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Abstract. A virtual memory manager (VMM) is a part of an operating system
that provides the rest of the kernel with an abstract model of memory. Although
small in size, it involves complicated and interdependent invariants that make
monolithic verification of the VMM and the kernel running on top of it difficult.
In this paper, we make the observation that a VMM is constructed in layers: phys-
ical page allocation, page table drivers, address space API, etc., each layer pro-
viding an abstraction that the next layer utilizes. We use this layering to simplify
the verification of individual modules of VMM and then to link them together
by composing a series of small refinements. The compositional verification also
supports function calls from less abstract layers into more abstract ones, allow-
ing us to simplify the verification of initialization functions as well. To facilitate
such compositional verification, we develop a framework that assists in creation
of verification systems for each layer and refinements between the layers. Using
this framework, we have produced a certification of BabyVMM, a small VMM
designed for simplified hardware. The same proof also shows that a certified ker-
nel using BabyVMM’s virtual memory abstraction can be refined following a
similar sequence of refinements, and can then be safely linked with BabyVMM.
Both the verification framework and the entire certification of BabyVMM have
been mechanized in the Coq Proof Assistant.

1 Introduction

Software systems are complex feats of engineering. What makes them possible is the
ability to isolate and abstract modules of the system. In this paper, we consider an op-
erating system kernel that uses virtual memory. The majority of the kernel makes an
assumption that the memory is a large space with virtual addresses and a specific inter-
face that allows the kernel to request access to any particular page in this large space. In
reality, this entire model of memory is in the imagination of the programmer, supported
by a relatively small but important portion of the kernel called the virtual memory man-
ager. The job of the virtual memory manager is to handle all the complexities of the real
machine architecture to provide the primitives that the rest of the kernel can use. This
is exactly how the programmer would reason about this software system.

However, when we consider verification of such code, current approaches are mostly
monolithic in nature. Abstraction is generally limited to abstract data types, but such
abstraction can not capture changes in the semantics of computation. For example, it
is impossible to use abstract data types to make virtual memory appear to work like
physical memory without changing operational semantics. To create such abstraction, a



change of computational model is required. In the Verisoft project[11, 18], the abstract
virtual memory is defined by creating the CVM model from VAMP architecture. In
AIM[7], multiple machines are used to define interrupts in the presence of a scheduler.

These transitions to more abstract models of computation tend to be quite rare,
and when present tend to be complex. The previously mentioned VAMP-CVM jump
in Verisoft abstracts most of kernel functionality in one step. In our opinion, it would
be better to have more abstract computation models, with smaller jumps in abstrac-
tion. First, it is easier to verify code in the most abstract computational model possible.
Second, smaller abstractions tend to be easier to prove and to maintain, while larger
abstractions can be still achieved by composing the smaller ones. Third, more abstrac-
tions means more modularity; changes in the internals of one module will not have
global effects.

However, we do not commonly see Hoare-logic verification that encourages multi-
ple models. The likely reason is that creating abstract models and linking across them
is seen as ad-hoc and tedious additional work. In this paper we show how to reduce
the effort required to define models and linking, so that code verification using multi-
ple abstractions becomes an effective approach. More precisely, our paper makes the
following contributions:

– We present a framework for quickly defining multiple abstract computational mod-
els and their verification systems.

– We show how our framework can be used to define safe cross-abstraction linking.
– We show how to modularize a virtual memory manager and define abstract compu-

tational models for each layer of VMM.
– We show a complete verification of a small proof-of-concept virtual memory man-

ager using the Coq Proof Assistant.

The rest of this paper is organized as follows. In Section 2, we give an informal
overview of our work. In Section 3, we discuss the formal details of our verification
and refinement framework. In Section 4, we specialize the framework for a simple C-
like language. In Section 5, we certify BabyVMM, our small virtual memory manager.
Section 6 discusses the Coq proof, and Section 7 presents related work and concludes.

2 Overview and Plan for Certification

We begin the overview by explaining the design of BabyVMM, our small virtual mem-
ory manager. First, consider the model of memory present in simplified hardware (left
side of Figure 1). The memory is a storage system, which contains cells that can be
read from or written to by the software. These cells are indexed by addresses. However,
to facilitate indirection, the hardware includes a system called address translation (AT),
which, when enabled, will cause all requests for specific addresses from the software
to be translated. The AT system adds special registers to the memory system - one to
enable or disable AT, and the other to point where the software-managed AT tables are
located in memory. The fact that these tables are stored in memory is one of the sources
of complexity in the AT system - updating AT tables requires updating in-memory ta-
bles, a process which goes through AT as well.
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Fig. 1. Hardware (HW) and Address Space (AS) Models of Memory

