
Certifying Low-Level Programs with Hardware
Interrupts and Preemptive Threads

Xinyu Feng†‡ Zhong Shao† Yuan Dong§† Yu Guo∗

†Yale University ‡Toyota Technological Institute at Chicago
§Tsinghua University ∗University of Science and Technology of China

Abstract
Hardware interrupts are widely used in the world’s critical soft-
ware systems to support preemptive threads, device drivers, operat-
ing system kernels, and hypervisors. Handling interrupts properly
is an essential component of low-level system programming. Un-
fortunately, interrupts are also extremely hard to reason about: they
dramatically alter the program control flow and complicate the in-
variants in low-level concurrent code (e.g., implementation of syn-
chronization primitives). Existing formal verification techniques—
including Hoare logic, typed assembly language, concurrent sepa-
ration logic, and the assume-guarantee method—have consistently
ignored the issues of interrupts; this severely limits the applicability
and power of today’s program verification systems.

In this paper we present a novel Hoare-logic-like framework
for certifying low-level system programs involving both hard-
ware interrupts and preemptive threads. We show that enabling
and disabling interrupts can be formalized precisely using simple
ownership-transfer semantics, and the same technique also extends
to the concurrent setting. By carefully reasoning about the inter-
action among interrupt handlers, context switching, and synchro-
nization libraries, we are able to—for the first time—successfully
certify a preemptive thread implementation and a large number of
common synchronization primitives. Our work provides a foun-
dation for reasoning about interrupt-based kernel programs and
makes an important advance toward building fully certified operat-
ing system kernels and hypervisors.

1. Introduction
Low-level system programs (e.g., thread implementations, device
drivers, OS kernels, and hypervisors) form the backbone of almost
every safety-critical software system in the world. It is thus highly
desirable to formally certify the correctness of these programs. In-
deed, there have been several new projects launched recently (e.g.,
Verisoft/XT [8, 19], L4.verified [23], Singularity [12]), all aiming
to build certified OS kernels and/or hypervisors. With formal spec-
ifications and provably safe components, certified system software
can provide a trustworthy computing platform and enable anticipa-
tory statement about system configuration and behavior [12].

Unfortunately, system programs—especially those involving
both interrupts and concurrency—are extremely hard to reason
about. In Fig 1, we divide programs in a typical OS kernel into two
layers. At the “higher” abstraction level, we have threads that fol-
low the standard concurrent programming model [10]: interrupts
are invisible, but the execution of a thread can be preempted by
other threads; synchronization operations are treated as primitives.

Below this layer (see the shaded box), we have more sub-
tle “lower-level” code involving both interrupts and concurrency.
The implementation of many synchronization primitives and in-
put/output operations requires explicit manipulation of interrupts;
they behave concurrently in a preemptive way (if interrupt is en-
abled) or a non-preemptive way (if interrupt is disabled). When

locks cond var.

ctxt switching

scheduler

I/O primitives

. . .

High-Level Concurrent Programs

. . .

. .
 .

1
1
0
1
1
0
1
0

irq0
irq1
irq2
irq3
irq4
irq5
irq6
irq7

cli/
sti

Low-Level Code with Interrupts & Concurrency

device drivers

interrupt handlers

Figure 1. “High-Level” vs. “Low-Level” System Programs

. . .
cli
. . .

switch
. . .

sti
. . .

. . .

. . .
cli
. . .

switch
. . .
sti
. . .

switch

iret

. . .
. . .

iret

. . .

. . .
sti
. . .

irq0

irq1

Handler 0

Handler 1

Thread A Thread B

(1)

(2)
(3)

(4)

(5)

Figure 2. Interaction between Threads and Interrupts

execution of a thread is interrupted, control is transferred to an in-
terrupt handler, which may call the thread scheduler and switch the
control to another thread. Some of the code in the shaded box (e.g.,
the scheduler and context switching routine) may behave sequen-
tially since they are always executed with interrupt disabled.

Existing program verification techniques (including Hoare
logic, typed assembly language [15], concurrent separation logic [17,
3], and its assume-guarantee variant [24]) can probably handle
those high-level concurrent programs, but they have consistently
ignored the issues of interrupts thus cannot be used to certify con-
current code in the shaded box. Having both explicit interrupts and
threads creates the following new challenges:
• Asymmetric preemption relations. Non-handler code may be

preempted by an interrupt handler (and low-priority handlers
can be preempted by higher-priority ones), but not vice versa.
Interrupt handlers cannot be simply treated as threads [20].

• Subtle intertwining between interrupts and threads. In Fig 2,
thread A is interrupted by irq0 (say, the timer). In the handler,
the control is switched to thread B. From thread A’s point of
view, the behavior of the handler 0 is complex: should the
handler be responsible for the behavior of thread B?

• Asymmetric synchronizations. Synchronization between han-
dler and non-handler code is achieved simply by enabling and
disabling interrupts (via sti and cli instructions in x86). Unlike

block

void blk(queue * q)

Condition Variables

void wait_m(Lock *l, CV *cv);
void signal_m(CV *cv);
void wait_h(Lock *l, CV *cv);
void signal_h(Lock *l, CV *cv);
void wait_bh(Lock *l, CV *cv);
void signal_bh(Lock *l, CV *cv);

Locks

void acq_m(Lock *l);
void rel_m(Lock *l);
void acq_h(Lock *l);
void rel_h(Lock *l);
void acq_spin(Lock *l);
void rel_spin(Lock *l);

yield

void yield()

ctxt switching code
node* deQueue(queue * q)
void enQueue(queue * q, node *n)

Sec. 5.1 Sec. 5.2

timer_handler cli/
sti

Level S
Sec. 5.3

Level C

unblock

int unblk(queue * q)

switch

void scheduler()

Sec. 3 & 4

Sec. 5.3

Figure 3. Structure of Our Certified Preemptive Thread Implementation

locks, interrupts can be disabled by one thread and enabled by
another. In Fig 2, thread A disables interrupts and then switches
control to thread B (step (5)), which will enable interrupts.

• Handler for higher-priority interrupts might be “interrupted” by
lower-priority ones. In Fig 2, handler 0 switches the control to
thread B at step (1); thread B enables interrupts and is inter-
rupted by irq1, which may have a lower-priority than irq0.

In this paper we tackle these challenges directly and present a
novel framework for certifying low-level programs involving both
interrupts and preemptive threads. We introduce a new abstract
interrupt machine (named AIM, see Sec 3 and the upper half of
Fig 3) to capture “interrupt-aware” concurrency, and use simple
ownership-transfer semantics to reason about the interaction among
interrupt handlers, context switching, and synchronization libraries.
Our paper makes the following new contributions:

• As far as we know, our work presents the first program logic
(see Sec 4) that can successfully certify the correctness of low-
level programs involving both interrupts and concurrency. Our
idea of using ownership-transfer semantics to model interrupts
is both novel and general (since it also works in the concurrent
setting). Our logic supports modular verification: threads and
handlers can be certified in the same way as we certify sequen-
tial code without worrying about possible interleaving. Sound-
ness of our logic is formally proved in the Coq proof assistant.

• Following separation logic’s local-reasoning idea, our program
logic also enforces partitions of resources between different
threads and between threads and interrupt handlers. These log-
ical partitions at different program points essentially give an
abstract formalization of the semantics of interrupts and the in-
teraction between handlers and threads.

• Our AIM machine (see Sec 3) unifies both the preemptive and
non-preemptive threading models, and to our best knowledge,
is the first to successfully formalize concurrency with explicit
interrupt handlers. In AIM, operations that manipulates thread
queues are treated as primitives; These operations, together
with the scheduler and context-switching code (the low half of
Fig 3), are strictly sequential thus can be certified in a simpler
logic. Certified code at different levels are linked together using
an OCAP-style framework [5].

• Synchronization operations can be implemented as subroutines
in AIM. To demonstrate the power of our framework, we have
certified, for the first time, various implementations of locks
and condition variables (see Sec 5). Our specifications pinpoint
precisely the differences between different implementations.

2. Informal Development
Before presenting our formal framework, we first informally ex-
plain the key ideas underlying our abstract machine and our
ownership-transfer semantics for reasoning about interrupts.

2.1 Design of the Abstract Machine
In Figure 3 we outline the structure of a thread implementation
taken from a simplified OS kernel. We split all “shaded” code into
two layers: the upper level C (for “Concurrent”) and the low level
S (for “Sequential”). Code at Level C is concurrent; it handles in-
terrupt explicitly and implements the interrupt handler but abstracts
away the implementation of threads. Code at Level S is sequential
(always executed with interrupt disabled); functions that require to
know the concrete representations of thread control blocks (TCBs)
and thread queues are implemented at Level S; there is one queue
for ready threads and multiple queues for blocked threads.

We implement three primitive thread operations at Level S:
switch, block, and unblock. The switch primitive, shown as the
scheduler() function in Fig 3, saves the execution context of
the current thread into the ready queue, picks another one from the
queue, and switches to the execution context of the new thread. The
block primitive takes a pointer to a block queue as argument, puts
the current thread into the block queue, and switches the control
to a thread in the ready queue. The unblock primitive also takes a
pointer to a block queue as argument; it moves a thread from the
block queue to the ready queue but does not do context switching.
Level S also contains code for queue operations and thread context
switching, which are called by these thread primitives.

In the abstract machine at Level C, we use instructions cli/sti to
enable/disable interrupts (same as on x86 processors); the prim-
itives switch, block and unblock are also treated as instructions;
thread queues are now abstract algebraic structures outside of data
heap and can only be accessed via the thread primitives.

Although the abstract machine is based on our implementation
of the preemptive thread library, the idea of interfacing using Levels
C and S is very general, given that the thread primitives we use
are very common in most implementations of thread libraries. Note
that we are not trying to claim this is the only way or the best way
to divide code into separate abstraction levels, but this design does
give us a nice abstraction at Level C so that we can focus on the
interaction between threads and interrupts.

2.2 Ownership-Transfer Semantics
Concurrent entities, i.e., the handler code and the threads consisting
of the non-handler code, all need to access memory. To guarantee
the non-interference, we enforce the following invariant, inspired
by recent work on Concurrent Separation Logic [3, 17]: there al-

2

B A

INV0

B B

INV0

B

B B

INV0

B A

INV0

Critical
Region

cli

sti

Figure 4. Memory Partition for Handler and Non-Handler

C A

INV0

T1: cli

T1 T2

INV1

T1 T1

INV0

T1 T2

INV1

C A

INV0

T
2
: sti

T1 T2

INV1

T2 T2

INV0

T1 T2

INV1

switch

Figure 5. The Memory Model for Multi-Threaded Non-Handler

ways exists a partition of memory among these concurrent entities,
and each entity can only access its own part of memory. There are
two important points about this invariant:
• the partition is logical; we do not need to change our model of

the physical machine, which only has one global shared data
heap. The logical partition can be enforced following Separa-
tion Logic [13, 21], as we will explain below.

• the partition is not static; it can be dynamically adjusted during
program execution, which is done by transferring the ownership
of memory from one entity to the other.

Instead of using the operational semantics of cli, sti and thread prim-
itives described above to reason about programs, we model their
semantics in terms of memory ownership transfer. This semantics
completely hides thread queues and thus the complex interleaving
between the non-handler threads and the handler code.

