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Abstract
Hardware interrupts are widely used in the world’s critical soft-
ware systems to support preemptive threads, device drivers, operat-
ing system kernels, and hypervisors. Handling interrupts properly
is an essential component of low-level system programming. Un-
fortunately, interrupts are also extremely hard to reason about: they
dramatically alter the program control flow and complicate the in-
variants in low-level concurrent code (e.g., implementation of syn-
chronization primitives). Existing formal verification techniques—
including Hoare logic, typed assembly language, concurrent sepa-
ration logic, and the assume-guarantee method—have consistently
ignored the issues of interrupts; this severely limits the applicability
and power of today’s program verification systems.

In this paper we present a novel Hoare-logic-like framework
for certifying low-level system programs involving both hard-
ware interrupts and preemptive threads. We show that enabling
and disabling interrupts can be formalized precisely using simple
ownership-transfer semantics, and the same technique also extends
to the concurrent setting. By carefully reasoning about the inter-
action among interrupt handlers, context switching, and synchro-
nization libraries, we are able to—for the first time—successfully
certify a preemptive thread implementation and a large number of
common synchronization primitives. Our work provides a foun-
dation for reasoning about interrupt-based kernel programs and
makes an important advance toward building fully certified operat-
ing system kernels and hypervisors.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; D.2.4 [Software Engineering]: Software/Program Verifi-
cation — Correctness proofs, formal methods, reliability; D.3.1
[Programming Languages]: Formal Definitions and Theory — Se-
mantics; D.4.5 [Operating Systems]: Reliability — Verification

General Terms Languages, Reliability, Security, Verification

Keywords Hardware Interrupts, Preemptive Threads, Certified
System Software, Concurrency, Separation Logic
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Figure 1. “High-Level” vs. “Low-Level” System Programs

1. Introduction
Low-level system programs (e.g., thread implementations, device
drivers, OS kernels, and hypervisors) form the backbone of almost
every safety-critical software system in the world. It is thus highly
desirable to formally certify the correctness of these programs.
Indeed, there have been several new projects launched recently—
including Verisoft/XT (Gargano et al. 2005; Paul et al. 2007),
L4.verified (Tuch et al. 2005), and Singularity (Hunt and Larus
2004)—all aiming to build certified OS kernels and/or hypervisors.
With formal specifications and provably safe components, certified
system software can provide a trustworthy computing platform
and enable anticipatory statements about system configurations and
behaviors (Hunt and Larus 2004).

Unfortunately, system programs—especially those involving
both interrupts and concurrency—are extremely hard to reason
about. In Fig. 1, we divide programs in a typical preemptible
uniprocessor OS kernel into two layers. At the “higher” abstrac-
tion level, we have threads that follow the standard concurrent
programming model (Hoare 1972): interrupts are invisible, but the
execution of a thread can be preempted by other threads; synchro-
nization operations are treated as primitives.

Below this layer (see the shaded box), we have more sub-
tle “lower-level” code involving both interrupts and concurrency.
The implementation of many synchronization primitives and in-
put/output operations requires explicit manipulation of interrupts;
they behave concurrently in a preemptive way (if interrupt is en-
abled) or a non-preemptive way (if interrupt is disabled). When
execution of a thread is interrupted, control is transferred to an in-
terrupt handler, which may call the thread scheduler and switch the
control to another thread. Some of the code in the shaded box (e.g.,
the scheduler and context switching routine) may behave sequen-
tially since they are always executed with interrupt disabled.

Existing program verification techniques (including Hoare
logic (Hoare 1969), typed assembly language (Morrisett et al.



Condition Variables

void wait_m(Lock *l, CV *cv);
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Figure 2. Interaction between Threads and Interrupts

1998), concurrent separation logic (O’Hearn 2004; Brookes 2004),
and its assume-guarantee variant (Feng et al. 2007a; Vafeiadis and
Parkinson 2007)) can probably handle those high-level concurrent
programs, but they have consistently ignored the issues of inter-
rupts thus cannot be used to certify concurrent code in the shaded
box. Having both explicit interrupts and threads creates the follow-
ing new challenges:
• Asymmetric preemption relations. Non-handler code may be

preempted by an interrupt handler (and low-priority handlers
can be preempted by higher-priority ones), but not vice versa.
Interrupt handlers cannot be simply treated as threads (Regehr
and Cooprider 2007).

• Subtle intertwining between interrupts and threads. In Fig. 2,
thread A is interrupted by the interrupt request irq0. In the
handler, the control is switched to thread B. From thread A’s
point of view, the behavior of the handler 0 is complex: should
the handler be responsible for the behavior of thread B?

• Asymmetric synchronizations. Synchronization between han-
dler and non-handler code is achieved simply by enabling and
disabling interrupts (via sti and cli instructions in x86). Unlike
locks, interrupts can be disabled by one thread and enabled by
another. In Fig. 2, thread A disables interrupts and then switches
control to thread B (step (5)), which will enable interrupts.

• Handler for higher-priority interrupts might be “interrupted” by
lower-priority ones. In Fig. 2, handler 0 switches the control to
thread B at step (1); thread B enables interrupts and is inter-
rupted by irq1, which may have a lower-priority than irq0.
In this paper we tackle these challenges directly and present a

novel framework for certifying low-level programs involving both
interrupts and preemptive threads. We introduce a new abstract
interrupt machine (named AIM, see Sec. 3 and the upper half of
Fig. 3) to capture “interrupt-aware” concurrency, and use simple
ownership-transfer semantics to reason about the interaction among

interrupt handlers, context switching, and synchronization libraries.
Our paper makes the following new contributions:
• As far as we know, our work presents the first program logic

(see Sec. 4) that can successfully certify the correctness of low-
level programs involving both interrupts and concurrency. Our
idea of using ownership-transfer semantics to model interrupts
is both novel and general (since it also works in the concurrent
setting). Our logic supports modular verification: threads and
handlers can be certified in the same way as we certify sequen-
tial code without worrying about possible interleaving. Sound-
ness of our logic is formally proved in the Coq proof assistant.

• Following separation logic’s local-reasoning idea, our program
logic also enforces partitions of resources between different
threads and between threads and interrupt handlers. These log-
ical partitions at different program points essentially give an
abstract formalization of the semantics of interrupts and the in-
teraction between handlers and threads.

• Our AIM machine (see Sec. 3) unifies both the preemptive and
non-preemptive threading models, and to our best knowledge,
is the first to successfully formalize concurrency with explicit
interrupt handlers. In AIM, operations that manipulate thread
queues are treated as primitives; These operations, together
with the scheduler and context-switching code (the low half of
Fig. 3), are strictly sequential thus can be certified in a simpler
logic. Certified code at different levels is linked together using
an OCAP-style framework (Feng et al. 2007b).

• Synchronization operations can be implemented as subroutines
in AIM. To demonstrate the power of our framework, we have
certified, for the first time, various implementations of locks
and condition variables (see Sec. 5). Our specifications pinpoint
precisely the differences between different implementations.

2. Informal Development
Before presenting our formal framework, we first informally ex-
plain the key ideas underlying our abstract machine and our
ownership-transfer semantics for reasoning about interrupts.

2.1 Design of the Abstract Machine
In Fig. 3 we outline the structure of a thread implementation taken
from a simplified OS kernel. We split all “shaded” code into two
layers: the upper level C (for “Concurrent”) and the low level S (for
“Sequential”). Code at Level C is concurrent; it handles interrupts
explicitly and implements interrupt handlers but abstracts away the
implementation of threads. Code at Level S is sequential (always
executed with interrupts disabled); functions that need to know
the concrete representations of thread control blocks (TCBs) and
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thread queues are implemented at Level S; there are one queue for
ready threads and multiple queues for blocked threads.

We implement three primitive thread operations at Level S:
switch, block, and unblock. The switch primitive, shown as the
scheduler() function in Fig. 3, saves the execution context of
the current thread into the ready queue, picks another one from the
queue, and switches to the execution context of the new thread. The
block primitive takes a pointer to a block queue as argument, puts
the current thread into the block queue, and switches the control
to a thread in the ready queue. The unblock primitive also takes a
pointer to a block queue as argument; it moves a thread from the
block queue to the ready queue but does not do context switching.
Level S also contains code for queue operations and thread context
switching, which are called by these thread primitives.

In the abstract machine at Level C, we use instructions sti/cli
to enable/disable interrupts (as on x86 processors); the primitives
switch, block and unblock are also treated as instructions; thread
queues are now abstract algebraic structures outside of the data
heap and can only be accessed via the thread primitives.
2.2 Ownership-Transfer Semantics
Concurrent entities, i.e., the handler code and the threads consisting
of the non-handler code, all need to access memory. To guarantee
the non-interference, we enforce the following invariant, inspired
by recent work on Concurrent Separation Logic (O’Hearn 2004;
Brookes 2004): there always exists a partition of memory among
these concurrent entities, and each entity can only access its own
part of memory. There are two important points about this invariant:
• the partition is logical; we do not need to change our model of

the physical machine, which only has one global shared data
heap. The logical partition can be enforced following Separa-
tion Logic (Ishtiaq and O’Hearn 2001; Reynolds 2002), as we
will explain below.

