ✓ × OCaml ×

Aneris × ✓ ✓ ✓ None ×

To demonstrate the ADO model’s utility for practical distributed system development and
verification, we also presentAdvert (atomic distributed object verification toolchain), a verification
framework in the Coq proof assistant [The Coq Development Team 2018]. Advert consists of an
implementation of the ADO model plus a collection of modular libraries of definitions and proofs
targeted at different levels of end-to-end distributed system verification: constructing and reasoning
about individual ADOs (Sections 2 and 3), composing ADOs (Section 4), and verifying executable
implementations against ADO specifications (Section 5).

Table 1 summarizes the features supported by Advert compared to relevant previous work. We
defer a more detailed comparison to Section 7, but the key difference is that Advert is the only
framework to provide an atomic interface that also exposes partial failures. By an atomic interfacewe
mean one in which client-application communication appears to happen instantaneously. Advert
supports this through the ADO model’s atomic pull, push, and method call operations. IronFleet
and Verdi offer a choice between using an atomic SMR interface (implemented by multi-Paxos and
Raft respectively), or writing applications directly in terms of network events, which are not atomic
because even a simple message between servers consists of separate send and receive events. One
can prove that these network events behave atomically, but it is not automatically guaranteed by
the interface. Disel and Aneris also provide non-atomic, network-based semantics for application
building. Nevertheless, we believe the ADO model and elements of Advert are compatible with
previous work and should be seen as complementary tools rather than strict replacements.
Another area where Advert and the ADO model improve on existing work is support for

compositional reasoning. This is an important topic because an incorrect interface between even
two verified components can introduce serious bugs that threaten the whole system [Fonseca
et al. 2017]. IronFleet [Hawblitzel et al. 2015a] and Verdi [Wilcox et al. 2015] support some form
of vertical composition (decomposing complex proofs into simpler layers), Disel [Sergey et al.
2017] supports horizontal composition (decomposing large systems into independent components),
and Aneris [Krogh-Jespersen et al. 2020] supports both. Advert also supports both forms of
composition, and with its atomic interface one can more easily reason about complex composite
applications, including ones without centralized coordinators (łlock-freež applications).

Additionally, while the other systems offer only unverified extraction to executable code, Advert
supports end-to-end verification from an ADO specification down to an executable C implementa-
tion using certified concurrent abstraction layers (CCAL) [Gu et al. 2018].

This paper makes following contributions:

• A novel atomic object model that facilitates the design and verification of efficient and correct
distributed applications. It provides a clear and precise semantics for strongly consistent protocols
that is generic and simple to use because it hides many implementation details. At the same
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time, it offers fine-grained control over inconsistent states by exposing the nondeterminism and
important failure cases that arise from asynchronous networks.
• Advert, an end-to-end verification framework built around the ADO model in Coq.
• A case study comparing different distributed key-value store designs that support partitioning
and replication via ADO composition. This includes the first, to our knowledge, machine-checked
correctness proof of a distributed system composition without a centralized coordinator.
• A case study of Two-Phase Commit with replicated resource managers that demonstrates how
the additional details exposed by the ADO model enable reasoning about optimizations that
cannot be expressed in an SMR-like model.
• Refinement proofs between the ADO model and network-based specifications of several dis-
tributed protocols including multi-Paxos, Vertical Paxos, CASPaxos, and Chain Replication. This
is the first machine-checked proof that these protocols have equivalent high-level behaviors. The
multi-Paxos specification is additionally formally linked to a C implementation and an executable
binary is generated by a verified compiler [Gu et al. 2015; Leroy 2009].

All of our Coq and C code is available at https://zenodo.org/record/5476274. Additional details
can be found in the Appendix of the extended technical report [Honoré et al. 2021].

2 ATOMIC DISTRIBUTED OBJECT MODEL

The purpose of the ADO model is to offer a simple abstraction for modular reasoning about
distributed objects. Before explaining how it accomplishes this goal, we first motivate the need for
such a model by discussing the challenges of distributed systems and the limitations of existing
models. We then present a high-level summary of the ADO model, demonstrate its relation to
concrete protocols, and finally present the formal details.

2.1 Background and Motivation

Strong consistency is difficult to guarantee in a distributed setting in which physically isolated
servers coordinate over an asynchronous and potentially faulty network. This, unsurprisingly,
means that distributed protocols are complex and can exhibit unintuitive behaviors. Some of these
oddities are implementation artifacts and should be abstracted away, but others represent core dis-
tributed features that cannot be ignored. This section begins with a brief primer on Paxos [Lamport
2001], a popular distributed protocol, and then highlights two important challenges in reasoning
about it that the ADO model is designed to address: handling failures and composing systems.

Paxos. The high-level goal of Paxos is to replicate some state across a set of servers (or replicas).
In order to provide a consistent view of the replicated state to clients, the protocol must achieve
consensus among the replicas by getting a large-enough subset (typically a majority), called a
quorum, to agree on the same value. The primary safety property guaranteed by Paxos is that once
consensus is reached, the state is committed and immutable. Furthermore, this is ensured even if a
subset of the replicas become unresponsive, as long as a quorum continues working.
Paxos works in rounds, each of which is identified by a unique ballot number (a kind of logical

timestamp) and has a designated server called the proposer that suggests values for the replicas to
commit. Each round consists of two phases called either phase 1 and phase 2 or prepare and write.

A proposer begins a prepare phase by suggesting a new ballot number to the replicas. A replica
either responds positively if the ballot number is the largest it has seen thus far, or negatively
otherwise. Positive responses include the replica’s current state (or ⊥ if no value has been proposed
yet) along with the ballot number of the round in which it was proposed. A prepare request
succeeds if it receives a quorum of positive acknowledgements, at which point the proposer selects
the value with the largest ballot number. If it is ⊥ the proposer is free to choose an arbitrary value.
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Next, the proposer tries to write this value by again broadcasting to the replicas. Replicas confirm
that the proposer’s ballot number is still the most up-to-date, and if so they update their own state
with the proposed value. If a quorum of replicas accept the value then it is committed, but if even
one accepts it then it is partially committed. This is important, because another proposer might
observe this value during a later prepare and finish committing it during its write phase.

Paxos is only able to reach consensus on a single value, but protocols like multi-Paxos [Renesse
and Altinbuken 2015] extend it to safely replicate a sequence of values. The core principles are the
same, but now each replica maintains a log of values, and the proposer’s goal is to append new
values to the end of the log while ensuring that a quorum agrees on all of the earlier entries. This
is often used to implement a distributed state machine by replicating a log of commands, which are
application-specific functions that can be applied in order to compute the current state (e.g., the
log add(3) • sub(1) • mul(3) evaluates to 6 assuming an initial state of 0).

Failures. Failures in distributed systems are much more common than in shared-memory
settings [Gill et al. 2011; Gunawi et al. 2014; Meza et al. 2018]. Therefore, partially committed
states are inevitable and, as we have seen, can influence later committed states. The state machine
replication (SMR) model treats these intermediate states as internal details and hides them from
clients by waiting to reply until the system settles and consensus is reached. This is achieved by a
black-box remote procedure call (RPC) interface that is typically implemented by calling prepare

followed by write and retrying each step until it succeeds.
This works well for the common case, but it can be overly restrictive. For example, if a call fails,

rather than retry, an application might prefer to abort and execute a different operation. Exposing
the individual steps of a method call along with the resulting intermediate states gives applications
more freedom to choose how to handle failures. Section 3.2 describes some common method-calling
patterns for various application requirements and shows how each is supported in the ADO model.

Certain systems even use partially committed states in order to optimize performance, but SMR
is unable to accurately capture their behaviors. As a simple example, an application can execute a
łfast readž by only running the prepare phase and skipping the write that guarantees the returned
state is consistent. This is a kind of speculative execution so the application must implement some
type of rollback mechanism, but if the risk is low relative to the time saved it could be a valuable
optimization. Similarly, in Raft a leader may continue accepting new log entries before the previous
entries are fully committed. A client only sees the fully committed entries, but this optimization
allows the leader to handle requests without blocking and to batch-process outstanding requests.
Another interesting case is consensus combined with distributed transactions where partially
committed states can be used as hints to speed up transaction decisions. We show this example in
Section 4.2 and discuss in Section 7 how it relates to other systems with similar optimizations.

Composition. Protocols like multi-Paxos can implement a distributed object, but practical
applications typically consist of many interacting objects. Furthermore, objects have varying perfor-
mance requirements so ideally a distributed application should be implemented by a heterogeneous
collection of protocols. It is not difficult to see that without a compositional abstraction, such a
system would be hopelessly complex to verify. There are two axes we consider when discussing
composition: vertical and horizontal. Vertical composition refers to relating a specification to a more
abstract version of itself and transitively linking a series of these relations. This is necessary for
hiding implementation details and is well supported by existing distributed verification frameworks
such as Verdi [Wilcox et al. 2015] and IronFleet [Hawblitzel et al. 2015a].

Horizontal composition involves plugging two independently verified systems together to create
a bigger system. This simplifies reasoning about large systems by allowing them to be broken into
smaller components. It also provides an additional level of modularity as a component can be verified
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once and reused by multiple applications. Neither Verdi nor IronFleet support communication
between components in separate systems, so horizontal composition is impossible. Disel [Sergey
et al. 2017] and Aneris [Krogh-Jespersen et al. 2020] on the other hand are designed for this type of
interaction; however, it comes at the cost of a lower level of abstraction that is difficult to scale to
larger examples. See Section 7 for further discussion about these frameworks. Section 4 provides
several examples of both vertical and horizontal composition with the ADO model.

2.2 Modifying the Push/Pull Model

1 ADO Queue {

2 shared data : Vector[Z] := [];

3 method enqueue(val) { this.data.append(val); }

4 method dequeue() {

5 if (this.data.length > 0) {

6 val := this.data.pop(0);

7 return Some(val); }

8 else { return None; } } }

Fig. 1. FIFOQueue object.

While designing a distributed object model that
can handle these challenges, we took inspiration
from shared memory concurrent object models. In
particular, we found that the push/pull shared mem-
ory model [Gu et al. 2016, 2018] accomplishes our
goals of compositionality and hiding complexity
and has an interface that maps nicely onto the two-
phase design of many distributed protocol. This sec-
tion summarizes how we transformed ideas from
the push/pull model into the ADO model by identifying the key differences between concurrent
and distributed objects. We use the simple FIFO Queue in Fig. 1 as a running example of an ADO.
Section 3 explains the notation further, but for now it is sufficient to understand that this represents
a queue with atomic methods that is implemented on a distributed Vector (resizable array).

Push/Pull Basics. A core element of an object model is its state representation. The push/pull
model represents an object’s state as a logical history of the methods called up to that point (e.g.,
enqueue(1) • enqueue(2) represents the queue {1, 2}). The concrete value can be recovered by
replaying the methods in the history, but for reasoning purposes it is convenient to remember the
steps that led to the current state. Note that this is purely a logical tool used at the specification
level. Even though it resembles the logs used in state machine replication, implementations can
still perform in-place updates instead (e.g., as in CASPaxos [Rystsov 2018]).