We first study the semantics of cli and sti assuming that the non-
handler code is always sequential. Since the interrupt handler can
preempt the non-handler code but not vice versa, we reserve the
part of memory used by the handler from the global memory, shown
as block A in Fig 4. Block A needs to be well-formed with respect
to the precondition of the handler, which ensures safe execution
of the handler code. We call the precondition an invariant INV0,
since the interrupt may come at any program point (as long as it is
enabled) and this precondition needs to always hold. If the interrupt
is enabled, the non-handler code can only access the rest part of
memory, called block B. If it needs to access block A, it has to first
disable the interrupt by cli. Therefore we can model the semantics
of cli as a transfer of ownership of the well-formed block A, as
shown in Fig 4. The non-handler code does not need to preserve
the invariant INV0 if the interrupt is disabled, but it needs to ensure
INV0 holds before it enables the interrupt again using sti. The sti
instruction returns the well-formed block A to the interrupt handler.

If the non-handler code is multi-threaded, we also need to guar-
antee non-interference between these threads. Fig 5 refines the
memory model. The block A is still dedicated to the interrupt han-
dler. The memory block B is split into three parts (assuming there

T1 T1

INV0

T1

INV1

? T2

T2 T2

INV0

T1

INV1

T2!

T2 T2

INV0

T1

INV1

T2!

T
1
: block

T1 T1

INV0

T1

INV1

! T2
T

2
: switch

T2: unblock

Figure 6. Block and Unblock

are only two threads): each thread has its own private memory, and
both threads share the block C. When block C is available for share,
it needs to be well-formed with some specification INV1. However,
a thread cannot directly access block C if the interrupt is enabled,
even if the handler does not access block C. That is because the
handler may switch to another thread, as shown in Fig 2 (step (1)).
To access block A and C, the current thread, say T1, needs to dis-
able the interrupt; so cli grants T1 the ownership of well-formed
blocks A and C. If T1 wants to switch control to T2, it first makes
sure that INV0 and INV1 hold over A and C respectively. When T2
takes control, it can either access A and C, or enable the interrupt
and release their ownership (knowing they are well-formed).

Blocking thread queues are used to implement synchronization
primitives, such as locks or condition variables. When the lock is
not available, or the condition associated with the condition vari-
able does not hold, the current thread is put into the correspond-
ing block queue. We can also model the semantics of block and
unblock as resource ownership transfer: a blocked thread is essen-
tially waiting for the availability of some resource, e.g., the lock and
the resource protected by the lock, or the resource over which the
condition associated with the condition variable holds. As shown
in Fig 6, thread T1 executes block when it waits for some re-
source (represented as the dashed box containing “?”). Since block
switches control to other threads, T1 needs to ensure that INV0 and
INV1 hold over A and C, which is the same requirement as switch.
When T2 makes the resource available, it executes unblock to re-
lease a thread in the corresponding block queue, and transfers the
ownership of the resource to the released thread. Note that unblock
itself does not do context switching. When T1 takes control again,
it’ll own the resource. From T1’s point of view, the block opera-
tion acquires the resource associated with the corresponding block
queue. This view of block and unblock is very flexible: by choosing
whether the resource is empty or not, we can certify implementa-
tions of Mesa- and Hoare-style condition variables (see Sec 5).

3. The Abstract Interrupt Machine (AIM)
In this section, we present our Abstract Interrupt Machine (AIM)
in two steps. AIM-1 shows the interaction between the handler and
sequential non-handler code. AIM-2, the final definition of AIM,
extends AIM-1 with multi-threaded non-handler code.

3.1 AIM-1
AIM-1 is defined in Figure 7. The whole machine configurationW
consists of a code heap C, a mutable program state S, a control
stack K, and a program counter pc. The code heap C is a finite
partial mapping from code labels to commands c. Each command
c is either a sequential or branch instruction ι, or jump or return
instructions. The state S contains the data heap H, the register file
R, and flags ie and is. Data heap is modeled as a finite partial
mapping from labels to integers. The register file is a total function

3

(World) W ::= (C,S,K,pc)
(CodeHeap) C ::= {f ; c}∗

(State) S ::= (H,R,ie,is)
(Heap) H ::= {l ; w}∗

(RegFile) R ::= {r0 ; w0, . . . ,rk ; wk}
(Stack) K ::= nil | f ::K | (f,R) ::K

(Bit) b ::= 0 | 1
(Flags) ie,is ::= b

(Labels) l,f,pc ::= n (nat nums)
(Word) w ::= i (integers)

(Register) r ::= r0 | r1 | . . .
(Instr) ι ::= mov rd ,rs | movi rd ,w | add rd ,rs

| sub rd ,rs | ld rd ,w(rs) | st w(rt),rs
| beq rs,rt ,f | call f | cli | sti

(Commd) c ::= ι | j f | jr rs | ret | iret

(InstrSeq) I ::= ι;I | j f | jr rs | ret | iret

Figure 7. Definition of AIM-1

C[f] ,
{

c c = C(f) and c = j f′, jr rs, ret, or iret
ι;I ι = C(f) and I= C[f+1]

(F{a ; b})(x) ,
{

b if x = a
F(x) otherwise .

S|H′ , (H′,S.R,S.ie,S.is)

S|R′ , (S.H,R,S.ie,S.is)

S|{ie=b} , (S.H,S.R,b,S.is)

S|{is=b} , (S.H,S.R,S.ie,b)

Figure 8. Definition of Representations

which maps register names to integers. The binary flags ie and is
record whether the interrupt is disabled, and whether it is currently
being serviced, respectively. The abstract control stack K saves the
return address of the current function or the interrupt handler. Each
stack frame either contains a code label f or a pair (f,R). The frame
(f,R) is pushed when the interrupt is processed, which will be
explained below. An empty stack is represented as nil. The program
counter pc points to the current command in C. We also define
the instruction sequence I as a sequence of sequential instructions
ending with jump or return commands. C[f] extracts an instruction
sequence starting from f in C, as defined in Figure 8. We use dot
notation to represent a component in a tuple, e.g., S.H means the
data heap in state S. More representations are defined in Figure 8.
Operational Semantics At each step, the machine either executes
the next instruction at pc or jumps to handle the incoming inter-
rupt. To simplify the presentation, the machine supports only one
interrupt, with a global interrupt handler entry h entry. Support of
multi-level interrupts is discussed in the Section 4.6. An incoming
interrupt is processed only if the ie bit is set, and no interrupt is
currently being serviced (i.e., is = 0). The processor handles the
interrupt in the following steps:
• pushes the current pc and register file R onto the stack K;
• clears the ie bit and sets the is bit;
• sets the pc to h entry.

The state transition (W W′) is defined in the IRQ rule in Fig 9.

NextS(c,K) S S′ where S= (H,R,ie,is)
if c = S′ =
mov rd ,rs (H,R{rd ; R(rs)},ie,is)
movi rd ,w (H,R{rd ; w},ie,is)
add rd ,rs (H,R{rd ; (R(rs)+R(rd))},ie,is)
sub rd ,rs (H,R{rd ; (R(rd)−R(rs))},ie,is)
ld rd ,w(rs) (H,R{rd ;H(R(rs)+w)},ie,is)

if (R(rs)+w) ∈ dom(H)
st w(rt),rs (H{(R(rt)+w) ; R(rs)},R,ie,is)

if (R(rt)+w) ∈ dom(H)
cli S|{ie=0}
sti S|{ie=1}
iret (H,R′,1,0)

if is = 1,K= (f,R′) ::K′ for some f and K′
other cases S

NextK(pc,c) KK′
if c = S′ =
call f (pc+1) ::K
ret K′′ if K= f ::K′′ for some f
iret K′′ if K= (f,R) ::K′′ for some f and R
other cases K

NextPC(c,R,K) pc pc
′

if c = pc′ =
beq rs,rt ,f f if R(rs) = R(rt)
beq rs,rt ,f pc+1 if R(rs) 6= R(rt)
call f f

j f f

jr rs R(rs)
ret f if K= f ::K′ for some K′
iret f if K= (f,R′) ::K′ for some K′ and R′
other cases pc+1

c = C(pc)
NextS(c,K) S S′ NextK(pc,c) KK′ NextPC(c,S.R,K) pc pc

′

(C,S,K,pc) 7−→ (C,S′,K′,pc′)
(PC)

ie = 1 is = 0
(C,(H,R,ie,is),K,pc) (C,(H,R,0,1),(pc,R) ::K,h entry)

(IRQ)

W Z=⇒W′ , (W 7−→W′)∨ (W W′)

Figure 9. Operational Semantics

The operational semantics of each instruction is defined in Fig-
ure 9. The relation NextS(c,K) shows the transition of states by ex-
ecuting c with stackK; NextK(pc,c) describes the change of stacks
made by c at the program counter pc; while NextPC(c,R,K) shows
how pc changes after c is executed with R and K. Semantics of
most instructions are straightforward, except iret which runs at the
end of each interrupt handler and does the following:
• pops the stack frame on the top of the stack K; the frame must

be in the form of (f,R′), which is saved when the interrupt is
handled (see the IRQ rule);

• restores ie and is with the value when the interrupt occurs,
which must be 1 and 0 respectively (otherwise the interrupt
cannot have been handled);

• resets the pc and the register file R with f and R′, respectively.

4

incleft: -{(p0, NoG)} h_entry: -{(pi, gi)}
movi $r1, RIGHT movi $r1, LEFT
movi $r2, LEFT movi $r2, RIGHT

l_loop: -{(p1, NoG)} movi $r3, 0

movi $r3, 0 ld $r4, 0($r1)
cli beq $r3, $r4, r_win

-{(p2, NoG)} movi $r3, 1

ld $r4, 0($r1) sub $r4, $r3
beq $r3, $r4, l_win st 0($r1), $r4
movi $r3, 1 ld $r4, 0($r2)
sub $r4, $r3 add $r4, $r3
st 0($r1), $r4 st 0($r2), $r4
ld $r4, 0($r2) iret

add $r4, $r3 r_win: -{(p4, gid)}
st 0($r2), $r4 iret
sti

-{(p1, NoG)}
j l_loop

l_win: -{(p3, NoG)}
sti
j l_loop

Figure 10. Sample AIM-1 Program: Teeter-Totter

(World) W ::= (C,S,K,pc,tid,T,B)
(ThrdSet) T ::= {tid ; (R,K,is,pc)}∗
(BlkQSet) B ::= {w ;Q}∗
(ThrdQ) Q ::= {tid1, . . . ,tidn}
(ThrdID) tid ::= n (nat nums, and n > 0)

(qID) w ::= n (nat nums, and n > 0)
(Instr) ι ::= . . . | switch | block rt | unblock rt ,rd | . . .

Figure 11. AIM-2 defined as an Extension of AIM-1

In AIM, the register fileR is automatically saved and restored at the
entry and exit point of the interrupt handler. This is a simplification
of the x86 interrupt mechanism for a cleaner presentation and is not
essential for the technical development. In our implementation for
x86, the handler code needs to save and restore the registers.

Fig 9 also defines (W 7−→W′) for executing the instruction at
the current pc; program execution is then modeled as W Z=⇒W′.
Note that our semantics of AIM-1 programs is not deterministic:
the state transition may be made either by executing the next in-
struction or by handling an incoming interrupt. Also, given a W,
there may not always exist a W′ such that (W 7−→W′) holds. If
there is no such W′, we say the program gets stuck at W. One im-
portant goal of our program logic is to show that certified programs
never get stuck.