• the partition is not static; it can be dynamically adjusted during
program execution, which is done by transferring the ownership
of memory from one entity to the other.

Instead of using the operational semantics of cli, sti and thread prim-
itives described above to reason about programs, we model their
semantics in terms of memory ownership transfers. This semantics
completely hides thread queues and thus the complex interleaving
between concurrent entities.

We first study the semantics of cli and sti assuming that the non-
handler code is single-threaded. Since the interrupt handler can
preempt the non-handler code but not vice versa, we reserve the
part of memory used by the handler from the global memory, shown
as block A in Fig. 4. Block A needs to be well-formed with respect
to the precondition of the handler, which ensures safe execution
of the handler code. We call the precondition an invariant INV0,
since the interrupt may come at any program point (as long as it is
enabled) and this precondition needs to always hold. If the interrupt
is enabled, the non-handler code can only access the rest part of
memory, called block B. If it needs to access block A, it has to first
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disable the interrupt by cli. Therefore we can model the semantics
of cli as a transfer of ownership of the well-formed block A, as
shown in Fig. 4. The non-handler code does not need to preserve
the invariant INV0 if the interrupt is disabled, but it needs to ensure
INV0 holds before it enables the interrupt again using sti. The sti
instruction returns the well-formed block A to the interrupt handler.

If the non-handler code is multi-threaded, we also need to guar-
antee non-interference between these threads. Fig. 5 refines the
memory model. The block A is still dedicated to the interrupt han-
dler. The memory block B is split into three parts (assuming there
are only two threads): each thread has its own private memory, and
both threads share the block C. When block C is available for shar-
ing, it needs to be well-formed with some specification INV1. How-
ever, a thread cannot directly access block C if the interrupt is en-
abled, even if the handler does not access it. That is because the
handler may switch to another thread, as shown in Fig. 2 (step (1)).
To access block A and C, the current thread, say T1, needs to disable
the interrupt; so cli grants T1 the ownership of well-formed blocks
A and C. If T1 wants to switch control to T2, it first makes sure that
INV0 and INV1 hold over A and C respectively. The switch oper-
ation transfers the ownership of A and C from T1 to T2, knowing
that the interrupt remains disabled. Enabling the interrupt (by T2)
releases the ownership.

Blocking thread queues are used to implement synchronization
primitives, such as locks or condition variables. When the lock is
not available, or the condition associated with the condition vari-
able does not hold, the current thread is put into the correspond-
ing block queue. We can also model the semantics of block and
unblock as resource ownership transfers: a blocked thread is essen-
tially waiting for the availability of some resource, e.g., the lock and
the resource protected by the lock, or the resource over which the
condition associated with the condition variable holds. As shown
in Fig. 6, thread T1 executes block when it waits for some re-
source (represented as the dashed box containing “?”). Since block



(World) W ::= (C,S,K,pc)
(CodeHeap) C ::= {f � c}∗

(State) S ::= (H,R,ie,is)
(Heap) H ::= {l � w}∗

(RegFile) R ::= {r0 � w0, . . . ,rk � wk}
(Stack) K ::= nil | f ::K | (f,R) ::K

(Bit) b ::= 0 | 1
(Flags) ie,is ::= b

(Labels) l,f,pc ::= n (nat nums)
(Word) w ::= i (integers)

(Register) r ::= r0 | r1 | . . .
(Instr) ι ::= mov rd ,rs | movi rd ,w | add rd ,rs | sub rd ,rs

| ld rd ,w(rs) | st w(rt),rs | beq rs,rt ,f | call f | cli | sti

(Commd) c ::= ι | j f | ret | iret

(InstrSeq) I ::= ι;I | j f | ret | iret

Figure 7. Definition of AIM-1

C[f] def=
{

c c = C(f) and c = j f′, ret, or iret
ι;I ι = C(f) and I = C[f+1]

(F{a � b})(x) def=
{

b if x = a
F(x) otherwise .

S|H′
def= (H′,S.R,S.ie,S.is) S|{ie=b}

def= (S.H,S.R,b,S.is)

S|R′
def= (S.H,R′,S.ie,S.is) S|{is=b}

def= (S.H,S.R,S.ie,b)

Figure 8. Definition of Representations

switches control to other threads, T1 needs to ensure that INV0 and
INV1 hold over A and C, which is the same requirement as switch.
When T2 makes the resource available, it executes unblock to re-
lease a thread in the corresponding block queue, and transfers the
ownership of the resource to the released thread. Note that unblock
itself does not do context switching. When T1 takes control again,
it will own the resource. From T1’s point of view, the block opera-
tion acquires the resource associated with the corresponding block
queue. This view of block and unblock is very flexible: by choosing
whether the resource is empty or not, we can certify implementa-
tions of Mesa- and Hoare-style condition variables (see Sec. 5).

3. The Abstract Interrupt Machine (AIM)
In this section, we present our Abstract Interrupt Machine (AIM)
in two steps. AIM-1 shows the interaction between the handler and
sequential non-handler code. AIM-2, the final definition of AIM,
extends AIM-1 with multi-threaded non-handler code.

3.1 AIM-1
AIM-1 is defined in Fig. 7. The whole machine configuration W

consists of a code heap C, a mutable program state S, a control
stack K, and a program counter pc. The code heap C is a finite
partial mapping from code labels to commands c. Each command
c is either a sequential or branch instruction ι, or jump or return
instructions. The state S contains the data heap H, the register
file R, and flags ie and is. The binary flags ie and is record
whether the interrupt is disabled, and whether it is currently being
serviced, respectively. The abstract control stack K saves the return
address of the current function or the interrupt handler. Each stack
frame either contains a code label f or a pair (f,R). We also define
the instruction sequence I as a sequence of sequential instructions
ending with jump or return commands. C[f] extracts an instruction
sequence starting from f in C, as defined in Fig. 8. We use the dot
notation to represent a component in a tuple, e.g., S.H means the
data heap in state S. More representations are defined in Fig. 8.

NextS(c,K) S S′ where S = (H,R,ie,is)
if c = S′ =
mov rd ,rs (H,R{rd � R(rs)},ie,is)
movi rd ,w (H,R{rd � w},ie,is)
add rd ,rs (H,R{rd � (R(rs)+R(rd))},ie,is)
sub rd ,rs (H,R{rd � (R(rd)−R(rs))},ie,is)
ld rd ,w(rs) (H,R{rd � H(R(rs)+w)},ie,is)

if (R(rs)+w) ∈ dom(H)
st w(rt),rs (H{(R(rt)+w) � R(rs)},R,ie,is)

if (R(rt)+w) ∈ dom(H)
cli S|{ie=0}
sti S|{ie=1}
iret (H,R′,1,0)

if is = 1,K = (f,R′) ::K′ for some f and K′
other cases S

NextK(pc,c) K K′

if c = K′ =
call f (pc+1) ::K
ret K′′ if K = f ::K′′ for some f
iret K′′ if K = (f,R) ::K′′ for some f and R

other cases K

NextPC(c,R,K) pc pc
′

if c = pc′ =
beq rs,rt ,f f if R(rs) = R(rt)
beq rs,rt ,f pc+1 if R(rs) �= R(rt)
call f f

j f f

ret f if K = f ::K′ for some K′

iret f if K = (f,R′) ::K′ for some K′ and R′
other cases pc+1

c = C(pc)
NextS(c,K) S S′ NextK(pc,c) K K′ NextPC(c,S.R,K) pc pc

′

(C,S,K,pc) �−→ (C,S′,K′,pc′)
(PC)

ie = 1 is = 0
(C,(H,R,ie,is),K,pc)� (C,(H,R,0,1),(pc,R) ::K,h entry)

(IRQ)

W �=⇒ W′ def= (W �−→ W′)∨ (W�W′)

Figure 9. Operational Semantics of Instructions

Operational semantics. At each step, the machine either executes
the next instruction at pc or jumps to handle the incoming inter-
rupt. To simplify the presentation, the machine supports only one
interrupt, with a global interrupt handler entry h entry. Support of
multi-level interrupts is discussed in Sec. 6. An incoming interrupt
is processed only if the ie bit is set, and no interrupt is currently
being serviced (i.e., is= 0). The processor pushes (pc,R) onto the
stack K, clears ie, sets is, and sets the new pc to h entry. The
state transition (W�W′) is defined in the IRQ rule in Fig. 9.