Fig. 2. Allocated (ALE) and Page Map (PMAP) Models of Memory

Because AT is such a complicated, machine-dependent, and general mechanism,
BabyVMM creates an abstraction that defines specific restrictions on how AT will be
used, and presents a simpler view of AT to the kernel. Although the abstract models of
memory may differ depending on the features that the kernel may require, BabyVMM
defines a very basic model, to which we refer as the address space (AS) model of mem-
ory (right side of Figure 1). The AS model replaces the small physical memory with
a larger virtual address space with allocatable pages and no address translation. The
space is divided into high and low areas, where the low area is actually a window into
physical memory (a pattern common in many kernels). Because of this distinction, the
memory model has two sets of allocation functions, one for the “high” memory area
where the programmer requests a specific page for allocation, and one for the “low”
memory area, where the programmer can not pick which page to allocate.

However, creating an abstraction that makes the jump from the HW model directly
to AS model is complex. As a result, we create two more intermediate models, which
slowly build up the abstraction. The first model is ALE (left side of Figure 2), which
incorporates allocation information into the hardware memory, requiring that programs
only access memory locations that are marked allocated. The model adds primitives
in the form of mem alloc and mem free, with semantics same as the ones in the AS
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Fig. 3. Complete Plan for VMM Certification

model. Although this is not shown on the diagram, the ALE model still maintains the
hardware’s AT mechanism.

The second intermediate level, which we call PMAP (right side of Figure 2) is
designed to replace the hardware’s AT mechanism with an abstract one. The model
features a page map that exists outside the normal memory space, unlike the lower level
models. The page map maps virtual page numbers to physical page numbers, with a 0
value meaning invalid. In our particular design, the pagemap is always identity for the
lower addresses, creating a window into physical memory from within the virtual space.
The model still contains allocation primitives, and adds two more primitives, pt set

and pt lookup, which update and lookup values in the pagemap.
Using these abstract memory models, we can construct the BabyVMM verification

plan (Figure 3). The light-yellow boxes in the kernel represent the actual functions
(actual code is given in Appendix A of TR[19]). The darker green boxes represent
computational models with primitives labeled. The diagram shows how each module of
BabyVMM will be certified in the model best suited for it. For example, the high-level
kernel is certified in the AS model, meaning that it does not see underlying physical
memory at all. The implementation of as request and as release are defined over
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(State) S ∈ Σ

(Operation) ι ∈ ∆

(Cond) b ∈ β

(CondInterp) Υ ∈ β→ Σ→ Prop

(State Predicate) p ∈ Σ→ Prop
(State Relation) g ∈ Σ→ Σ→ Prop

(Operational Semantics) OS ∈ {ι{ (p,g)}∗

(Language / Machine) M ∈ (Σ,∆,β,Υ,OS)

whereM(ι) ,M.OS(ι) andM(b) ,M.Υ(b)

Fig. 4. Abstract State Machine

id , (λS.True, λS.λS′.S′ = S)
fail , (λS.False, λS.λS′.False)
loop , (λS.True, λS.λS′.False)
(p,g)◦ (p′,g′) , (λS.p S∧∀S′.g S S′→ p′ S′, λS.λS′′.∃S′.g S S′∧g′ S′ S′′)
(p,g)⊕

c
(p′,g′) , (λS. (p S∧ c S)∨ (p′ S∧¬c S),λS.λS′. (c S∧g S S′)∨ (¬c S∧g′ S S′))

(p,g) ⊇ (p′,g′) , ∀S.p S→ p′ S∧∀S,S′.g′ S S′→ g S S′

Fig. 5. Combinators and Properties of Actions

(Meta-program) P ::= (C, I)
(Proc) I ::= nil | ι | [l] | I1; I2

| (b? I1+I2)
(Proc Heap) C ::= {l{ I}∗

(Labels) l ::= n (nat numbers)
(Spec Heap) Ψ,L ::= {l{ (p,g)}∗

~C,a�0
M

:= loop
~C,nil�n

M
:= id

~C, ι�n
M

:= (M(ι))
~C, [l]�n

M
:= ~C,C(l)�n−1

M�
C, I; I′

�n
M

:= ~C, I�n
M
◦~C, I�n

M

~C, (b? I1+I2)�n
M

:= ~C, I1�nM ⊕
M(b)
~C, I2�

n
M

Fig. 6. Syntax and Semantics of the Meta-Language

an abstract page map, and thus do not have to know how the hardware deals with page
tables, and so on. The plan also indicates which primitives are implemented by which
code (lines with circles). When we certify the code, these will be the cross-abstraction
links we will have to prove. Lastly, the plan also indicates the stubs in the initialization,
which are needed to certify calls from init to functions defined over higher abstraction.
The PE and PD models are restrictions on HW model, where AT is always on, and
always off respectively. ALD is an analogue of ALE, where AT is off.