Fig 10 shows a sample AIM-1 program. The program speci-
fications in shadowed boxes are explained in Section 4. Initially
LEFT and RIGHT point to memory cells containing the same value
(say, 50). The non-handler increases the value stored at LEFT and
decrease the value at RIGHT. The interrupt handler code does the
reverse. Which side wins depends on how frequent the interrupt
comes. To avoid races, the non-handler code always disables inter-
rupt before it accesses LEFT and RIGHT.

3.2 AIM-2
Fig 11 defines AIM-2 as an extension over AIM-1. We extend
WorldW with an abstract thread queue T, a set of block queues B,
and the id tid for the current thread. Tmaps a thread id to a thread
execution context, which contains the register file, stack, the is flag
and pc. B maps block queue ids w to block queues Q. These block

h_entry: -{(pi, gi)}
j h_timer

h_timer: -{(pi, gi)}
movi $r1, CNT
ld $r2, 0($r1) ; $r2 <- [CNT]
movi $r3, 100
beq $r2, $r3, schd ; if ([CNT]=100)
movi $r3, 1 ; goto schd
add $r2, $r3
st 0($r1), $r2 ; [CNT]++
iret

schd: -{(p0, g0)}
movi $r2, 0
st 0($r1), $r2 ; [CNT] := 0
switch
iret

p0 , enable iret ∧ (r1 = CNT)

g0 ,
{

CNT 7→
INV0

}
∧ (ie = ie′)∧ (is = is′)

Figure 13. A Preemptive Timer Handler

queues are used to implement synchronization primitives such as
locks and condition variables. Q is a set of thread ids pointing to
thread contexts in T. Note here we do not need a separate Q for
ready threads, which are threads in T but not blocked:

readyQ(T,B) , {tid | tid ∈ dom(T)∧¬∃w. tid ∈ B(w)} .

We also add three primitive instructions: switch, block and unblock.
They correspond to system calls to low-level thread implementa-
tions in the real machine (see Fig 3).

The step relation (W 7−→W′) of AIM-2 is defined in Fig 12.
The switch instruction saves the execution context of the current
thread into the thread queue T, and randomly picks a new thread
from readyQ(T,B). To let our abstraction fit into the interfaces
shown in Fig 3, we require that the interrupt be disabled before
switch. This also explains why ie is not saved in the thread context,
and why it is set to 0 when a new thread is scheduled from T: the
only way to switch control from one thread to the other is to execute
switch, which can be executed only if the interrupt is disabled. The
“block rt” instruction puts the current thread id into the block queue
B(rt), and switches the control to another thread in readyQ(T,B).
If there are no other threads in readyQ, the machine stutters (in
our x86 implementation, this would never happen because there
is an idle thread and our program logic prohibits it from executing
block). The “unblock rt ,rd” instruction removes a thread from B(rt)
and puts its tid into rd if the queue is not empty; otherwise rd
contains 0. By the definition of readyQ, we know tid will be in
readyQ after being unblocked. unblock does not switch controls.
Like switch, block and unblock can be executed only if the interrupt
is disabled. The effects of other instructions over S, K and pc are
the same as in AIM-1. They do not change T, B and tid. The
transition (W W′) for AIM-2 is almost the same as the one for
AIM-1 defined by the IRQ rule. It does not change T and tid either.
The definition of (W Z=⇒W′) is unchanged.

A preemptive timer interrupt handlers The design of the low-
level AIM machine is very interesting in that it provides different
choices of thread models for high-level concurrent programs (Fig-
ure 1). If high-level threads assumes the interrupt is always dis-
abled, they work in the non-preemptive model and each thread vol-
untarily gives up the control by switch. However, threads cannot
handle interrupts from I/O devices either in this case. An alterna-
tive approach to the non-preemptive model is to install an interrupt
handler implemented in AIM that does no context switching. To

5

(C,S,K,pc,tid,T,B) 7−→W′ where S= (H,R,ie,is)
if C(pc) = W′ =
switch (C,(H,R′,0,is′),K′,pc′,tid′,T′,B)

if ie = 0, T′ = T{tid ; (R,K,is,pc+1)}, tid′ ∈ readyQ(T,B′), and T′(tid′) = (R′,K′,is′,pc′)
block rt (C,(H,R′,ie,is′),K′,pc′,tid′,T′,B′)

if ie = 0, w = R(rt), B(w) =Q, B′ = B{w ; (Q∪{tid})}, tid′ ∈ readyQ(T,B′),
T(tid′) = (R′,K′,is′,pc′) and T′ = T{tid ; (R,K,is,pc+1)}

block rt (C,(H,R,ie,is),K,pc,tid,T,B)
if ie = 0, w = R(rt), and readyQ(T,B′) = {tid}

unblock rt ,rd (C,(H,R′,ie,is),K,pc+1,tid,T,B)
if ie = 0, w = R(rt), B(w) =∅, and R′ = R{rd ; 0}

unblock rt ,rd (C,(H,R′,ie,is),K,pc+1,tid,T,B′)
if ie = 0, w = R(rt), B(w) =Q]{tid′}, B′ = B{w ;Q}, and R′ = R{rd ; tid′}

other c (C,S′,K′,pc′,tid,T,B)
if NextS(c,K) S S′, NextK(pc,c) KK′, and NextPC(c,R,K) pc pc

′

Figure 12. The Step Relation for AIM-2

(CdHpSpec) Ψ ::= {(f1,s1), . . . ,(fn,sn)}
(Spec) s ::= (p,g)

(Pred) p ∈ Stack→ State→ Prop

(Guarantee) g ∈ State→ State→ Prop

(MPred) m, INV0, INV1 ∈ Heap→ Prop

(WQSpec) ∆ ::= {w ; m}∗

Figure 14. Specification Constructs

get the preemptive model, we install a timer interrupt handler that
executes switch.

Figure 13 shows the implementation of a preemptive interrupt
handler for the timer. Each time the interrupt comes, the hander
test the value of the counter at memory location CNT. If the counter
reaches 100, the handler switches control to other threads; other-
wise it increases the counter by 1 and returns to the interrupted
thread. We will explain the meaning of specifications and how the
timer handler is be certified in Section 4.

4. The Program Logic
4.1 Specification Language
We use the mechanized meta-logic implemented in the Coq proof
assistant as our specification language. The logic corresponds to
higher-order logic with inductive definitions.

As shown in Figure 14, the specification Ψ for the code heap C
associates code labels f with specifications s. We allow each f to
have more than one s, just as a function may have multiple specified
interfaces. The specification s is a pair (p,g). The assertion p is
a predicate over a stack K and a program state S (its meta-type
in Coq is a function that takes K and S as arguments and returns
a proposition), while g is a predicate over two program states.
As we can see, the NextS(c,K) relation defined in Figure 9 is a
special form of g. Following our previous work on reasoning low-
level code with stack based control abstractions [7], we use p to
specify the precondition over stack and state, and use g to specify
the guaranteed behavior from the specified program point to the
point when the current function returns.

We also use the predicate m to specify data heaps. The invariants
INV0 and INV1 shown in Figures 5 and 6 are both heap predicates.
We encode in Figure 15 Separation Logic connectors [13, 21] in
our specification language. Assertions in Separation Logic capture

true , λH. True emp , λH.H=∅

l 7→ w , λH.H= {l ; w} l 7→ , λH. ∃w. (l 7→ w)H

H1⊥H2 , dom(H1)∩dom(H1) =∅

H1]H2 ,
{
H1∪H2 if H1⊥H2
undefined otherwise

m1 ∗m2 , λH. ∃H1,H2. (H1]H2 =H)∧m1 H1∧m2 H2

p∗m , λK,S. ∃H1,H2. (H1]H2 = S.H)∧pK S|H1 ∧mH2

m−∗ m′ , λH. ∀H′,H′′. (H]H′ =H′′)∧mH′→ m′ H′′

m−∗ p , λK,S. ∀H,H′. (H]S.H=H′)∧mH→ pK S|H′
precise(m) , ∀H,H1,H2.

(H1 ⊆H)∧ (H2 ⊆H)∧mH1∧mH2 → (H1 =H2)

Figure 15. Definitions of Separation Logic Assertions

enable(p,g) , ∀K,S. pK S→∃S′,g S S′
p B g , λK,S. ∃S0,pK S0∧g S0 S

g◦g′ , λS,S′′. ∃S′. g S S′∧g′ S′ S′′
p◦g , λS,S′. ∃K. pK S∧g S S′
p⇒ p′ , ∀K,S. pK S→ p′ K S

g⇒ g′ , ∀S,S′. g S S′→ g′ S S′

Figure 16. Connectors for p and g

ownership of heaps. The assertion “l 7→ n” holds only if the heap
has only one cell at l containing value n. It can also be interpreted
as the ownership of this memory cell. ‘m ∗m′” means the heap can
be split into two disjoint parts, and m and m′ hold over one of them
respectively. A heap satisfies m−∗ m′ if and only if the disjoint union
of it with any heap satifying m would satisfy m′.

The specification ∆ maps an identifier w to a heap predicate
specifying the well-formedness of the resource that the threads in
the block queue B(w) are waiting for.

Specification of the Interrupt Handler. We need to give a specifi-
cation to the interrupt handler to certify the handler code and ensure
the non-interference. We let (h entry,(pi,gi)) ∈ Ψ, where pi and

6

P ? m:m′ , λH. (P∧mH)∨ (¬P∧m′ H)

gcli , λ(H,R,ie,is),(H′,R′,ie′,is′).
(is = is′)∧ (R= R′)∧ (ie′ = 0)∧{

emp
(ie = 1∧is = 0) ? (INV0∗ INV1):emp

}
HH′

gsti , λ(H,R,ie,is),(H′,R′,ie′,is′).
(is = is′)∧ (R= R′)∧ (ie′ = 1)∧{

(ie = 0∧is = 0) ? (INV0∗ INV1):emp
emp

}
HH′

gswitch , λ(H,R,ie,is),(H′,R′,ie′,is′).
(ie = 0)∧ (ie = ie′)∧ (R= R′)∧ (is = is′)∧{

INV0∗ (is = 0 ? INV1:emp)
INV0∗ (is = 0 ? INV1:emp)

}
HH′

g∆
block rs

, λ(H,R,ie,is),(H′,R′,ie′,is′).
(ie = 0)∧ (ie = ie′)∧ (R= R′)∧ (is = is′)∧
∃m. ∆(R(rs)) = m∧{

INV0∗ (is = 0 ? INV1:emp)
INV0∗ (is = 0 ? INV1:emp)∗m

}
HH′

g∆
unblock rs,rd

, λ(H,R,ie,is),(H′,R′,ie′,is′).
(ie = 0)∧ (ie = ie′)∧ (is = is′)∧
(∀r 6= rd . R(r) = R′(r))∧
∃m. ∆(R(rs)) = m∧ (m∗ true)H∧{

(R′(rd)=0) ? emp:m
emp

}
HH′

Figure 17. Semantics for cli, sti and Thread Primitives

gi are defined as follows:

pi , λK,S. ((INV0∗ true) S.H)∧ (S.is = 1)∧ (S.ie = 0)
∧∃f,R,K′.K= (f,R) ::K′ (1)

gi , λS,S′.
{

INV0
INV0

}
S.H S′.H

∧(S′.ie = S.ie)∧ (S′.is = S.is) (2)

The precondition pi specifies the stack and state at the entry
h entry. It requires that the local heap used by the handler (block
A in Figure 5) satisfies INV0. INV0 is a global parameter of our
system, whose definition depends on the functionality of the inter-
rupt handler. The guarantee gi specifies the behavior of the handler.
The arguments S and S′ correspond to program states at the entry
and exit points, respectively. It says the ie and is bits in S′ have the
same value as in S, and the handler’s local heap satisfies INV0 in S
and S′, while the rest of the heap remains unchanged. The predicate{

m1
m2

}
is defined below.