The operational semantics of each instruction is defined in
Fig. 9. We use relations NextS(c,K), NextK(pc,c) and NextPC(c,R,K)
to show the change of states, stacks and program counters re-
spectively when c is executed. Semantics of most instructions are
straightforward. The command iret pops the stack frame (f,R′) on
top of K and resets pc and the register file R with f and R′, respec-
tively. It also restores ie and is with the value when the interrupt
occurs, which must be 1 and 0 respectively (otherwise the interrupt
cannot have been handled). In AIM, the register file R is automati-
cally saved and restored at the entry and exit point of the interrupt
handler. This is a simplification of the x86 interrupt mechanism for



(C,S,K,pc,tid,T,B) �−→ W′ where S = (H,R,ie,is)
if C(pc) = W′ =
switch (C,(H,R′,0,is′),K′,pc′,tid′,T′,B)

if ie = 0, T′ = T{tid � (R,K,is,pc+1)}, tid′ ∈ readyQ(T,B), and T′(tid′) = (R′,K′,is′,pc′)
block rt (C,(H,R′,ie,is′),K′,pc′,tid′,T′,B′)

if ie = 0, w = R(rt), B(w) = Q, B′ = B{w � (Q∪{tid})}, tid′ ∈ readyQ(T,B′),
T(tid′) = (R′,K′,is′,pc′) and T′ = T{tid � (R,K,is,pc+1)}

block rt (C,(H,R,ie,is),K,pc,tid,T,B) if ie = 0, and readyQ(T,B) = {tid}
unblock rt ,rd (C,(H,R′,ie,is),K,pc+1,tid,T,B) if ie = 0, w = R(rt), B(w) = ∅, and R′ = R{rd � 0}
unblock rt ,rd (C,(H,R′,ie,is),K,pc+1,tid,T,B′)

if ie = 0, w = R(rt), B(w) = Q�{tid′}, B′ = B{w � Q}, and R′ = R{rd � tid′}
other c (C,S′,K′,pc′,tid,T,B) if NextS(c,K) S S′, NextK(pc,c) K K′, and NextPC(c,R,K) pc pc

′

Figure 12. The Step Relation for AIM-2

incleft: -{(p0, NoG)} h_entry: -{(pi, gi)}
movi $r1, RIGHT movi $r1, LEFT
movi $r2, LEFT movi $r2, RIGHT

l_loop: -{(p1, NoG)} movi $r3, 0

movi $r3, 0 ld $r4, 0($r1)
cli beq $r3, $r4, r_win

-{(p2, NoG)} movi $r3, 1

ld $r4, 0($r1) sub $r4, $r3
beq $r3, $r4, l_win st 0($r1), $r4
movi $r3, 1 ld $r4, 0($r2)
sub $r4, $r3 add $r4, $r3
st 0($r1), $r4 st 0($r2), $r4
ld $r4, 0($r2) iret

add $r4, $r3 r_win: -{(p4, gid)}
st 0($r2), $r4 iret
sti

-{(p1, NoG)}
j l_loop

l_win: -{(p3, NoG)}
sti
j l_loop

Figure 10. Sample AIM-1 Program: Teeter-Totter

(World) W ::= (C,S,K,pc,tid,T,B)
(ThrdSet) T ::= {tid � (R,K,is,pc)}∗
(BlkQSet) B ::= {w � Q}∗
(ThrdQ) Q ::= {tid1, . . . ,tidn}
(ThrdID) tid ::= n (nat nums, and n > 0)

(qID) w ::= n (nat nums, and n > 0)
(Instr) ι ::= . . . | switch | block rt | unblock rt ,rd | . . .

Figure 11. AIM-2 Defined as an Extension of AIM-1

a cleaner presentation. In our implementation (Feng et al. 2007c),
the handler code needs to save and restore the registers.

Fig. 9 also defines (W �−→ W′) for executing the instruction at
the current pc; program execution is then modeled as W �=⇒ W′.

Fig. 10 shows a sample AIM-1 program. The program specifi-
cations in shaded boxes are explained in Sec. 4. Initially LEFT and
RIGHT point to memory cells containing the same value (say, 50).
The non-handler increases the value stored at LEFT and decrease
the value at RIGHT. The interrupt handler code does the reverse.
Which side wins depends on how frequent the interrupt comes. To
avoid races, the non-handler code always disables interrupts before
it accesses LEFT and RIGHT.

h_entry: -{(pi, gi)}
j h_timer

h_timer: -{(pi, gi)}
movi $r1, CNT
ld $r2, 0($r1) ; $r2 <- [CNT]
movi $r3, 100
beq $r2, $r3, schd ; if ([CNT]=100)
movi $r3, 1 ; goto schd
add $r2, $r3
st 0($r1), $r2 ; [CNT]++
iret

schd: -{(p0, g0)}
movi $r2, 0
st 0($r1), $r2 ; [CNT] := 0
switch
iret

p0
def= enable iret ∧ (r1 = CNT)

g0
def=

{
CNT �→
INV0

}
∧ (ie = ie′)∧ (is = is′)

Figure 13. A Preemptive Timer Handler

3.2 AIM-2
Fig. 11 defines AIM-2 as an extension over AIM-1. We extend the
world W with an abstract thread queue T, a set of block queues B,
and the id tid for the current thread. T maps a thread id to a thread
execution context, which contains the register file, stack, the is flag
and pc. B maps block queue ids w to block queues Q. These block
queues are used to implement synchronization primitives such as
locks and condition variables. Q is a set of thread ids pointing to
thread contexts in T. Note here we do not need a separate Q for
ready threads, which are threads in T but not blocked:

readyQ(T,B) def= {tid | tid ∈ dom(T)∧¬∃w. tid ∈ B(w)} .

We also add three primitive instructions: switch, block and unblock.
The step relation (W �−→ W′) of AIM-2 is defined in Fig. 12.

The switch instruction saves the execution context of the current
thread into the thread queue T, and picks a thread nondetermin-
istically from readyQ(T,B) to run. To let our abstraction fit into
the interfaces shown in Fig. 3, we require that the interrupt be dis-
abled before switch. This also explains why ie is not saved in the
thread context, and why it is set to 0 when a new thread is scheduled
from T. The “block rt” instruction puts the current thread id into
the block queue B(rt), and switches the control to another thread
in readyQ(T,B). If there are no other threads in readyQ, the ma-
chine stutters (in our x86 implementation, this would never happen
because there is an idle thread and our program logic prohibits it
from executing block). The “unblock rt ,rd” instruction removes a
thread from B(rt) and puts its tid into rd if the queue is not empty;



(CdHpSpec) Ψ ::= {(f1,s1), . . . ,(fn,sn)}
(Spec) s ::= (p,g)

(Pred) p ∈ Stack → State → Prop

(Guarantee) g ∈ State → State → Prop

(MPred) m, INV0, INV1 ∈ Heap → Prop

(WQSpec) Δ ::= {w � m}∗

Figure 14. Specification Constructs

otherwise rd contains 0. Here � represents the union of two dis-
joint sets. By the definition of readyQ, we know tid will be in
readyQ after being unblocked. unblock does not switch controls.
Like switch, block and unblock can be executed only if the interrupt
is disabled. The effects of other instructions over S, K and pc are
the same as in AIM-1. They do not change T, B and tid. The tran-
sition (W�W′) for AIM-2 is almost the same as the one for AIM-1
defined by the IRQ rule. It does not change T, B and tid either. The
definition of (W �=⇒ W′) is unchanged.
A preemptive timer interrupt handler. The design of AIM is
very interesting in that it supports both preemptive threads (if the
interrupt is enabled and the handler does context switching) and
non-preemptive ones (if the interrupt is disabled, or if the interrupt
is enabled but the handler does no context switching) for higher-
level concurrent programs (see Fig. 1).

Fig. 13 shows the implementation of a preemptive timer inter-
rupt handler. Each time the interrupt comes, the handler tests the
value of the counter at memory location CNT. If the counter reaches
100, the handler switches control to other threads; otherwise it in-
creases the counter by 1 and returns to the interrupted thread. We
will explain the meanings of specifications and show how the timer
handler is certified in Sec. 4.

4. The Program Logic
4.1 Specification Language
We use the mechanized meta-logic implemented in the Coq proof
assistant (Coq 2006) as our specification language. The logic cor-
responds to higher-order logic with inductive definitions.

As shown in Fig. 14, the specification Ψ for the code heap C

associates code labels f with specifications s. We allow each f to
have more than one s, just as a function may have multiple speci-
fied interfaces. The specification s is a pair (p,g). The assertion p
is a predicate over a stack K and a program state S, while g is a
predicate over two program states. As we can see, the NextS(c,K)
relation defined in Fig. 9 is a special form of g. As in SCAP (Feng
et al. 2006), we use p to specify the precondition over stack and
state, and use g to specify the guaranteed behavior from the speci-
fied program point to the point where the current function returns.

