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Abstract. Separation Logic is a widely-used tool that allows for local
reasoning about imperative programs with pointers. A straightforward
definition of this “local reasoning” is that, whenever a program runs
safely on some state, adding more state would have no effect on the pro-
gram’s behavior. However, for a mix of technical and historical reasons,
local reasoning is defined in a more subtle way, allowing a program to
lose some behaviors when extra state is added. In this paper, we propose
strengthening local reasoning to match the straightforward definition
mentioned above. We argue that such a strengthening does not have any
negative effect on the usability of Separation Logic, and we present four
examples that illustrate how this strengthening simplifies some of the
metatheoretical reasoning regarding Separation Logic. In one example,
our change even results in a more powerful metatheory.

1 Introduction

Separation Logic [8, 13] is widely used for verifying the correctness of C-like
imperative programs [9] that manipulate mutable data structures. It supports
local reasoning [15]: if we know a program’s behavior on some heap, then we
can automatically infer something about its behavior on any larger heap. The
concept of local reasoning is embodied as a logical inference rule, known as the
frame rule. The frame rule allows us to extend a specification of a program’s
execution on a small heap to a specification of execution on a larger heap.

For the purpose of making Separation Logic extensible, it is common practice
to abstract over the primitive commands of the programming language being
used. By “primitive commands” here, we mean commands that are not defined
in terms of other commands. Typical examples of primitive commands include
variable assignment x := E and heap update [E] := E′. One example of a
non-primitive command is whileB doC.

When we abstract over primitive commands, we need to make sure that we
still have a sound logic. Specifically, it is possible for the frame rule to become
unsound for certain primitive commands. In order to guarantee that this does not
happen, certain “healthiness” conditions are required of primitive commands. We
refer to these conditions together as “locality,” since they guarantee soundness
of the frame rule, and the frame rule is the embodiment of local reasoning.

As one might expect, locality in Separation Logic is defined in such a way that
it is precisely strong enough to guarantee soundness of the frame rule. In other



words, the frame rule is sound if and only if all primitive commands are local.
In this paper, we consider a strengthening of locality. Clearly, any strengthening
will still guarantee soundness of the frame rule. The tradeoff, then, is that the
stronger we make locality, the fewer primitive commands there will be that satisfy
locality. We claim that we can strengthen locality to the point where: (1) the
usage of the logic is unaffected — specifically, we do not lose the ability to model
any primitive commands that are normally modeled in Separation Logic; (2) our
strong locality is precisely the property that one would intuitively expect it to
be — that the behavior of a program is completely independent from any unused
state; and (3) we significantly simplify various technical work in the literature
relating to metatheoretical facts about Separation Logic. We refer to our stronger
notion of locality as “behavior preservation,” because the behavior of a program
is preserved when moving from a small state to a larger one.

We justify statement (1) above, that the usage of the logic is unaffected,
in Section 3 by demonstrating a version of Separation Logic using the same
primitive commands as the standard one presented in [13], for which our strong
locality holds. We show that, even though we need to alter the state model of
standard Separation Logic, we do not need to change any of the inference rules.
We justify the second statement, that our strong locality preserves program
behavior, in Section 2. We will also show that the standard, weaker notion of
locality is not behavior-preserving. We provide some justification of the third
statement, that behavior preservation significantly simplifies Separation Logic
metatheory, in Section 5 by considering four specific examples in detail. As a
primer, we will say a little bit about each example here.

The first simplification that we show is in regard to program footprints, as
defined and analyzed in [12]. Informally, a footprint of a program is a set of
states such that, given the program’s behavior on those states, it is possible to
infer all of the program’s behavior on all other states. Footprints are useful for
giving complete specifications of programs in a concise way. Intuitively, locality
should tell us that the set of smallest safe states, or states containing the minimal
amount of resources required for the program to safely execute, should always
be a footprint. However, this is not the case in standard Separation Logic. To
quote the authors in [12], the intuition that the smallest safe states should form
a footprint “fails due to the subtle nature of the locality condition.” We show
that in the context of behavior-preserving locality, the set of smallest safe states
does indeed form a footprint.

The second simplification regards the theory of data refinement, as defined
in [6]. Data refinement is a formalism of the common programming paradigm in
which an abstract module, or interface, is implemented by a concrete instantia-
tion. In the context of [6], our programming language consists of a standard one,
plus abstract module operations that are guaranteed to satisfy some specifica-
tion. We wish to show that, given concrete and abstract modules, and a relation
relating their equivalent states, any execution of the program that can happen
when using the concrete module can also happen when using the abstract one.
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We simplify the data refinement theory by eliminating the need for two some-
what unintuitive requirements used in [6], called contents independence and
growing relations. Contents independence is a strengthening of locality that is
implied by the stronger behavior preservation. A growing relation is a technical
requirement guaranteeing that the area of memory used by the abstract mod-
ule is a subset of that used by the concrete one. It turns out that behavior
preservation is strong enough to completely eliminate the need to require grow-
ing relations, without automatically implying that any relations are growing.
Therefore, we can prove refinement between some modules (e.g., ones that use
completely disjoint areas of memory) that the system of [6] cannot handle.

Our third metatheoretical simplification is in the context of Relational Sepa-
ration Logic, defined in [14]. Relational Separation Logic is a tool for reasoning
about the relationship between two executions on different programs. In [14],
soundness of the relational frame rule is initially shown to be dependent on pro-
grams being deterministic. The author presents a reasonable solution for making
the frame rule sound in the presence of nondeterminism, but the solution is some-
what unintuitive and, more importantly, a significant chunk of the paper (about
9 pages out of 41) is devoted to developing the technical details of the solution.
We show that under the context of behavior preservation, the relational frame
rule as initially defined is already sound in the presence of nondeterminism, so
that section of the paper is no longer needed.

The fourth simplification is minor, but still worth noting. For technical rea-
sons, the standard definition of locality does not play well with a model in which
the total amount of available memory is finite. Separation Logic generally avoids
this issue by simply using an infinite space of memory. This works fine, but there
may be situations in which we wish to use a model that more closely represents
what is actually going on inside our computer. While Separation Logic can be
made to work in the presence of finite memory, doing so is not a trivial matter.
We will show that under our stronger notion of locality, no special treatment is
required for finite-sized models.

The remainder of this paper is structured as follows: Section 2 describes
the notion of locality employed by Separation Logic, as well as our stronger,
behavior-preserving notion; Section 3 presents a version of Separation Logic in
which all programs are behavior-preserving; Section 4 places behavior preser-
vation in an abstract setting in preparation for discussing Separation Logic
metatheory; Section 5 discusses all of our metatheoretical simplifications in de-
tail; and finally Section 6 discusses related work and concludes the paper.

All proofs in Sections 3 and 4 have been fully mechanized in the Coq proof
assistant [7]. The Coq source files, along with their conversions to pdf, can be
found at the link to the technical report for this paper [5].

2 Locality and Behavior Preservation

In standard Separation Logic [8, 13, 15, 4], there are two locality properties,
known as Safety Monotonicity and the Frame Property, that together imply
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soundness of the frame rule. Safety Monotonicity says that any time a program
executes safely in a certain state, the same program must also execute safely in
any larger state — in other words, unused resources cannot cause a program to
crash. The Frame Property says that if a program executes safely on a small
state, then any terminating execution of the program on a larger state can be
tracked back to some terminating execution on the small state by assuming that
the extra added state has no effect and is unchanged. Furthermore, there is a
third property, called Termination Monotonicity, that is required whenever we
are interested in reasoning about divergence (nontermination). This property
says that if a program executes safely and never diverges on a small state, then
it cannot diverge on any larger state.

To describe these properties formally, we first formalize the idea of program
state. We will describe the theory somewhat informally here; full formal detail
will be described later in Section 4. We define states σ to be members of an
abstract set Σ. We assume that whenever two states σ0 and σ1 are “disjoint,”
written σ0#σ1, they can be combined to form the larger state σ0 ·σ1. Intuitively,
two states are disjoint when they occupy disjoint areas of memory.