The other key component of an object model is the interface through which clients interact with
the state. In the push/pull model this consists of methods (e.g., enqueue), and two special operations
for managing concurrent access: pull and push. Before applying a method a client first calls pull,
which creates a local copy of the shared state and takes ownership of the object. This also locks the
state and during this time other clients cannot access the object. The client then applies methods to
the local copy and calls push to copy back the updates and release ownership. Note that methods are
asynchronous because the application and return points (push) are separate events. To distinguish
between the single event of a local method application and the entire sequence of pull, method,
and push, we refer to the former as a method invocation and the latter as a method call.

Distributed System Challenges. The push/pull model provides a straightforward framework
for designing concurrent objects and reasoning about their atomicity, but there are some aspects
that are clearly inadequate for handling distributed objects. For one, it is an unreasonably strong
restriction to completely block other clients when one owns the object. Due to an unreliable
network, a client may become unresponsive, which could prevent others from making progress.
Similarly, random network and node failures can significantly delay messages or prevent them
from being delivered, so updates are not guaranteed to succeed. Finally, distributed protocols
replicate state across multiple servers, some subset of which must agree for a state to be considered
consistent. This allows for partial failures; i.e., situations in which an attempted update reaches an
insufficient number of servers to be consistent, but still enough to influence subsequent updates.
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Table 2. Mapping ADO operations to distributed protocols.

ADO Multi-Paxos Chain Replication Raft

Pull Phase 1 Read from tail Election

Method Local update Write to head Local update

Push Phase 2 Send down chain Log replication

Preemptible Ownership and Nondeterminism. The first problem is solved by making own-
ership preemptible. Clients still copy the state and mark their ownership with pull, but this no
longer locks the state. If a client maintains ownership then push behaves as before, but it fails if
another client preempts it with pull first. To model network and node failures pull and push are
also allowed to fail nondeterministically at any time.

Partial Failures. Handling the intermediate states introduced by partial failures requires the
most significant change. The state is extended to include both the log of consistent updates, and a
tree of proposed updates that failed to achieve consensus. We refer to the log as the persistent state
because its entries never change after they are added. Continuing the shared memory analogy, we
call the elements of the tree volatile caches because their effects are visible, but temporary unless
they are flushed to the persistent state. New updates must build off of either a volatile cache or
the latest entry in the persistent state. This dependency is represented through the parent-child
relation in the cache tree with the persistent state at the root.
Instead of creating a local copy of the persistent state, pull now marks an arbitrary cache in

the tree (or the root) as łactivež. This reflects the fact that clients may observe different snapshots
of the state depending on which servers are contacted. Invoking a method creates a new branch
rooted at this cache and updates the active position. A successful push moves the entire active
branch to the persistent state. All other branches are removed because they represent unreachable
states that no longer depend on the new persistent state.

Multiple Methods per push. A client may invoke multiple methods in the łcritical sectionž
between pull and push. This models situations as in Raft where a leader can accumulate several
updates in its local log before beginning to replicate them. If the pending updates are sent in a batch
then they will all succeed or fail together, but to remain as general as possible, we assume each
is delivered by a separate message, and therefore one or more might fail independently from the
others. To avoid gaps in the log, when one update fails all of the following ones must be rejected
as well. Therefore, when push moves the active branch into the persistent state it now leaves an
arbitrary (possibly empty) suffix of failed caches.

2.3 Connection with Distributed Protocols

ADOs capture the common high-level behavior of strongly consistent systems, such as probing ex-
isting states, handling intermediate failures, and clients competing to commit new states. Therefore,
by design, there is a close correspondence between ADO operations and those in protocols such as
Paxos and Raft (see Table 2). Fig. 2 visualizes this mapping with a multi-Paxos implementation of
the Queue object from Fig. 1 alongside its corresponding ADO representation. We then step through
a sequence of events (labeled a-f) to show how each model evolves over time.

On the multi-Paxos side, there are five replicas (A-E), two of which (A and B) are also proposers.
Each replica has a ballot number and a local log. The log entries contain a method (e.g., Eqx, which
stands for enqueue(x)) as well as the ballot number for the round in which it was added to the
log. Messages between replicas are represented as arrows (dotted for phase 1, solid for phase 2). A
lightning bolt indicates that a replica did not receive the message due to a network error.
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(c) ADO pull and multi-Paxos phase 1 preemption (A proposes a larger ballot number than B and finds an
uncommitted log entry Eq4; Eq3 is ignored because its ballot number is smaller than that of Eq4).
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(d) ADO method invocation and multi-Paxos local log update (within A, Eq4’s ballot number is updated and
Eq5 and Eq6 are added locally).
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(e) ADO push and multi-Paxos phase 2 failure due to a network disconnection.
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(f) ADO push and multi-Paxos phase 2 partial success due to a network failure (Eq4 and Eq5 are successfully
committed to a quorum consisting of A, C and E, but Eq6 is not fully committed).

Fig. 2. ADO (left) and multi-Paxos (right) mapping. Multi-Paxos requires a majority support for successful
transitions. The ADO’s cache tree and persistent log abstract away individual replicas. The figures show a
sequence of continuous operations.
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The ADO side of the diagram shows the cache tree (the white boxes), which begins at the root
(marked RT) and grows to the left, as well as the persistent log (the black boxes), which also grows
to the left. Each box contains a method. The current owner’s active cache is marked with an arrow.

(a) Pull failure:We begin in a state where Eq2 is the only committedmethod (it is in every replica’s
local log and the ADO’s persistent log). Replicas D and E each also have one uncommitted
method (Eq3 and Eq4, respectively), which manifests as two entries in the cache tree. Proposer
A attempts to become the owner by broadcasting a phase 1 request, but fails because its
messages are dropped. In the ADO model this corresponds to pull failing nondeterministically.
In this case neither the replicas’ logs nor the cache tree change.

(b) Pull success: Proposer B now attempts to become the owner and succeeds by demonstrating
to a quorum of voters (A and C) that it has the largest ballot number. The voters update their
ballot numbers and respond to B with their current logs, who then selects the one with the
largest ballot number in the last entry. In this case both voters have the same log, which
contains only the committed entry Eq2. The corresponding result in the ADO model is for
pull to succeed and set B’s active cache to the root of the cache tree.

(c) Pull preemption: Proposer A then tries again to become the owner, and this time it succeeds
with every replica’s vote, taking ownership away from B. Of the voters, E’s log is the most
up-to-date, so Proposer A copies it. The ADO represents A’s uncommitted log entry by setting
its active cache to the one containing Eq4.

(d) Method invocation: As the owner, A can now call new methods. It chooses to enqueue 5 and
6, but before it replicates these methods to the other replicas it first adds them to its own log.
In the cache tree this is represented by extending A’s active branch with two new caches.

(e) Push failure: Next, A tries to commit the new methods, but before it can commit Eq6 it
must first commit Eq4 and Eq5 in that order. However, upon broadcasting a phase 2 request to
commit Eq4, the network drops its messages so the commit fails. The ADO model captures
this situation by having push fail. As in the previous failure case the state is unchanged.

(f) Push success: Noticing the failure, A retries and this time manages to reach C and E. As
this constitutes a quorum (3 out of 5), Eq4 is successfully committed so it moves on to Eq5,
which also succeeds. Finally it attempts to commit Eq6, but only C receives the message so it is
not committed. The result is that there are three committed methods (Eq2, Eq4, Eq5), and two
uncommitted methods (Eq3 and Eq6). However, note that Eq3 in D’s log has a ballot number of
1. This is smaller than the ballot number for Eq5 and Eq6 (4), so there is no quorum in which
D’s log is the most up-to-date. Therefore, this method is unreachable so it is removed from the
cache tree. Eq6 on the other hand also has a ballot number of 4, and is still a viable option for
pull to choose as an active cache, so it remains in the tree.

2.4 ADO Formal Semantics

We now formalize the extended push/pull model described in the previous sections. An ADO (Fig. 3)
is a pair of the object’s internal state of type Σ (e.g., Vector[Z] in Queue), and a method interface. A
method interface is a partial map from𝑀𝑒𝑡ℎ𝑜𝑑𝑠 to method bodies; i.e., functions from Σ to Σ plus a
return value 𝑅. In practice, methods and their arguments are serialized and packed together into a
network packet, so for simplicity we assume the parameters are encoded in the method name. For
example, Queue’s method interface includes dequeue(), enqueue(1), enqueue(2), and so on.

The global system state is called a Distributed Shared Memory (DSM), which consists of a list of
persistent methods (𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝐿𝑜𝑔), a tree of volatile caches containing not-yet committed methods
(𝐶𝑎𝑐ℎ𝑒𝑇𝑟𝑒𝑒), a partial map that remembers each client’s active position in the cache tree (CIDMap),
and another partial map from a logical timestamp (e.g., a Paxos ballot number or Raft term number)
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𝐴𝐷𝑂Σ
≜ Σ ∗ (∃𝑅.𝑀𝑒𝑡ℎ𝑜𝑑 ⇀ (Σ→ Σ ∗ 𝑅))

CID ≜ ⟨N𝑛𝑖𝑑 ∗ N𝑡𝑖𝑚𝑒 ∗ CID⟩ | Root

𝐶𝑎𝑐ℎ𝑒 ≜ CID ∗𝑀𝑒𝑡ℎ𝑜𝑑

𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝐿𝑜𝑔 ≜ 𝐿𝑖𝑠𝑡 (𝐶𝑎𝑐ℎ𝑒)

𝐶𝑎𝑐ℎ𝑒𝑇𝑟𝑒𝑒 ≜ 𝑆𝑒𝑡 (𝐶𝑎𝑐ℎ𝑒)

CIDMap ≜ N𝑛𝑖𝑑 ⇀ CID

𝑂𝑤𝑛𝑒𝑟𝑀𝑎𝑝 ≜ N𝑡𝑖𝑚𝑒 ⇀ (N𝑛𝑖𝑑 | NoOwn)

DSM ≜ 𝑃𝑒𝑟𝑠𝑖𝑠𝑡𝐿𝑜𝑔 ∗𝐶𝑎𝑐ℎ𝑒𝑇𝑟𝑒𝑒 ∗ CIDMap ∗𝑂𝑤𝑛𝑒𝑟𝑀𝑎𝑝

ADOEvent ≜ 𝑃𝑢𝑙𝑙+ (N𝑛𝑖𝑑 ∗ N𝑡𝑖𝑚𝑒 ∗ CID)

| 𝑃𝑢𝑙𝑙∗ (N𝑛𝑖𝑑 ∗ N𝑡𝑖𝑚𝑒 )

| 𝑃𝑢𝑙𝑙− (N𝑛𝑖𝑑 )

| 𝐼𝑛𝑣𝑜𝑘𝑒+ (N𝑛𝑖𝑑 ∗𝑀𝑒𝑡ℎ𝑜𝑑)

| 𝐼𝑛𝑣𝑜𝑘𝑒− (N𝑛𝑖𝑑 )

| 𝑃𝑢𝑠ℎ+ (N𝑛𝑖𝑑 ∗ CID)

| 𝑃𝑢𝑠ℎ− (N𝑛𝑖𝑑 )

ADOLog ≜ 𝐿𝑖𝑠𝑡 (ADOEvent)

𝑛𝑖𝑑𝑂𝑓 (𝑐𝑖𝑑) ≜ let ⟨𝑛𝑖𝑑, _, _⟩ = 𝑐𝑖𝑑 in 𝑛𝑖𝑑

𝑡𝑖𝑚𝑒𝑂𝑓 (𝑐𝑖𝑑) ≜ let ⟨_, 𝑡𝑖𝑚𝑒, _⟩ = 𝑐𝑖𝑑 in 𝑡𝑖𝑚𝑒

nextCID(𝑐𝑖𝑑) ≜ ⟨𝑛𝑖𝑑𝑂𝑓 (𝑐𝑖𝑑), 𝑡𝑖𝑚𝑒𝑂𝑓 (𝑐𝑖𝑑), 𝑐𝑖𝑑⟩

𝑐𝑖𝑑1 < 𝑐𝑖𝑑2 ≜ 𝑐𝑖𝑑2 ≠ Root ∧ let ⟨_, _, 𝑝𝑎𝑟𝑒𝑛𝑡⟩ = 𝑐𝑖𝑑2

in 𝑐𝑖𝑑1 = 𝑝𝑎𝑟𝑒𝑛𝑡 ∨ 𝑐𝑖𝑑1 < 𝑝𝑎𝑟𝑒𝑛𝑡

𝑐𝑖𝑑1 ≤ 𝑐𝑖𝑑2 ≜ 𝑐𝑖𝑑1 < 𝑐𝑖𝑑2 ∨ 𝑐𝑖𝑑1 = 𝑐𝑖𝑑2

Fig. 3. ADO state definitions and CID helper functions.