{
m1
m2

}
, λH1,H2. ∃H′1,H′2,H. (m1 H′1)∧ (m2 H′2)∧

(H′1]H=H1)∧ (H′2]H=H2) (3)

It has the following nice monotonicity: for any H1, H2 and H′, if
H1 andH2 satisfy the predicate,H1⊥H′, andH2⊥H′, thenH1]H′
and H2]H′ satisfy the predicate.

4.2 Inference Rules
Inference rules of the program logic are shown in Figs. 18 and 20.
The judgment for well-formed instruction sequences says it is safe
to execute the instruction sequence given the imported interface in
Ψ, the specification of block queues ∆, and a precondition (p,g).

Ψ,∆ `{s}f : I (Well-Formed Instr. Seq.)

ι 6∈ {call . . . ,beq . . .} Ψ,∆ `{(p′,g′)}f+1 : I
enable(p,gι) (p B gι)⇒ p′ (p◦ (gι ◦g′)) ⇒ g

Ψ,∆ `{(p,g)}f : ι; I (SEQ)

(f+1, (p′′,g′′)) ∈Ψ Ψ,∆ `{(p′′,g′′)}f+1 : I
(f′, (p′,g′)) ∈Ψ ∀K,S,pc. pK S→ p′ (pc ::K) S
(p B g′)⇒ p′′ (p◦ (g′ ◦g′′))⇒ g

Ψ,∆ `{(p,g)}f : call f′;I
(CALL)

(f′, (p′,g′)) ∈Ψ Ψ,∆ `{(p′′,g′′)}f+1 : I
(p B gidrs=rt)⇒ p′ (p◦ (gidrs=rt ◦g′))⇒ g
(p B gidrs 6=rt)⇒ p′′ (p◦ (gidrs 6=rt ◦g′′))⇒ g

Ψ,∆ `{(p,g)}f : beq rs,rt ,f
′;I

(BEQ)

p⇒ enableiret (p◦gid)⇒ g

Ψ,∆ `{(p,g)}f : iret
(IRET)

where enableiret , λK,S. ∃f,R,K′.K= (f,R) ::K′ ∧S.is = 1

p⇒ enableret (p◦gid)⇒ g

Ψ,∆ `{(p,g)}f : ret
(RET)

where enableret , λK,S. ∃f,K′.K= f ::K′

(f′, (p′,g′)) ∈Ψ p⇒ p′ (p◦g′)⇒ g

Ψ,∆ `{(p,g)}f : j f′
(J)

Ψ,∆ ` C :Ψ′ (Well-Formed Code Heap)

for all (f,s) ∈Ψ′ : Ψ,∆ `{s}f : C[f]

Ψ,∆ ` C :Ψ′ (CDHP)

Figure 18. Inference Rules

The predicate p specifies the current stack and state, and g specifies
the state transition from the current program point to the return
point of the current function (or the interrupt handler).

The SEQ rule is a schema for instruction sequences starting with
instructions except branch and function call instructions. We need
to find an intermediate specification (p′,g′), with respect to which
the remaining instruction sequence is well-formed. It is also used
as a post-condition for the first instruction. We use gι to specify the
state transition made by the instruction ι. The premise enable(p,gι)
is defined in Figure 16. It means that the state transition gι would
not get stuck as long as the starting stack and state satisfy p.
The predicate p B gι, shown in Figure 16, specifies the stack
and state resulting from the state transition gι, knowing the initial
state satisfies p. It is the strongest post condition after gι. The
composition of two subsequent transitions g and g′ is represented
as g◦g′, and p◦g refines g with the extra knowledge that the initial
state satisfies p. We also lift the implication relation between p’s
and g’s. The last premise in the SEQ rule requires the composition
of gι and g′ fulfills g, knowing the current state satisfies p.

If ι is an arithmetic instruction, move instruction or memory
operation, we define gι as NextS(ι,) (see Figure 9). Since NextS

does not depend on the stack for these instructions, we use “ ” to
represent arbitrary stacks. Also note that the NextS relations for ld
or st require the target address to be in the domain of heap, therefore
the premise enable(p,gι) requires that p contains the ownership of
the target memory cell accessed by ld or st.

Interrupts and thread primitive instructions. One of the major
technical contributions of this paper is our formulation of gι for cli,
sti and switch, block and unblock, which, as shown in Figure 17,
gives an axiomatic ownership transfer semantics to them.

7

The transition gcli says that, if cli is executed in the non-
handler (is = 0) and the interrupt is enabled (ie = 1), the cur-
rent thread gets ownership of the well-formed sub-heap A and
C satisfying INV0 ∗ INV1, as shown in Figure 5; otherwise there
is no ownership transfer because the interrupt has already been
disabled before cli. The transition gsti is defined similarly. Note
that the premise enable(p,gι) in the SEQ requires that, before
executing sti, the precondition p must contain the ownership
(ie = 0∧is = 0) ? (INV1∗ INV0):emp.

The transition gswitch for switch requires that the sub-heap
A and C (in Figure 5) be well-formed before and after switch.
However, if we execute switch in the interrupt handler (is =
1), we know INV1 always holds and leave it implicit. Also
enable(p,gι) requires that the precondition p ensures ie = 0 and
INV0∗ (is = 0 ? INV1:emp) holds over some sub-heap.

The transition g∆
block rs

for block rs refers to the specification ∆.
It requires ie = 0 and rs contains an identifier of a block queue
with specification m in ∆. It is similar to switch, except that the
thread gets the ownership of m after it is released (see Figure 6). In
g∆

unblock rs,rd
, we require the initial heap must contains a sub-heap

satisfying m, because unblock may transfer it to a blocked thread.
However, since unblock does not immediately switch controls, we
do not need the sub-heap A and C to be well-formed. If the target
address rd contains non-zero value at the end of unblock, some
thread has been released from the block queue. The current thread
transfers m to the released thread and has no access to it any more.
Otherwise, no thread is released and there is no ownership transfer.
Function calls and memory polymorphism. In the CALL rule, we
treat the state transition g′ made by the callee as the transition of
the call instruction. We also require that the precondition p implies
the precondition p′ of the callee, which corresponds to the enable
premise in the SEQ rule. Note that the CALL rule supports memory
polymorphism in a natural way: if g′ of the callee is specified

following the pattern
{

m
m′

}
defined by formula (3), the callee’s

specification does not need to mention data required by the caller
but not accessed in the callee, thus achieving a similar effects to the
frame rule in Separation Logic. We first introduce the following
definitions.

monotonic(p) ,
∀K,S,H,H′. (H′ =H]S.H)∧pK S→ pK S|H′

monotonic(g) ,
∀S,S′,H,H′,H0.(H0]S.H=H)∧ (H0]S′.H=H′)

→ (g S S′→ g S|H S′|H′)
frame(g) ,

∀S,S′,H0,H. (H0]H= S.H)∧ (g S S′)∧ (∃S′′. g S|H S′′)
→∃H′.(H0]H′ = S′.H)∧g S|H S′|H′

wff spec(p,g) ,
monotonic(p)∧monotonic(g)∧ frame(g)∧ enable(p,g)

wff spec(Ψ) , ∀f,s. ((f,s) ∈Ψ)→ wff spec(s)

Lemma 4.1 (call-frame)
If Ψ,∆ `{(p,g)}f : call f′ I, wff spec(Ψ) and wff spec(p,g), then
we have Ψ,∆ `{(p∗m,g)}f : call f′ I for any m such that precise(m).

Proof sketch. To prove the lemma, we need to prove the following
propositions:
• if monotonic(p′), then (p⇒ p′)→ (p∗m⇒ p′);
• if p⇒ p′, enable(p′,g′), frame(g′) and monotonic(p′′), then

(p B g′⇒ p′′)→ ((p∗m) B g′⇒ p′′);

p∗ Inv , λK,S. (p∗ Inv(S.ie,S.is))K S

Inv(ie,is) ,

INV1 is = 1
emp is = 0 and ie = 0
INVs is = 0 and ie = 1

where INVs , INV0∗ INV1

bgc(m,m′) , λS,S′. ∃H1,H2,H′1,H
′
2.

(H1]H2 = S.H)∧ (H′1]H′2 = S′.H)
∧mH2∧m′ H′2∧g S|H1 S′|H′1

bgc , λS,S′. bgc(Inv(S.ie,S.is),Inv(S′.ie,S′.is))

WFST(g,S,nil,Ψ) , ¬∃S′. g S S′
WFST(g,S,f ::K,Ψ) ,

∃pf,gf. (f, (pf,gf)) ∈Ψ
∧∀S′. g S S′→ (pf ∗ Inv)K S′∧WFST(bgfc,S′,K,Ψ)

WFST(g,S,(f,R) ::K,Ψ) ,
∃pf,gf. (f, (pf,gf)) ∈Ψ
∧∀S′. g S S′→ (pf ∗ Inv)K S′′∧WFST(bgfc,S′′,K,Ψ)

where S′′ = (S′.H,R,1,0)

Figure 19. Auxiliary Definitions for Program Invariants

• if p⇒ p′, (pB g′⇒ p′′), enable(p′,g′), frame(g′), enable(p′′,g′′),
frame(g′′), and monotonic(g), then ((p ◦ (g′ ◦g′′)) ⇒ g) →
(((p∗m)◦ (g′ ◦g′′))⇒ g).

Each proposition can be proved by above definitions. 2

Also, we can prove wff spec(p,g) if:

p , λK,S. m∗ true S.H

g , λS,S′.
{

m
m′

}
S.H S′.H ,

for any m, m′ such that precise(m).
Other instructions. In the BEQ rule, we use gidrs=rt

to represent
an identity transition with the extra knowledge that rs and rt contain
the same value. gidrs 6=rt

is defined similarly. We do not have an
enable premise because the branch instruction never gets stuck.
IRET and RET rules require that the code has finished its guaranteed
transition at this point. So an identity transition gid should satisfy
the remaining transition g. The predicates enableiret and enableret
specify the requirements over stacks. The J rule can be viewed as a
specialization of the BEQ rule.
Well-formed code heaps. The CDHP rule says the code heap is
well-formed if and only if each instruction sequence specified in
Ψ′ is well-formed.
Program Invariants. The program invariant enforced by our pro-
gram logic is defined by the PROG rule in Figure 20, which is an-
other major technical contribution of this work. It says that, if there
are n threads in the thread queue in addition to the current thread,
the heap can be split into n + 1 blocks, each for one thread. Each
block Hk (k > 0) is for a ready or blocked thread in queues. The
block H0 is assigned to the current thread, which includes both its
private memory and the shared memory A and C shown in Figure 5.
The code heap needs to be well-formed, defined by the CDHP rule.
The domain of ∆ should be the same with the domain of B, i.e., ∆
only specifies block queues in B.