On boot, the AT is off, and init is called. The init then calls mem init to initialize
the allocation table and pt init to initialize the page tables. Then, init uses the HW
primitives to enable AT, and jumps into the high-level kernel by calling kernel init.

We will now focus on the technical details to put this plan in action.

3 Certifying with Refinement

Our framework for multi-machine certification is defined in two parts. First, we create
a machine-independent verification framework that will allow us to define quickly and
easily as many machines for verification as we need. Second, we will develop our notion
of refinements which will allow us to link all the separate machines together.
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∀l ∈ dom(C).M,Ψ ∪L ` C(l) : Ψ (l)
M,L ` C : Ψ

(code)
M,Ψ ` I : (p′,g′) (p,g) ⊇ (p′,g′)

M,Ψ ` I : (p,g)
(weak)

M,Ψ ` I′ : (p′,g′) M,Ψ ` I′′ : (p′′,g′′)
M,Ψ `

(
b? I′+I′′

)
: (p′,g′) ⊕

M(b)
(p′′,g′′)

(split) M,Ψ ` I′ : (p′,g′) M,Ψ ` I′′ : (p′′,g′′)
M,Ψ ` I′; I′′ : ((p′,g′)◦ (p′′,g′′))

(seq)

M,Ψ ` ι :M(ι)
(perf)

M,Ψ ` [l] : Ψ (l)
(call)

M,Ψ ` nil : id
(nil)

Fig. 7. Static Semantics of the Meta-Language

3.1 A Machine-Independent Certification Framework

Our Hoare-logic based framework is parametric over the definition of operational se-
mantics of the machine, and is sound no matter what machine semantics it is param-
eterized with. To begin defining such a framework, we first need to understand what
exactly is a machine on which we can certify code. The definition that we use is given
in Figure 4. Our notion of the machine consists of the following parts:

– State type (Σ). Define the set of all possible states in a machine.
– Operations (∆). This is a set of names of all operations that the machine supports.

The set can be infinite, and defined parametrically.
– Conditionals (β). Defines a type of expressions that are used for branching.
– Conditional Interpreter (Υ). Converts conditionals into state predicates.
– The operational semantics OS. This is the main portion of the machine definition. It

is a set of actions (p,g) named by all operations in the machine.

The most important bit of information in the machine are the semantics (OS). The
semantics of operations are defined by a precondition (p), which shows when the op-
eration is safe to execute, and by a state relation (g) that defines the set of possible
states that the operation may result in. We will refer to the pair of (p,g) as an action
of the operation. Later we will also use actions to define the specification of programs.
Because the type of actions is somewhat complex, we define action combinators in Fig-
ure 5, including composition and branching. The same figure also shows the weaker
than relation between actions.

Although, at this point we have defined our machines, it does not have any notion of
computation. To make use of the machine, we will need to define a concept of programs,
as well as what it means for the particular program to execute.

The definition of the program is given in Figure 6. The most important definition
in that figure is that of the procedure, I. The procedure is a bit of program logic that
sequences together calls to the operations of a machine (ι), or to other procedures [l]
(loops are implemented as recursive calls). Procedures also include a way to branch on
a condition. The procedures can be given a name, and placed in the procedure heap C,
where they can be referenced from other procedures through the [l] constructor. The
procedure heap together with a program rest (the currently executing procedure) makes
up the program that can be executed.

The meaning of executing a program is given by the indexed denotational semantics
shown on the right side of Figure 6. The meaning of the program is an action that is
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constructed by sequencing operations. As programs can be infinite, the semantics are
indexed by the depth of procedure inclusion.

We use the static semantics (Figure 7) to approximate the action of a procedure.
These semantics are similar to the denotational semantics of the meta-language, except
that the specifications of called procedure are looked up in the table (Ψ ). This means
that the static semantics works by the programmer approximating the actions of (speci-
fying) the program, and then making sure that the actual action of the program is within
the specifications. These well-formed procedures are then grouped into a well-formed
module using the code rule, which forms the concept of a certified moduleM,L`C :Ψ ,
where every procedure in C is well-formed under specification in Ψ . The module also
defines a library (L) which is a set of specifications of stubs, i.e. procedures that are
used by the module, but are not in the module. These stubs can then be eliminated
by providing procedures that match the stubs (see Section 3.2). For a program to be
completely certified, all stubs must either be considered valid primitives or eliminated.

For a proof of partial correctness, please see the TR.

3.2 Linking

When we certify using modules, it will be very common that the module will require
stubs for the procedures of another module. Linking two modules together should re-
place the stubs in both modules for the actual procedures that are now present in the
linked code. The general way to accomplish this is by the following linking lemma:

Theorem 1 (Linking).