We also use the predicate m to specify data heaps. We encode
in Fig. 15 Separation Logic connectors (Ishtiaq and O’Hearn 2001;
Reynolds 2002) in our specification language. Assertions in Sep-
aration Logic capture ownership of heaps. The assertion “l �→ n”
holds iff the heap has only one cell at l containing n. It can also
be interpreted as the ownership of this memory cell. “m∗m′” means
the heap can be split into two disjoint parts, and m and m′ hold over
one of them respectively. “m−∗ m′” holds over H iff, for any disjoint
heap H′ satisfying m, H�H′ satisfies m′.

The specification Δ maps an identifier w to a heap predicate m
specifying the well-formedness of the resource that the threads in
the block queue B(w) are waiting for.
Specifications of the shared resources. Heap predicates INV0
and INV1 are part of our program specifications, which specify the
well-formedness of the shared sub-heap A and C respectively, as
shown in Figs. 5 and 6. The definition of INV0 depends on the

true
def= λH. True emp

def= λH. H = ∅

l �→ w
def= λH. H = {l � w} l �→ def= λH. ∃w. (l �→ w) H

H1⊥H2
def= dom(H1)∩dom(H1) = ∅

H1 �H2
def=

{
H1 ∪H2 if H1⊥H2
undefined otherwise

m1 ∗m2
def= λH. ∃H1,H2. (H1 �H2 = H)∧m1 H1 ∧m2 H2

p ∗ m
def= λK,S. ∃H1,H2. (H1 �H2 = S.H)∧p K S|H1 ∧m H2

m−∗ m′ def= λH. ∀H′,H′′. (H�H′ = H′′)∧m H′ → m′ H′′

m−∗ p def= λK,S. ∀H′,H′′. (H′ �S.H = H′′)∧m H′ → p K S|H′′

precise(m) def= ∀H,H1,H2.
(H1 ⊆ H)∧ (H2 ⊆ H)∧m H1 ∧m H2 → (H1 = H2)

Figure 15. Definitions of Separation Logic Assertions

functionality of the global interrupt handler; and INV1 depends on
the sharing of resources among threads. To simplify the presenta-
tion, we treat them as global parameters throughout this paper.1

Specification of the interrupt handler. We need to give a specifi-
cation to the interrupt handler to certify the handler code and ensure
the non-interference. We let (h entry,(pi,gi)) ∈ Ψ, where pi and
gi are defined as follows:

pi
def= λK,S. ((INV0∗ true) S.H)∧ (S.is = 1)∧ (S.ie = 0)

∧∃f,R,K′. K = (f,R) ::K′ (1)

gi
def= λS,S′.

{
INV0
INV0

}
S.H S′.H

∧(S′.ie = S.ie)∧ (S′.is = S.is) (2)

The precondition pi specifies the stack and state at the entry
h entry. It requires that the local heap used by the handler (block
A in Fig. 5) satisfies INV0. The guarantee gi specifies the behav-
ior of the handler. The arguments S and S′ correspond to program
states at the entry and exit points, respectively. It says the ie and
is bits in S′ have the same value as in S, and the handler’s local
heap satisfies INV0 in S and S′, while the rest of the heap remains

unchanged. The predicate
{

m1
m2

}
is defined below.

{
m1
m2

}
def= λH1,H2. ∃H′

1,H
′
2,H. (m1 H′

1)∧ (m2 H′
2)∧

(H′
1 �H = H1)∧ (H′

2 �H = H2) (3)

It has the following nice monotonicity: for any H1, H2 and H′, if
H1 and H2 satisfy the predicate, H1⊥H′, and H2⊥H′, then H1�H′
and H2 �H′ satisfy the predicate.

4.2 Inference Rules
Inference rules of the program logic are shown in Fig. 16. The judg-
ment Ψ,Δ �{s}f : I defines the well-formedness of the instruction
sequence I starting at the code label f, given the imported interfaces
in Ψ, the specification Δ of block queues, and a precondition (p,g).

The SEQ rule is a schema for instruction sequences starting with
an instruction ι (ι cannot be branch and function call instructions).
We need to find an intermediate specification (p′,g′), with respect
to which the remaining instruction sequence is well-formed. It is
also used as a post-condition for the first instruction. We use gι

1 They can also be treated as local parameters threading through judgments
in our program logic (as Ψ and Δ in Fig. 16). To avoid the requirement of
the global knowledge about shared resources and to have better modularity,
frame rules (Reynolds 2002; O’Hearn et al. 2004) can be supported follow-
ing the same way they are supported in SCAP (Feng and Shao 2008). We
do not discuss the details in this paper.



Ψ,Δ �{s}f : I (Well-Formed Instr. Seq.)

ι �∈ {call . . . ,beq . . .} Ψ,Δ �{(p′,g′)}f+1 : I

enable(p,gι) (p �gι) ⇒ p′ (p◦ (gι ◦g′)) ⇒ g

where gι
def= [[ι ]]Δ

Ψ,Δ �{(p,g)}f : ι; I
(SEQ)

(f+1, (p′′,g′′)) ∈ Ψ Ψ,Δ �{(p′′,g′′)}f+1 : I

(f′, (p′,g′)) ∈ Ψ ∀K,S,pc. p K S → p′ (pc ::K) S

(p � g′) ⇒ p′′ (p◦ (g′ ◦g′′)) ⇒ g

Ψ,Δ �{(p,g)}f : call f′;I
(CALL)

p⇒ enableiret (p◦gid) ⇒ g

Ψ,Δ �{(p,g)}f : iret
(IRET)

where enableiret
def= λK,S. ∃f,R,K′. K = (f,R) ::K′ ∧S.is = 1

p⇒ enableret (p◦gid) ⇒ g

Ψ,Δ �{(p,g)}f : ret
(RET)

where enableret
def= λK,S. ∃f,K′. K = f ::K′

(f′, (p′,g′)) ∈ Ψ Ψ,Δ �{(p′′,g′′)}f+1 : I

(p � gidrs=rt ) ⇒ p′ (p◦ (gidrs=rt ◦g′)) ⇒ g
(p � gidrs �=rt ) ⇒ p′′ (p◦ (gidrs �=rt ◦g′′)) ⇒ g

Ψ,Δ �{(p,g)}f : beq rs,rt ,f
′;I

(BEQ)

(f′, (p′,g′)) ∈ Ψ p⇒ p′ (p◦g′) ⇒ g

Ψ,Δ �{(p,g)}f : j f′
(J)

Ψ,Δ � C :Ψ′ (Well-Formed Code Heap)

for all (f,s) ∈ Ψ′ : Ψ,Δ �{s}f : C[f]

Ψ,Δ � C :Ψ′ (CDHP)

Ψ,Δ �W (Well-Formed World)

T\tid = {tid1 � (R1,K1,is1,pc1), . . . ,
tidn � (Rn,Kn,isn,pcn)}

S.H = H0 � . . .�Hn Si = (Hi,Ri,0,isi) (0 < i ≤ n)

Ψ,Δ � C :Ψ′ Ψ ⊆ Ψ′ dom(Δ) = dom(B)

WFCth(S0,K,pc,Ψ′) where S0 = S|H0

for all 0 < k ≤ n such that tidk ∈ readyQ(T,B) :
WFRdy(Sk,Kk,pck,Ψ′)

for all w and 0 < j ≤ n such that tid j ∈ B(w) :
WFWait(S j,K j ,pc j ,Ψ′,Δ(w))

Ψ,Δ �(C,S,K,pc,tid,T,B)
(WLD)

Figure 16. Inference Rules

to represent the state transition [[ ι ]]Δ made by the instruction ι,
which is defined in Fig. 18 and is explained below. The premise
enable(p,gι) is defined in Fig. 17. It means that the state transition
gι would not get stuck as long as the starting stack and state
satisfy p. The predicate p � gι, shown in Fig. 17, specifies the
stack and state resulting from the state transition gι, knowing the
initial state satisfies p. It is the strongest post condition after gι. The
composition of two subsequent transitions g and g′ is represented
as g◦g′, and p◦g refines g with the extra knowledge that the initial
state satisfies p. We also lift the implication relation between p’s
and g’s. The last premise in the SEQ rule requires the composition
of gι and g′ fulfills g, knowing the current state satisfies p.

If ι is an arithmetic instruction, move instruction or memory op-
eration, we define [[ ι ]]Δ in Fig. 18 as NextS(ι, ). Since NextS does
not depend on the stack for these instructions (recall its definition

enable(p,g) def= ∀K,S. p K S → ∃S′,g S S′

p � g
def= λK,S. ∃S0,p K S0 ∧g S0 S

g◦g′ def= λS,S′′. ∃S′. g S S′ ∧g′ S′ S′′ p⇒ p′ def= ∀K,S. p K S → p′ K S

p◦g def= λS,S′. ∃K. p K S∧g S S′ g⇒ g′ def= ∀S,S′. g S S′ → g′ S S′

Figure 17. Connectors for p and g

P ? m:m′ def= λH. (P∧m H)∨ (¬P∧m′ H)

[[cli ]]Δ
def= λ(H,R,ie,is),(H′,R′,ie′,is′).