We represent the semantic meaning of a program C by a binary relation JCK.
We use the common notational convention aRb for a binary relation R to denote
(a, b) ∈ R. Intuitively, σJCKσ′ means that, when executing C on initial state σ,
it is possible to terminate in state σ′. Note that if σ is related by JCK to more
than one state, this simply means that C is a nondeterministic program.

We also define two special behaviors bad and div:

– The notation σJCKbad means that C can crash or get stuck when executed
on σ, while

– The notation σJCKdiv means that C can diverge (execute forever) when
executed on σ.

As a notational convention, we use τ to range over elements of Σ∪{bad, div}.
We require that for any state σ and program C, there is always at least one τ such
that σJCKτ . In other words, every execution must either crash, go on forever, or
terminate in some state.

Now we can define the properties described above more formally. Following
are definitions of Safety Monotonicity, the Frame Property, and Termination
Monotonicity, respectively:

1.) ¬σ0JCKbad ∧ σ0#σ1 =⇒ ¬(σ0 · σ1)JCKbad
2.) ¬σ0JCKbad ∧ (σ0 · σ1)JCKσ′ =⇒ ∃σ′0 . σ′ = σ′0 · σ1 ∧ σ0JCKσ′0
3.) ¬σ0JCKbad ∧ ¬σ0JCKdiv ∧ σ0#σ1 =⇒ ¬(σ0 · σ1)JCKdiv

The standard definition of locality was defined in this way because it is the
minimum requirement needed to make the frame rule sound — it is as weak as
it can possibly be without breaking the logic. It was not defined to correspond
with any intuitive notion of locality. As a result, there are two subtleties in the
definition that might seem a bit odd. We will now describe these subtleties and
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the changes we make to get rid of them. Note that we are not arguing in this
section that there is any benefit to changing locality in this way (other than
the arguably vacuous benefit of corresponding to our “intuition” of locality) —
the benefit will become clear when we discuss how our change simplifies the
metatheory in Section 5.

The first subtlety is that Termination Monotonicity only applies in one di-
rection. This means that we could have a program C that runs forever on a
state σ, but when we add unused state, we suddenly lose the ability for that
infinite execution to occur. We can easily get rid of this subtlety by replacing
Termination Monoticity with the following Termination Equivalence property:

¬σ0JCKbad ∧ σ0#σ1 =⇒ (σ0JCKdiv ⇐⇒ (σ0 · σ1)JCKdiv)

The second subtlety is that locality gives us a way of tracking an execution
on a large state back to a small one, but it does not allow for the other way
around. This means that there can be an execution on a state σ that becomes
invalid when we add unused state. This subtlety is a little trickier to remedy
than the other. If we think of the Frame Property as really being a “Backwards
Frame Property,” in the sense that it only works in the direction from large state
to small state, then we clearly need to require a corresponding Forwards Frame
Property. We would like to say that if C takes σ0 to σ′0 and we add the unused
state σ1, then C takes σ0 · σ1 to σ′0 · σ1:

σ0JCKσ′0 ∧ σ0#σ1 =⇒ (σ0 · σ1)JCK(σ′0 · σ1)

Unfortunately, there is no guarantee that σ′0 · σ1 is defined, as the states
might not occupy disjoint areas of memory. In fact, if C causes our initial state
to grow, say by allocating memory, then there will always be some σ1 that is
disjoint from σ0 but not from σ′0 (e.g., take σ1 to be exactly that allocated
memory). Therefore, it seems as if we are doomed to lose behavior in such a
situation upon adding unused state.

There is, however, a solution worth considering: we could disallow programs
from ever increasing state. In other words, we can require that whenever C takes
σ0 to σ′0, the area of memory occupied by σ′0 must be a subset of that occupied
by σ0. In this way, anything that is disjoint from σ0 must also be disjoint from
σ′0, so we will not lose any behavior. Formally, we express this property as:

σ0JCKσ′0 =⇒ (∀σ1 . σ0#σ1 ⇒ σ′0#σ1)

We can conveniently combine this property with the previous one to express
the Forwards Frame Property as the following condition:

σ0JCKσ′0 ∧ σ0#σ1 =⇒ σ′0#σ1 ∧ (σ0 · σ1)JCK(σ′0 · σ1)

At first glance, it may seem imprudent to impose this requirement, as it
apparently disallows memory allocation. However, it is in fact still possible to
model memory allocation — we just have to be a little clever about it. Specif-
ically, we can include a set of memory locations in our state that we designate
to be the “free list1.” When memory is allocated, all allocated cells must be

1 The free list is actually a set rather than a list; we use the term “free list” because
it is commonly used in the context of memory allocation.
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E ::= E +E′ | E −E′ | E ×E′ | . . . | −1 | 0 | 1 | . . . | x | y | . . .
B ::= E = E′ | false | B ⇒ B′

P,Q ::= B | false | emp | E 7→ E′ | P ⇒ Q | ∀x.P | P ∗Q
C ::= skip | x := E | x := [E] | [E] := E′

| x := cons(E1, . . . , En) | free(E) | C;C′

| ifB thenC elseC′ | whileB doC

Fig. 1. Assertion and Program Syntax

taken from the free list. Contrast this to standard Separation Logic, in which
newly-allocated heap cells are taken from outside the state. In the next section,
we will show that we can add a free list in this way to the model of Separation
Logic without requiring a change to any of the inference rules.

We conclude this section with a brief justification of the term “behavior preser-
vation.” Given that C runs safely on a state σ0, we think of a behavior of C on
σ0 as a particular execution, which can either diverge or terminate at some state
σ′0. The Forwards Frame Property tells us that execution on a larger state σ0 ·σ1
simulates execution on the smaller state σ0, while the Backwards (standard)
Frame Property says that execution on the smaller state simulates execution on
the larger one. Since standard locality only requires simulation in one direction,
it is possible for a program to have fewer valid executions, or behaviors, when
executing on σ0 · σ1 as opposed to just σ0. Our stronger locality disallows this
from happening, enforcing a bisimulation under which all behaviors are preserved
when extra resources are added.

3 Impact on a Concrete Separation Logic

We will now present one possible RAM model that enforces our stronger notion of
locality without affecting the inference rules of standard Separation Logic. In the
standard model of [13], a program state consists of two components: a variable
store and a heap. When new memory is allocated, the memory is “magically”
added to the heap. As shown in Section 2, we cannot allow allocation to increase
the program state in this way. Instead, we will include an explicit free list, or
a set of memory locations available for allocation, inside of the program state.
Thus a state is now is a triple (s, h, f) consisting of a store, a heap, and a free list,
with the heap and free list occupying disjoint areas of memory. Newly-allocated
memory will always come from the free list, while deallocated memory goes back
into the free list. Since the standard formulation of Separation Logic assumes that
memory is infinite and hence that allocation never fails, we similarly require that
the free list be infinite. More specifically, we require that there is some location
n such that all locations above n are in the free list.
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Formally, states are defined as follows:

Var V
4
= {x, y, z, . . .} Store S

4
= V → Z Heap H

4
= N⇀

fin
Z

Free List F
4
= {N ∈ P(N) | ∃n . ∀k ≥ n . k ∈ N}

State Σ
4
= {(s, h, f) ∈ S ×H × F | dom(h) ∩ f = ∅}

As a point of clarification, we are not claiming here that including the free
list in the state model is a novel idea. Other systems (e.g., [12]) have made use of
a very similar idea. The two novel contributions that we will show in this section
are: (1) that a state model which includes an explicit free list can provide a
behavior-preserving semantics, and (2) that the corresponding program logic can
be made to be completely backwards-compatible with standard Separation Logic
(meaning that any valid Separation Logic derivation is also a valid derivation in
our logic).