GenPullSuccess

Opull (𝑙𝑜𝑔, 𝑛𝑖𝑑) = Ok(𝑡𝑖𝑚𝑒, 𝑐𝑖𝑑)

𝑡𝑖𝑚𝑒𝑂𝑓 (𝑐𝑖𝑑) < 𝑡𝑖𝑚𝑒 𝑛𝑜𝑂𝑤𝑛𝑒𝑟𝐴𝑡 (𝑙𝑜𝑔, 𝑡𝑖𝑚𝑒) (𝑐𝑖𝑑 ∈ 𝑐𝑎𝑐ℎ𝑒𝑠 (𝑙𝑜𝑔) ∨ 𝑐𝑖𝑑 = 𝑟𝑜𝑜𝑡 (𝑙𝑜𝑔))

Opull ⊢ pull(𝑛𝑖𝑑) : 𝑙𝑜𝑔 −→ 𝑙𝑜𝑔 • 𝑃𝑢𝑙𝑙+ (𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒, 𝑐𝑖𝑑)

GenPullPreempt

Opull (𝑙𝑜𝑔, 𝑛𝑖𝑑) = Preempt (𝑡𝑖𝑚𝑒)

𝑡𝑖𝑚𝑒 ∉ 𝑑𝑜𝑚(𝑜𝑤𝑛𝑒𝑟𝑠 (𝑙𝑜𝑔))

Opull ⊢ pull(𝑛𝑖𝑑) : 𝑙𝑜𝑔 −→ 𝑙𝑜𝑔 • 𝑃𝑢𝑙𝑙∗ (𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒)

GenMethodInvocation

𝑐𝑖𝑑𝑠 (𝑙𝑜𝑔) [𝑛𝑖𝑑] ∈ 𝑐𝑎𝑐ℎ𝑒𝑠 (𝑙𝑜𝑔)

⊢ M (𝑛𝑖𝑑) : 𝑙𝑜𝑔 −→ 𝑙𝑜𝑔 • 𝐼𝑛𝑣𝑜𝑘𝑒+ (𝑛𝑖𝑑,𝑀)

GenPushSuccess

Opush (𝑙𝑜𝑔, 𝑛𝑖𝑑) = Ok(𝑐𝑐𝑖𝑑)

𝑛𝑖𝑑𝑂 𝑓 (𝑐𝑐𝑖𝑑) =𝑚𝑎𝑥𝑂𝑤𝑛𝑒𝑟 (𝑙𝑜𝑔) = 𝑛𝑖𝑑 𝑡𝑖𝑚𝑒𝑂𝑓 (𝑐𝑐𝑖𝑑) = 𝑡𝑖𝑚𝑒𝑂𝑓 (𝑐𝑖𝑑𝑠 (𝑙𝑜𝑔) [𝑛𝑖𝑑]) 𝑐𝑐𝑖𝑑 ∈ 𝑐𝑎𝑐ℎ𝑒𝑠 (𝑙𝑜𝑔)

Opush ⊢ push(𝑛𝑖𝑑) : 𝑙𝑜𝑔 −→ 𝑙𝑜𝑔 • 𝑃𝑢𝑠ℎ+ (𝑛𝑖𝑑, 𝑐𝑐𝑖𝑑)

Opull : ADOLog → N𝑛𝑖𝑑 → (Ok(N𝑡𝑖𝑚𝑒 ∗ CID) | Preempt (N𝑡𝑖𝑚𝑒 ) | Fail)

Opush : ADOLog → N𝑛𝑖𝑑 → (Ok(CID) | Fail)

𝑟𝑜𝑜𝑡 (𝑙𝑜𝑔) ≜ let (𝑝, _, _, _) = interpADO(𝑙𝑜𝑔) in if 𝑝 ≠ [] then 𝑙𝑎𝑠𝑡 (𝑝) else Root

𝑐𝑎𝑐ℎ𝑒𝑠 (𝑙𝑜𝑔) ≜ let (_, 𝑐𝑠, _, _) = interpADO(𝑙𝑜𝑔) in 𝑐𝑠

𝑐𝑖𝑑𝑠 (𝑙𝑜𝑔) ≜ let (_, _, 𝑐𝑖𝑑𝑠, _) = interpADO(𝑙𝑜𝑔) in 𝑐𝑖𝑑𝑠

𝑜𝑤𝑛𝑒𝑟𝑠 (𝑙𝑜𝑔) ≜ let (_, _, _, 𝑜𝑤𝑛𝑠) = interpADO(𝑙𝑜𝑔) in 𝑜𝑤𝑛𝑠

𝑛𝑜𝑂𝑤𝑛𝑒𝑟𝐴𝑡 (𝑙𝑜𝑔, 𝑡𝑖𝑚𝑒) ≜ 𝑡𝑖𝑚𝑒 ∉ 𝑑𝑜𝑚(𝑜𝑤𝑛𝑒𝑟𝑠 (𝑙𝑜𝑔)) ∨ 𝑜𝑤𝑛𝑒𝑟𝑠 (𝑙𝑜𝑔) [𝑡𝑖𝑚𝑒] = NoOwn

𝑚𝑎𝑥𝑂𝑤𝑛𝑒𝑟 (𝑙𝑜𝑔) ≜ let 𝑜𝑤𝑛𝑠 = 𝑜𝑤𝑛𝑒𝑟𝑠 (𝑙𝑜𝑔) in 𝑜𝑤𝑛𝑠 [𝑚𝑎𝑥 (𝑑𝑜𝑚(𝑜𝑤𝑛𝑠))]

Fig. 4. Selected ADO log generation rules and utility functions.

to its unique owner (𝑂𝑤𝑛𝑒𝑟𝑀𝑎𝑝). A𝐶𝑎𝑐ℎ𝑒 is a method paired with a unique cache ID (CID), which
is inductively defined as either Root, or a triple of a node ID (N𝑛𝑖𝑑 ), a logical timestamp (N𝑡𝑖𝑚𝑒 ), and
a parent CID. Intuitively, a CID represents a branch in the cache tree (note that it is isomorphic to
𝐿𝑖𝑠𝑡 (N𝑛𝑖𝑑 ∗ N𝑡𝑖𝑚𝑒 )), and the tree itself is simply a prefix-closed set of 𝐶𝑎𝑐ℎ𝑒𝑠 . In general, CID𝑠 are
only partially ordered by their parent-child relationship, but the persistent log maintains a totally
ordered, sorted list, which guarantees that methods are applied in the order they were called.
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Log Generation. An ADO’s interface consists of its methods, pull, and push. Results of these
operations are recorded in a log of ADOEvent𝑠 . Fig. 4 defines each operation’s effect on the current
log.1 Clients trigger these events by executing sequences of ADO operations. Multiple clients may
concurrently access an ADO so the events generated by each client may interleave in the log (see
Section 4 for examples). The details of how a client communicates with an object (e.g., discovering
the leader) are left up to the implementation and are not exposed at the ADO level.
Calling pull results in a 𝑃𝑢𝑙𝑙+ event on success, 𝑃𝑢𝑙𝑙− on failure, or 𝑃𝑢𝑙𝑙∗ in the event that the

client failed to become an owner itself, but had enough support to strip another client’s ownership.
These outcomes are influenced by a variety of nondeterministic failures (e.g., dropped packets or
crashed servers), but the precise cause is unimportant so we hide it behind an oracle (Opull). This is
an abstract function that, given the current log and the caller’s unique ID, returns a new timestamp
and an arbitrary position in the cache tree (just the timestamp in the preemption case), or else
indicates that pull failed completely. Oracles are deterministic, but network-based nondeterminism
is modeled by quantifying over all valid oracles. In order to faithfully model protocols like Paxos,
valid oracles must satisfy the side conditions in GenPullSuccess and GenPullPreempt; i.e., the
new time is strictly larger than that of the chosen cache, the cache exists in the tree, and there is
not already an owner at that time. The special value NoOwn indicates that a previous pull at some
time 𝑡 failed to achieve ownership, but preempted owners at times less than 𝑡 .
Invoking a method adds an 𝐼𝑛𝑣𝑜𝑘𝑒+ event via GenMethodInvocation if the caller’s active

CID is still in the cache tree. This also implies that the caller first became an owner since 𝑃𝑢𝑙𝑙+ is
the only way to add a new mapping to the CIDMap. This check also ensures that clients cannot
continue working on a branch that has been invalidated by a successful push.
As with pull, push succeeds (𝑃𝑢𝑠ℎ+) or fails (𝑃𝑢𝑠ℎ−) based on the outcome of Opush. Recall

that when a client calls push after a sequence of method invocations, some suffix may fail. Opush

captures this in GenPushSuccess by choosing an arbitrary cache, 𝑐𝑐𝑖𝑑 , from the active branch and
committing everything up to that point. One important restriction is that the caller must be not
only an owner, but the owner currently with the largest timestamp. This is necessary in protocols
like multi-Paxos and Raft to ensure that only the most up-to-date state is committed.

Log Interpretation. Given an ADOLog, it can be interpreted by the interpADO function (Fig. 5)
to construct a DSM . PullSuccess simply updates the CIDMap and 𝑂𝑤𝑛𝑒𝑟𝑀𝑎𝑝 with the caller’s
information. PullPreempt does the same but only for the 𝑂𝑤𝑛𝑒𝑟𝑀𝑎𝑝 . The function 𝑣𝑜𝑡𝑒𝑁𝑜𝑂𝑤𝑛

takes a time and fills in all empty slots in the 𝑂𝑤𝑛𝑒𝑟𝑀𝑎𝑝 below that time with NoOwn. This is
because in multi-Paxos or Raft, once a server has seen a message with timestamp 𝑡 , it will reject all
future election or commit attempts with timestamps less than or equal to 𝑡 .
MethodInvocation adds a new entry to the caller’s active branch in the cache tree and then

updates its position in the CIDMap. PushSuccess partitions the tree around 𝑐𝑐𝑖𝑑 into successful and
failed caches. The successful caches are the ancestors of 𝑐𝑐𝑖𝑑 , which are appended to the persistent
state. The failed caches are the sibling branches, which lack the dependency on the newly persistent
states and are thus removed from the tree. The descendants of 𝑐𝑐𝑖𝑑 (the failed suffix) do maintain
this dependency, so they remain in the tree and can potentially be committed by a later push. The
failure events (𝑃𝑢𝑙𝑙−, 𝐼𝑛𝑣𝑜𝑘𝑒−, and 𝑃𝑢𝑠ℎ−) represent cases where the caller had no effect on the
global state so interpADO treats them as no-ops (omitted here for space).