The PROG rule also requires that the current thread, ready threads
and blocked threads are all well-formed. The CTH rule defines the
well-formedness of the current thread. It requires that the pc have
a specification (p,g) in Ψ′. By the well-formedness of the code

8

T\tid = {tid1 ; (R1,K1,is1,pc1), . . . ,
tidn ; (Rn,Kn,isn,pcn)}

S.H=H0] . . .]Hn S0 = S|H0

Ψ,∆ ` C :Ψ′ Ψ⊆Ψ′ dom(∆) = dom(B) Ψ′ `C (S0,K,pc)

for all 0 < k ≤ n such that tidk ∈ readyQ(T,B) :
Ψ′ `R (Hk,Rk,Kk,isk,pck)

for all w,tid j such that tid j ∈ B(w) :
Ψ′,∆,w `W (H j,R j,K j,is j,pc j)

Ψ,∆ `(C,S,K,pc,tid,T,B)
(PROG)

(pc,(p,g)) ∈Ψ′ (p∗ Inv)K S WFST(bgc,S,K,Ψ′)

Ψ′ `C (S,K,pc)
(CTH)

Sk = (Hk,Rk,0,isk) (INVs−∗ (Ψ′ `C (, ,pck)))Kk Sk

Ψ′ `R (Hk,Rk,Kk,isk,pck)
(RDY)

∆(w) = m (m−∗ (Ψ′ `R (,R j,K j,is j,pc j)))H j

Ψ′,∆,w `W (H j,R j,K j,is j,pc j)
(WAIT)

Figure 20. Inference Rules (cont’d)

heap we know PC points to a well-formed instruction sequence.
Also p ∗ Inv holds over the stack and state with the sub-heap H0.
The definition of p ∗ Inv is shown in Figure 19. It specifies the
shared memory inaccessible from p. If the current program point
is in the interrupt handler (is = 1), p leaves the memory block C
(in Figure 5) unspecified, therefore Inv requires it to satisfy INV1.
Otherwise (is= 0), if ie= 0, memory C and A become the current
thread’s private memory and there is no memory to share. If ie= 1,
memory C and A are not accessible from p, therefore Inv requires
them to be well-formed. The inductively defined predicate WFST
is shown in Figure 19. It says there exists a well-formed stack with
some depth k. At the end of the current function, when g is fulfilled,
there must be a stack frame on top of the stack with a pc pointing
to well-formed instruction sequences. Also there is a well-formed
stack with depth k−1 at the returning state.

Since a judgment is represented as a proposition in our meta-
logic, and we reuse the meta-logic as our specification language,
we can define Ψ′ `C (, ,pc) as a special predicate p: λK,S. Ψ′ `C

(S,K,pc). Then the definition of well-formed ready threads in the
RDY rule becomes very straightforward: if the ready thread gets the
extra ownership of shared memory C and A, it becomes a well-
formed current thread (see Fig. 5). Recall that m−∗ p is defined in
Fig. 15.

Similarly, we define Ψ′ `R (,R,K,is,pc) as the memory pred-
icate λH. Ψ′ `R (,R,K,is,pc). The WAIT rule says that the wait-
ing thread in a block queue with identifier w becomes a well-formed
ready thread if it gets extra ownership of memory ∆(w). This is also
illustrated in Figure 6. The memory predicate m−∗ m′ is defined in
Figure 15.

4.3 Soundness
We prove the soundness of the program logic following the syn-
tactic approach. The progress lemma shows that the program in-
variant defined by the PROG rule ensures the next instruction does
not get stuck. The preservation lemma says the new state after ex-
ecuting the next instruction satisfies the invariant. Therefore, the
program never gets stuck as long as the initial state satisfies the
invariant. More importantly, the invariant always holds during exe-
cution, from which we can derive rich properties of programs. For
instance, we know there is always a partition of heap for all threads,
based on which we can derive the well-formedness of the current
thread, ready threads and waiting threads. This can be viewed as

a guarantee of non-interference. Here, we only show a soundness
theorem formalizing the partial correctness of programs.

Lemma 4.2 (Progress)
If Ψ,∆ `W, then there existsW′ such that (W 7−→W′).

Proof sketch. Suppose W = (C,S,K,pc,tid,T,B). By the defini-
tion of the operational semantics, execution of C(pc) would always
succeeds unless C(pc) is one of ld, st, switch, block, unblock, ret or
iret instructions. By Ψ,∆ `W we know there exist Ψ′ and (p,g)
such that (pc, (p,g)) ∈Ψ′, p∗ InvK S, and Ψ,∆ `{s}C[pc]. Then
by the premise enable(p,gι) in the SEQ rule we know the first 5
instructions would not get stuck, and, by enableret and the RET rule
or enableiret and the IRET rule, we know the last two instructions
would not get stuck either. 2

Lemma 4.3 says the program can always reach the entry point
of the interrupt handler as long as the interrupt is enabled and there
is no interrupts being serviced.

Lemma 4.3 (IRQ-Progress)
If W.S.ie = 1 and W.S.is = 0, there always exists W′ such that
W W′.

Proof sketch. Obvious by the IRQ rule shown in Section 3.1. 2

The following two lemmas show that the interrupt handler does
not interfere with the non-handler code.

Lemma 4.4 (presv-p)
For all p,K, S and S′, if S=(H,R,1,0), (p∗ Inv)KS, precise(INV0),
precise(INV1), and bgic (H,R,0,1)S′, then (p∗ Inv)K (S′.H,R,1,0).

Lemma 4.5 (presv-g)
For all g and S, if S = (H,R,1,0) for certain H and R, (INVs ∗
true)H, precise(INV0) and precise(INV1), then,

∀S′,S′′. (bgic S|{ie=0,is=1} S
′)∧(bgc (S′.H,R,1,0)S′′)→ (bgc SS′′) .

The following lemmas illustrate how the program invariant is
preserved by cli, sti and thread primitives, based on our definition
of their ownership transfer semantics.

Lemma 4.6 (cli)
If NextS(cli,K)S S′, and (p∗ Inv)K S, then (sp(gcli,p)∗ Inv)K S′.

Lemma 4.7 (sti)
If NextS(sti,K)S S′, (p∗ Inv)KS, and p⇒ Inv(1−S.ie,S.is)∗true,
then (sp(gsti,p)∗ Inv)K S′.

Lemma 4.8 (switch)
If enable(p,gswitch), (p B gswitch)⇒ p′, and (p∗ Inv)K S, then
• there exist H1 and H2 such that INVs H1 and H1]H2 = S.H;
• bgswc S S;
• for all H′1, if INVs H′1, H′1⊥H2, and S′ = S|H′1∪H2

, then (p′ ∗
Inv)K S′ and bgswc S S′.

Lemma 4.9 (Ready2Running)
If Ψ `R (H,R,K,is,pc), then
• pc is a valid code pointer specified in Ψ with some specification

(p,g);
• for all H′, if INVs H′, H′⊥H, and S = (H∪H′,R,0,is), then

(p∗ Inv)K S.

9

Lemma 4.10 (block)
If enable(p,g∆

block rs
), (p B g∆

block rs
)⇒ p′, and (p∗ Inv)K S, then

• there exist H1 and H2 such that INVs H1 and H1]H2 = S.H;
• there exist m such that ∆(S.R(rs)) = m;
• for all H′1, H′3 and H, if INVs H′1, m′ H′3, H = H′1]H2]H′3,

and S′ = S|H, then (p′ ∗ Inv)K S′ and bg∆
block rs

c S S′.

Lemma 4.11 (unblock)
If enable(p,g∆

unblock rs,rd
), (p B g∆

block rs
) ⇒ p′, and (p ∗ Inv) K S

(where S= (H,R,ie,is)), then
• there exists m such that ∆(R(rs)) = m;
• there exist H1 and H2 such that H1]H2 =H and mH1;
• let S′ = (H,R{rd ; 0},ie,is), then bg∆

block rs
c S S′ and (p′ ∗

Inv)K S′;
• for all n > 0, let S′ =(H2,R{rd ; n},ie,is), then bg∆

block rs
c SS′

and (p′ ∗ Inv)K S′.

Lemma 4.12 (Waiting2Ready)
If Ψ,∆,w `W (H,R,K,is,pc), then
• there exists m such that ∆(w) = m;
• for anyH′, ifH⊥H′ and mH′, then Ψ`R (H]H′, R,K,is,pc).

The following lemmas are also used to prove the preservation
lemma.

Lemma 4.13 (Stack-Strengthen)
For all g, g′, S and S′, if ∀S′′. g SS′′→ g′ S′ S′′, and WFST(g′,S′,K,Ψ),
then WFST(g,S,K,Ψ).

Lemma 4.14 (Code Heap)
If Ψ,∆ ` C : Ψ′, then, for all f and s, if (fs) ∈ Ψ′, we know
f ∈ dom(C).

Lemma 4.15 (Spec. Extension)
If Ψ,∆ `C:Ψ′ and Ψ,∆ `{s}f : C[f], then we have Ψ,∆ `C:Ψ′′,
where Ψ′′ = Ψ′∪{(f,s)}.

The preservation lemma is formalized below.

Lemma 4.16 (Preservation)
If INV0 and INV1 are precise (preciseness is defined in Figure 15),
Ψ,∆ `W and (W Z=⇒W′), we have Ψ,∆ `W′.

Below we show the soundness theorem. Recall that preciseness
is defined in Figure 15, and the specification (pi,gi) for the interrupt
handler is defined by Formulae (1) and (2). The soundness theorem
captures the partial correctness of programs in the sense that, when
we reach the target address of jump or branch instructions, we know
the assertion specified in Ψ holds. These assertions corresponds to
loop-invariants and pre- and post-conditions for functions at high-
level.

Theorem 4.17 (Soundness)
If INV0 and INV1 are precise, Ψ,∆ `W, and (h entry,(pi,gi)) ∈
Ψ, then, for any n, there exists W′ such that W Z=⇒n W′; and, if
W′ = (C,S,K,pc,tid,T,B), then
1. if C(pc) = j f, then there exists (p,g) such that (f,(p,g)) ∈Ψ

and pK S holds;
2. if C(pc) = beq rs,rt ,f and S.R(rs) = S.R(rt), then there exists

(p,g) such that (f,(p,g)) ∈Ψ and pK S holds;
3. if C(pc) = call f, then there exists (p,g) such that (f,(p,g)) ∈

Ψ and p (pc ::K) S holds;

p , (ie = 1)∧ (is = 0)

p′ , (ie = 0)∧ (is = 0)

p0 , p

p1 , p∧ (r1 = RIGHT)∧ (r2 = LEFT)

p2 , p′∧ (r1 = RIGHT)∧ (r2 = LEFT)∧ (r3 = 0)∧ (INV0∗ true)

p3 , p′∧ (r1 = RIGHT)∧ (r2 = LEFT)∧ (INV0∗ true)

p4 , enable iret

NoG , λS,S′.False

Figure 21. Specifications for the Teeter-Totter Example

4. if C(pc) = ret, then there exist pc′, K′, and (p,g) such that
K= pc′ ::K′, (pc′,(p,g)) ∈Ψ, and pK′ S holds.