We adopt the following standard notations: bhc is the domain of the heap h;
s[x 7→ v] is the store which is identical to s, except that the value of variable x
is updated to v; h[l 7→ v] is the heap which is identical to h, except that location
l is either added to h with value v if it does not exist in h, or updated with
value v if it does exist; h\l is the heap resulting from removing location l from
h; h0#h1 is true just when bh0c and bh1c do not overlap; h0 · h1 is equal to the
union of h0 and h1 if h0#h1, and is undefined otherwise. We also overload the
disjointness (#) operator to work with free lists — e.g., h#f says that bhc and
bfc are disjoint.

Assertion syntax and program syntax are given in Figure 1, and are exactly
the same as in the standard model for Separation Logic. This syntax includes
expressions E and boolean expressions B, both of which can be evaluated under
a given variable store, without any knowledge of the heap. These valuations are
denoted by JEKs and JBKs for a given store s; the former evaluates to an integer,
while the latter evaluates to a boolean. These valuations are straightforward and
standard in the literature, so we omit their definitions here.

Our satisfaction judgement (s, h, f) |= P for an assertion P is defined by ig-
noring the free list and only considering whether (s, h) satisfies P . Our definition
of (s, h) |= P is identical to that of standard Separation Logic.

For those readers who are not entirely familiar with Separation Logic, as
shown in Figure 2, the key assertions to understand are E 7→ E′ and P ∗ Q.
E 7→ E′ says that the current heap consists only of the memory cell at address
JEKs, and that the cell at that address maps to the value JE′Ks. P ∗Q says that
we can separate the current heap into two disjoint subheaps h0 and h1, with h0
satisfying P and h1 satisfying Q. We also define the standard syntactic sugars
E 7→ E0, . . . , En to be (E 7→ E0) ∗ . . . ∗ (E + n 7→ En), and E 7→ − to be
∃x.E 7→ x (where x is not free in E).

Figure 3 defines the small-step operational semantics for our machine. x := [E]
and [E] := E′ correspond to reading from and writing to the heap, respectively.
x := cons(E1, . . . , En) allocates a nondeterministically-chosen contiguous block
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(s, h) |= B ⇐⇒ JBKs = true

(s, h) |= false ⇐⇒ never

(s, h) |= E 7→ E′ ⇐⇒ bhc = {JEKs} ∧ h(JEKs) = JE′Ks
(s, h) |= P ⇒ Q ⇐⇒ if (s, h) |= P , then (s, h) |= Q

(s, h) |= ∀x.P ⇐⇒ ∀v ∈ Z . (s[x 7→ v], h) |= P

(s, h) |= P ∗Q ⇐⇒

(
∃h0, h1 . h0#h1 ∧ h0 · h1 = h ∧
(s, h0) |= P ∧ (s, h1) |= Q

)

Fig. 2. Satisfaction of Assertions

of n heap cells from the free list. The most interesting rules are those for alloca-
tion and deallocation, since they make use of the free list. Note that none of the
operations make use of any memory existing outside the program state — this
is the key for obtaining behavior-preservation.

We define safety of a configuration (σ,C) in the standard way, saying that we
never get stuck in a non-halting state:

safe(σ,C)
4
= ∀σ′, C ′ . σ, C ∗−→ σ′, C ′ ∧ C ′ 6= skip

=⇒ ∃σ′′, C ′′ . σ′, C ′ −→ σ′′, C ′′

In order to formally compare our logic to “standard” Separation Logic, we
need to provide the standard version of the small-step operational semantics,
denoted as (s, h), C  (s′, h′), C ′. We use the notation (s, h), C ↓ (s′, h′) to
denote big steps. Given this notation, the operational semantics for Separation
Logic is nearly identical to ours (with all free lists removed from states, of course).
The only difference is in the rule for allocation. For this rule, all we need to
do is remove the free lists from the states and change the precondition from
∀i ∈ [1, n] . l + i− 1 ∈ f to ∀i ∈ [1, n] . l + i− 1 /∈ h. It is then possible to show
the following relationship between the two operational semantics:
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σ, skip;C −→ σ,C
(SKIP)

(s, h, f), x := E −→ (s[x 7→ JEKs], h, f), skip
(ASSGN)

JEKs ∈ bhc
(s, h, f), x := [E] −→ (s[x 7→ h(JEKs)], h, f), skip

(HEAP-READ)

JEKs ∈ bhc
(s, h, f), [E] := E′ −→ (s, h[JEKs 7→ JE′Ks], f), skip

(HEAP-WRITE)

∀i ∈ [1, n] . l + i− 1 ∈ f
(s, h, f), x := cons(E1, . . . , En) −→

(s[x 7→ l], h[l 7→ JE1Ks] . . . [l + n− 1 7→ JEnKs], f − {l, . . . , l + n− 1}), skip

(CONS)

JEKs ∈ bhc
(s, h, f), free(E) −→ (s, h\JEKs, f ∪ {JEKs}), skip

(FREE)

σ,C −→ σ′, C′

σ,C;C′′ −→ σ′, C′;C′′
(SEQ)

JBKs = true

σ, ifB thenC1 elseC2 −→ σ,C1

(IF-TRUE)

JBKs = false

σ, ifB thenC1 elseC2 −→ σ,C2

(IF-FALSE)

JBKs = true

σ, whileB doC −→ σ,C; whileB doC
(WHILE-TRUE)

JBKs = false

σ, whileB doC −→ σ, skip
(WHILE-FALSE)

σ,C
0−→ σ,C

(STEPN-ZERO)

σ,C −→ σ′, C′ σ′, C′
n−→ σ′′, C′′

σ,C
n+1−→ σ′′, C′′

(STEPN-SUCC)

σ,C
n−→ σ′, C′

σ,C
∗−→ σ′, C′

(MULTI-STEP)
σ,C

∗−→ σ′, skip

σ,C ⇓ σ′
(BIG-STEP)

Fig. 3. Small-Step Operational Semantics
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Lemma 1.

(s, h), C
n
 (s′, h′), C ′ ⇐⇒ ∃f, f ′ . (s, h, f), C

n−→ (s′, h′, f ′), C ′

Proof. The backwards direction is a straightforward proof by induction. For the
forwards direction, we actually prove a stronger statement by picking our f and
f ′ to be exactly N − bhc and N − bh′c, respectively. The proof of this stronger
statement is then straightforward by induction. Picking the free lists in this
way showcases how the Separation Logic model can be interpreted as having an
implicit free list containing everything not in the heap.

For more details on this proof, see our Coq implementation.

The inference rules in the form ` {P}C {Q} for our logic are exactly the same
as those used in standard Separation Logic. We give most of these inference rules
in Figure 4. The reader may refer to [13] for more inference rules.

We say that a triple |= {P}C {Q} is semantically valid when, for all σ, σ′:

1.) if σ |= P , then safe(σ,C)

2.) if σ |= P and σ,C ⇓ σ′, then σ′ |= Q

Semantic validity of standard Separation Logic triples is defined in the same
way, but using the operational semantics for Separation Logic. We will write
this as |=SL {P}C {Q}. Note that we are only considering a partial correctness
definition of validity here, meaning that programs are not required to terminate.

We are now in a position to prove soundness and completeness of our logic.
We first prove a minor technical lemma:

Lemma 2.

(s, h),C  (s′, h′), C ′ =⇒ ∀f . (f#h⇒ ∃σ . (s, h, f), C −→ σ,C ′)

Proof. Straightforward by induction on the rules for stepping. See the Coq im-
plementation for more details.

Theorem 1 (Soundness and Completeness).

` {P}C {Q} ⇐⇒ |= {P}C {Q}

Proof. Note that ` {P}C {Q} has the same definition in both our logic and in
Separation Logic, since we use the same assertion language and inference rules.
Therefore, because Separation Logic is known to be sound and complete, we
have that ` {P}C {Q} ⇐⇒ |=SL {P}C {Q}. We thus need only show that
|=SL {P}C {Q} ⇐⇒ |= {P}C {Q}.