3 SINGLE-ADO REASONING

This section defines several important properties of the ADO model and highlights some of
the differences between distributed and sequential or concurrent objects. For ease of presentation

1Some failure cases are omitted for space. See the Appendix [Honoré et al. 2021] for the complete semantics.
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PullSuccess

𝑐𝑖𝑑𝑠 ′ = 𝑐𝑖𝑑𝑠 [𝑛𝑖𝑑 ↦→ ⟨𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒, 𝑐𝑖𝑑⟩] 𝑜𝑤𝑛𝑠 ′ = 𝑣𝑜𝑡𝑒𝑁𝑜𝑂𝑤𝑛(𝑜𝑤𝑛𝑠 [𝑡𝑖𝑚𝑒 ↦→ 𝑛𝑖𝑑], 𝑡𝑖𝑚𝑒 − 1)

𝑃𝑢𝑙𝑙+ (𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒, 𝑐𝑖𝑑) : (𝑝, 𝑐𝑠, 𝑐𝑖𝑑𝑠, 𝑜𝑤𝑛𝑠) −→ (𝑝, 𝑐𝑠, 𝑐𝑖𝑑𝑠 ′, 𝑜𝑤𝑛𝑠 ′)

PullPreempt

𝑜𝑤𝑛𝑠 ′ = 𝑣𝑜𝑡𝑒𝑁𝑜𝑂𝑤𝑛(𝑜𝑤𝑛𝑠, 𝑡𝑖𝑚𝑒)

𝑃𝑢𝑙𝑙∗ (𝑛𝑖𝑑, 𝑡𝑖𝑚𝑒) : (𝑝, 𝑐𝑠, 𝑐𝑖𝑑𝑠, 𝑜𝑤𝑛𝑠) −→ (𝑝, 𝑐𝑠, 𝑐𝑖𝑑𝑠, 𝑜𝑤𝑛𝑠 ′)

MethodInvocation

𝑐𝑠 ′ = 𝑐𝑠 ∪ {(𝑐𝑖𝑑𝑠 [𝑛𝑖𝑑], 𝑀)} 𝑐𝑖𝑑𝑠 ′ = 𝑐𝑖𝑑𝑠 [𝑛𝑖𝑑 ↦→ nextCID(𝑐𝑖𝑑)]

𝐼𝑛𝑣𝑜𝑘𝑒+ (𝑛𝑖𝑑,𝑀) : (𝑝, 𝑐𝑠, 𝑐𝑖𝑑𝑠, 𝑜𝑤𝑛𝑠) −→ (𝑝, 𝑐𝑠 ′, 𝑐𝑖𝑑𝑠 ′, 𝑜𝑤𝑛𝑠)

PushSuccess

(®𝑐𝑜𝑘 , 𝑐𝑠
′) = 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑐𝑠, 𝑐𝑐𝑖𝑑)

𝑃𝑢𝑠ℎ+ (𝑛𝑖𝑑, 𝑐𝑐𝑖𝑑) : (𝑝, 𝑐𝑠, 𝑐𝑖𝑑𝑠, 𝑜𝑤𝑛𝑠) −→ (𝑝 • ®𝑐𝑜𝑘 , 𝑐𝑠
′, 𝑐𝑖𝑑, 𝑜𝑤𝑛𝑠)

𝑣𝑜𝑡𝑒𝑁𝑜𝑂𝑤𝑛(𝑜𝑤𝑛𝑠, 𝑡𝑖𝑚𝑒) ≜ 𝑜𝑤𝑛𝑠 [𝑡 ↦→ NoOwn | ∀𝑡 ≤ 𝑡𝑖𝑚𝑒. 𝑡 ∉ 𝑑𝑜𝑚(𝑜𝑤𝑛𝑠)]

𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑐𝑠, 𝑐𝑖𝑑) ≜ let ®𝑐𝑜𝑘 = 𝑠𝑜𝑟𝑡 ({(𝑐, 𝑀) ∈ 𝑐𝑠 | 𝑐 ≤ 𝑐𝑖𝑑}) in

let 𝑐𝑠 ′ = {(𝑐,𝑀) ∈ 𝑐𝑠 | 𝑐𝑖𝑑 < 𝑐} in (®𝑐𝑜𝑘 , 𝑐𝑠
′)

Fig. 5. Selected ADO log interpretation rules (interpADO).

1 ADO BankAccount {

2 shared balance : Z := 0; /* Σ = Z */

3 /* read() ↦→ 𝜆 bal. (bal, bal) */

4 method read() { return this.balance; }

5 /* deposit(n) ↦→ 𝜆 bal. (bal + n, tt) */

6 method deposit(n) { this.balance += n; }

8 /* withdraw(n) ↦→ 𝜆 bal.

9 * if n ≤ bal then (bal - n, n) else (bal, 0) */

10 method withdraw(n) {

11 if (n ≤ this.balance) {

12 this.balance -= n; return n; }

13 else { return 0; } } }

Fig. 6. Distributed bank account object.

example ADOs use an object-oriented pseudocode rather than the formal log-based representation
from Fig. 3. For example, in the simple BankAccount ADO (Fig. 6), the line beginning with shared

balance indicates that the replicated data has type Z and is initialized to 0. Lines beginning with
method define the method interface. Method bodies are written in an imperative style and use
this to access the current state (the comments show the equivalent functional versions). A client
with node ID nid interacts with an object obj by calling obj.pull<nid>(), obj.push<nid>(), or
obj.m<nid>() for some method m (<nid> is omitted when it is clear from context). The caller’s node
ID can be accessed within a method body with this.nid.

3.1 ADO Properties

One property the ADO model guarantees is, unsurprisingly, atomicity. Intuitively, an operation is
atomic if it executes in a single instant with no opportunity to interleave with other operations.
More precisely an ADO operation is atomic if it generates exactly one ADO event.

1 Definition atomic (f: ADOLog -> ADOLog) := forall log, exists ev, f log = log ++ [ev].

From Fig. 4 it is clear that every ADO operation (pull, push, and method invocation) is atomic.
This means it is impossible, for example, for a method invocation to add an entry to the cache
tree at the same time as push prunes invalid branches. This atomic semantics is one of the main
strengths of the ADO model compared to network-based models. For example, a Paxos prepare
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request broadcasts a message to the acceptor nodes and collects their replies. In terms of network
events (sends and receives), this is clearly non-atomic as there are many permutations in which
concurrent operations can interleave. Although one can prove that Paxos ensures that clients
observe state updates as if they happened atomically, the ADO model makes this guarantee explicit
by refining the non-atomic sequences of network events into atomic ADO events (see Section 5.2).

Another property guaranteed by the ADO semantics is Replicated State Safety; i.e., the persistent
log at some time is a prefix of the log at a later time, which one can easily verify by noting that all
of the cases in interpADO only ever append to the persistent log. Because the client-observable
state is computed from the persistent log, this property also implies strong consistency; i.e., all
clients observe state updates in the same order.

1 Theorem repStateSafety : forall (evs evs': ADOLog),

2 let log := (interpADO evs).(persist) in let log' := (interpADO (evs ++ evs')).(persist) in

3 log = firstn (length log) log'. (* firstn n xs returns the first min(n, length xs) elements of xs *)

3.2 Programming with ADOs

Onemajor difference between ADOs and sequential or concurrent objects is that although individual
ADO operations are atomic, calling a method (preparing the object with pull, invoking the method,
and committing the result with push) is three separate steps, which can interleave with concurrent
calls. Each step can also fail, and depending on how the failures are handled the method call
can exhibit different behaviors. The most common behaviors are at-most-once, at-least-once, and
exactly-once [Felber et al. 2001; Ramalingam and Vaswani 2013]. In SMR-based interfaces these
different options are typically hidden behind a single, black-box remote procedure call (RPC)
operation [Burrows 2006; Schneider 1990; Wollrath et al. 1996], but the ADO model offers the
flexibility to precisely specify which one an application should use depending on the situation.

At-most-once. As the name suggests, a method called with at-most-once semantics is guaranteed
to be applied to the object either once, or not at all. In the ADO model, this means there is no more
than one cache per node ID with the at-most-once-called method in the persistent log.

1 Definition called (log: ADOLog) (nid: nat) (m: Method) (c: Cache) :=

2 c.(nid) = nid /\ c.(method) = m /\ In c (interpADO log).(persist).

3 Definition at_most_once (log: ADOLog) (nid: nat) (m: Method) :=

4 (exists! c, called log nid m c) \/ (forall c, ~called log nid m c).

This behavior can be useful when a method’s side effects should not execute twice, and the
application is able to tolerate unclear outcomes (i.e., a sort of speculative execution). A method can
be called with at-most-once semantics by calling pull, invoking the method, then calling push, and
aborting if any step fails. We abbreviate this sequence of operations as obj.m()?. In the following
syntax pull returns either the state corresponding to the chosen cache or the special value FAIL.
Similarly, push returns either the return value of the last committed method or FAIL. Recall that,
formally, these are functions on an ADOLog, but for simplicity we use this more concise imperative
notation in which the log is implicitly threaded through each operation.

1 obj.m()? := if (obj.pull() != FAIL) { obj.m(); return obj.push(); } else { return FAIL; }

Note that at_most_once does not allow nid to ever call the same method twice. However, since
arguments are part of the method name (e.g., m(1) and m(2) are considered different methods), a
simple solution is to add a łrequest IDž argument to each method and use a fresh ID for new calls.

At-least-once. When an application cannot tolerate a failed method call the obvious solution is
to retry it. Note, however, that łfailedž in a distributed setting just means łnot definitely successfulž,
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and even a failed method might be added to the cache tree and committed by a later push. Thus,
retrying a method until it succeeds only guarantees that it is called at least once.

1 Definition at_least_once (log: ADOLog) (nid: nat) (m: Method) := exists c, called log nid m c.

This is appropriate for read-only methods (e.g., read), or if one only cares about the return value
rather than the object’s internal state (e.g., a random number generator’s seed). One can make an
at-least-once call (obj.m()+) by repeating obj.m()? with a new request ID each time.2

1 obj.m()+ := do { rqID := /* compute fresh ID */; ret := obj.m(rqID)?; } while (ret = FAIL); return ret;

Exactly-once. Often the most intuitive behavior is for a method to execute precisely once. The
withdrawmethod, for example, is difficult to use sensibly without exactly-once semantics. In general,
as with at-least-once calls, the potential for partial failures means one cannot guarantee a method
is not committed more than once; however, for idempotent methods, obj.m()! can achieve an
equivalent result by repeating obj.m()? with the same request ID.

1 Definition exactly_once (log: ADOLog) (nid: nat) (m: Method) :=

2 exists c, called log nid m c /\ interpADO log = interpADO (removeDups c log).