M,L1 ` C1 :Ψ1 M,L2 ` C2 :Ψ2 C1 ⊥ C2 L1 ⊥ Ψ2 L2 ⊥ Ψ1 L1 ⊥ L2

M, ((L1∪L2) \ (Ψ1∪Ψ2)) ` C1∪C2 :Ψ1∪Ψ2
(link)

where Ψ1 ⊥ Ψ2 , ∀l ∈ dom(Ψ1). (l < dom(Ψ2) ∨ Ψ1(l) = Ψ2(l)).

However, the above rule does not always apply immediately. When the two modules
are developed independently, it is possible that the stubs of one module are weaker than
the specifications of the procedures that will replace the stubs, which breaks the linking
lemma. To fix this, we strengthen the library.

Theorem 2 (Stub Strengthening).
IfM,L ` C : Ψ , then for any L′ s.t. ∀l ∈ dom(L).L(l) ⊇ L′(l) and dom(L′)∩ dom(Ψ ) = ∅, the
following holds:M,L′ ` C : Ψ .

This theorem allows us to strengthen the stubs to match the specs of procedures, en-
abling the linking lemma. Of course, if the specs of the real procedures are not stronger
than the specs of the stubs, then the procedures do not correctly implement what the
module expects, and linking is not possible.

3.3 The Refinement Framework

Up to this point, we have only considered what happens to the code that is certified over
a single machine. However, the purpose of our framework is to facilitate multi-machine
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verification. For this purpose, we construct the refinement framework that will allow
us to refine certified modules in one machine to certified modules in another. The most
general notion of refinement in our framework can be defined by the following:

Definition 1 (Certified Refinement).
A certified refinement from machine MA to machine MC is a pair of relations (TC,TΨ ) and a
predicate over the abstract certified module Acc, such that for all CA,Ψ

′
A,ΨA, the following holds

MA,Ψ
′
A ` CA :ΨA Acc

(
MA,Ψ

′
A ` CA :ΨA

)
MC ,TΨ (Ψ ′A) ` TC(CA) :TΨ (ΨA)

refine

This definition is not a rule, but a template for other definitions. To define a refine-
ment, one has to provide the particular TC, TΨ , Acc together with the proof that the rule
holds. However, instead of trying to define these translations directly, we will automat-
ically generate them from the relations between the particular pairs of machines.

Representation Refinement The only automatic refinement we will discuss in this
paper is the representation refinement. The representation refinement can be generated
for an abstract (MA) and a concrete machine (MC), where both use the same operations
and condtionals (e.g.MA.∆ =MC .∆ andMA.β =MC .β) by defining a relation (repr :
MA.Σ →MC .Σ → Prop) between the states of the two machines. Using repr, we can
define our specification translation function:

TA−C(p,g) ,
(λSC .∃SA.repr SA SC ∧p SA,

λSC .λS
′
C .∀SA.repr SA SC →∀S

′
A.g SA S

′
A→ repr S′A S

′
C)

This operation creates an concrete action from an abstract action. Informally it
works as follows. There must be at least one abstract state related to the starting con-
crete state for which the abstract action applies. The action starting from state SC results
in set containing S′C , only if for all related abstract states for which the abstract action
is valid result in sets of abstract states that contain a state related to S′C . Essentially, the
resulting concrete action is an intersection of all abstract actions that do not fail.

To make this approach work, we require several properties over the machines and
the repr. First, the refined semantics of abstraction operations have to be weaker than
the semantics of their concrete counterparts, e.g. ∀ιA ∈MA.TA−C(MA(ιA)) ⊇MC(ιA).

Second, the refinement must preserve the branch choice, e.g. if the refined program
chooses left branch, then abstract program had to choose the left branch in all states
related by repr as well. This property is ensured by requiring the following:

∀b.∀S,S′.
(
∃SC .repr(S,SC)∧repr(S′,SC)

)
→

(
M(b) S↔M(b) S′

)
With these properties, we can define a valid refinement by the following lemma:

Lemma 1 (repr-refinement valid).
Given repr with proofs of the two properties above, the following is valid:

MA,LA ` C : ΨA

MC ,TΨ (LA) ` C : TΨ (ΨA)

where TΨ (Ψ ) := {TA−C(Ψ (l)) | l ∈ dom(Ψ ))
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This refinement is interesting in that it preserves the code of the program, and per-
forming point-wise refinement on specifications. Our actual work defines several other
refinement generators. One of these, code-preserving refinement, is included in the TR,
and is used as a stepping stone for proof of Lemma 1. Coq implementation features
more general versions of refinements presented, as well as several others.