Proof sketch. The theorem describes both non-stuckness and partial
correctness. For non-stuckness, we can simply do induction over n
and apply Progress (4.2 and 4.3) and Preservation (4.16) lemmas.
We actually prove a stronger version than non-stuckness: (Ψ,∆ `)
holds over every intermediate world configuration. Therefore, we
know Ψ,∆ `W′ holds. Then the next four bullets about partial
correctness can be easily derived by an inversion of the PROG rule.

2

4.4 The Teeter-Totter Example
With our program logic, we can now certify the Teeter-Totter exam-
ple shown in Fig. 10. We first define INV0, the interrupt handler’s
specification for its local memory.

INV0 , ∃wl ,wr. ((LEFT 7→ wl)∗ (RIGHT 7→ wr))∧ (wl +wr = 100)

Then we can get the concrete specification of the interrupt handler,
following Formulae (1) and (2). We let INV1 be emp, since the
non-handler code is sequential.

Specifications are shown in Figure 21. Recall enableiret is de-
fined in Figure 18. To simplify our presentation, we present the
predicate p in the form of a proposition with free variables refer-
ring to components of the state S. Also, we use m as a shorthand for
the proposition mH when there is no confusion.

If we compare p1 and p2, we will see that the non-handler code
cannot access memory at addresses LEFT and RIGHT without first
disabling the interrupt because, from p1, we cannot prove that the
target addresses LEFT and RIGHT are in the domain of memory, as
required in the instantiation of the SEQ rule for ld and st. Since the
non-handler never returns, we do not really care about the guarantee
g for the state transition from the specified point to the return
point of the function. Here we simply use NoG (see Figure 21) as
guarantees.

Certifying the code with respect to the specifications is left to
the reader and not shown here.
4.5 The Timer Handler
Here we also briefly explain the specification for the preemptive
timer handler shown in Figure 13. The only memory the hander
uses is the memory cell at location CNT. We define INV0 below.

INV0 , ∃w. (CNT 7→ w)∧ (w≤ 100)

Then we get the specification of the handler (pi,gi) by Equa-
tions (1) and (2). In g0, we use primed variable (e.g., ie′ and is′)
to refer to components in the second state.
4.6 Futher Extensions
In AIM, we only support one interrupt in the system, which cannot
be interrupted again. It is actually easy to extend the machine to

10

support multi-level interrupts: we change the is bit into a vector
of bits ivec corresponding to interrupts in service. An interrupt can
only be interrupted by other interrupts with higher priorities, which
can also be disabled by clearing the ie bit. At the end of each
interrupt handler, the corresponding in-service bit will be cleared
so that interrupts at the same or lower level can be served.

Extension of the program logic to support multi-level interrupts
is also straightforward, following the same idea of memory parti-
tion. Suppose there are n interrupts in the system, the memory will
be partitioned into n+1 blocks, as shown below:

B An-1

INVn-1

A0

INV0

...

. . .

where block Ak will be used by the interrupt handler k. To take
care of the preemption relations with multiple handlers, we need
to change our definition of Inv(ie,is) into Inv(ie, ivec), which
models the switch of memory ownership at the points of cli, sti and
boundaries of interrupt handers.

Another simplification in our work is the assumption of a global
interrupt handler entry. It is easy to extend our machine and pro-
gram logic to support runtime installation of interrupt handlers. In
our machine, we can add a special register and an “install” to update
this register. When interrupt comes, we look up the entry point from
this register. This extension has almost no effects over our program
logic, thanks to our support of modular reasoning. We only need to
add a command rule for the “install” intruction to enforce that the
new handler’s interface is compatible to the specification (pi,gi).

Also, we do not consider dynamic thread creation in this paper.
In our previous work [6], we have shown how to support dynamic
thread creation following a similar technique to support dynamic
memory allocation in type systems. The technique is fairly orthogo-
nal and can be easily incorporated into this work. Gotsman et al. [9]
recently showed an extension of concurrent separation logic with
dynamic threads and locks. Their technique might be applied here
as well to support dynamic creation of block queues.

We will not show the details of supporting multi-level interrupts,
dynamic installation of handers, and dynamic creation of threads
and block queues, which are extensions orthogonal to the focus of
this paper, i.e., interaction between threads and interrupts.

5. More Examples and Implementations
In this section, we show how to use AIM and the program logic to
implement and certify common synchronization primitives.

5.1 Implementations of Locks.
Threads use locks to achieve exclusive access to shared heap. We
use Γ, a partial mapping from lock ids to heap predicates, to specify
invariants of memory blocks protected by locks.

(LockID) l ::= l

(LockSpec) Γ ::= {l ; m}∗

In our implementations, we use memory pointers (label l) as lock
ids l. Each l points to a memory cell containing a binary flag
that records whether the lock has been acquired (flag is 0) or
not. The heap used to implement locks and the heap protected by
locks are shared by threads in the non-handler code. The invariant
INV(Γ) over this part of heap is defined below. We require INVs ⇒
INV(Γ)∗ true (recall that INVs is a shorthand for INV0∗ INV1).

INV(l,m) , ∃w. (l 7→ w)∗ ((w = 0)∧ emp∨ (w = 1)∧m) (4)

INV(Γ) , ∀∗l ∈ dom(Γ). INV(l,Γ(l)) (5)

ACQ_H: -{(p01, g01)}
cli

-{(p02, g02)}
call ACQ_H_a

-{(p03, g03)}
sti

-{(p04, gid)}
ret

ACQ_H_a: -{(p11, g11)}
ld $r2, 0($r1) ;; $r2 <- [l]
movi $r3, 0
beq $r2, $r3, gowait ;; ([l] == 0)?
st 0($r1), $r3 ;; [l] <> 0:
ret ;; [l] <- 0

gowait: -{(p12, g11)} ;; [l] == 0:

block $r1 ;; block

-{(p13, gid)}
ret

REL_H: -{(p21, g21)}
cli
call REL_H_a
sti
ret

REL_H_a: -{(p31, g31)}
unblock $r1, $r2

-{(p32, g32)}
movi $r3, 0
beq $r2, $r3, rel_lock
ret

rel_lock: -{(p33, g33)}
movi $r2, 1
st 0($r1), $r2

-{(p34, gid)}
ret

Figure 22. Hoare-Style Implementation of Lock

where ∀∗ is an indexed, finitely iterated separating conjunction,
which is defined as:

∀∗x ∈ S. P(x) ,
{

emp if S =∅
P(xi)∗∀∗x ∈ S′. P(x) if S = S′]{xi}

We first show two block-based implementations, in which we
use the lock id as the identifier of the corresponding block queue in
B. Then we show an implementation of spin locks.
The Hoare-style implementation. In Hoare style, the thread gets
the lock (and the resource protected by the lock) immediately
after it is released from the block queue. The implementation and
specifications are shown in Figs. 22 and 23. The precondition for
ACQ H is (p01,g01). The assertion p01 requires that r1 contains
a lock id and ∆(r1) = Γ(r1). The guarantee g01 shows that the
function obtains the ownership of Γ(r1) when it returns. Here we
use primed variables (e.g., ie′ and is′) to refer to components in
the return state, and use trash({r2,r3}) to mean that values of all
registers other than r2 and r3 are preserved.

Although the meaning of p01 and g01 is obvious, they can be
further simplified when exported to the high-level concurrent pro-
grams shown in Figure 3. The high-level specification does not
need to refer to ie and is since they are always 1 and 0 respec-
tively. We do not need to specify stack and trashing of registers,

11

p0 , (is = 0)∧enable ret ∧ (r1 ∈ dom(Γ))∧ (∆(r1) = Γ(r1))

p01 , p0 ∧ (ie = 1)

g01 ,
{

emp
Γ(r1)

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3})

p02 , p0 ∧ (ie = 0)∧ (INVs ∗ true)

g02 ,
{

INVs
Γ(r1)

}
∧ (ie = 1−ie′)∧ (is = is′)∧ trash({r2,r3})

p03 , p0 ∧ (ie = 0)∧ (Γ(r1)∗ INVs ∗ true)

g03 ,
{

INVs
emp

}
∧ (ie = 1−ie′)∧ (is = is′)∧ trash({r2,r3})

p04 , p0 ∧ (ie = 1)∧ (Γ(r1)∗ true)

p11 , p0 ∧ (ie = 0)∧ (INVs ∗ true)

g11 ,
{

INVs
INVs ∗Γ(r1)

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3})

p12 , p0 ∧ (ie = 0)∧ ([r1] = 0)∧ (INVs ∗ true)

p13 , p0 ∧ (ie = 0) ∧ (INVs ∗ true∗Γ(r1))

p21 , p0 ∧ (ie = 1)∧ (Γ(r1)∗ true)

g21 ,
{

Γ(r1)
emp

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3})

p31 , p0 ∧ (ie = 0)∧ (Γ(r1)∗ INVs ∗ true)

ga ,
{

Γ(r1)
emp

}
gb ,

{
r1 7→
r1 7→ 1

}
hid ,

{
emp
emp

}

g31 , (ga ∨gb)∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3})

p32 , p0 ∧ (ie = 0)∧ (((r2 = 0)∧ (Γ(r1)∗ INVs)∨ (r2 6= 0)∧ INVs)∗ true)

g32 , ((r2 = 0∧gb)∨ (r2 6= 0∧hid))
∧(ie = ie′)∧ (is = is′)∧ trash({r2,r3})

p33 , p0 ∧ (ie = 0)∧ (Γ(r1)∗ INVs ∗ true)

g33 , gb ∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3})

p34 , p0 ∧ (ie = 0)∧ (INVs ∗ true)

Figure 23. Specifications of Hoare-Style Lock

ACQ_M: -{(p11, g11)}
movi $r3, 0

acq_loop: -{(p12, g12)}
cli
ld $r2, 0($r1) ;; $r2 <- [l]
beq $r2, $r3, gowait ;; ([l] == 0)?
st 0($r1), $r3 ;; [l] <> 0:
j acq_done ;; [l] <- 0

gowait: -{(p13, g13)}
block $r1

-{(p13, g13)}
sti
j acq_loop

acq_done: -{(p14, g14)}
sti
ret

REL_M: -{(p21, g21)}
cli

-{(p22, g22)}
unblock $r1, $r2

-{(p23, g22)}

-{(p22, g22)}
movi $r2, 1
st 0($r1), $r2
sti
ret

Figure 24. Mesa-Style Implementation of Locks

which can be inferred from the calling convention. We can also
hide ∆, since block and unblock are not visible from the high level.
So the specification exported to the high level would be:

p01 , r1 ∈ dom(Γ)

g01 ,
{

emp
Γ(r1)

}

We also show some intermediate specifications used during
verification. Comparing (p01,g01) and (p11,g11), we can see that
(p01,g01) hides INVs and the implementation details of the lock
from the client code. Readers can also compare p12 and p13 and
see how the BLK rule is applied.