1 obj.m()! := do { ret := obj.m(rqID)?; } while (ret = FAIL); return ret;

A method can be mechanically transformed into an idempotent one by simply caching the result
using the node and request IDs as a key. This ensures that the method’s side effects only execute
once, and subsequent calls return the memoized value. For example, withdraw becomes:

1 method withdraw(rqID, n) {

2 if ((this.nid, rqID) ∈ this.cache) { }

3 else if (n ≤ this.balance) { this.balance -= n; this.cache[(this.nid, rqID)] := n; }

4 else { this.cache[(this.nid, rqID)] := 0; }

5 return this.cache[(this.nid, rqID)]; }

3.3 Proving with ADOs

Reasoning about an ADO can be quite straightforward because the object’s behaviors are fully
captured by log of atomic events. As an example, we sketch a proof that the balance of a BankAccount
object is always non-negative (replay_st computes the internal state from the persistent log).

1 Definition replay_st {T} {ado: ADO T} (persist: list (@Cache ado)) : T :=

2 fold_left (fun st m => fst (m st)) persist ado.(default).

3 Lemma balance_nonneg : forall (log: ADOLog), 0 <= replay_st (interpADO log).(persist).

Proof. Proceed by induction on log. The base case is trivial since the initial balance is 0. In the
inductive case a new ADOEvent is appended to the log. For every event but 𝑃𝑢𝑠ℎ+ the persistent
state does not change and the balance is non-negative by the inductive hypothesis. For 𝑃𝑢𝑠ℎ+,
consider each of the methods that could be added to the persistent log: read is read-only; deposit
only increases the balance; and withdraw ensures that the amount to be deducted is not greater
than the balance. Therefore, the invariant holds for every log and the balance is never negative. □

BankAccount in Fig. 6 is only a specification and must be implemented by a distributed protocol
such as Paxos or Raft in order to run. The choice of protocol is critical for achieving good per-
formance, but a significant strength of the ADO model’s unifying specification language is that
one can make this decision orthogonally from correctness considerations. As long as the protocol
satisfies the ADO semantics, one can reuse the same specification and application-level proofs.

2Without liveness assumptions, this actually guarantees at-least-once behavior or an infinite loop. For simplicity, we assume

the loop terminates and leave liveness considerations as future work.
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1 ADO KVPrimitive {

2 shared kv : Vector[Z ∗ Z]; /* (meta, value) */

3 method set(k, v) { this.kv[hash(k)] := (sizeof(v), v); }

4 method lookup(k) { (_, v) := this.kv[hash(k)]; return v; }

5 method getmeta(k) { (m, _) := this.kv[hash(k)]; return m; } }

Fig. 7. Single ADO key-value store.

4 ADO COMPOSITION

The ability to easily compose components is critical for building scalable, reliable distributed
applications. It allows complex systems to be decomposed into modular pieces that are easier to
understand and to fine-tune performance. Compositional reasoning is simpler in the ADO model
than in network-based specifications because an application’s behavior can be understood purely in
terms of pull, push, and its methods without any knowledge of the underlying distributed protocol.
Despite its simplicity, this interface is more expressive than SMR because it offers more control
over failure handling (e.g., the different method call semantics in Section 3.2).
ADOs are internally implemented by a cluster of servers that only communicate amongst

themselves and are not aware of other ADOs. Therefore, composing two ADOs really means
composing their interactions with clients. For example, a client of ADOs A and B might execute
x := A.a()!; B.b(x)!, thus creating a composite system involving the client and both objects,
which we refer to as a distributed application, or DApp. It is impossible to prove much if clients
are allowed to interact with objects arbitrarily, therefore DApps limit client behaviors to a set of
predefined procedures. For example, a simple DApp composing two BankAccounts (Fig. 6) to allow
transfers between them could look like the following.

1 DApp TransferAccount(acct1: BankAccount, acct2: BankAccount) {

2 proc transfer12(n) { if (acct1.withdraw(n)! = n) { acct2.deposit(n)!; } }

3 proc transfer21(n) { if (acct2.withdraw(n)! = n) { acct1.deposit(n)!; } } }

Unlike ADO methods, DApp procedures are not necessarily atomic and it is entirely possible for
concurrent executions of transfer12 and transfer21 to interleave. If, however, one can prove that
a particular DApp’s procedures are atomic, then the composite system logically behaves as if it were
implemented by a single consensus protocol, and therefore has an equivalent ADO specification.

4.1 Case-Study: Key-Value Stores

To demonstrate ADO composition in action, we present three versions of a key-value store: a
self-contained ADO, a lock-based DApp, and, most interestingly, a lock-free DApp. Each store maps
the hash of a key to a value along with metadata about the value (e.g., its size in memory). For
simplicity, we do not consider liveness or hash collisions; nevertheless, the data structures and
coordination patterns in these examples are similar to those employed in real systems [Burrows
2006; Chang et al. 2006] and could scale to larger applications.
The first example, KVPrimitive (Fig. 7), is an ADO that manages both the data and metadata.

This has the advantage of making the specification quite simple, and it guarantees for free that the
data and metadata are updated atomically and cannot go out of sync.

4.1.1 Lock-Based Version. KVPrimitive’s simplicity comes at the cost of some control over perfor-
mance and reliability. For example, the data and metadata cannot be stored on separate clusters to
reduce the risk of losing both to node failures. KVLock enables this type of implementation choice by
composing separate DVector objects (an ADO wrapper around a sequential Vector) for the data and
metadata (Fig. 8). These are then composed with a distributed lock (CASLock) for synchronization.
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1 ADO DVector[T] {

2 shared data : Vector[T] := [];

3 ... /* insert, append, pop, etc. */ }

1 ADO CASLock {

2 shared owner : option N := None;

3 method tryAcquire() {

4 if (this.owner = None) {

5 this.owner := Some(this.nid); }

6 return this.owner = Some(this.nid); }

7 method release() {

8 if (this.owner = Some(this.nid)) {

9 this.owner := None; } } }

1 DApp KVLock(

2 lk: CASLock, data: DVector[Z], meta: DVector[Z]) {

3 proc set(k, v) {

4 while (!this.lk.tryAcquire()!) {}

5 this.meta.insert(hash(k), sizeof(v))!;

6 this.data.insert(hash(k), v)!;

7 this.lk.release()!; }

8 proc lookup(k) {

9 while (!this.lk.tryAcquire()!) {}

10 v := this.data.get(hash(k))!;

11 this.lk.release()!;

12 return v; }

13 proc getmeta(k) {

14 while (!this.lk.tryAcquire()!) {}

15 m := this.meta.get(hash(k))!;

16 this.lk.release()!;

17 return m; } }

Fig. 8. Lock-based composite ADO key-value store.

For KVLock to implement KVPrimitive, its procedures must be atomic. Every procedure is pro-
tected by a lock, so this is trivial as long as CASLock guarantees mutual exclusion. Although we use
CASLock for simplicity, one can also design more sophisticated ADO locks (see the Appendix).

1 Lemma mutex : forall (log log': @ADOLog CASLock) (nid: nat),

2 let persist := (interpADO log).(persist) in let persist' := (interpADO (log ++ log')).(persist) in

3 let owner := replay_st persist in let owner' := replay_st persist' in

4 owner = Some nid -> owner <> owner' ->

5 (* skipn n xs returns the remainder of xs after dropping the first n elements *)

6 exists (c: Cache), c.(nid) = nid /\ c.(method) = release(nid) /\ In c (skipn (length persist) persist').

Proof. Proceed by induction on log'. In the base case owner = owner', which contradicts the
hypothesis that owner <> owner'. In the inductive case, persist' and owner' are unchanged by
all events but 𝑃𝑢𝑠ℎ+, so the property holds by the inductive hypothesis. In the 𝑃𝑢𝑠ℎ+ case some
list of methods is appended to persist'. If it contains release(nid), then we are done. Otherwise,
the methods must either be tryAcquire(*), or release(nid') for some nid <> nid'. Neither case
changes owner', so owner <> owner' still holds and the inductive hypothesis still applies. □

The next step is to show that KVLock simulates KVPrimitive. This involves defining a relation
between their states and proving that for each of KVPrimitive’s methods, there is a KVLock proce-
dure that preserves the relation. We only show the case for set since lookup and getmeta do not
modify the key-value state and are simpler.

1 Definition R (persist_lk: list (@Cache KVLock)) (persist_prim: list (@Cache KVPrimitive)) :=

2 let kv := replay_st persist_prim in

3 let (lk, data, meta) := replay_st persist_lk in

4 forall k, kv @ hash k = (data @ hash k, meta @ hash k).

5 Lemma R_set : forall persist_lk persist_prim c_lk c_prim k v,

6 c_lk.(method) = KVLock.set(k, v) ->

7 c_prim.(method) = KVPrimitive.set(k, v) ->

8 c_lk.(nid) = c_prim.(nid) ->

9 R persist_lk persist_prim ->

10 R (persist_lk ++ [c_lk]) (persist_prim ++ [c_prim]).
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1 DApp KVLockFree(data: DVector[Z], meta: DVector[Z ∗ Z]) {

2 proc set(k, v) {

3 idx := this.data.append(v)!;

4 this.meta.insert(hash(k), (sizeof(v), idx))!; }

5 proc lookup(k) {

6 (_, idx) := this.meta.get(hash(k))!;

7 return this.data.get(idx)!; }

8 proc getmeta(k) { (m, _) := this.meta.get(hash(k))!; return m; } }

Fig. 9. Lock-free composite key-value store.

Proof. Choose any key k' and let kv be the state of KVPrimitive before set, kv' be the state
after, and similarly for data and meta. We must show kv' @ hash(k') = (data' @ hash(k'),

meta' @ hash(k')). If hash(k) = hash(k'), then KVPrimitive.set(k, v) means kv' @ hash(k')

= (sizeof(v), v). KVLock uses only exactly-once method calls, which we assume eventually
succeed. After acquiring the lock, it inserts into meta and data. Now meta' @ hash(k') = sizeof

(v) and data' @ hash(k') = v, so the relation holds. If hash(k) <> hash(k') then set does not
change the mapping at k so kv' @ hash(k') = kv @ hash(k') and likewise for meta and data, so
the relation holds by hypothesis. □

4.1.2 Lock-Free Version. A lock is a simple solution for synchronizing distributed components,
but it is often a performance bottleneck, and can cause deadlock if the owner dies while holding
it. Therefore a lock-free solution such as KVLockFree (Fig. 9) may be preferable. Like KVLock it
delegates data and metadata storage to DVector objects, but instead of synchronizing them with
a lock it relies on the order in which data and meta are updated. In set the value is appended to
data, which returns an index pointing to the end of the Vector. The key is then mapped to this
index and the value’s size in meta. To recover the value, lookup follows the reverse order by first
reading the index from meta and using it to access data.
The lack of mutual exclusion makes the atomicity of these procedures less obvious than for

KVLock. The key observations are that data.append() returns a monotonically increasing index
equal to the length of data before the append, and that meta.insert() is the linearization point
(i.e., the moment when a new key-value mapping can be read by a client). We sketch the case where
set and lookup are executed concurrently with the same key (k) by threads T1 and T2 respectively.
The other cases are similar. The two ways in which the procedures can interleave are:

1 T2: (_, idx1) := meta.get(hash(k));

2 T1: idx2 := data.append(v);

3 T2: data.get(idx1);

4 T1: meta.insert(hash(k), (sizeof(v), idx2));

or

1 T1: idx1 := data.append(v);

2 T2: (_, idx2) := meta.get(hash(k));

3 T1: meta.insert(hash(k), (sizeof(v), idx1));

4 T2: data.get(idx2);

Proof. At the beginning of each case we have the invariant that ∀ idx ∈ map(snd, meta).