4 Certifying C Code

Since BabyVMM is written in C, we define a formal specification of a tiny subset of
the C language using our framework. This C machine will be parameterized by the
specific semantics of the memory model, as our plan required. We will also utilize the
C machine to further speed up the creation of refinements.

4.1 The Semantics of C

To define our C machine in terms of our verification framework, we need to give it
a state type, a list of operations, and the semantics of those operations expressed as
actions. All of these are given in Figure 8.

The state of the C machine includes two components, the stack and the memory.
The stack is an abstract C stack that consists of a list of frames, which include call,
data, and return frames. In the current version, the stack is independent from memory
(one can think of it existing within a statically defined part of the loaded kernel). The
memory model is a parameter in the C machine, meaning that it can make use of any
memory model as long as it defines load and store operations. The syntax of the C
machine is different from the usual definition, in that it relies on the meta-machine for
its control flow by using the meta-machines call and branch. Our definition of C adds
atomic operations that perform state updates. Thus the operations include two types
assignments - one to stack and one to memory, and 4 operations to manipulate stack for
call and return, which push and pop the frames.

Because control flow is provided by a standard machine, the code has to be modi-
fied slightly. For example, a function call of the form r = f (x) will split into a sequence
of three operations: f call([x]); [ f ];readret([r]), the first setting up a call frame, the
second making the call, and the third doing the cleanup. Similarly, the body of the func-
tion f (x){body;return(0); }will become args([x]);body;ret(0), as the function must first
move the arguments from the call frame into a data frame. Loops have to be desugared
into recursive procedures with branches. These modifications are entirely mechanical,
and hence we can claim that our machine supports desugared linearized C code.

4.2 Refinement in C machines

C machines at different abstraction layers differ only in their memory models, with
the stack being the same. We can use this fact to generate refinements between the C
machines using only the representation relation between memory models. This relation
(M1 � M2) can be completely arbitrary as long as these conditions hold:

∀l,v. load(M1, l) = v→ load(M2, l) = v
∀l,v,M′1.

(
M′1 = (store(M1, l,v))

)
→

(
M′1 � (store(M2, l,v))

)
9



(State) S ::= (M,S)
(Memory) M ::= (any type over which load(M,l) and store(M,l,w) are defined)

(Stack) S ::= nil | Call(list w) :: S | Data({v{ w} :: S) | Ret(w) :: S
(Expressions) e ::= se | ∗(e)

(StackExpr, Cond) se,b ::= w | v | binop(bop,e1,e2)
(Binary Operators) bop ::= + | − | ∗ | / | % | == | < | <= | >= | > | ! = | && | ||

(Variables) v ::= (a decidable set of names)
(Words) w ::= n (integers)

(Operation) ι ::= v := e | ∗(eloc) := e | fcall(list e) | ret(e) | args(list v) | readret(v)

Operation (ι) = Action (M(ι)) =

v := e

(λS.∃S′,F,w.S.S = Data(F) :: S′∧ eval(e,S) = w,
λS,S′.∃S′,F,w.S.S = Data(F) :: S′∧ eval(e,S) = w∧
S′.M = S.M∧S′.S = Data(F{v{ w}) :: S′)

∗(eloc) := e

(λS.∃l,w.eval(e,S) = w∧ eval(eloc,S) = l∧∃M′.M′ = store(M, l,w),
λS,S′.∃l,w.eval(e,S) = w∧ eval(eloc,S) = l∧
S′.M = store(S.M, l,w)∧S′.S = S.S)

fcall([e1, . . . ,en])
(λS.∃v1, . . . ,vn.eval(e1,S) = v1∧ . . .∧ eval(en,S) = vn,

λS,S′.∃v1, . . . ,vn.eval(e1,S) = v1∧ . . .∧ eval(en,S) = vn∧

S′.M = S.M∧S′.S = Call([v1, . . . ,vn]) :: S.S)

args([v1, . . . ,vn])
(λS.∃w1, . . . ,wn,S′.S.S = Call([w1, . . . ,wn]) :: S′,
λS,S′.∃w1, . . . ,wn,S′.S.S = Call([w1, . . . ,wn]) :: S′∧
S′.M = S.M∧S′.S = Data({v1{ w1, . . . ,vn{ wn}) :: S′)

readret(v)
(λS.∃S′,w.S.S = Ret(w) :: Data(D) :: S′,
λS,S′.∃S′,w.S.S = Ret(w) :: Data(D) :: S′∧
S′.M = S.M∧S′.S = Data(D{v{ w}) :: S′)

ret(e) (λS.∃w.eval(e,S) = w, λS,S′.S′.M = S.M∧S′.S = Ret(eval(e,S)) :: S.S)

eval(e,S) ::=


w if e = w
S.S(v) if e = v

load(S.M,eval(e1,S)) if e = (∗e1)
b(eval(e1,S),eval(e2,S)) if e = binop(b,e1,e2)