Functions REL h a and REL h releases the lock with the in-
terrupt disabled and enabled, respectively. They are specified by
(p21,g21) and (p31,g31). Depending on whether there are threads
waiting for the lock, the current thread may either transfer the own-
ership of Γ(r1) to a waiting thread or simply set the lock to be
available, as specified in g31, but these details are hidden in g21.
The Mesa-style implementation. Figure 24 shows the Mesa-style
implementation of locks. The specifications are shown in Figure 25.
In the ACQ M function, the thread needs to start another round of
loop to test the availability of the lock after block. The REL M
function always sets the lock to be available, even if it releases
a waiting thread. Specifications are the same with Hoare style
except that the assertion p0 requires ∆(r1) = emp, which implies
the Mesa-style semantics of block and unblock.
Spin Locks An implementation of spin locks and its specifica-
tions are shown in Figure 26. The specifications (p11,g11) and
(p21,g21) describes the interface of lock acquire/release. They
look very similar to specifications for block-based implementa-
tions: “acquire” gets the ownership of the extra resource Γ(r1)
protected by the lock in r1, while “release” loses the ownership so
that the client can no longer use the resource after calling “release”.

12

p0 , (is = 0)∧enable ret ∧ (r1 ∈ dom(Γ))∧ (∆(r1) = emp)

p11 , p0 ∧ (ie = 1)

g11 ,
{

emp
Γ(r1)

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3})

p12 , p11 ∧ (r3 = 0)

p13 , p0 ∧ (ie = 0)∧ (INVs ∗ true)

g13 ,
{

INVs
Γ(r1)

}
∧ (ie = 1−ie′)∧ (is = is′)∧ trash({r2,r3})

p14 , p0 ∧ (ie = 0)∧ (Γ(r1)∗ INVs ∗ true)

g14 ,
{

INVs
emp

}
∧ (ie = 1−ie′)∧ (is = is′)∧ trash({r2,r3})

p21 , p0 ∧ (ie = 1)∧ (Γ(r1)∗ true)

g21 ,
{

Γ(r1)
emp

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2})

p22 , p0 ∧ (ie = 0)∧ (Γ(r1)∗ INVs ∗ true)

g22 ,
{

Γ(r1)∗ INVs
emp

}
∧ (ie = 1−ie′)∧ (is = is′)∧ trash({r2})

p23 , p0 ∧ (ie = 0)∧
((([r1] = 0)∧ (Γ(r1)∗ INVs)∨ ([r1] 6= 0)∧ (Γ(r1)∗ INVs))∗ true)

Figure 25. Specification of Mesa-Style Implementation of Locks

These specifications also hide the implementation details (e.g., the
lock name l is a pointer pointing to a binary value) from the client
code.

5.2 Implementations of Condition Variables
Now we show implementations of Mesa style [14], Hoare style [11]
and Brinch Hansen style [2] condition variables. Below we use ϒ,
a partial mapping from condition variables cv to heap predicates m,
to specify the conditions associated with condition variables.

(CondVar) cv ::= n (nat nums)

(CVSpec) ϒ ::= {cv ; m}∗

In our implementation, we let cv be an identifier pointing to
a block queue in B. A lock l needs to be associated with cv to
guarantee exclusive access of the resource specified by Γ(l). The
difference between Γ(l) and ϒ(cv) is that Γ(l) specifies the basic
well-formedness of the resource (e.g., a well-formed queue), while
ϒ(cv) specifies an extra condition (e.g., the queue is not empty).
Hoare style and Brinch Hansen style. The implementation and
specifications of Hoare-style and Brinch Hansen style are are
shown in Figs. 27, 28 and 29. The precondition for WAIT H is
(p11,g11). As p11 shows, r1 contains a Hoare-style lock in the
sense that ∆(r1) = Γ(r1). The register r2 contains the condition
variable with specification ϒ(r2). For Hoare-style, we require
∆(r2) = Γ(r1)∧ (ϒ(r2)∗ true). Therefore, when the blocked thread
is released, it gets the resource protected by the lock with the extra
knowledge that the condition associated with the condition vari-
able holds. Here the condition ϒ(r2) does not have to specify the
whole resource protected by the lock, therefore we use ϒ(r2)∗true.
Before calling WAIT H, p11 requires that the lock must have been
acquired, thus we have the ownership Γ(r1). The condition ϒ(r2)
needs to be false. This is not an essential requirement, but we use

;; acquire(l): $r1 contains l
spin_acq: -{(p11, g11)}

movi $r2, 1

spin_loop: -{(p12, g11)}
cli
ld $r3, 0(r1)
beq $r2, $r3, spin_set
sti
j spin_loop

spin_set: -{(p13, g13)}
movi $r2, 0
st 0($r1), $r2
sti
ret

;; release(l): $r1 contains l
spin_rel: -{(p21, g21)}

movi $r2, 1
cli
st 0($r1), $r2
sti
ret

p , (is = 0)∧enable ret ∧ (r1 ∈ dom(Γ))

p11 , p∧ (ie = 1)

g11 ,
{

emp
Γ(r1)

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3})

p12 , p11 ∧ (r2 = 1)

p13 , p∧ (ie = 0)∧ (INVs ∗ true)

g13 ,
{

INVs
Γ(r1)

}
∧ (ie = 1−ie′)∧ (is = is′)∧ trash({r2})

p21 , p∧ (ie = 1)∧ (Γ(r1)∗ true)

g21 ,
{

Γ(r1)
emp

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2})

Figure 26. A Spin Lock

it to prevent waiting without testing the condition. The guarantee
g11 says that, when WAIT H returns, the current thread still owns
the lock (and Γ(r1)) and it also knows the condition specified in
ϒ holds. The precondition for SIGNAL H is (p21,g21). SIGNAL H
requires the thread owns the lock and the condition ϒ(r2) holds at
the beginning. When it returns, the thread still owns the lock, but
the condition may no longer hold. Figure 28 also shows important
intermediate specifications we use during verification.

Brinch Hansen style condition variables is similar to Hoare-
style. The wait function and its specifications are the same as
WAIT H. The signal function SIGNAL BH, which is omitted here, has
specification (p31,g31) defined in Figure 28. Here p31 is the same
as p21 for SIGNAL H. The definition of g31 shows the difference
between Hoare style and Brinch Hansen style: the lock is released
when SIGNAL BH returns. Therefore, calling the SIGNAL BH func-
tion must be the last command in the critical region.

Mesa-style. Figure 30 shows Mesa-style condition variables,
with specifications shown in Figure 31. WAIT M is specified by
(p11,g11). The assertion p11 is similar to the precondition for
Hoare-style, except that we require ∆(r2) = emp. Therefore, as
g11 shows, the current thread has no idea about the validity of the
condition when it returns.

13

WAIT_H: -{(p11, g11)} ;; wait(l, cv)
cli
mov $r4, $r2

-{(p12, g12)}
call REL_H_a

-{(p13, g13)}
block $r4

-{(p14, g14)}
sti
ret

SIGNAL_H: -{(p21, g21)} ;; signal(l, cv)
cli

-{(p22, g22)}
unblock $r2, $r3

-{(p23, g23)}
movi $r4, 0
beq $r3, $r4, sig_done

-{(p24, g24)}
block $r1

sig_done: -{(p25, g25)}
sti
ret

SIGNAL_BH:-{(p31, g31)} ;; signal(l, cv)
cli

-{(p32, g32)}
unblock $r2, $r3 ;; $r2 contains cv
-{(p33, g33)}
movi $r4, 0
beq $r3, $r4, sig_cont

-{(p34, g34)}
j sig_done

sig_cont: -{(p35, g35)}

-{(p36, g36)}
call REL_0 ;; $r1 contains l

sig_done: -{(p34, g34)}
sti
ret

Figure 27. Implementation of CV - Hoare Style

SIGNAL M is specified by (p21,g21). The assertion hid is defined
in Figure 23, which means the function has no effects over data
heap. From g21 we can see that, if we hide the details of releasing a
blocked thread, the signal function in Mesa style is just like a skip
command. We do not require the current thread to own the lock l
before it calls SIGNAL M, since it has no effects over data heap.

5.3 Other Implementation Details
As shown in Figure 3, we have certified the preemptive thread im-
plementations and libraries extracted from our simplified OS ker-
nel, which is implemented in 16-bit x86 assembly code and works
in real-mode. At the lowest level, we have concrete implementa-
tions of the scheduler and block/unblock primitives. Thread queues
are implemented as a doubly linked list containing thread control
blocks. The synchronization primitives in the middle level also
have been implemented in x86, which call the underlying prim-
itives. The timer handler simply saves the context and calls the
scheduler. The yield function just wraps the scheduler by disabling
the interrupt at the beginning and enabling it at the end.

Since the code are at different abstraction levels, we certify them
using different program logics, following the technique proposed

Cond(r,r′) , Γ(r)∧ (ϒ(r′)∗ true)

Cond(r,r′) , Γ(r)∧¬(ϒ(r′)∗ true)

p(r,r′) , (is = 0)∧enable ret∧
∃l,cv,m,m′. (r = l)∧ (r′ = cv)∧ (Γ(l) = m)∧ (∆(l) = m)

∧(ϒ(cv) = m′)∧ (∆(cv) = Cond(r,r′))

p11 , p(r1,r2)∧ (ie = 1)∧ (Cond(r1,r2)∗ true)

g11 ,
{

Cond(r1,r2)
Cond(r1,r2)

}

∧(ie = ie′)∧ (is = is′)∧ trash({r2,r3,r4})

p12 , p(r1,r4)∧ (ie = 0)∧ (Cond(r1,r4)∗ INVs ∗ true)

g12 ,
{

Cond(r1,r4)∗ INVs
Cond(r1,r4)

}

∧(ie = 1−ie′)∧ (is = is′)∧ trash({r2,r3,r4})

p13 , p(r1,r4)∧ (ie = 0)∧ (INVs ∗ true)

g13 ,
{

INVs
Cond(r1,r4)

}

∧(ie = 1−ie′)∧ (is = is′)∧ trash({r2,r3,r4})

p14 , p(r1,r4)∧ (ie = 0)∧ (Cond(r1,r4)∗ INVs ∗ true)

g14 ,
{

INVs
emp

}
∧ (ie = 1−ie′)∧ (is = is′)∧ trash({r2,r3,r4})

p21 , p(r1,r2)∧ (ie = 1)∧ (Cond(r1,r2)∗ true)

g21 ,
{

Cond(r1,r2)
Γ(r1)

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3,r4})

p22 , p(r1,r2)∧ (ie = 0)∧ ((Γ(r1)∧Cond)∗ INVs)

ga ,
{

Cond(r1,r2)∗ INVs
Γ(r1)

}
gb ,

{
INVs
Γ(r1)

}

g22 , ga ∧ (ie = 1−ie′)∧ (is = is′)∧ trash({r2,r3,r4})

p23 , p(r1,r2)∧ (ie = 0)∧ ((r3 = 0)∧ (Cond(r1,r2)∗ INVs ∗ true)
∨ (r3 6= 0)∧ (INVs ∗ true))

g23 , (r3 = 0∧ga ∨ r3 6= 0∧gb)
∧(ie = 1−ie′)∧ (is = is′)∧ trash({r2,r3,r4})

p24 , p(r1,r2)∧ (ie = 0)∧ (INVs ∗ true)

g24 , gb ∧ (ie = 1−ie′)∧ (is = is′)∧ trash({r2,r3,r4})

p25 , p(r1,r2)∧ (ie = 0)∧ (INVs ∗Γ(r1)∗ true)

g25 ,
{

INVs
emp

}
∧ (ie = 1−ie′)∧ (is = is′)∧ trash({r2,r3,r4})