data.len > idx. This can be seen by observing that only set modifies data or meta and the index
it inserts equals data.len - 1. Therefore we have idx1 < idx2 in the left case and idx2 < idx1

in the right. This means data.get and data.append touch disjoint entries in the Vector so they
can commute (Lines 2 and 3 in the left case). In the right case, however, the operations on meta

are in between the data operations. Since meta and data are separate objects, their methods may
also commute as long as program order is preserved (Lines 1 and 2 & Lines 3 and 4). Thus, after
reordering, both cases are equivalent to atomically executing lookup(k) followed by set(k, v). □
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1 DECISION := YES | NO | COMMIT | ABORT;

2 TX := {ops: Vector[IO]; ts: Z; decision: DECISION};

3 /* Local decision to vote YES or NO if tx can be

4 applied to txs */

5 func tx_can_commit(txs, tx) { ... }

6 ADO RM {

7 shared txs : Vector[TX] := [];

8 method prepare(tx) {

9 tx.decision := tx_can_commit(this.txs, tx);

10 this.txs.append(tx);

11 return tx.decision; }

12 method decide(ts, decision) {

13 idx := this.txs.find(𝜆 tx. tx.ts = ts);

14 this.txs[idx].decision := decision; } }

1 DApp TM(rm_1: RM, ..., rm_n: RM) {

2 local ts : Z := 0;

3 /* Must be called once when TM starts */

4 proc init() {

5 for rm in [this.rm_1, ..., this.rm_n] {

6 while (rm.pull() = FAIL) {} } }

7 proc handle_request(ops) {

8 this.ts += 1;

9 tx := {ops=ops, ts=this.ts, decision=COMMIT};

10 /* Phase 1: Collect decisions */

11 for rm in [this.rm_1, ..., this.rm_n] {

12 /* Method invocation only, not an

13 exactly-once call */

14 rm.prepare(tx);

15 for i in 0..MAX_TRY {

16 res := rm.push();

17 if (res != FAIL) { break; } }

18 /* Abort and break if RM says no or can't

19 commit in MAX_TRY tries */

20 if (res = NO || res = FAIL) {

21 tx.decision := ABORT;

22 break; } }

23 /* Phase 2: Commit the decision */

24 for rm in [this.rm_1, ..., this.rm_n] {

25 rm.decide(tx.ts, tx.decision);

26 while (rm.push() = FAIL) {} } } }

Fig. 10. Two-Phase Commit with replicated RMs.

1 ADO Transaction {

2 shared ts : Z := 0;

3 shared txs_1 : Vector[TX] := []; ...; shared txs_n : Vector[TX] := [];

4 method handle_request(ops) {

5 this.ts += 1;

6 tx := {ops=ops, ts=this.ts, decision=COMMIT};

7 /* Phase 1: Collect decisions and abort if any vote no */

8 if ([this.txs_1, ..., this.txs_n].any(𝜆 txs. tx_can_commit(txs, tx) = NO)) { return; }

9 /* Phase 2: Commit the decision */

10 for txs in [this.txs_1, ..., this.txs_n] { txs.append(tx); } }

Fig. 11. Transaction ADO.

Lock-free systems can be much more performant than lock-based ones, but to our knowledge no
other verification framework has verified an example like KVLockFree. However, with the ADO
model, reasoning about it is comparable to working in a shared-memory concurrent setting.

4.2 Alternate Method-Calling Patterns

Exactly-once method calls are intuitive, but alternate method-calling patterns can sometimes
improve performance by sending fewer messages. This involves rewiring method calls and handling
failures at a lower level of abstraction than is typically available in SMR-like models. In the ADO
model, by simply adjusting when pull and push are called, one can express and reason about a
variety of optimized and unoptimized versions of an application using an atomic interface that is
both simpler than a network model, and more general because it is not tied to a specific protocol.
A real-world example of this type of optimization is in Two-Phase Commit (2PC) combined with
consensus (e.g., Paxos Commit [Gray and Lamport 2006] and WormTX [Shin et al. 2019]).

The standard 2PC protocol distributes its state across a set of resource managers (RM) that each
store a list of operations to apply. To ensure consistency among the RMs a transaction manager
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(TM) first asks each if it can apply an operation locally. If all vote yes then the TM tells them to
commit and apply the operation, and otherwise tells them to abort. This all-or-nothing behavior
means the entire system blocks if a single RM becomes unresponsive. Replicating each RM with a
consensus protocol reduces this risk by allowing them to survive 𝑓 crashes out of 2𝑓 + 1 servers.
Fig. 10 shows a simple implementation of this version of 2PC using 𝑛 ADOs to model the

replicated RMs. For simplicity, we assume the TM never crashes and handles requests one at a time.
A more realistic version that properly handles state recovery after a TM crash can be found in the
Appendix. The code is mostly unsurprising, but there are two points that deserve attention.

The first is the init procedure, which simply calls pull on every RM. This only needs to be called
once when the TM starts because 2PC assumes that there is at most one valid TM that can issue
transactions to the RMs so there is no risk of preemption. This means that, unlike exactly-once
calls, the method calls on Lines 14 and 25 can skip calling pull.

Note that KVLock also guarantees that only the client that holds the lock modifies data and meta.
One could therefore use similar optimizations to improve the performance of a procedure that
inserts a batch of key-value pairs by acquiring the lock, calling pull once, invoking data.insert

and meta.insert for each key-value pair, then calling push until they all succeed.
The second place that Fig. 10 differs from earlier examples is Line 15 in handle_request. Unlike

exactly-once calls, which retry push infinitely, this limits the number of failed attempts. If this limit
is reached the TM safely treats it as a NO vote and aborts the operation. This fine-grained control
over failure handling is one way the ADO model facilitates optimized system designs.

As in the previous examples we can show that this DApp refines an ADO specification (Fig. 11).
Because we assume there is only one client at a time we can consider the procedures atomic. Then
the Transaction ADO is nearly the same as the TM DApp with inlined RMs, so it is easy to see how
they relate. One minor difference is that in phase 1, TM treats an unresponsive RM as a NO vote, so
a transaction may be allowed according to tx_can_commit, but TM aborts it anyway. This cannot
happen in Transaction because there are no RMs to be unresponsive. Nevertheless, one can prove
a soundness relation that says the DApp commits a transaction only if the ADO does as well.

1 Definition R (persist_2pc: list (@Cache TM)) (persist_tx: list (@Cache Transaction)) :=

2 let (ts, tx_1, ..., tx_n) := replay_st persist_tx in let (rm_1, ..., rm_n) := replay_st persist_2pc in

3 forall i tx, tx.(decision) = COMMIT -> tx ∈ rm_i ->

4 exists tx', tx'.(decision) = COMMIT /\ tx.(ops) = tx'.(ops) /\ tx' ∈ tx_i.

5 ADVERT

The Advert verification framework includes a Coq implementation of the ADO model and is
layered such that ADOs and DApps like those in the previous sections can be reasoned about
independently from their protocol-level implementations (Fig. 12). This section discusses how the
lower-level implementations relate to their ADO specifications.

5.1 Network-Based Specifications

The gap between the ADO model and C code (atomic methods and a logical cache tree vs.
packets and concrete memory) is too large to cover in a single step. To help close it we introduce
an intermediate łnetwork-basedž specification that more closely matches the implementation,
but still abstracts away C-specific details. One can then link the specifications with contextual
refinement [Gu et al. 2015; Liang et al. 2013] to achieve an end-to-end correctness property.

Following the approach of previous work [Hawblitzel et al. 2015a; Wilcox et al. 2015], the network
is modeled as a logical history (𝑁𝑒𝑡𝐿𝑜𝑔) of events (Fig. 13). The 𝑆𝑒𝑛𝑑 , 𝐵𝑆𝑒𝑛𝑑 , 𝑅𝑒𝑐𝑣 , and 𝑅𝑒𝑐𝑣𝑇𝑂

events correspond, respectively, to sending, broadcasting, receiving, or failing to receive a packet.
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Fig. 12. Advert structure.

1 param data : Type

2 def time := Z ∗ Nnid

3 def lstate := {cur_tm: time; snap: list data;

4 snap_tm: time}

5 def gstate := Nnid ⇀ {st: lstate;

6 tosend: option NetEvent}

7 def phase := Prepare | Write(f: update_func)

8 def msg_kind := Req | Ack

9 def Msg := {kind: (phase ∗ msg_kind); content: lstate}

10 def GMsg := Begin(ph: phase) | End(ph: phase, res: B)

11 def NetEvent := Send(Nnid ∗ Nnid ∗ Msg)

12 | BSend(Nnid ∗ Msg) | Recv(Nnid ∗ Nnid ∗ Msg)

13 | RecvTO(Nnid) | Ghost(Nnid ∗ GMsg)

14 def NetLog := list NetEvent

1 func interpEv (gs: gstate) (ev: NetEvent)

2 : option gstate :=

3 match ev with

4 | Recv(src, dst, {(Prepare, Req), msg}) ⇒

5 (* Haskell-like do-notation *)

6 {st, None} ← gs(dst);

7 if st.cur_tm < msg.cur_tm then

8 let st' := {msg.cur_tm, st.snap,

9 st.snap_tm} in

10 let ack := {(Prepare, Ack), st'} in

11 gs[dst := {st', Send(dst, src, ack)}]

12 else gs

13 | ... end

14 func interpNet log := fold interpEv log init_gs

Fig. 13. Part of the Paxos network specification.

𝐺ℎ𝑜𝑠𝑡 events do not represent real network communications, but are logical markers to help relate
sequences of network events to atomic ADO events (Section 5.2). A network-based specification is
a logical state machine whose transitions are triggered by network events. For example, interpEv
in Fig. 13 shows the transition for a Paxos acceptor upon receiving a prepare request.3

5.2 Relating Network and ADOModels

We show that the ADO model captures the behavior of the network-based specification by proving
a refinement between pull and prepare, and likewise for push and write. These theorems state
that matching logs of ADO and network events continue to match after taking a step.

1 Theorem prepare_pull : forall (ado ado': ADOLog) (net: NetLog),

2 RADO ado net -> pull ado = Some ado' ->

3 exists net', prepare net = Some net' /\ RADO ado' net'.

3The implementation in Advert is in Coq, but for ease of presentation we use a more concise pseudocode.
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Fig. 14. Asynchronous networks complicate ordering and determining event completion. Examples show
Paxos-like systems where successful operations require support from a majority of servers (2 out of 3).
Diagonal arrows represent communication in physical time. Dotted arrows represent future events.

The refinement relation RADO establishes a mapping between ADO and network event logs that
holds when the replicated state in both models is observably equivalent. This roughly means the
methods in the ADO’s persistent log and current cache branch match those in the state snapshot
carried by the acknowledgement of the client’s request with the latest logical timestamp (see the
Appendix for precise definitions). The challenge is that the asynchronous network sometimes
creates network logs that do not line up cleanly with their corresponding ADO logs. To resolve
these mismatches, one must apply certain transformations to the network log and prove that the
observable state is preserved. We explain two of these transformations using Paxos-like systems as
an example, but similar concepts apply to Chain Replication and Raft as well.