First, suppose that |=SL {P}C {Q}. To prove the first property of semantic

validity, suppose that (s, h, f) |= P , and consider some execution (s, h, f), C
∗−→

(s′, h′, f ′), C ′ with C ′ 6= skip. Then we need to show that (s′, h′, f ′), C ′ can take
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` {emp} skip {emp}
(SKIP)

` {x = y ∧ emp}x := E {x = E[y/x] ∧ emp}
(ASSGN)

` {x = y ∧ E 7→ z}x := [E] {x = z ∧ E[y/x] 7→ z}
(HEAP-READ)

` {E 7→ −} [E] := E′ {E 7→ E′}
(HEAP-WRITE)

` {x = y ∧ emp}x := cons(E1, . . . , Ek) {x 7→ E1[y/x], . . . , Ek[y/x]}
(CONS)

` {E 7→ −} free(E) {emp}
(FREE)

` {P}C1 {Q} ` {Q}C2 {R}
` {P}C1;C2 {R}

(SEQ)

` {B ∧ P}C1 {Q} ` {¬B ∧ P}C2 {Q}
` {P} ifB thenC1 elseC2 {Q}

(IF)

` {B ∧ P}C {P}
` {P} whileB doC {¬B ∧ P}

(WHILE)

P ′ ⇒ P Q⇒ Q′ ` {P}C {Q}
` {P ′}C {Q′}

(CONSEQ)

` {P1}C {Q1} ` {P2}C {Q2}
` {P1 ∧ P2}C {Q1 ∧Q2}

(CONJ)

` {P1}C {Q1} ` {P2}C {Q2}
` {P1 ∨ P2}C {Q1 ∨Q2}

(DISJ)

` {P}C {Q} modifies(C) ∩ vars(R) = ∅
` {P ∗R}C {Q ∗R}

(FRAME)

Fig. 4. Some Separation Logic Inference Rules
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another step. By Lemma 1, we have that (s, h), C
∗
 (s′, h′), C ′. Since (s, h) |= P ,

we know that safe((s, h), C), and so (s′, h′), C ′  (s′′, h′′), C ′′ for some s′′, h′′,
C ′′. Therefore Lemma 2 tells us that (s′, h′, f ′), C ′ can indeed take a step. For the

second property, suppose that (s, h, f) |= P and (s, h, f), C
∗−→ (s′, h′, f ′), skip.

Then Lemma 1 tells us that (s, h), C
∗
 (s′, h′), skip, meaning that (s′, h′) |= Q,

and so (s′, h′, f ′) |= Q.

Now suppose that |= {P}C {Q}. For the first property, suppose that (s, h) |=
P and (s, h), C

∗
 (s′, h′), C ′ with C ′ 6= skip. Lemma 1 gives us (s, h, f), C

∗−→
(s′, h′, f ′), C ′ for some f and f ′, which means that (s′, h′, f ′), C ′ −→ (s′′, h′′, f ′′), C ′′

for some s′′, h′′, f ′′, C ′′ (since (s, h, f) |= P ). Therefore Lemma 1 gives us
(s′, h′), C ′  (s′′, h′′), C ′′, as desired. For the second property, suppose (s, h) |=
P and (s, h), C

∗
 (s′, h′), skip. By Lemma 1, we have

(s, h, f), C
∗
 (s′, h′, f ′), skip

for some f and f ′. Since (s, h, f) |= P , this means that (s′, h′, f ′) |= Q, and so
(s′, h′) |= Q.

We have thus shown that our new model does not cause any complications
in the usage of Separation Logic. Any specification that can be proved using
the standard model can also be proved using our model. We now only need to
show that our model enjoys the stronger, behavior-preserving notion of locality.
As described in Section 2, this locality is composed of Safety Monotonicity,
Termination Equivalence, and the Forward and Backwards Frame Properties.
We first prove that the two frame properties hold:

Theorem 2 (Frame Properties).

1.) (s, h0, f), C
n−→ (s′, h′0, f

′), C ′ ∧ h0#h1 ∧ f#h1 =⇒

h′0#h1 ∧ (s, h0 · h1, f), C
n−→ (s′, h′0 · h1, f ′), C ′

2.) safe((s, h0, f), C) ∧ (s, h0 · h1, f), C
n−→ (s′, h′, f ′), C ′ =⇒

∃h′0 . h′ = h′0 · h1 ∧ (s, h0, f), C
n−→ (s′, h′0, f

′), C ′

Proof. Straightforward by induction on the derivation rules for stepping. For
details, see the Coq implementation.

It is easy to show that these Frame Properties imply both Safety Monotonicity
and Termination Equivalence.
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Lemma 3 (Safety Monotonicity).

safe((s, h0, f), C) ∧ h0#h1 ∧ f#h1 =⇒ safe((s, h0 · h1, f), C)

Proof. Suppose that safe((s, h0, f), C), and consider an execution on the large

state (s, h0 · h1, f), C
n−→ (s′, h′, f ′), C ′ with C ′ 6= skip. Then the Backwards

Frame Property tells us that h′ = h′0·h1 and (s, h0, f), C
n−→ (s′, h′0, f

′), C ′. Since
safe((s, h0, f), C) and C ′ 6= skip, we see that (s′, h′0, f

′), C ′ −→ (s′′, h′′0 , f
′′), C ′′

for some s′′, h′′0 , f ′′, C ′′. Thus we can now use the Forwards Frame Property
(clearly h1#f ′ since (s′, h′0 · h1, f ′) is a well-typed state) to obtain (s′, h′0 ·
h1, f

′), C ′ −→ (s′′, h′′0 · h1, f ′′), C ′′, and so safe((s, h0 · h1, f), C) does indeed
hold.

In order to define Termination Equivalence, we first need to define divergence.
We say that σ diverges on C, written σ,C ↑, if there exists an infinite path of
steps starting from σ,C. More formally:

σ,C ↑ 4= ∀n . ∃σ′, C ′ . σ, C n−→ σ′, C ′

Lemma 4 (Termination Equivalence).

safe((s, h0, f), C) ∧ h0#h1 ∧ f#h1 =⇒ (s, h0, f), C ↑ ⇐⇒ (s, h0 · h1, f), C ↑

Proof. First, suppose (s, h0, f), C ↑, and pick any n. Then there are some s′,

h′0, f ′, C ′ such that (s, h0, f), C
n−→ (s′, h′0, f

′), C ′. Thus the Forwards Frame

Property tells us that h′0#h1 and (s, h0 · h1, f), C
n−→ (s′, h′0 · h1, f ′), C ′, as

desired. For the other direction, suppose (s, h0 · h1, f), C and pick any n. Then

(s, h0 ·h1, f), C
n−→ (s′, h′, f ′), C ′ for some s′, h′, f ′, C ′. Since safe((s, h0, f), C),

the Backwards Frame Property tells us that h′ = h′0 · h1 for some h′0, and

(s, h0, f), C
n−→ (s′, h′0, f

′), C ′, as desired.

We conclude this section with a quick note on reasoning about the free list.
We presented our logic with the purpose of showing that, at the level of inference
rules and derivations, it works exactly the same as standard Separation Logic.
However, at the level of the underlying model, we now have this free list within
the state. Therefore, if we so desire, we could define additional assertions and
inference rules allowing for more precise reasoning involving the free list. One
idea might be to have a separate, free list section of assertions in which we write,
for example, E ∗ true to claim that E is a part of the free list. Then the axiom
for free would look something like:

{E 7→ −; true} free(E) {emp;E ∗ true}

4 The Abstract Logic

In order to clearly explain how our stronger notion of locality resolves the
metatheoretical issues described in Section 1, we will first formally describe how
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our locality fits into a context similar to that of Abstract Separation Logic [4].
With a minor amount of work, the logic of Section 3 can be molded into a
particular instance of the abstract logic presented here.

We define a separation algebra to be a set of states Σ, along with a partial
associative and commutative operator · : Σ → Σ ⇀ Σ. The disjointness relation
σ0#σ1 holds iff σ0 ·σ1 is defined, and the substate relation σ0 � σ1 holds iff there
is some σ′0 such that σ0 · σ′0 = σ1. A particular element of Σ is designated as a
unit state, denoted u, with the property that for any σ, σ#u and σ · u = σ. We
require the · operator to be cancellative, meaning that σ ·σ0 = σ ·σ1 ⇒ σ0 = σ1.