(is = is′)∧ (R = R′)∧ (ie′ = 0)∧{
emp
(ie = 1∧is = 0) ? (INV0∗ INV1):emp

}
H H′

[[sti ]]Δ
def= λ(H,R,ie,is),(H′,R′,ie′,is′).

(is = is′)∧ (R = R′)∧ (ie′ = 1)∧{
(ie = 0∧is = 0) ? (INV0∗ INV1):emp
emp

}
H H′

[[switch ]]Δ
def= λ(H,R,ie,is),(H′,R′,ie′,is′).

(ie = 0)∧ (ie = ie′)∧ (R = R′)∧ (is = is′)∧{
INV0∗ (is = 0 ? INV1:emp)
INV0∗ (is = 0 ? INV1:emp)

}
H H′

[[block rs ]]Δ
def= λ(H,R,ie,is),(H′,R′,ie′,is′).

(ie = 0)∧ (ie = ie′)∧ (R = R′)∧ (is = is′)∧
∃m. Δ(R(rs)) = m∧{

INV0∗ (is = 0 ? INV1:emp)
INV0∗ (is = 0 ? INV1:emp)∗m

}
H H′

[[unblock rs,rd ]]Δ
def= λ(H,R,ie,is),(H′,R′,ie′,is′).

(ie = 0)∧ (ie = ie′)∧ (is = is′)∧ (∀r �= rd . R(r) = R′(r))∧
∃m. Δ(R(rs)) = m∧ (m∗ true) H∧{

(R′(rd)=0) ? emp:m
emp

}
H H′

[[ι ]]Δ
def= NextS(ι, ) (for all other ι)

Figure 18. Thread-Local State Transitions Made by ι

in Fig. 9), we use “ ” to represent arbitrary stacks. Also note that
the NextS relations for ld or st require the target address to be in the
domain of heap, therefore the premise enable(p,gι) requires that p
contains the ownership of the target memory cell.
Interrupts and thread primitive instructions. One of the major
technical contributions of this paper is our formulation of [[ ι ]]Δ for
cli, sti, switch, block and unblock, which, as shown in Fig. 18, gives
them an axiomatic ownership transfer semantics.

The transition [[cli ]]Δ says that, if cli is executed in the non-
handler (is = 0) and the interrupt is enabled (ie = 1), the cur-
rent thread gets ownership of the well-formed sub-heap A and C
satisfying INV0 ∗ INV1, as shown in Fig. 5; otherwise there is no
ownership transfer. The transition [[sti ]]Δ is defined similarly. Note
that the premise enable(p,gι) in the SEQ rule requires that, be-
fore executing sti, the precondition p must contain the ownership
(ie = 0∧is = 0) ? (INV1∗ INV0):emp.

[[switch ]]Δ requires that the sub-heap A and C (in Fig. 5) be well-
formed before and after switch. However, if we execute switch in the
interrupt handler (is = 1), we know INV1 always holds and leave
it implicit. Also enable(p,gι) requires that p ensures ie = 0 and
INV0∗ (is = 0 ? INV1:emp) holds over some sub-heap.

[[block rs ]]Δ requires ie = 0 and rs contains an identifier of a
block queue with specification m in Δ. It is similar to [[switch]]Δ,
except that the thread gets the ownership of m after it is released
(see Fig. 6). In [[unblock rs,rd ]]Δ, we require the initial heap must



Inv(ie,is) def=

⎧⎨
⎩

INV1 is = 1
emp is = 0 and ie = 0
INVs is = 0 and ie = 1

where INVs
def= INV0∗ INV1

p∗ Inv def= λK,S. (p∗ Inv(S.ie,S.is)) K S

�g� def= λ(H,R,ie,is),(H′,R′,ie′,is′).∃H1,H2,H
′
1,H

′
2.

(H1 �H2 = H)∧ (H′
1 �H′

2 = H′)
∧g (H1,R,ie,is) (H′

1,R
′,ie′,is′)

∧Inv(ie,is) H2 ∧ Inv(ie′,is′) H′
2

WFST(g,S,nil,Ψ) def= ¬∃S′. g S S′

WFST(g,S,f ::K,Ψ) def=
∃pf,gf. (f, (pf,gf)) ∈ Ψ
∧∀S′. g S S′ → (pf ∗ Inv) K S′ ∧WFST(�gf�,S′,K,Ψ)

WFST(g,S,(f,R) ::K,Ψ) def=
∃pf,gf. (f, (pf,gf)) ∈ Ψ
∧∀S′. g S S′ → (pf ∗ Inv) K S′′ ∧WFST(�gf�,S′′,K,Ψ)

where S′′ = (S′.H,R,1,0)

WFCth(S,K,pc,Ψ) def= ∃p,g. (pc,(p,g)) ∈ Ψ
∧(p∗ Inv) K S∧WFST(�g�,S,K,Ψ)

WFCth(pc,Ψ) def= λK,S. WFCth(S,K,pc,Ψ)

WFRdy(S,K,pc,Ψ) def= ((INV0∗ INV1)−∗ WFCth(pc,Ψ)) K S

WFRdy(pc,Ψ) def= λK,S. WFRdy(S,K,pc,Ψ)

WFWait(S,K,pc,Ψ,m) def= (m−∗WFRdy(pc,Ψ)) K S

Figure 19. Well-Formed Current, Ready and Waiting Threads

contain a sub-heap satisfying m, because unblock may transfer it
to a blocked thread. However, since unblock does not immediately
switch controls, we do not need the sub-heap A and C to be well-
formed. If rd contains non-zero value at the end of unblock, some
thread has been released from the block queue. The current thread
transfers m to the released thread and has no access to it any more.
Otherwise, no thread is released and there is no ownership transfer.
Other instructions. In the CALL rule in Fig. 16, we treat the state
transition g′ made by the callee as the transition of the call instruc-
tion. We also require that the precondition p implies the precondi-
tion p′ of the callee, which corresponds to the enable premise in the
SEQ rule. IRET and RET rules require that the function has finished
its guaranteed transition at this point. So an identity transition gid
should satisfy the remaining transition g. The predicates enableiret
and enableret specify the requirements over stacks. In the BEQ rule,
we use gidrs=rt

and gidrs �=rt
to represent identity transitions with

extra knowledge about rs and rt :

gid
def= λS,S′. S = S′

gidrs=rt
def= λS,S′. (gid S S′)∧ (S.R(rs) = S.R(rt))

gidrs �=rt
def= λS,S′. (gid S S′)∧ (S.R(rs) �= S.R(rt))

We do not have an enable premise because beq never gets stuck.
The J rule can be viewed as a specialization of BEQ.
Well-formed code heap. The CDHP rule says the code heap is
well-formed if and only if each instruction sequence specified in
Ψ′ is well-formed. Ψ and Ψ′ can be viewed as the imported and
exported interfaces of C respectively.
Program invariants. The WLD rule formulates the program in-
variant enforced by our program logic. If there are n threads in T

in addition to the current thread, the heap can be split into n + 1
blocks. Each block Hk (k > 0) is for a ready or blocked thread in

p
def= (ie = 1)∧ (is = 0) p′ def= (ie = 0)∧ (is = 0) p0

def= p

p1
def= p∧ (r1 = RIGHT)∧ (r2 = LEFT)

p2
def= p′ ∧ (r1 = RIGHT)∧ (r2 = LEFT)∧ (r3 = 0)∧ (INV0∗ true)

p3
def= p′ ∧ (r1 = RIGHT)∧ (r2 = LEFT)∧ (INV0∗ true)

p4
def= enable iret NoG

def= λS,S′.False

Figure 20. Specifications of the Teeter-Totter Example

queues. The block H0 is assigned to the current thread, which in-
cludes both its private heap and the shared part (blocks A and C,
as shown in Fig. 5). The code heap C needs to be well-formed, as
defined by the CDHP rule. We require the imported interface Ψ is
a subset of the exported interface Ψ′, therefore C is self-contained
and each imported specification has been certified. The domain of
Δ should be the same with the domain of B, i.e., Δ specifies and
only specifies block queues in B. The WLD rule also requires that
the local heaps and execution contexts of the current thread, ready
threads and blocked threads are all well-formed (see Fig. 19).

WFCth defines the well-formedness of the current thread. It
requires that the pc has a specification (p,g) in Ψ, thus C[pc] is
well-formed with respect to (p,g). The current thread’s stack and
its local state (containing the sub-heap H0) need to satisfy p ∗ Inv.
Here p specifies the state accessible by the current thread, while Inv,
defined in Fig. 19, specifies the inaccessible part of the shared heap.
If the current program point is in the interrupt handler (is = 1), p
leaves the memory block C (in Fig. 5) unspecified, therefore Inv is
defined as INV1 and specifies the well-formedness of C. Otherwise
(is = 0), if ie = 0, blocks A and C become the current thread’s
private memory and the inaccessible part is empty. If ie = 1, A
and C are inaccessible; Inv specifies their well-formedness in this
case. The predicate WFST, defined in Fig. 19, says there exists a
well-formed stack with some depth k. The definition is similar to
the one in SCAP (Feng et al. 2006) and is not explained here.