Reordering the Network. Consider Ex. 1 in Fig. 14 in which C1 tries to commit a function 𝑓 at
logical time 1, while C2 concurrently tries to become an owner at logical time 2. BEGIN and END
represent the ghost events emitted before and after the prepare and write phases. In terms of the
physical timeline, C1’s write phase ends after C2’s prepare phase; however, the write is actually
committed as soon as it reaches two servers (a quorum), which happens much earlier. Therefore,
in the corresponding ADO logical timeline, 𝑃𝑢𝑠ℎ+ (𝐶1) comes before 𝑃𝑢𝑙𝑙+ (𝐶2). To resolve this
discrepancy we can reorder the network events such that the entire write (everything between
BEGIN and END) happens before prepare begins. Since 𝑓 is still committed in the same order the
final state does not change. The logs then line up as follows.

𝐺ℎ𝑜𝑠𝑡 (𝐶1, 𝐵𝑒𝑔𝑖𝑛(𝑊𝑟𝑖𝑡𝑒 (𝑓 ))) • · · · •𝐺ℎ𝑜𝑠𝑡 (𝐶1, 𝐸𝑛𝑑 (𝑊𝑟𝑖𝑡𝑒, 𝑡𝑟𝑢𝑒)) •𝐺ℎ𝑜𝑠𝑡 (𝐶2, 𝐵𝑒𝑔𝑖𝑛(𝑃𝑟𝑒𝑝𝑎𝑟𝑒)) • · · ·

𝐼𝑛𝑣𝑜𝑘𝑒+ (𝐶1, 𝑓 ) • 𝑃𝑢𝑠ℎ+ (𝐶1) • 𝑃𝑢𝑙𝑙+ (𝐶2) • · · ·

Completing the Network. Ex. 2 in Fig. 14 illustrates another problem. C1 is again committing 𝑓

at logical time 1, but this time the request times out after receiving only one acknowledgement (the
first END before the vertical dotted line). At this point a quorum has neither accepted nor rejected
the request so it is impossible to conclusively say whether it corresponds to 𝑃𝑢𝑠ℎ+ or 𝑃𝑢𝑠ℎ−. To help
make this decision we introduce an abstract phase scheduler oracle that determines the future of
the network log by modelling clients who arbitrarily call prepare and write. We can then complete

C1’s write by extending the network with the phase scheduler until it has definitively succeeded
or failed. In this case, the oracle determines that the delayed request eventually reaches a second
server and the write succeeds (future events are marked by dotted lines).

Matching Logs. By combining these operations one can transform a log of network events into
an equivalent one sorted by logical time where operations have clearly marked beginnings and
endings. All that remains is to map sequences of network events to corresponding atomic ADO
events. For example, a sequence consisting of 𝐺ℎ𝑜𝑠𝑡 (𝐶, 𝐵𝑒𝑔𝑖𝑛(𝑃𝑟𝑒𝑝𝑎𝑟𝑒)), a quorum of positive
acknowledgement 𝑅𝑒𝑐𝑣 events, and then 𝐺ℎ𝑜𝑠𝑡 (𝐶, 𝐸𝑛𝑑 (𝑃𝑟𝑒𝑝𝑎𝑟𝑒)) is mapped to 𝑃𝑢𝑠ℎ+ (𝐶).
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Defining these mappings is simple, but to ensure that the relation is meaningful we must show
that matching event logs produce matching states; i.e., a committed method in the ADO’s persistent
log should also be in a quorum of replicas’ local logs. Recall that the ADO model guarantees
Replicated State Safety (Section 3.1), which means that committed methods are immutable and
are observed by clients in the same order. To demonstrate that the relation between the ADO
and network models is valid, we show that the network model satisfies a version of this property
(Network Replicated State Safety) as well. Note that this is very similar to the top-level safety
properties considered by previous work [Hawblitzel et al. 2015a; Ma et al. 2019; Woos et al. 2016].

1 Theorem netRepStateSafety : forall (net: NetLog) (gs: gstate),

2 interpNet net = Some gs -> forall (c c': nat),

3 let st := gs(c).(snap) in let st' := gs(c').(snap) in

4 gs(c).(snap_tm) <= gs(c').(snap_tm) -> (* c has a smaller timestamp than c'. Thus its log is a *)

5 st = firstn (length st) st'. (* prefix of c'; i.e., c' has all of c's committed methods *)

5.3 Safety Proof Template

Proving Network Replicated State Safety is often the most challenging step of the refinement
because it requires reasoning at the network level and working with concurrent, non-atomic events.
Fortunately, it only needs to be done once per protocol. Furthermore, many distributed protocols
are simply variations of the same concept that all rely on the same core safety argument. Paxos, for
example, has many variants (e.g., Fast Paxos [Lamport 2006], Disk Paxos [Gafni and Lamport 2003]),
but their correctness always relies on subsequent prepare and write phases having overlapping
quorums of supporters, which prevents different commands from being committed in the same slot.

Our network-based specification for Paxos takes advantage of these similarities by parametrizing
certain protocol-specific details, which can be instantiated to accommodate a range of Paxos
variants. For example, rather than fixing a quorum to be a simple majority, the specification uses an
opaque is_q function. With some basic assumptions (e.g., quorums have a non-empty intersection),
we can build a reusable proof template for Network Replicated State Safety that holds for a family
of Paxos-like protocols. To instantiate the template one simply needs to define the parameters and
prove that they satisfy the assumptions, after which the top-level theorem is proved for free.
Building these proofs of generic, global properties from simple, local invariants is certainly an

interesting proof engineering challenge, but one that mostly falls outside the scope and space
limitations of this paper. See the Appendix for more details about the proof structure. The following
are a few sample instantiations of the parameters, which include the type of the replicated state
(data), the function to determine if a set of nodes constitutes a quorum (is_q), and the update
function (update), which computes a new value for data on a successful write.
Paxos [Lamport 2001] uses consensus to replicate a single, immutable value (e.g., an integer).

The update function enforces immutability by only accepting the new value if the old state is None.
Quorums are decided by a simple majority (𝑓 + 1 out of 2𝑓 + 1) of acknowledgements (countAcks).
Unlike the other variants, this implements a specialized, write-once version of an ADO.

1 def data := option Z

2 func update (new: Z) (t: time) (old: data) := if old = None then Some(new) else old

3 func is_q (ph: phase) (t: time) (nid: Nnid) (log: NetLog) := countAcks(ph, nid, t, log) ≥ f + 1

Multi-Paxos [Renesse and Altinbuken 2015] extends Paxos to a log of immutable values. The
log also stores the time at which the value was written. Quorums are the same as in Paxos.

1 def data := list (time ∗ Z)

2 func update (new: Z) (t: time) (old: data) := old ++ [(t, new)]
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Vertical Paxos [Lamport et al. 2009] permits different quorum sizes between prepare and write

phases. We introduce conf to query the configuration (the set of participating servers and the
quorum sizes) at a particular logical time. The other parameters are the same as in multi-Paxos.

1 param conf : time → (list Nnid ∗ Z ∗ Z)

2 func is_q (ph: phase) (t: time) (nid: Nnid) (log: NetLog) :=

3 let (servs, pquorum, wquorum) := conf t in

4 let quorum := if ph = Prepare then pquorum else wquorum in

5 countAcks(servs, ph, nid, t, log) ≥ quorum

CASPaxos [Rystsov 2018] updates the replicated state in-place rather than keeping a log, which
eliminates the need for operations like log compaction. Instead of proposing values, clients send
łchange functionsž to compute new states from old ones. Quorums are the same as in Paxos.

1 func update (change: data → data) (t: time) (old: data) := change old

5.4 Primary Backup and C Code Verification

We have focused mainly on Paxos-like systems, butAdvert also supports primary backup protocols
such as Chain Replication [Renesse and Schneider 2004], and CRAQ [Terrace and Freedman 2009].
Like Paxos these protocols operate in two phases, but rather than using consensus, they ensure
consistency by passing updates along a chain of replicas. We have implemented a network-based
specification for Chain Replication, and proved that it refines the ADO model. Interestingly, despite
the different communication patterns, the proof shares many key elements with Paxos, such as
logical time reordering and network completion (Section 5.2).
To show that Advert enables end-to-end verification, we implemented multi-Paxos in C and

proved it correct with respect to its network specification using certified concurrent abstraction
layers (CCAL) [Gu et al. 2018]. Compared to the refinement proof for the network-based specifica-
tion, C code functional correctness proofs are fairly straightforward and follow the approach of
CertiKOS [Gu et al. 2016] and WormSpace [Shin et al. 2019]. Together these proofs make it possible
to connect ADO specifications of applications like the key-value stores to efficient executable code.

6 EVALUATION

Verification Effort. The Advert codebase consists of approximately 2K lines of Coq specifica-
tions and 18K of safety and refinement proofs (5K for Paxos, 2K for Chain Replication, and 11K of
shared libraries). Thanks to the reusable proof template, instantiating four Paxos variants from the
generic network specification takes only 340 lines. The specifications and proofs of the DApps and
ADOs in Section 4 take 680 lines for the key-value stores and 470 lines for 2PC. The 2.6K lines of
multi-Paxos C code require 43.9K lines of functional correctness proofs, which could be significantly
reduced through automation [Sjöberg et al. 2019]. The code is verified using CompCert’s Clight
semantics [Leroy 2020] and runs on both Linux and CertiKOS [Gu et al. 2016] (augmented with
unverified send and recv system calls). The C implementation of Chain Replication is not yet
verified, but we expect that doing so would be quite similar to the multi-Paxos case.

The amount of developer effort required to use Advert depends on the level at which one wants
to reason. To verify an application end-to-end there are three, mostly orthogonal steps: writing the
ADO and DApp specifications, proving that the network-level protocol refines the ADO model,
and proving that the C implementation refines the network-level protocol. If one reuses an existing
verified network-level protocol then the second and third steps can be skipped. One might also be
satisfied with reasoning about a model in which case the ADO specifications alone are sufficient.
The most challenging step is the refinement between network and ADO-level specifications,

though it is only required once per protocol, and similarities between protocols can be exploited
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(a) KVS latency vs throughput (b) KVS steady state latency (c) 2PC latency

Fig. 15. Performance of different key-value store (KVS) and 2PC designs.
(MP = multi-Paxos, CR = Chain Replication, KVP = KVPrimitive, KVL = KVLock, KVLF = KVLockFree, Init =
calling pull upon Init, TX = calling pull per TX request, Ph = calling pull per each 2PC phase)

to reduce the proof effort. Section 7 discusses a potential integration with Verdi that might also
simplify this task. Verifying a C implementation is also quite laborious, though it is typically
conceptually more straightforward than the network-ADO refinement. Advert is not tied to a
specific C verification framework because all that matters is that the code is abstracted to a network-
based model in the style described in Section 5.1. Therefore, although we use CCAL, one could
instead choose the Verified Software Toolchain [Appel 2011] or RefinedC [Sammler et al. 2021].

By comparison, workingwithADO andDApp specifications ismuch simpler.Much of the network
level’s complexity is hidden and one can treat ADOs almost as standard concurrent objects, albeit
with a somewhat different failure model. The degree of difficulty of composing ADOs is application-
dependent; however, KVLockFree demonstrates that even fairly sophisticated composition patterns
are feasible. In practice, many modern distributed systems rely on a coordinator to order operations
across independent objects [Dean 2009] (e.g., the microservice [Killalea 2016] and serverless
computing [Castro et al. 2019] paradigms). By building up a library of reusable components (e.g.,
locks, transactions), it would be straightforward to express many of these systems in Advert.