Our concrete model can be represented as a separation algebra by defining
(s0, h0, f0) · (s1, h1, f1) to be (s0, h0 · h1, f0) if s0 = s1, f0 = f1, and h0#h1;
otherwise, it is undefined. Associativity, commutativity, and cancellativity are
simple to verify. We can create a special state, denoted by (), to be the unit
state — thus (s, h, f) · () = () · (s, h, f) = (s, h, f).

An action is a set of pairs of type Σ∪{bad, div}×Σ∪{bad, div}. We require
the following two properties: (1) actions always relate bad to bad and div to div,
and never relate bad or div to anything else; and (2) actions are total, in the
sense that for any τ , there exists some τ ′ such that τAτ ′ (recall from Section 2
that we use τ to range over elements of Σ ∪ {bad, div}). Note that these two
requirements are preserved over the standard composition of relations, as well
as over both finitary and infinite unions. We write Id to represent the identity
action {(τ, τ) | τ ∈ Σ ∪ {bad, div}}.

Note that it is more standard in the literature to have the domain of actions
range only over Σ — we use Σ∪{bad, div} here because it has the pleasant effect
of making JC1;C2K correspond precisely to standard composition. Intuitively,
once an execution goes wrong, it continues to go wrong, and once an execution
diverges, it continues to diverge.

A local action is an action A that satisfies the following four properties, which
respectively correspond to Safety Monotonicity, Termination Equivalence, the
Forwards Frame Property, and the Backwards Frame Property from Section 2:

1.) ¬σ0Abad ∧ σ0#σ1 =⇒ ¬(σ0 · σ1)Abad

2.) ¬σ0Abad ∧ σ0#σ1 =⇒ (σ0Adiv ⇐⇒ (σ0 · σ1)Adiv)

3.) σ0Aσ
′
0 ∧ σ0#σ1 =⇒ σ′0#σ1 ∧ (σ0 · σ1)A(σ′0 · σ1)

4.) ¬σ0Abad ∧ (σ0 · σ1)Aσ′ =⇒ ∃σ′0 . σ′ = σ′0 · σ1 ∧ σ0Aσ′0

We denote the set of all local actions by LocAct. We now show that the set
of local actions is closed under composition and (possibly infinite) union. We use
the notation A1;A2 to denote composition, and

⋃
A to denote union (where A

is a possibly infinite set of actions). The formal definitions of these operations
follow. Note that we require that A be non-empty. This is necessary because⋃
∅ is ∅, which is not a valid action. Unless otherwise stated, whenever we write
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⋃
A, there will always be an implicit assumption that A 6= ∅.

τA1;A2τ
′ ⇐⇒ ∃τ ′′ . τA1τ

′′ ∧ τ ′′A2τ
′

τ
⋃
Aτ ′ ⇐⇒ ∃A ∈ A . τAτ ′ (A 6= ∅)

Lemma 5. If A1 and A2 are local actions, then A1;A2 is a local action.

Proof. It will be useful to first note that σA1;A2bad iff either σA1bad or there
exists some σ′ such that σA1σ

′ and σ′A2bad. This is due to the fact that we
know badA2bad and ¬divA2bad. Similarly, it also the case that σA1;A2div iff
either σA1div or there exists some σ′ such that σA1σ

′ and σ′A2div.

For Safety Monotonicity, suppose that σ0#σ1 and
¬σ0A1;A2bad. Suppose by way of contradiction that (σ0 · σ1)A1;A2bad. Since
¬σ0A1;A2bad and badA2bad, we have ¬σ0A1bad. Thus by Safety Monotonicity
of A1, ¬(σ0 · σ1)A1bad. By our note above, we see that there must be some
σ such that (σ0 · σ1)A1σ and σA2bad. By the Backwards Frame Property of
A1, there must be a σ′0 such that σ = σ′0 · σ1 and σ0A1σ

′
0. Thus we have that

(σ′0 · σ1)A2bad, and so Safety Monotonicity of A2 tells us that σ′0A2bad. Hence
σ0A1;A2bad, which is a contradiction.

For Termination Equivalence, suppose that σ0#σ1 and
¬σ0A1;A2bad. Then we also have ¬σ0A1bad, since we have badA2bad.

For the forward direction, suppose that σ0A1;A2div. By the note above,
there are two possible situations. In the first situation, we have σ0A1div. By
Termination Equivalence of A1, this implies that (σ0 · σ1)A1div, and so (σ0 ·
σ1)A1;A2div, as desired. In the second situation, there is a state σ such that
σ0A1σ and σA2div. By the Forwards Frame Property of A1, we see that σ#σ1
and (σ0 ·σ1)A1(σ ·σ1). Now note that we must have ¬σA2bad, because otherwise
we would be able to derive σ0A1;A2bad, which is a contradiction. Therefore,
by Termination Equivalence of A2, we have (σ · σ1)A2div. Hence we get (σ0 ·
σ1)A1;A2div, as desired.

For the backward direction, suppose that (σ0 · σ1)A1;A2div. Again by the
note above, there are two possible situations. In the first situation, we have
(σ0 · σ1)A1div. By Termination Equivalence of A1, this implies that σ0A1div,
and so σ0A1;A2div, as desired. In the second situation, there is a state σ such
that (σ0 · σ1)A1σ and σA2div. By the Backwards Frame Property of A1, there
must be a σ′0 such that σ = σ′0 · σ1 and σ0A1σ

′
0. Now note that we must have

¬σ′0A2bad, because otherwise we would be able to derive σ0A1;A2bad, which is
a contradiction. Therefore, by Termination Equivalence of A2, we have σ′0A2div.
Hence we get σ0A1;A2div, as desired.

For the Forwards Frame Property, suppose that σ0#σ1 and σ0A1;A2σ
′
0. Then

there exists a τ such that σ0A1τ and τA2σ
′
0. Furthermore, τ cannot be bad or

div since τA2σ
′
0 — thus let τ be σ′′0 . By the Forwards Frame Property of A1,

we have σ′′0#σ1 and (σ0 · σ1)A1(σ′′0 · σ1). Therefore, by the Forwards Frame
Property of A2, we have σ′0#σ1 and (σ′′0 · σ1)A2(σ′0 · σ1). Hence σ′0#σ1 and
(σ0 · σ1)A1;A2(σ′0 · σ1), as desired.
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C ::= c | C1;C2 | C1 + C2 | C∗

∀c . JcK ∈ LocAct JC1;C2K
4
= JC1K; JC2K

JC1 + C2K
4
= JC1K ∪ JC2K JC∗K 4=

⋃
n∈N

JCKn

JCK0 4= Id JCKn+1 4= JCK; JCKn

Fig. 5. Command Definition and Denotational Semantics

For the Backwards Frame Property, suppose that
¬σ0A1;A2bad and (σ0 ·σ1)A1;A2σ

′. Then, repeating some reasoning from earlier
in this proof, we have ¬σ0A1bad, and there exists a σ such that (σ0 · σ1)A1σ
and σA2σ

′. By the Backwards Frame Property of A1, we get σ = σ′0 · σ1 and
σ0A1σ

′
0. Now note that ¬σ′0A2bad, because otherwise we would be able to derive

σ0A1;A2bad, which is a contradiction. Therefore, by the Backwards Frame Prop-
erty of A2, we get σ′ = σ′′0 · σ1 and σ′0A2σ

′′
0 . Hence σ′ = σ′′0 · σ1 and σ0A1;A2σ

′′
0 ,

as desired.

Lemma 6. If every A in the set A is a local action, then
⋃
A is a local action.

Proof. For Safety Monotonicity, suppose σ0#σ1 and ¬σ0
⋃
Abad. Suppose by

way of contradiction that (σ0 · σ1)
⋃
Abad. Then there is some A ∈ A such that

(σ0 ·σ1)Abad. By Safety Monotonicity of A, we get σ0Abad. But this means that
σ0

⋃
Abad, which is a contradiction.