The definition of well-formed ready threads WFRdy is very
straightforward: if the ready thread gets the extra ownership of
shared memory A and C, it becomes a well-formed current thread
(see Fig. 5). Recall that m−∗ p is defined in Fig. 15. Similarly,
WFWait says that the waiting thread in a block queue waiting for
the resource m becomes a well-formed ready thread if it gets m (see
Fig. 6). The definitions of WFRdy and WFWait concisely formu-
late the relationship between current, ready and waiting threads.
The Teeter-Totter example. With our program logic, we can now
certify the Teeter-Totter example shown in Fig. 10. We first instanti-
ate INV0, the interrupt handler’s specification for its local memory:

INV0 def= ∃wl ,wr. ((LEFT �→ wl)∗ (RIGHT �→ wr))∧ (wl +wr = n) ,

where n is an auxiliary logical variable. Then we can get the con-
crete specification of the interrupt handler, following Formulae (1)
and (2) in Sec. 4.1. We let INV1 be emp, since the non-handler
code is sequential.

Specifications are shown in Fig. 20. Recall enableiret is defined
in Fig. 16. To simplify our presentation, we present the predicate
p in the form of a proposition with free variables referring to
components of the state S. Also, we use m as a shorthand for the
proposition m H when there is no confusion.

If we compare p1 and p2, we will see that the non-handler code
cannot access memory at addresses LEFT and RIGHT without first
disabling the interrupt because p1 does not contain the ownership
of LEFT and RIGHT. Since the non-handler never returns, we simply
use NoG (see Fig. 20) as the guarantee for the state transition from
the specified point to the return point.
The timer handler. We also briefly explain the specification for
the preemptive timer handler shown in Fig. 13. The handler only



accesses the memory cell at the location CNT. We instantiate INV0
below:

INV0 def= ∃w. (CNT �→ w)∧ (w≤ 100) .

Then we get the specification of the handler (pi,gi) by Formulae (1)
and (2). In g0 (shown in Fig. 13), we use primed variable (e.g., ie′
and is′) to refer to components in the second state.
Soundness. We prove the soundness of the program logic follow-
ing the syntactic approach. Based on the progress and preservation
lemmas, we know the program never gets stuck as long as the initial
state satisfies the program invariant defined by the WLD rule. More
importantly, we know the invariant always holds during execution,
from which we can derive rich properties of programs. Here, we
only show the soundness theorem formalizing the partial correct-
ness of programs. See the TR (Feng et al. 2007c) for proof details.

Theorem 4.1 (Soundness)
If INV0 and INV1 are precise, Ψ,Δ �W, and (h entry,(pi,gi)) ∈
Ψ, then, for any n, there exists W′ such that W �=⇒n W′; and, if
W′ = (C,S,K,pc,tid,T,B), then
1. if C(pc) = j f, then there exists (p,g) such that (f,(p,g)) ∈ Ψ

and p K S holds;
2. if C(pc) = beq rs,rt ,f and S.R(rs) = S.R(rt), then there exists

(p,g) such that (f,(p,g)) ∈ Ψ and p K S holds;
3. if C(pc) = call f, then there exists (p,g) such that (f,(p,g)) ∈

Ψ and p (pc ::K) S holds.

Recall that preciseness is defined in Fig. 15, and the specification
(pi,gi) is defined by Formulae (1) and (2).

5. More Examples
In this section, we show how to use AIM and the program logic to
implement and certify common synchronization primitives.

5.1 Implementations of Locks
Threads use locks to achieve exclusive access to shared heap. We
use Γ to specify invariants of memory blocks protected by locks.

(LockID) l ::= l

(LockSpec) Γ ::= {l � m}∗
In our implementations, we use memory pointers (label l) as lock
ids l. Each l points to a memory cell containing a binary flag
that records whether the lock has been acquired (flag is 0) or
not. The heap used to implement locks and the heap protected by
locks are shared by threads in the non-handler code. The invariant
INV(Γ) over this part of heap is defined below. We require INVs ⇒
INV(Γ)∗ true (recall that INVs is a shorthand for INV0∗ INV1).

INV(l,m) def= ∃w. (l �→ w)∗ ((w = 0)∧emp∨ (w = 1)∧m) (4)

INV(Γ) def= ∀∗l ∈ dom(Γ). INV(l,Γ(l)) (5)

where ∀∗ is an indexed, finitely iterated separating conjunction,
which is defined as:

∀∗x ∈ S. P(x) def=
{

emp if S = ∅

P(xi)∗∀∗x ∈ S′. P(x) if S = S′ �{xi}

We first show two block-based implementations, in which we
use the lock id as the identifier of the corresponding block queue
in B. Then we show an implementation of spinlocks. More detailed
explanations are given in the TR (Feng et al. 2007c).
The Hoare-style implementations. In Hoare style, the thread gets
the lock (and the resource protected by the lock) immediately
after it is released from the block queue. The implementation and
specifications are shown in Figs. 21 and 22. The precondition for
ACQ H is (p01,g01). The assertion p01 requires that r1 contains
a lock id and Δ(r1) = Γ(r1). The guarantee g01 shows that the

ACQ_H: -{(p01, g01)}
cli
call ACQ_H_a
sti
ret

ACQ_H_a: -{(p11, g11)}
ld $r2, 0($r1) ;; $r2 <- [l]
movi $r3, 0
beq $r2, $r3, gowait ;; ([l] == 0)?
st 0($r1), $r3 ;; [l] <> 0:
ret ;; [l] <- 0

gowait: -{(p12, g11)} ;; [l] == 0:

block $r1 ;; block

-{(p13, gid)}
ret

REL_H: -{(p21, g21)}
cli
call REL_H_a
sti
ret

REL_H_a: -{(p31, g31)}
unblock $r1, $r2

-{(p32, g32)}
movi $r3, 0
beq $r2, $r3, rel_lock
ret

rel_lock: -{(p33, g33)}
movi $r2, 1
st 0($r1), $r2

-{(p34, gid)}
ret

Figure 21. Hoare-Style Implementation of Locks

p0
def= (is = 0)∧enable ret ∧ (r1 ∈ dom(Γ))∧ (Δ(r1) = Γ(r1))

p01
def= p0 ∧ (ie = 1)

g01
def=

{
emp
Γ(r1)

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3})

p11
def= p0 ∧ (ie = 0)∧ (INVs ∗ true)

g11
def=

{
INVs
INVs ∗Γ(r1)

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3})

p12
def= p0 ∧ (ie = 0)∧ ([r1] = 0)∧ (INVs ∗ true)

p13
def= p0 ∧ (ie = 0) ∧ (INVs ∗ true ∗Γ(r1))

p21
def= p0 ∧ (ie = 1)∧ (Γ(r1)∗ true)

g21
def=

{
Γ(r1)
emp

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3})

p31
def= p0 ∧ (ie = 0)∧ (Γ(r1)∗ INVs ∗ true)

ga
def=

{
Γ(r1)
emp

}
gb

def=
{

r1 �→
r1 �→ 1

}
hid

def=
{

emp
emp

}

g31
def= (ga ∨gb)∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3})

p32
def= p0 ∧ (ie = 0)

∧((r2 = 0)∧ (Γ(r1)∗ INVs ∗ true)∨ (r2 �= 0)∧ (INVs ∗ true))

g32
def= ((r2 = 0∧gb)∨ (r2 �= 0∧hid))

∧(ie = ie′)∧ (is = is′)∧ trash({r2,r3})
p33

def= p0 ∧ (ie = 0)∧ (Γ(r1)∗ INVs ∗ true)

g33
def= gb ∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3})

p34
def= p0 ∧ (ie = 0)∧ (INVs ∗ true)

Figure 22. Specifications of Hoare-Style Locks



p0
def= (is = 0)∧enable ret ∧ (r1 ∈ dom(Γ))∧ (Δ(r1) = emp)

p11
def= p0 ∧ (ie = 1) p12

def= p11 ∧ (r3 = 0)

g11
def=

{
emp
Γ(r1)

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3})

p13
def= p0 ∧ (ie = 0)∧ (INVs ∗ true)

g13
def=

{
INVs
Γ(r1)

}
∧ (ie = 1−ie′)∧ (is = is′)∧ trash({r2,r3})

p21
def= p0 ∧ (ie = 1)∧ (Γ(r1)∗ true)

g21
def=

{
Γ(r1)
emp

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2})

ACQ_M: -{(p11, g11)}
movi $r3, 0

acq_loop: -{(p12, g11)}
cli
ld $r2, 0($r1) ;; $r2 <- [l]
beq $r2, $r3, gowait ;; ([l] == 0)?
st 0($r1), $r3 ;; No: [l] <- 0
sti
ret

gowait: -{(p13, g13)}
block $r1
sti
j acq_loop

REL_M: -{(p21, g21)}
cli
unblock $r1, $r2
movi $r2, 1
st 0($r1), $r2
sti
ret

Figure 23. Mesa-Style Locks

function obtains the ownership of Γ(r1) when it returns. Here we
use primed variables (e.g., ie′ and is′) to refer to components in
the return state, and use trash({r2,r3}) to mean that values of all
registers other than r2 and r3 are preserved.