Υ(b) ::= λS.eval(b,S) , 0

Fig. 8. Primitive C-like machine

The above properties make sure that the load and store operations of memory behave
in a similar way. We construct the repr between C machine as follows:

repr := λSA,SC . (SA.S = SC .S) ∧ (SA.M � SC .M)

Using the properties of load and store, we show properties needed for repr-refinement
to work: that for every operation ι in the C machine TM1−M2(MM1(ι)) ⊇MM2(ι), and
that repr preserves branching. For details, please see the TR. Now we can define the
actual refinement rule for C machines:

Corollary 1 (C Refinement).
For any two memory models M1 and M2, s.t. M1 � M2, the following refinement works for C
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Definition Value Description
PGSIZE 4096 Number of bytes per page
NPAGES unspecified Number of phys. pages in memory
VPAGES unspecified Maximum page number of a virtual address
Pg(addr) addr/PGSIZE gets page of address
Off(addr) addr%PGSIZE offset into page of address
LowPg(pg) 0 ≤ pg < NPAGES valid page in low memory area
HighPg(pg) NPAGES ≤ pg < VPAGES valid page in high memory area

Fig. 9. Page Definitions

machines instantiated with M1 and M2.

MM1,L ` C : Ψ
MM2,TM1−M2(L) ` C : TM1−M2(Ψ ) M1−M2

Thus we know that if we have two C-machines that have related memory models,
then we have a working refinement between the two machines. Our next step is the to
show the relations between all the memory models shown in our plan (in Figure 3).

5 Virtual Memory Manager

At this point, we have all the machinery necessary to start building our certified memory
manager according to the plan. The first step is to formally define and give relations
between the memory models that we will use in our certification. Then we will certify
the code of the modules that make up the VMM. These modules will then be refined
and linked together, resulting in the conclusion that the entire BabyVMM is certified.

5.1 The Memory Models

Because of the space limit, we will only formally present the PMAP memory model
(Figures 9 and 10). For the definitions of others, please see the TR.

The state of the PMAP memory has three components, the actual memory store D,
the allocation table A, and the first-class pagemap PM. The memory store contains the
actual data in memory, indexed by physical addresses. The allocation table A, keeps
track of which pages are allocated and which are not. This allocation information is
abstract - it does not have to correspond to the actual allocation table used within the
VMM. For example, the hardware page tables, which this model abstracts, are still in
memory, but are hidden by the allocation table. The page map is the abstract mapping
of virtual pages to physical pages, which purposefully skips all addresses mappable to
physical memory. This mapping is used in loads and stores of the memory model, which
use the trans predicate to translate addresses by looking up mappings in the PM.

The PMAP model relies on the stub library (LPMAP) for updating auxiliary data
structures. There are two stubs for memory allocation, mem alloc and mem free. Their
specs show how they modify the allocation table, and how allocating a page is non-
deterministic and may potentially return any free page. The other two stubs, pt set

and pt lookup update and look up page map entries; their specs are straightforward.
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(Global Storage System) M ::= (D,A,PM)
(Allocatable Memory) D ::= {addr{ w | LowPg(Pg(addr))∧addr%8 = 0}∗

(Page Allocation Table) A ::= {pg{ bool | LowPg(pg)}∗

(Page Map) PM ::= {pg{ pg′ | HighPg(pg)}∗

Notation Definition
load(M,va) M.D(trans(M,va)) if M.A(Pg(trans(M,va))) = true
store(M,va,w) (M.D{trans(M,va){ w},M.A,M.PM) if M.A(Pg(trans(M,va))) = true

trans(M,va) :=

M.PM(Pg(va))∗PGSIZE+ Off(va) if HighPg(Pg(va))
va otherwise

Label Specification

mem alloc

(λS.∃S′.S.S = Call([]) :: S′,
λS,S′.∃S′.

(
S.S = Call([]) :: S′

)
∧ ((S′.S = Ret(0) :: S′∧S′.M = S.M)∨

(∃pg.S′.S = Ret(pg) :: S′∧S′.M.A = S.M.A{pg{ true}∧S′.M.PM = S.M.PM∧
∧S.M.A(pg) = f alse∧∀l.S.M.A(Pg(l)) = true→ (S′.M.D(l) = S.M.D(l))))

mem free
(λS.∃S′, pg.S.S = Call([pg]) :: S′∧S.M.A(pg) = true,
λS,S′.∃S′, pg.S.S = Call([pg]) :: S′∧S′.S = Ret(0) :: S′∧S′.M.PM = S.M.PM∧
S′.M.A = S.M.A{pg{ f alse}∧∀l.S′.M.A(Pg(l)) = true→ S′.M.D(l) = S.M.D(l))