Figure 28. Spec. of CV - Hoare Style

14

p31 , p(r1,r2)∧ (ie = 1)∧Γ(r1)∧ (Cond(r1,r2)∗ true)

g31 ,
{

Cond(r1,r2)
emp

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3,r4})

p32 , p(r1,r2)∧ (ie = 0)∧ (Cond(r1,r2)∗ INVs ∗ true)

ga ,
{

Cond(r1,r2)∗ INVs
emp

}
gb ,

{
INVs
emp

}

g32 , ga ∧ (ie = 1−ie′)∧ (is = is′)∧ trash({r2,r3,r4})

p33 , p(r1,r2)∧ (ie = 0)∧
(((r3 = 0)∧ (Cond(r1,r2)∗ INVs)∨ (r3 6= 0)∧ INVs)∗ true)

g33 , (r3 = 0∧ga ∨ r3 6= 0∧gb)
∧(ie = 1−ie′)∧ (is = is′)∧ trash({r2,r3,r4})

p′(r) , (is = 0)∧∃l,m. (r = l)∧ (Γ(l) = m)∧ (∆(l) = m)

p34 , p′(r1)∧ (ie = 0)∧ (INVs ∗ true)

g34 , gb ∧ (ie = 1−ie′)∧ (is = is′)∧ trash({r2,r3,r4})

p35 , p(r1,r2)∧ (ie = 0)∧ (Cond(r1,r2)∗ INVs ∗ true)

g35 , ga ∧ (ie = 1−ie′)∧ (is = is′)∧ trash({r2,r3,r4})

p36 , p′(r1)∧ (ie = 0)∧ (Γ(r1)∗ INVs ∗ true)

g36 ,
{

Γ(r1)∗ INVs
emp

}

∧(ie = 1−ie′)∧ (is = is′)∧ trash({r2,r3,r4})

Figure 29. Spec. of CV - Brinch Hansen Style

WAIT_M: -{(p11, g11)} ;; wait(l, cv)
cli
mov $r4, $r2

-{(p12, g12)}
call REL_H_a

-{(p13, g13)}
block $r4

-{(p14, g13)}
sti

-{(p15, g15)}
call ACQ_H

-{(p16, gid)}
ret

SIGNAL_M: -{(p21, g21)} ;; signal(cv)
cli

-{(p22, g22)}
unblock $r1, $r2

-{(p22, g22)}
sti
ret

Figure 30. Implementation of Condition Variable - Mesa Style

p(r,r′) , (is = 0)∧enable ret∧
∃l,cv,m,m′. (r = l)∧ (r′ = cv)∧ (Γ(l) = m)∧ (∆(l) = (m,1))

∧(ϒ(cv) = m′)∧ (∆(cv) = emp)

p11 , p(r1,r2)∧ (ie = 1)∧ (Cond(r1,r2)∗ true)

g11 ,
{

Cond(r1,r2)
Γ(r1)

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3,r4})

p12 , p(r1,r4)∧ (ie = 0)∧ (Cond(r1,r4)∗ INVs ∗ true)

g12 ,
{

Cond(r1,r4)∗ INVs
Γ(r1)

}

∧(ie = 1−ie′)∧ (is = is′)∧ trash({r2,r3,r4})

p13 , p(r1,r4)∧ (ie = 0)∧ (INVs ∗ true)

g13 ,
{

INVs
Γ(r1)

}

∧(ie = 1−ie′)∧ (is = is′)∧ trash({r2,r3,r4})

p14 , p(r1,r4)∧ (ie = 0)∧ (INVs ∗ true)

p15 , p(r1,r4)∧ (ie = 1)

g15 ,
{

emp
Γ(r1)

}
∧ (ie = ie′)∧ (is = is′)∧ trash({r2,r3,r4})

p16 , p(r1,r4)∧ (ie = 1)∧Γ(r1)

p′(r) , (is = 0)∧∃cv,m. (r = cv)∧ (∆(cv) = emp)

p21 , p′(r1)∧ (ie = 1)

g21 , hid∧ (ie = ie′)∧ (is = is′)∧ trash({r2})

p22 , p′(r1)∧ (ie = 0)∧ (INVs ∗ true)

g22 ,
{

INVs
emp

}
∧ (ie = 1−ie′)∧ (is = is′)∧ trash({r2})

Figure 31. Specifications of Condition Variable - Mesa Style

by Feng et al. [5]. We use SCAP [7] to certify the low-level imple-
mentations of thread primitives, including de-queue/en-queue func-
tions and context-switching code, which are all treated as sequential
code. SCAP can be viewed as a specialization of our logic for AIM,
assuming ie is always 0 and prohibiting the execution of cli and sti.
The operational semantics for switch, block and unblock instructions
in AIM are used as specifications for the concrete implementations
at the low level, which also refers to a concrete specification about
the date structure of thread control blocks and thread queues.

To certify the library code in the middle level, we adapted our
program logic to x86, and proved its soundness in Coq. Instead
of implementing an abstract machine like AIM and then compiling
AIM code to real x86 code, we simply replace these primitives with
function calls to the low-level implementations. However, we still
need to define a mapping from the abstract thread queues to their
concrete representation in memory. Since code at this level does
not touch thread queues, this mapping is always preserved

We link the certified code at different levels in an OCAP-like
framework [5]. The basic idea is based on the observation that the
low-level code only manipulates TCBs and queues and does not
touch data used at high-level, while the high-level code does not

15

access queues. Therefore, the invariant at each level is preserved
by the other side, and the safety property certified at each level still
holds when all the code are linked together.

Linking of the thread library code at the middle level with the
high-level concurrent programs can be done in a similar way. If we
assume ie = 1 and is = 0, and prohibit the code from executing
cli and sti, we can derive a specialized logic from the logic for
AIM. Such a logic can be applied to certify high-level concurrent
code. We can also expose our specifications of synchronization
libraries to the high level code, which would treat them as primitive
instructions. We will leave this as future work.

6. Related Work and Conclusions
Regehr and Cooprider [20] showed how to translate interrupt-
driven programs to thread-based programs. However, their tech-
nique cannot be directly applied for our goal to build certified OS
kernel. First, proof of the correctness of the translation is non-trivial
and has not been formalized. As Regehr and Cooprider pointed out,
the proof requires a formal semantics of interrupts. Our work ac-
tually provides such formal semantics. Second, their translation
requires higher-level language constructs such as locks, while we
certify the implementation of locks based on our AIM.

Suenaga and Kobayashi [22] presented a type system to guar-
antee deadlock-freedom in a concurrent calculus with interrupts.
Their calculus is an ML-style language with built-in support of
threads, locks and interrupts. Our AIM is at a lower abstraction
level than theirs with no built-in locks. Also, their type system is
designed mainly for preventing deadlocks with automatic type in-
ference, while our program logic supports verification of general
safety properties, including partial correctness.

Palsberg and Ma [18] proposed a calculus of interrupt driven
systems, which has multi-level interrupts but no threads. Instead of
a general program logic like ours, they proposed a type system to
guarantee an upper bound of stack space. DeLine and Fähndrich [4]
showed how to enforce protocols with regard to interrupts levels as
an application of Vault’s type system. However, it is not clear how
to use the type system for general properties of interrupts.

Bevier [1] showed how to formally certify Kit, an OS kernel im-
plemented in machine code. Gargano et al. [8] showed a framework
for a certified OS kernel in the Verisoft project. Ni et al. [16] certi-
fied a non-preemptive thread implementation. In all these cases, im-
plementations of kernels or thread libraries are all sequential. They
cannot be interrupted and there is no preemptive concurrency.

In this paper we have presented a new Hoare-style framework
for certifying low-level programs involving both interrupts and
concurrency. Following Separation Logic, we formalized the in-
teraction among threads and interrupt handlers in terms of memory
ownership transfer. Instead of using the operational semantics of
cli, sti and thread primitives, our program logic formulates their lo-
cal effects over the current thread, as shown in Figure 17, which
is the key for our logic to achieve modular verification. We have
also certified various lock and condition-variable primitives; our
specifications are both abstract (hiding implementation details) and
precise (capturing the semantic difference among these variations).

References
[1] W. R. Bevier. Kit: A study in operating system verification. IEEE

Trans. Softw. Eng., 15(11):1382–1396, 1989.

[2] P. Brinch Hansen. The programming language concurrent pascal.
IEEE Trans. Software Eng., 1(2):199–207, 1975.

[3] S. Brookes. A semantics for concurrent separation logic. In
CONCUR’04, volume 3170 of LNCS, pages 16–34, 2004.

[4] R. DeLine and M. Fähndrich. Enforcing high-level protocols in
low-level software. In PLDI’01, pages 59–69, 2001.

[5] X. Feng, Z. Ni, Z. Shao, and Y. Guo. An open framework for
foundational proof-carrying code. In TLDI’07, pages 67–78, 2007.

[6] X. Feng and Z. Shao. Modular verification of concurrent assembly
code with dynamic thread creation and termination. In Proc. ICFP’05,
pages 254–267, 2005.

[7] X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni. Modular
verification of assembly code with stack-based control abstractions.
In PLDI’06, pages 401–414, June 2006.

[8] M. Gargano, M. A. Hillebrand, D. Leinenbach, and W. J. Paul. On the
correctness of operating system kernels. In TPHOLs’05, 2005.

[9] A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local
reasoning for storable locks and threads. In Proceedings of The
Fifth ASIAN Symposium on Programming Languages and Systems
(APLAS’07), page to appear, Nov. 2007.

[10] C. A. R. Hoare. Towards a theory of parallel programming. In
Operating Systems Techniques, pages 61–71. Academic Press, 1972.

[11] C. A. R. Hoare. Monitors: An operating system structuring concept.
Communications of the ACM, 17(10):549–557, Oct. 1974.

[12] G. C. Hunt and J. R. Larus. Singularity design motivation. Technical
Report MSR-TR-2004-105, Microsoft Corporation, December 2004.

[13] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for
mutable data structures. In POPL’01, pages 14–26, 2001.

[14] B. W. Lampson and D. D. Redell. Experience with processes and
monitors in Mesa. Commun. ACM, 23(2):105–117, 1980.

[15] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to
typed assembly language. In POPL’98, pages 85–97, 1998.

[16] Z. Ni, D. Yu, and Z. Shao. Using XCAP to certify realistic systems
code: Machine context management. In TPHOLs’07, 2007.

[17] P. W. O’Hearn. Resources, concurrency and local reasoning. In
CONCUR’04, volume 3170 of LNCS, pages 49–67, 2004.

[18] J. Palsberg and D. Ma. A typed interrupt calculus. In FTRTFT’02,
pages 291–310, London, UK, 2002. Springer-Verlag.

[19] W. Paul, M. Broy, and T. In der Rieden. The verisoft xt project. URL:
http://www.verisoft.de, 2007.

[20] J. Regehr and N. Cooprider. Interrupt verification via thread
verification. Electron. Notes Theor. Comput. Sci., 174(9), 2007.

[21] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proc. LICS’02, pages 55–74, July 2002.

[22] K. Suenaga and N. Kobayashi. Type based analysis of deadlock for a
concurrent calculus with interrupts. In ESOP’07, March 2007.

[23] H. Tuch, G. Klein, and G. Heiser. OS verification — now! In Proc.
HotOS-X, June 2005.

[24] V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and
separation logic. In CONCUR’07, page to appear, 2007.

16