For Termination Equivalence, suppose that σ0#σ1 and
¬σ0

⋃
Abad. This means that for every A ∈ A, ¬σ0Abad. For the forward direc-

tion, suppose that σ0
⋃
Adiv. Then σ0Adiv for some A ∈ A. Thus Termination

Equivalence of A gives us (σ0·σ1)Adiv, and so we get the desired (σ0·σ1)
⋃
Adiv.

For the backward direction, suppose that (σ0 · σ1)
⋃
Adiv. Then (σ0 · σ1)Adiv

for some A ∈ A. Thus Termination Equivalence of A gives us σ0Adiv, and so
we get the desired σ0

⋃
Adiv.

For the Forwards Frame Property, suppose that σ0#σ1 and σ0
⋃
Aσ′0. Then

σ0Aσ
′
0 for some A ∈ A, and so by the Forwards Frame Property of A, we have

σ′0#σ1 and (σ0 · σ1)A(σ′0 · σ1), which in turn implies the desired result.

For the Backwards Frame Property, suppose that ¬σ0
⋃
Abad and (σ0·σ1)

⋃
Aσ′.

Then (σ0 · σ1)Aσ′ for some A ∈ A, and for all A ∈ A we have ¬σ0Abad. Hence
the Backwards Frame Property of A tells us that σ′ = σ′0 · σ1 and σ0Aσ

′
0, which

implies the desired result.

Figure 5 defines our abstract program syntax and semantics. The language
consists of primitive commands, sequencing (C1;C2), nondeterministic choice
(C1 + C2), and finite iteration (C∗). The semantics of primitive commands are
abstracted — the only requirement is that they are local actions. Therefore, from
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¬σJcKbad
` {{σ}} c {{σ′ | σJcKσ′}}

(PRIM)
` {P}C1 {Q} ` {Q}C2 {R}

` {P}C1;C2 {R}
(SEQ)

` {P}C1 {Q} ` {P}C2 {Q}
` {P}C1 + C2 {Q}

(PLUS)
` {P}C {P}
` {P}C∗ {P}

(STAR)

` {P}C {Q}
` {P ∗R}C {Q ∗R}

(FRAME)
P ′ ⊆ P ` {P}C {Q} Q ⊆ Q′

` {P ′}C {Q′}
(CONSEQ)

∀i ∈ I . ` {Pi}C {Qi}

` {
⋃
Pi}C {

⋃
Qi}

(DISJ)
∀i ∈ I . ` {Pi}C {Qi} I 6= ∅

` {
⋂
Pi}C {

⋂
Qi}

(CONJ)

Fig. 6. Inference Rules

the two previous lemmas and the trivial fact that Id is a local action, it is clear
that the semantics of every program is a local action.

Note that in our concrete language used if statements and while loops. As
shownin [4], it is possible to represent if and while constructs with finite itera-
tion and nondeterministic choice by including a primitive command assume(B),
which does nothing if the boolean expression B is true, and diverges otherwise.
Given this setup, we can define the primitive command assume(B) as follows:

Jassume(B)K 4= {(bad, bad), (div, div)}∪
{(σ, σ) | JBKσ = true} ∪ {(σ, div) | JBKσ = false}∪
{(σ, bad) | JBKσ undefined}

It is a simple matter to show that this is a local action. We can then syntactically
define if and while statements as follows:

ifB thenC1 elseC2
4
= (assume(B);C1) + (assume(¬B);C2)

whileB doC
4
= (assume(B);C)∗; assume(¬B)

Technically, these definitions only correctly implement if and while statements
in terms of which states they can terminate at — they do not correctly imple-
ment divergence behavior since they allow for arbitrary divergence. Thus these
definitions should only be used if we do not care about divergence behavior.
It is certainly still possible to define fully correct if and while statements, but
describing the technical details would venture too far beyond the scope of this
paper.

Now that we have defined the interpretation of programs as local actions, we
can talk about the meaning of a triple {P}C {Q}. We define an assertion P to
be a set of states, and we say that a state σ satisfies P iff σ ∈ P . We can then
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define the separating conjunction as follows:

P ∗Q 4= {σ ∈ Σ | ∃σ0 ∈ P, σ1 ∈ Q . σ = σ0 · σ1}

Given an assignment of primitive commands to local actions, we say that a
triple is valid, written |= {P}C {Q}, just when the following two properties hold
for all states σ and σ′:

1.) σ ∈ P =⇒ ¬σJCKbad
2.) σ ∈ P ∧ σJCKσ′ =⇒ σ′ ∈ Q

The inference rules of the logic are given in Figure 6. Note that we are tak-
ing a significant presentation shortcut here in the inference rule for primitive
commands. Specifically, we assume that we know the exact local action JcK of
each primitive command c. This assumption makes sense when we define our
own primitive commands, as we do in the logic of Section 3. However, in a more
general setting, we might be provided with an opaque function along with a
specification (precondition and postcondition) for the function. Since the func-
tion is opaque, we must consider it to be a primitive command in the abstract
setting. Yet we do not know how it is implemented, so we do not know its pre-
cise local action. In [4], the authors provide a method for inferring a “best” local
action from the function’s specification. With a decent amount of technical de-
velopment, we can do something similar here, using our stronger definition of
locality.

Given this assumption, we prove soundness and completeness of our abstract
logic. The details of the proof can be found in our Coq implementation [5].

Theorem 3 (Soundness and Completeness).

` {P}C {Q} ⇐⇒ |= {P}C {Q}

5 Simplifying Separation Logic Metatheory

Now that we have an abstracted formalism of our behavior-preserving local ac-
tions, we will resolve each of the four metatheoretical issues described in Sec 1.

5.1 Footprints and Smallest Safe States

Consider a situation in which we are handed a program C along with a specifi-
cation of what this program does. The specification consists of a set of axioms;
each axiom has the form {P}C {Q} for some precondition P and postcondition
Q. A common question to ask would be: is this specification complete? In other
words, if the triple |= {P}C {Q} is valid for some P and Q, then is it possible
to derive ` {P}C {Q} from the provided specification?

In standard Separation Logic, it can be extremely difficult to answer this
question. In [12], the authors conduct an in-depth study of various conditions
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and circumstances under which it is possible to prove that certain specifications
are complete. However, in the general case, there is no easy way to prove this.

We can show that under our assumption of behavior preservation, there is
a very easy way to guarantee that a specification is complete. In particular, a
specification that describes the exact behavior of C on all of its smallest safe
states is always complete. Formally, a smallest safe state is a state σ such that
¬σJCKbad and, for all σ′ ≺ σ, σ′JCKbad.

To see that such a specification may not be complete in standard Separation
Logic, we borrow an example from [12]. Consider the program C, defined as
x := cons(0); free(x). This program simply allocates a single cell and then frees
it. Under the standard model, the smallest safe states are those of the form (s, ∅)
for any store s. For simplicity, assume that the only variables in the store are
x and y. Define the specification to be the infinite set of triples that have the
following form, for any a, b in Z, and any a′ in N:

{x = a ∧ y = b ∧ emp}C {x = a′ ∧ y = b ∧ emp}

Note that a′ must be in N because only valid unallocated memory addresses can
be assigned into x. It should be clear that this specification describes the exact
behavior on all smallest safe states of C. Now we claim that the following triple
is valid, but there is no way to derive it from the specification.

{x = a ∧ y = b ∧ y 7→ −}C {x = a′ ∧ y = b ∧ y 7→ − ∧ a′ 6= b}

The triple is clearly valid because a′ must be a memory address that was initially
unallocated, while address b was initially allocated. Nevertheless, there will not
be any way to derive this triple, even if we come up with new assertion syntax
or inference rules. The behavior of C on the larger state is different from the
behavior on the small one, but there is no way to recover this fact once we make
C opaque. It can be shown (see [12]) that if we add triples of the above form to
our specification, then we will obtain a complete specification for C. Yet there
is no straightforward way to see that such a specification is complete.