pt set
(λS. .∃S′,vp, pp.S.S = Call([vp, pp]) :: S′∧HighPg(vp)∧LowPg(pp)
λS,S′.∃S′,vp, pp.S.S = Call([vp, pp]) :: S′∧S′.S = Ret(0) :: S′∧S′.M.A = S.M.A∧
S′.M.PM = S.M.PM{vp{ pp}∧∀l.S′.M.A(Pg(l)) = true→ S′.M.D(l) = S.M.D(l))

pt lookup
(λS.∃S′,vp.S.S = Call([vp]) :: S′∧HighPg(vp),
λS,S′.∃S′,vp.S.S = Call([vp]) :: S′∧S′.S = Ret(S.M.PM(vp)) :: S′∧S′.M = S.M)

Fig. 10. PMAP Memory Model (MPMAP) and Library (LPMAP)

5.2 Relation between Memory Models

Our plan calls for creation of the refinements between the memory models. In Sec-
tion 4.2, we have shown that we can generate a valid refinement by creating a relation
between the memory states, and then showing that abstract loads and stores are pre-
served by this relation. These relations and proofs of preserving the memory operations
are fairly lengthy and quite technical, and thus we leave the mathematical detail to our
Coq implementation, opting for a visual description shown in Figure 11.

On the right is a state of the hardware memory, whose operational semantics gives
little protection from accessing data. Some areas of memory are dangerous, some are
empty, others contain data, including the allocation tables and page tables. This memory
relates to the ALE memory model by abstracting out the memory allocation table. This
allocation table now offers protection for accessing both the unallocated space, and the
space that seems unallocated, but dangerous to use (marked by wavy lines). An example
of such area is the allocation table itself - the ALE model hides the table, making it
appear to be unusable. The ALE mem alloc primitive will never allocate pages from
these wavy areas, protecting them without complicating the memory model.

The relation between the PMAP and ALE models shows that the abstract pagemap
of PMAP model is actually contained within the specific area of the ALE model. The
relation makes sure that the mappings contained in the PMAP’s pagemap are the same
as the translation results of the ALE’s page table structures. To protect the in memory
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Fig. 11. Relation between Memory Models

page tables, the relation hides the page table memory area from the PMAP model, using
the same trick as the one used to protect the allocation tables in the ALE model.

The relation between the AS and PMAP models collapses PMAP’s memory and the
page maps into a single memory like structure in the AS model. This is mostly accom-
plished by chaining the translation mechanism with the storage mechanism. However,
to make this work, it is imperative that the relation ensures that no two pages of the
AS model ever map to the same physical page in the PMAP model. This means that
all physical pages that are mapped from the high-addresses become hidden in the AS
model. We will not go into detail about the preservation of load and stores, as these
proofs are mostly straightforward, given the relations.

5.3 Certification and Linking of BabyVMM

We have verified all the functions of the virtual memory on the appropriate memory
models. This means that we have defined appropriate specifications for our functions,
and certified our code. We also make an assumption that a kernel is certified in the AS
model. The result is the following certified modules:

MPE ,LPE ` C
mem : Ψmem

PE MALE ,LPMAP ` C
as : Ψas

PMAP MPD,LPD ` C
meminit : Ψmeminit

PD

MALE ,LALE ` C
pt : Ψ pt

ALE MAS ,LAS ` C
kernel : Ψ kernel

AS MALD,LALD ` C
ptinit : Ψ ptinit

ALD

However, the init function makes calls to other procedures that are certified in
more abstract machines. Thus to certify init over theMHW machine, we will need to
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create stubs for these procedures, which have to be carefully crafted to be valid for the
refined specifications of the actual procedures. Thus, the specification of init results
in the following:

MHW ,LHW ∪
{
kernel init{ akernel−init

HW , mem init{ ameminit
HW , pt init{ a

ptinit
HW

}
` Cinit : Ψ init

HW

With all the modules verified, we proceed to link them together. The first step is to
refine the kernel. We use our AS-PMAP refinement rule to get the refined module:

MPMAP,TAS−PMAP(LAS ) ` Ckernel : TAS−PMAP(Ψ kernel
AS )

Then we show that the specs of functions and the primitives of the PMAP machine are
proper implementation of the refined specs of LAS , more formally, TAS−PMAP(LAS ) ⊇
LPMAP ∪Ψ

as
PMAP. Using library strengthening and the linking lemma, we produce a cer-

tified module that is the union of the refined kernel and address space library:

MPMAP,LPMAP ` C
kernel∪Cas : TAS−PMAP(Ψ kernel

AS )∪Ψas
PMAP

Applying this process to all the modules over all refinements, we link all parts of the
code, except init certified overMHW . For readability, we hide chains of refinements.
For example, TAS−HW is actually TAS−PMAP ◦TPMAP−ALE ◦TALE−PE ◦TPE−HW .