Performance. Fig. 15 shows latency and throughput measurements of C implementations of the
key-value store (KVS) and 2PC designs from Section 4. KVS benchmarks use multi-Paxos and Chain
Replication while 2PC only uses multi-Paxos. The experiments were run in Amazon EC2 with three
acceptors/a three-node chain per ADO for multi-Paxos and Chain Replication respectively. We
only vary the write workload, as reads can be optimized with extra learner/cache servers.
For key-value store designs (Figs. 15a and 15b), KVPrimitive exhibits the lowest latency and

the highest throughput, but cannot separate metadata and data for modularity and manageability.
KVLock’s lock creates a performance bottleneck as each request accesses it twice (acquire and
release). The best compromise is KVLockFree where metadata and data are managed separately
with only a moderate increase in latency, but the same throughput as KVPrimitive.

Comparing across protocols, Chain Replication’s serial communication achieves higher through-
put than multi-Paxos’s broadcasting approach; however, multi-Paxos can make progress with
only 𝑓 + 1 out of 2𝑓 + 1 nodes, whereas Chain Replication must halt for reconfiguration after
even one failure. Comparisons with unverified, open source multi-Paxos [Moraru et al. 2013] and
Chain Replication [Balakrishnan et al. 2012; CorfuDB 2017] implementations show that our code
achieves higher peak throughputs (13 Kops/s vs. 20 Kops/s for multi-Paxos and 7 Kops/s vs. 39
Kops/s for Chain Replication). Our code also outperforms IronFleet’s IronRSL [Hawblitzel et al.
2015a], which was found to have a lower throughput than this same multi-Paxos implementation.
Note that these systems are implemented in different languages so our point is not to claim better
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performance, but to demonstrate that using Advert does not inherently limit efficiency. The more
interesting takeaway is that different implementations of the same application can exhibit different
performance and reliability characteristics, while still sharing a common ADO-level specification.
ADOs also support performance tuning by adjusting method-calling patterns. Fig. 15c shows

transaction processing latencies of 2PC designs (Fig. 10) with three RMs in which pull is called in
different places: once during init; once on every transaction request (handle_request); and once
for each phase of 2PC (twice per handle_request). Under this experiment exactly the same tasks
are executed, but the performance varies up to 2X for different designs. Our aim here is to show
that these design choices, which are invisible in a conventional SMR-like API, can significantly
affect performance, and the ADO model allows developers to more easily experiment with them.

7 RELATED WORK

Concurrent Memory/Object Models. The ADO model is heavily influenced by prior work on
shared-memory concurrent objects such as CCAL [Gu et al. 2016, 2018] and the push/pull memory
model becausemany distributed protocols naturally split into two phases that map onto pull (get the
current state and permission to change it) and push (commit the changes). The ADO’s use of logical
event logs to model state machine protocols is also inspired by Mazurkiewic’s trace [Mazurkiewicz
1995] and Lamport’s c-struct [Lamport 2005]. The network completion operation in the ADO-
network refinement is related to a similar notion of completion from work on linearizability of
shared-memory concurrent systems in the presence of crashes [Izraelevitz et al. 2016].

Transactions. There are also parallels between the ADO model and both distributed and shared-
memory transactional models [Guerraoui and Kapalka 2008; Koskinen and Parkinson 2015]. A
successful push behaves similarly to a transaction commit in that it atomically appends (a prefix
of) the working cache tree branch to the persistent log while simultaneously aborting inconsistent
states in sibling branches. However, transactions typically rely on a centralized coordinator to
ensure that updates are applied to the latest consistent snapshot, but the ADO model is more
decentralized and allows pull to select an inconsistent state as a starting point. The Replicated State
Safety property guarantees that these inconsistent states are descendants of the latest committed
state, but there may temporarily be łcompetingž snapshots until they are resolved by push. An
interesting benefit of the ADO model is that these similarities between consensus and transactions
are exposed so clearly, and in future work we hope to explore this relation more deeply.

Distributed Object Models. Wang et al. [2019] showed that conflict-free replicated data types
(CRDTs) that satisfy a property called replication-aware linearizability can be modeled by a modular,
sequential specification. This is similar to the ADO model in that it hides distributed behaviors
behind a compositional, atomic interface, but CRDTs offer eventual consistency where the ADO
model targets strongly consistent systems.
Another common object-like abstraction for distributed systems is state machine replication

(SMR) and remote procedure calls (RPC), which hide intermediate states due to transient failures,
often by wrapping methods in a retry loop [Schneider 1990]. This can be convenient, but it prevents
reasoning about applications with alternate failure-handling strategies (e.g., at-most-once calls),
those that use inconsistent states (e.g., TAPIR [Zhang et al. 2015]), or those with optimizations that
do not follow the typical message-sending patterns (e.g., 2PC with consensus [Gray and Lamport
2006]). The ADO model does support these types of applications, but one can also easily recover
SMR-like behaviors by using exactly-once calls when this level of control is unnecessary. This means
one can build an application that mixes SMR-style objects with those that exploit intermediate
states, and reason about their interactions using the common ADO foundation.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 97. Publication date: October 2021.



97:26 Wolf Honoré, Jieung Kim, Ji-Yong Shin, and Zhong Shao

Distributed System Verification. Verdi [Wilcox et al. 2015] is a distributed system verification
framework in which one writes an application in a network-based style that is very similar to
Advert’s network-based specifications (Section 5.1), and reasons about the traces of external events
it generates. For example, a verified implementation of Raft in Verdi [Woos et al. 2016] proved its
traces are linearizable by showing that it satisfies a property called State Machine Safety; i.e., every
node in the replicated state machine executes commands in the same order. This is essentially
the same as the Network Replicated State Safety property (Section 5.3). One can then reuse this
implementation to build applications in an SMR style.

A powerful feature of Verdi is its verified system transformers (VSTs), which can automatically
and safely transform a system that assumes a reliable network into one that handles various network
faults. Ideally, one could use VSTs to simplify a protocol’s linearizability proof at the network level,
and then lift it to an ADO specification for application-level reasoning. As a step in this direction,
we have begun a proof that Verdi’s network-based specification of Raft refines the ADO model.

The main challenge in this proof is reconciling the different network specification styles. For
example, our Paxos network-based specification emits Begin and End ghost events, which mark
when a node performs an internal transition. On a Begin event a node increments its local timestamp
in preparation for a new round of updates, and at End it copies the state snapshot from the
acknowledgement with the largest logical timestamp. These are then used to reorder and complete
the network in the refinement with the ADO model (see Section 5.2 and the Appendix). Verdi’s Raft
implementation has similar internal transitions, but they are bundled with transitions for physical
packets such as ClientRequest or Acknowledgement rather than using separate ghost events. This
is not a fundamental incompatibility, and can be solved by introducing an additional intermediate
specification with extra ghost events and proving it equivalent to the Verdi specification.
IronFleet [Hawblitzel et al. 2015a] is another framework in which distributed systems are also

modeled as network-based state machines. One then uses reduction arguments to reorder, remove,
or join sequences of network events into simpler ones (e.g., commuting unrelated sends and
receives). This is similar to the network reordering step in the ADO refinement proofs. In principle
one could connect IronFleet’s techniques with Advert’s ADO model in a similar manner to Verdi,
but there is a technical incompatibility due to the different proof assistants used by each framework
(Dafny [Leino 2010] vs. Coq [The Coq Development Team 2018]).

There is also a large body of work on automating aspects of distributed system verification
including Ivy [Padon et al. 2016; Taube et al. 2018], I4 [Ma et al. 2019], and techniques for trans-
forming asynchronous programs into sequential ones [Chajed et al. 2018; Hawblitzel et al. 2015b;
Kragl et al. 2020; v. Gleissenthall et al. 2019]. These projects aim to ease network-based reasoning
and are largely orthogonal to the ADO model’s goal of providing a general distributed system
abstraction; however, they could simplify or automate certain network-level proofs in Advert.
For example, Padon et al. [2017] automatically verifies the safety of (first-order logic models of) a
variety of Paxos variants in Ivy, which is an important step in the ADO refinement proofs.

Distributed System Composition. One shortcoming of most distributed system verification
frameworks, including Verdi and IronFleet, is a lack of support for composition between applications
and clients, which limits the modularity and reuse of verified systems. The ADO model supports
this with DApps (Section 4), which define how clients can interact with a set of ADOs. Two other
projects that have studied this problem are Disel [Sergey et al. 2017] and Aneris [Krogh-Jespersen
et al. 2020]. Both use a modified concurrent separation logic to enable node-local (and thread-local
in Aneris) reasoning about invariants with a version of the frame rule. While these logics improve
modularity, they define interactions at the level of abstract network primitives and thus do not
support the kind of network-independent reasoning enabled by the ADO model. Both frameworks
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can handle composition involving a coordinator, such as Two-Phase Commit, but to our knowledge
they have not fully demonstrated support for more decentralized applications such as KVLockFree.

Exploiting Exposed Failures and Intermediate States. One advantage of the ADO model
is its simple interface for working with one of the most complicated and unintuitive aspects of
distributed systems: failures and intermediate state. As our replicated Two-Phase Commit example
demonstrates, one can exploit these features for performance gains. For example, by using pull and
push directly instead of an exactly-once call, the TM is able to save several message round trips.

TAPIR [Zhang et al. 2015] also combines transactions with consensus, but it observes that since
both the transaction and replication protocols are strongly consistent, it can replicate commands
with only a single round of messages instead of two. This means replicas may receive commands
in different orders, but the consistent global order is enforced later by the TM. We can model this
behavior with cache tree entries for the replicated commands, which are only committed later by
push. Much like the Two-Phase Commit example, by carefully controlling when pull and push

are called and temporarily relying on uncommitted states, TAPIR exploits an application-specific
characteristic (the existence of the TM) to optimize its performance.

Another use for exposed failures is speculative execution. Speculator [Nightingale et al. 2005] is
a distributed file system that outperforms NFS by working under the assumption that its operations
will succeed without waiting for confirmation. If it later learns that an operation failed, it reloads
from an earlier checkpoint and retries. The speculation and failures are hidden from the client by
waiting to externalize the output until an operation succeeds, but in order to make this optimization
possible they must be exposed within the boundaries of the application.

At present these systems are quite complicated and not well supported by existing models. Thus,
in spite of the potential performance benefits, it is difficult for developers to be confident in the
correctness of their implementations. The ADO model makes formal verification of such systems
much more feasible, which could encourage their development and adoption.

8 CONCLUSIONS

The atomic distributed object model is a compositional abstraction for reasoning about strongly
consistent distributed systems that hides unnecessary implementation-level complexities while
faithfully capturing common high-level distributed behaviors and failure cases. It can be connected
to network-level specifications of protocols such as Paxos and Chain Replication through contextual
refinement and the clean separation between implementation and specification allows one to change
an application’s underlying implementation without modifying ADO-level specifications or proofs.
We took advantage of this implementation flexibility to build three versions of a key-value store,
including a lock-free implementation. By exposing certain failure cases the ADO model supports a
wider range of method-calling patterns and optimizations than SMR, which we used to build 2PC
from a composition of replicated RMs. We believe the ADO model is a powerful tool for developing
efficient, bug-free distributed applications and opens many exciting avenues for future study.
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