We also show some intermediate specifications used during
verification. Comparing (p01,g01) and (p11,g11), we can see that
(p01,g01) hides INVs and the implementation details of the lock
from the client code. Readers can also compare p12 and p13 and
see how the BLK rule is applied.

Functions REL H and REL H a are specified by (p21,g21) and
(p31,g31), respectively. Depending on whether there are threads
waiting for the lock, the current thread may either transfer the
ownership of Γ(r1) to a waiting thread or simply set the lock to
be available, as specified in g31, but these details are hidden in g21.
The Mesa-style implementation. Fig. 23 shows the Mesa-style
implementation of locks. In the ACQ M function, the thread needs
to start another round of loop to test the availability of the lock
after block. The REL M function always sets the lock to be available,
even if it releases a waiting thread. Specifications are the same
with Hoare style except that the assertion p0 requires Δ(r1) = emp,
which implies the Mesa-style semantics of block and unblock. More
intermediate assertions are given in the technical report.
Spinlocks. An implementation of spinlocks for uniprocessor sys-
tems and its specifications are shown in Fig. 24. The specifica-
tions (p11,g11) and (p21,g21) describes the interface of lock ac-
quire/release. They look very similar to specifications for block-
based implementations: “acquire” gets the ownership of the extra
resource Γ(r1) protected by the lock in r1, while “release” loses
the ownership so that the client can no longer use the resource af-

p
def= (is = 0)∧enable ret ∧ (r1 ∈ dom(Γ))

p11
def= p∧ (ie = 1) p12

def= p11 ∧ (r2 = 1)

g11
def=

{
emp
Γ(r1)

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3})

p13
def= p∧ (ie = 0)∧ ([r1] = 1)∧ (INVs ∗ true)

g13
def=

{
INVs
Γ(r1)

}
∧ (ie = 1−ie′)∧ (is = is′)∧ trash({r2})

p21
def= p∧ (ie = 1)∧ (Γ(r1)∗ true)

g21
def=

{
Γ(r1)
emp

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2})

;; acquire(l): $r1 contains l
spin_acq: -{(p11, g11)}

movi $r2, 1

spin_loop: -{(p12, g11)}
cli
ld $r3, 0($r1)
beq $r2, $r3, spin_set
sti
j spin_loop

spin_set: -{(p13, g13)}
movi $r2, 0
st 0($r1), $r2
sti
ret

;; release(l): $r1 contains l
spin_rel: -{(p21, g21)}

movi $r2, 1
cli
st 0($r1), $r2
sti
ret

Figure 24. A Spinlock

WAIT_H: -{(p11, g11)} ;; wait(l, cv)
cli
mov $r4, $r2
call REL_H_a
block $r4
sti
ret

SIGNAL_H: -{(p21, g21)} ;; signal(l, cv)
cli
unblock $r2, $r3
movi $r4, 0
beq $r3, $r4, sig_done
block $r1

sig_done: -{(p22, g22)}
sti
ret

SIGNAL_BH: -{(p31, g31)} ;; signal(l, cv)
cli
unblock $r2, $r3 ;; $r2 contains cv
movi $r4, 0
beq $r3, $r4, sig_cont
sti
ret

sig_cont: -{(p32, g32)}
call REL_H_a ;; $r1 contains l
sti
ret

Figure 25. Impl. of CV - Hoare Style and Brinch Hansen Style



Cond(r,r′) def= Γ(r)∧ (ϒ(r′)∗ true) Cond(r,r′) def= Γ(r)∧¬(ϒ(r′)∗ true)

p(r,r′) def= (is = 0)∧enable ret∧
∃l,cv,m,m′. (r = l)∧ (r′ = cv)∧ (Γ(l) = m)∧ (Δ(l) = m)

∧(ϒ(cv) = m′)∧ (Δ(cv) = Cond(r,r′))

p11
def= p(r1,r2)∧ (ie = 1)∧ (Cond(r1,r2)∗ true)

g11
def=

{
Cond(r1,r2)
Cond(r1,r2)

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3,r4})

p21
def= p(r1,r2)∧ (ie = 1)∧ (Cond(r1,r2)∗ true)

g21
def=

{
Cond(r1,r2)
Γ(r1)

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3,r4})

p22
def= p(r1,r2)∧ (ie = 0)∧ (INVs ∗Γ(r1)∗ true)

g22
def=

{
INVs
emp

}
∧ (ie = 1−ie′)∧ (is = is′)∧ trash({r2,r3,r4})

p31
def= p21 p32

def= p22

g31
def=

{
Cond(r1,r2)
emp

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3,r4})

g32
def=

{
Γ(r1)∗ INVs
emp

}

∧(ie = 1−ie′)∧ (is = is′)∧ trash({r2,r3,r4})

Figure 26. Spec. of CV - Hoare Style and Brinch Hansen Style

terwards. These specifications also hide the implementation details
(e.g., the lock name l is a pointer pointing to a binary value) from
the client code.

5.2 Implementations of Condition Variables
Now we show implementations of Hoare style (Hoare 1974),
Brinch Hansen style (Brinch Hansen 1975), and Mesa style (Lamp-
son and Redell 1980) condition variables. Below we use ϒ to spec-
ify the conditions associated with condition variables.

(CondVar) cv ::= n (nat nums)

(CVSpec) ϒ ::= {cv � m}∗

In our implementation, we let cv be an identifier pointing to
a block queue in B. A lock l needs to be associated with cv to
guarantee exclusive access of the resource specified by Γ(l). The
difference between Γ(l) and ϒ(cv) is that Γ(l) specifies the basic
well-formedness of the resource (e.g., a well-formed queue), while
ϒ(cv) specifies an extra condition (e.g., the queue is not empty).
Hoare style and Brinch Hansen style. The implementations and
specifications are shown in Figs. 25 and 26. The precondition
for WAIT H is (p11,g11). As p11 shows, r1 contains a Hoare-style
lock in the sense that Δ(r1) = Γ(r1). The register r2 contains the
condition variable with specification ϒ(r2). For Hoare-style, we
require Δ(r2) = Γ(r1)∧(ϒ(r2)∗true). Therefore, when the blocked
thread is released, it gets the resource protected by the lock with the
extra knowledge that the condition associated with the condition
variable holds. Here the condition ϒ(r2) does not have to specify
the whole resource protected by the lock, therefore we use ϒ(r2)∗
true. Before calling WAIT H, p11 requires that the lock must have
been acquired, thus we have the ownership Γ(r1). The condition
ϒ(r2) needs to be false. This is not an essential requirement, but
we use it to prevent waiting without testing the condition. The
guarantee g11 says that, when WAIT H returns, the current thread
still owns the lock (and Γ(r1)) and it also knows the condition
specified in ϒ holds. The precondition for SIGNAL H is (p21,g21).
SIGNAL H requires the thread owns the lock and the condition ϒ(r2)
holds at the beginning. When it returns, the thread still owns the
lock, but the condition may no longer hold.

p(r,r′) def= (is = 0)∧enable ret∧
∃l,cv,m,m′. (r = l)∧ (r′ = cv)∧ (Γ(l) = m)∧ (Δ(l) = m)

∧(ϒ(cv) = m′)∧ (Δ(cv) = emp)

p11
def= p(r1,r2)∧ (ie = 1)∧ (Cond(r1,r2)∗ true)

g11
def=

{
Cond(r1,r2)
Γ(r1)

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3,r4})

p′(r) def= (is = 0)∧∃cv,m. (r = cv)∧ (ϒ(cv) = m)∧ (Δ(cv) = emp)

p21
def= p′(r1)∧ (ie = 1)

g21
def= hid∧ (ie = ie′)∧ (is = is′)∧ trash({r2})

WAIT_M: -{(p11, g11)} ;; wait(l, cv)
cli
mov $r4, $r2
call REL_H_a
block $r4
sti
call ACQ_H
ret

SIGNAL_M: -{(p21, g21)} ;; signal(cv)
cli
unblock $r1, $r2
sti
ret

Figure 27. Impl. and Spec. of CV - Mesa Style

Brinch Hansen style condition variables are similar to Hoare-
style. The wait function is the same as WAIT H. The signal function
SIGNAL BH is specified by (p31,g31) defined in Fig. 26. Here p31
is the same as p21. The definition of g31 shows the difference: the
lock is released when signal returns. Therefore, calling the signal
function must be the last command in the critical region.
Mesa-style. Fig. 27 shows Mesa-style condition variables. WAIT M
is specified by (p11,g11). The assertion p11 is similar to the pre-
condition for Hoare-style, except that we require Δ(r2) = emp.
Therefore, as g11 shows, the current thread has no idea about the
validity of the condition when it returns.