We will now formally prove that, in our system, there is a canonical form
for complete specification. We first note that we will need to assume that our
set of states is well-founded with respect to the substate relation (i.e., there
is no infinite strictly-decreasing chain of states). This assumption is true for
most standard models of Separation Logic, and furthermore, there is no reason
to intuitively believe that the smallest safe states should be able to provide a
complete specification when the assumption is not true.

We say that a specification Ψ is complete for C if, whenever |= {P}C {Q} is
valid, the triple ` {P}C {Q} is derivable using only the inference rules that are
not specific to the structure of C (i.e., the frame, consequence, disjunction, and
conjunction rules), plus the following axiom rule:

{P}C {Q} ∈ Ψ
` {P}C {Q}
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For any σ, let σJCK denote the set of all σ′ such that σJCKσ′. For any set of
states S, we define a canonical specification on S as the set of triples of the form
{{σ}}C {σJCK} for any state σ ∈ S. If there exists a canonical specification on
S that is complete for C, then we say that S forms a footprint for C.

Theorem 4. For any program C, the set of all smallest safe states of C forms
a footprint for C.

Proof. Let Ψ be the canonical specification of C on the set of all smallest safe
states S. Consider any valid triple |= {P}C {Q}. We will show that for any
σ ∈ P , we can derive the triple ` {{σ}}C {Q} using our restricted set of inference
rules — an application of the disjunction rule then completes the proof.

Consider any state σ ∈ P . Since |= {P}C {Q} is valid, ¬σJCKbad. We will
show with a simple induction on the subheap operator that σ0 � σ for some
smallest safe state σ0. Note that we can perform such an induction because the
subheap operator is well-founded.

Case 1. σ is a smallest safe state. Then σ � σ, and we are done.

Case 2. σ is not a smallest safe state. Since ¬σJCKbad, σ is by definition a safe
state. Therefore, there must be some strictly smaller safe state σ0 ≺ σ. By our
induction hypothesis, σ′0 � σ0 for some smallest safe state σ′0. Hence we have
σ′0 � σ0 � σ.

Now let σ = σ0 • σ1, where σ0 is a smallest safe state. Then there is an
axiom {{σ0}}C {σ0JCK} ∈ Ψ . We use the axiom rule to get ` {{σ0}}C {σ0JCK},
followed by the frame rule to get ` {{σ}}C {σ0JCK ∗ {σ1}}. Consider any σ′ ∈
σ0JCK∗{σ1}. Then σ′ = σ′0 ·σ1 for some σ′0 such that σ0JCKσ′0. By the Forwards
Frame Property, σJCKσ′. Since the triple |= {P}C {Q} is valid and σ ∈ P , we see
that σ′ ∈ Q. Thus we have shown that σ0JCK ∗ {σ1} ⊆ Q, and so an application
of the consequence rule gives us the desired ` {{σ}}C {Q}.

Note that while this theorem guarantees that the canonical specification is
complete, we may not actually be able to write down the specification simply
because the assertion language is not expressive enough. This would be the case
for the behavior-preserving nondeterministic memory allocator if we used the
assertion language presented in Section 3. We could, however, express canonical
specifications in that system by extending the assertion language to talk about
the free list (as briefly discussed at the end of Section 3).

5.2 Data Refinement

In [6], the goal is to formalize the concept of having a concrete module correctly
implement an abstract one, within the context of Separation Logic. Specifically,
the authors prove that as long as a client program “behaves nicely,” any execu-
tion of the program using the concrete module can be tracked to a corresponding
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execution using the abstract module. The client states in the corresponding ex-
ecutions are identical, so the proof shows that a well-behaved client cannot tell
the difference between the concrete and abstract modules.

To get their proof to work out, the authors require two somewhat odd proper-
ties to hold. The first is called contents independence, and is an extra condition
on top of the standard locality conditions. The second is called a growing rela-
tion — it refers to the relation connecting a state of the abstract module to its
logically equivalent state(s) in the concrete module. All relations connecting the
abstract and concrete modules in this way are required to be growing, which
means that the domain of memory used by the abstract state must be a subset
of that used by the concrete state. This is a somewhat unintuitive and restric-
tive requirement which is needed for purely technical reasons. We will show that
behavior preservation completely eliminates the need for both contents indepen-
dence and growing relations.

We now provide a formal setting for the data refinement theory. This formal
setting is similar to the one in [6], but we will make some minor alterations to
simplify the presentation. The programming language is defined as:

C ::= skip | c | m | C1;C2 | ifB thenC1 elseC2

| whileB doC

c is a primitive command (sometimes referred to as “client operation” in this
context). m is a module command taken from an abstracted set MOp (e.g., a
memory manager might implement the two module commands cons and free).

The abstracted client and module commands are assumed to have a seman-
tics mapping them to particular local actions. We of course use our behavior-
preserving notion of “local” here, whereas in [6], the authors use the three proper-
ties of safety monotonicity, the (backwards) frame property, and a new property
called contents independence. It is trivial to show that behavior preservation im-
plies contents independence, as contents independence is essentially a forwards
frame property that can only be applied under special circumstances.

A module is a pair (p, η) representing a particular implementation of the mod-
ule commands in MOp; the state predicate p describes the module’s invariant
(e.g., that a valid free list is stored starting at a location pointed to by a par-
ticular head pointer), while η is a function mapping each module command to
a particular local action. The predicate p is required to be precise [11], meaning
that no state can have more than one substate satisfying p (if a state σ does
have a substate satisfying p, then we refer to that uniquely-defined state as σp).
Additionally, all module operations are required to preserve the invariant p:

¬σ(ηm)bad ∧ σ ∈ p ∗ true ∧ σ(ηm)σ′ =⇒ σ′ ∈ p ∗ true

We define a big-step operational semantics parameterized by a module (p, η).
This semantics is fundamentally the same as the one defined in [6]; the extended
TR contains the full details. The only aspect that is important to mention here
is that the semantics is equipped with a special kind of faulting called “access
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violation.” Intuitively, an access violation occurs when a client operation’s ex-
ecution depends on the module’s portion of memory. More formally, it occurs
when the client operation executes safely on a state where the module’s mem-
ory is present (i.e., a state satisfying p ∗ true), but faults when that memory is
removed from the state.

The main theorem that we get out of this setup is a refinement simulation
between a program being run in the presence of an abstract module (p, η), and
the same program being run in the presence of a concrete module (q, µ) that
implements the same module commands (i.e., bηc = bµc, where the floor notation
indicates domain). Suppose we have a binary relation R relating states of the
abstract module to those of the concrete module. For example, if our modules
are memory managers, then R might relate a particular set of memory locations
available for allocation to all lists containing that set of locations in some order.
To represent that R relates abstract module states to concrete module states, we
require that whenever σ1Rσ2, σ1 ∈ p and σ2 ∈ q. Given this relation R, we can
make use of the separating conjunction of Relational Separation Logic [14] and
write R ∗ Id to indicate the relation relating any two states of the form σp · σc
and σq · σc, where σpRσq.

Now, for any module (p, η), let C[(p, η)] be notation for the program C whose
semantics have (p, η) filled in for the parameter module. Then our main theorem
says that, if η(f) simulates µ(f) under relation R ∗ Id for all f ∈ bηc, then for
any program C, C[(p, η)] also simulates C[(q, µ)] under relation R ∗ Id. More
formally, say that C1 simulates C2 under relation R (written R;C2 ⊆ C1;R)
when, for all σ1, σ2 such that σ1Rσ2:

1.) σ1JC1Kbad ⇐⇒ σ2JC2Kbad, and

2.) ¬σ1JC1Kbad =⇒ (∀σ′2 . σ2JC2Kσ′2 ⇒ ∃σ′1 . σ1JC1Kσ′1 ∧ σ′1Rσ′2)

Theorem 5. Suppose we have modules (p, η) and (q, µ) with bηc = bµc and a
refinement relation R as described above, such that R ∗ Id;µ(f) ⊆ η(f);R ∗ Id
for all f ∈ bηc. Then, for any program C, R ∗ Id;C[(q, µ)] ⊆ C[(p, η)];R ∗ Id.