MHW ,LHW ` C
kernel∪Cas∪Cpt ∪Cmem∪Cmeminit ∪Cptinit :

TAS−HW (Ψ kernel
AS ) ∪ TPMAP−HW (Ψas

PMAP) ∪ TALE−HW (Ψ pt
ALE) ∪

TPE−HW (Ψmem
PE ) ∪ TPD−HW (Ψmeminit

PD ) ∪ TALD−HW (Ψ ptinit
ALD )

To get the initialization to link with the refined module, we must make sure that the
stubs that we have developed for init are compatible with the refined specifications of
the actual functions. This means that we prove the following:

akernel−init
HW ⊇ TAS−HW (Ψ kernel

AS )(kernel-init)

ameminit
HW ⊇ TPD−HW (Ψmeminit

PD )(mem-init) a
ptinit
HW ⊇ TALD−HW (Ψ ptinit

ALD )(pt-init)

Using these properties, we apply stub strengthening to the init module:

MHW ,LHW ∪TAS−HW (Ψ kernel
AS ) ∪TPD−HW (Ψmeminit

PD ) ∪TALD−HW (Ψ ptinit
ALD ) ` Cinit : Ψ init

HW

This certification is now linkable to the rest of the VMM and kernel, to produce the
final result that we need:

MHW ,LHW ` C
kernel∪Cas∪Cpt ∪Cmem∪Cmeminit ∪Cptinit ∪Cinit :

TAS−HW (Ψ kernel
AS ) ∪ TPMAP−HW (Ψas

PMAP) ∪ TALE−HW (Ψ pt
ALE) ∪

TPE−HW (Ψmem
PE ) ∪ TPD−HW (Ψmeminit

PD ) ∪ TALD−HW (Ψ ptinit
ALD ) ∪ Ψ init

HW

This result means that given a certified kernel in the AS model, we can refine it to
the HW model of memory by linking it with VMM implementation. Furthermore, it is
safe to start this kernel by calling the init function, which will perform the setup, and
then call the kernel-init function, the entry point of the high-level kernel.
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6 Coq Implementation

All portions of this system have been implemented in the Coq Proof Assistant[5]. The
portions of the implementation directly related to the BabyVMM verification, including
C machines, refinements, specs, and related proofs (excluding frameworks) took about
3 person-months to verify. The approximate line counts for unoptimized proof are:

– Verification and refinement framework - 3000 lines
– Memory models - 200-400 lines each
– repr and compatibility between models - 200-400 lines each
– Compatibility of stubs and implementation - 200-400 lines per procedure
– Code verification - less than 200 lines per procedure (half of it boilerplate).

7 Related Work and Conclusion

The work presented here is a continuation of the work on Hoare-logic frameworks for
verification of system software. The verification framework evolved from SCAP[8] and
GCAP[3]. Although our framework does not mention separation logic[17], information
hiding[16], and local action[4] explicitly, these methods had great influence on the de-
sign of the meta-language and the refinements. The definition of repr generalizes the
work on certified garbage collector[15] to fit our concept of refinement. The project’s
motivation is the modular and reusable certification of the CertiKOS kernel[10].

The well-known work in OS verification is L4.verified[12, 6], which has shown a
complete verification of an OS kernel. Their methodology is different, but they have
considered verification of virtual memory[13, 14]. However, their current kernel verifi-
cation does not abstract virtual memory, maintaining only the invariant that allows the
kernel to function, and leaving the details to the user level.

The Verisoft project [9, 2, 1, 11, 18] is the work that is closest to ours. We both aim
for pervasive verification of OS by doing foundational verification of all components.
Both works utilize multiple machines, and require linking. As both projects aim for
certification of a kernel, both have to handle virtual memory. Although Verisoft uses
multiple machine models, they use them sparingly. For example, the entire microkernel,
excluding assembly code, is specified in a single layer, with correctness shown as a
single simulation theorem between the concurrent user thread model (CVM) and the
instruction set. The authors mention that the proof of correctness is a more complex
part of Verisoft. Such monolithic approach is susceptible to local modifications, where
a small change in one part of microkernel may require changes to the entire proof.

Our method for verification defines many more layers, with smaller refinement
proofs between them, and composes them to produce larger abstractions, ensuring that
the verification is more reusable and modular. Our new framework enables us to create
abstraction layers with less overhead, reducing the biggest obstacle to our approach. We
have demonstrated the practicality of our approach by certifying BabyVMM, a small
virtual memory manager running on simplified hardware, using a new layer for every
non-trivial abstraction we could find.
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