SIGNAL M is specified by (p21,g21). The assertion hid is defined
in Fig. 22, which means the function has no effects over data heap.
From g21 we can see that, if we hide the details of releasing a
blocked thread, the signal function in Mesa style is just like a skip
command. We do not require the current thread to own the lock
l before it calls SIGNAL M, since it has no effects over data heap.
Intermediate assertions for these examples are given in the TR.

6. Implementations and Further Extensions
The program logic presented in this paper has been adapted for the
16-bit, real-mode x86 architecture. We have formalized a subset
of the x86 assembly language, its operational semantics, and the
program logic in the Coq proof assistant (Coq 2006). In our imple-
mentation, we assume that all interrupts except the timer have been
masked. Soundness of the program logic is proved in an OCAP-
like (Feng et al. 2007b) framework: inference rules are proved as
lemmas in the foundational framework; the soundness of the frame-
work itself is then proved following the syntactic approach. The
proof is also formalized in Coq and is machine-checkable.

Our preemptive thread libraries (shown in Fig. 3) are also im-
plemented in the x86 assembly code and works in real-mode. Syn-
chronization primitives at Level C are certified using the AIM pro-
gram logic. The timer handler calls the scheduler implemented at
the low-level, which corresponds to the switch instruction in AIM.
The yield function simply wraps the scheduler by disabling the in-
terrupt at the beginning and enabling it at the end. They are also
certified using this logic. Thread primitives at Level S in Fig. 3 are



certified as sequential code. Linking of the certified low-level code
with the middle-level libraries and the timer handler is done in the
OCAP-like framework. Linking of the thread library code at the
middle level with the high-level concurrent programs (see Fig. 1)
can be done in a similar way and is left as future work.

The Coq implementation has taken many man-months, out of
which a significant amount of efforts has been put on the implemen-
tation of basic facilities, including lemmas and tactics for partial
mappings, heaps, queues, and Separation Logic assertions. These
common facilities are independent of the task of certifying thread
libraries and can be reused in future projects. The size of the proof
scripts, in terms of the number of lines of Coq tactics, is huge com-
pared with the size of the x86 code. For instance, the proof for
the Mesa-style condition variables (26 lines of x86 code) is around
5400 lines, including comments and white spaces. However, as ob-
served by McCreight et al. (2007), the length of proof is probably a
poor metric of complexity. There is a lot of redundancy in the proof:
when an instruction is seen a second time in the code, we simply
copy and paste the previous proof, and do some minor changes. We
hope the length of the proof can be greatly reduced given better
abstractions and tactics. Also, the 5400 line of proof was finished
only in two days by one of the authors, who is an experienced Coq
user. We believe this is a very reasonable price to pay for fully cer-
tified subroutines with machine checkable proofs. The whole Coq
implementation is released as part of the TR (Feng et al. 2007c).

Extensions and future work. In AIM, we only support one inter-
rupt in the system, which cannot be interrupted again. It is actually
easy to extend the machine to support multi-level interrupts: we
change the is bit into a vector of bits ivec corresponding to inter-
rupts in service. An interrupt can only be interrupted by other inter-
rupts with higher priorities, which can also be disabled by clearing
the ie bit. At the end of each interrupt handler, the corresponding
in-service bit will be cleared so that interrupts at the same or lower
level can be served.

Extension of the program logic to support multi-level interrupts
is also straightforward, following the same idea of memory parti-
tions. Suppose there are n interrupts in the system, the memory will
be partitioned into n+1 blocks, as shown below:

B An-1

INVn-1

A0

INV0

...

. . .

where block Ak will be used by the interrupt handler k. To take
care of the preemption relations with multiple handlers, we need
to change our definition of Inv(ie,is) in Fig. 19 into Inv(ie, ivec),
which models the switch of memory ownership at the points of cli,
sti and boundaries of interrupt handlers.

Another simplification in our work is the assumption of a global
interrupt handler entry. It is easy to extend our machine and pro-
gram logic to support run-time installation of interrupt handlers. In
our machine, we can add a special register and an “install” to update
this register. When interrupt comes, we look up the entry point from
this register. This extension has almost no effects over our program
logic, thanks to our support of modular reasoning. We only need to
add a command rule for the “install” instruction to enforce that the
new handler’s interface is compatible to the specification (pi,gi).

Also, we do not consider dynamic creation of threads and block
queues in this paper. In our previous work (Feng and Shao 2005),
we have shown how to support dynamic thread creation following
a similar technique to support dynamic memory allocation in type
systems. The technique is fairly orthogonal and can be easily in-
corporated into this work. Gotsman et al. (2007) and Hobor et al.
(2008) extended concurrent separation logic with dynamic creation

of locks. Their techniques might be applied here as well to support
dynamic block queues.

It is also interesting to extend our logic to support multi-
processor machines in the future. The general idea of memory
partitions and ownership transfers used here would still apply in a
multi-processor setting, except that we need to know which inter-
rupt interrupts which processor. The implementation of kernel-level
threads at the Level S in Fig. 3 becomes more complicated because
it is no longer sequential, but it still prohibits interrupts at this level
and can be certified based on existing work on concurrency verifi-
cation. Disabling interrupts plays a less important role to bootstrap
the implementation of synchronization primitives. To implement
spinlocks, we need to use atomic instructions provided by the hard-
ware, e.g., the compare and swap instruction (cas). Also, we would
like to see how relaxed memory models affect the reasoning about
concurrent programs.

There are other possible extensions of the program logic to
increase its expressiveness. Bornat et al. (2005) showed refinements
of Separation Logic assertions to distinguish read-only access and
read/write access of memory cells. The refinements can be applied
to our program logic to support verification of reader/writer locks.
Also, we can change the current invariant-based specifications for
the well-formedness of shared memory into rely-guarantee style
specifications, where assertions specify transitions of states and are
more expressive than invariants (Feng et al. 2007a; Vafeiadis and
Parkinson 2007).

7. Related Work and Conclusion
Regehr and Cooprider (2007) showed how to translate interrupt-
driven programs to thread-based programs. However, their tech-
nique cannot be directly applied for our goal to build certified OS
kernel. First, proof of the correctness of the translation is non-trivial
and has not been formalized. As Regehr and Cooprider pointed
out, the proof requires a formal semantics of interrupts. Our work
actually provides such formal semantics. Second, their translation
requires higher-level language constructs such as locks, while we
certify the implementation of locks based on our AIM.

Suenaga and Kobayashi (2007) presented a type system to guar-
antee deadlock-freedom in a concurrent calculus with interrupts.
Their calculus is an ML-style language with built-in support of
threads, locks and interrupts. Our AIM is at a lower abstraction
level than theirs with no built-in locks. Also, their type system is
designed mainly for preventing deadlocks with automatic type in-
ference, while our program logic supports verification of general
safety properties, including partial correctness.

Palsberg and Ma (2002) proposed a calculus of interrupt driven
systems, which has multi-level interrupts but no threads. Instead of
a general program logic like ours, they proposed a type system to
guarantee an upper bound of stack space. DeLine and Fähndrich
(2001) showed how to enforce protocols with regard to interrupts
levels as an application of Vault’s type system. However, it is not
clear how to use the type system for general properties of interrupts.

Bevier (1989) certified Kit, an OS kernel implemented in ma-
chine code. Gargano et al. (2005) showed a framework for a cer-
tified OS kernel in the Verisoft project. Ni et al. (2007) certified a
non-preemptive thread implementation. In all these cases, imple-
mentations of kernels or thread libraries are all sequential. They
cannot be interrupted and there is no preemptive concurrency.

In this paper we present a new Hoare-style framework for cer-
tifying low-level programs involving both interrupts and concur-
rency. Following Separation Logic, we formalize the interaction
among threads and interrupt handlers in terms of memory owner-
ship transfers. Instead of using the operational semantics of cli, sti
and thread primitives, our program logic formulates their local ef-



fects over the current thread, as shown in Fig. 18, which is the key
for our logic to achieve modular verification. We have also certified
various lock and condition-variable primitives; our specifications
are both abstract (hiding implementation details) and precise (cap-
turing the semantic difference among these variations).

Practitioners doing informal proofs can also benefit from our
logic by learning how to do informal reasoning in a systematic way
for general concurrent programs, whose correctness is usually not
obvious. Although the primitives shown in this paper are similar
to standard routines in many OS textbooks, we are not aware of
any (even informal) proofs for code that involves both hardware in-
terrupts and preemptive concurrency. Saying that the code should
work is one thing (it often still requires leap-of-faith in our expe-
rience) — knowing why it works (which this paper does) is an-
other thing. The idea of memory partitions and ownership transfers
shown in this paper (and inspired by Separation Logic) gives gen-
eral guidelines even for informal proofs.
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