Proof. Straightforward by induction on C. We make use of behavior preservation
in the base case when C is a primitive client command c. Note that this base
case corresponds to Lemma 4 in [6], and it is the only place where contents
independence and growing relations are used. Hence behavior preservation does
indeed eliminate the need for these two concepts.

While the full proof can be found in the extended TR, we will semi-formally
describe here the one case that highlights why behavior preservation eliminates
the need for contents independence and growing relations: when C is simply a
client command c. We wish to prove that C[(p, η)] simulates C[(q, µ)], so suppose
we have related states σ1 and σ2, and executing c on σ2 results in σ′2. Since σ1
and σ2 are related by R ∗ Id, we have that σ1 = σp · σc and σ2 = σq · σc. We

know that (1) σq ·σc
c→ σ′2, (2) c is local, and (3) c runs safely on σc because the
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client operation’s execution must be independent of the module state σq; thus

the backwards frame property tells us that σ′2 = σq · σ′c and σc
c→ σ′c. Now, if c

is behavior-preserving, then we can simply apply the forwards frame property,
framing on the state σp, to get that σp#σ′c and σp · σc

c→ σp · σ′c, completing
the proof for this case. However, without behavior preservation, contents inde-
pendence and growing relations are used in [6] to finish the proof. Specifically,

because we know that σq · σc
c→ σq · σ′c and that c runs safely on σc, contents

independence says that σ ·σc
c→ σ ·σ′c for any σ whose domain is a subset of the

domain of σq. Therefore, we can choose σ = σp because R is a growing relation.

For example, suppose we have two memory manager modules that implement
a free list in exactly the same way, except that one module stores its head pointer
at memory location 100, while the other stores its pointer at location 200. It is
very simple to prove that these two modules are equivalent using our system, but
impossible using theirs (since neither module uses a subset of the other module’s
memory footprint).

5.3 Relational Separation Logic

Relational Separation Logic [14] allows for simple reasoning about the relation-
ship between two executions. Instead of deriving triples {P}C {Q}, a user of the
logic derives quadruples of the form:

{R}
C

C ′
{S}

R and S are binary relations on states, rather than unary predicates. Semanti-
cally, a quadruple says that if we execute the two programs in states that are
related by R, then both executions are safe, and any termination states will be
related by S. Furthermore, we want to be able to use this logic to prove program
equivalence, so we also require that initial states related by R have the same
divergence behavior. Formally, we say that the above quadruple is valid if, for
any states σ1, σ2, σ′1, σ′2:

1.) σ1Rσ2 =⇒ ¬σ1JCKbad ∧ ¬σ2JC ′Kbad
2.) σ1Rσ2 =⇒ (σ1JCKdiv ⇐⇒ σ2JC ′Kdiv)

3.) σ1Rσ2 ∧ σ1JCKσ′1 ∧ σ2JC ′Kσ′2 =⇒ σ′1Sσ
′
2

Relational Separation Logic extends the separating conjunction to work for
relations, breaking related states into disjoint, correspondingly-related pieces:

σ1(R ∗ S)σ2 ⇐⇒ ∃ σ1r, σ1s, σ2r, σ2s .
σ1 = σ1r · σ1s ∧ σ2 = σ2r · σ2s ∧ σ1rRσ2r ∧ σ1sSσ2s

Just as Separation Logic has a frame rule for enabling local reasoning, Rela-
tional Separation Logic has a frame rule with the same purpose. This frame rule
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says that, given that we can derive the quadruple above involving R, S, C, and
C ′, we can also derive the following quadruple for any relation T :

{R ∗ T}
C

C ′
{S ∗ T}

In [14], it is shown that the frame rule is sound when all programs are determin-
istic but it is unsound if nondeterministic programs are allowed, so this frame
rule cannot be used when we have a nondeterministic memory allocator.

To deal with nondeterministic programs, a solution is proposed in [14], in
which the interpretation of quadruples is strengthened. The new interpretation
for a quadruple containing R, S, C, and C ′ is that, for any σ1, σ2, σ′1, σ′2, σ, σ′:

1.) σ1Rσ2 =⇒ ¬σ1JCKbad ∧ ¬σ2JC ′Kbad
2.) σ1Rσ2 ∧ σ1#σ ∧ σ2#σ′ =⇒ ((σ1 · σ)JCKdiv ⇐⇒ (σ2 · σ′)JC ′Kdiv)

3.) σ1Rσ2 ∧ σ1JCKσ′1 ∧ σ2JC ′Kσ′2 =⇒ σ′1Sσ
′
2

Note that this interpretation is the same as before, except that the second prop-
erty is strengthened to say that divergence behavior must be equivalent not only
on the initial states, but also on any larger states. It can be shown that the frame
rule becomes sound under this stronger interpretation of quadruples.

In our behavior-preserving setting, it is possible to use the simpler interpre-
tation of quadruples without breaking soundness of the frame rule. We could
prove this by directly proving frame rule soundness, but instead we will take a
shorter route in which we show that, when actions are behavior-preserving, a
quadruple is valid under the first interpretation above if and only if it is valid
under the second interpretation — i.e., the two interpretations are the same in
our setting. Since the frame rule is sound under the second interpretation, this
implies that it will also be sound under the first interpretation.

Clearly, validity under the second interpretation implies validity under the
first, since it is a direct strengthening. To prove the inverse, suppose we have a
quadruple (involving R, S, C, and C ′) that is valid under the first interpretation.
Properties 1 and 3 of the second interpretation are identical to those of the first,
so all we need to show is that Property 2 holds. Suppose that σ1Rσ2, σ1#σ, and
σ2#σ′. By Property 1 of the first interpretation, we know that ¬σ1JCKbad and
¬σ2JC ′Kbad. Therefore, Termination Equivalence tells us that σ1JCKdiv ⇐⇒
(σ1 ·σ)JCKdiv, and that σ2JC ′Kdiv ⇐⇒ (σ2 ·σ′)JC ′Kdiv. Furthermore, we know
by Property 2 of the first interpretation that σ1JCKdiv ⇐⇒ σ2JC ′Kdiv. Hence
we obtain our desired result.

Note In case the reader is curious, the reason that the frame rule under the
first interpretation is sound when all programs are deterministic is simply that
determinism (along with standard locality) implies Termination Equivalence. To
see this, we only need to check the forwards direction, since standard locality
requires the backwards one. Consider a situation where σ0Adiv, σ0#σ1, and
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¬σ0Abad. By Safety Monotonicity, we have ¬(σ0·σ1)Abad. Furthermore, suppose
there is some σ such that (σ0 · σ1)Aσ. Then by the Backwards Frame Property,
we have σ = σ′0 · σ1 and σ0Aσ

′
0. But we already know that σ0Adiv, so this

contradicts the fact that A is deterministic. Therefore, A does not relate σ0 · σ1
to bad or to any state σ. Since A is required to be total, we conclude that
(σ0 · σ1)Adiv.

5.4 Finite Memory

Since standard locality allows the program state to increase during execution,
it does not play nicely with a model in which memory is finite. Consider any
command that grows the program state in some way. Such a command is safe on
the empty state but, if we extend this empty state to the larger state consisting of
all available memory, then the command becomes unsafe. Hence such a command
violates Safety Monotonicity.

There is one commonly-used solution for supporting finite memory without
enforcing behavior preservation: say that, instead of faulting on the state consist-
ing of all of memory, a state-growing command diverges. Furthermore, to satisfy
Termination Monotonicity, we also need to allow the command to diverge on
any state. The downside of this solution, therefore, is that it is only reasonable
when we are not interested in the termination behavior of programs.

When behavior preservation is enforced, we no longer have any issues with
finite memory models because program state cannot increase during execution.
The initial state is obviously contained within the finite memory, so all states
reachable through execution must also be contained within memory.

6 Related Work and Conclusions

The definition of locality (or local action), which enables the frame rule, plays
a critical role in Separation Logic [8, 13, 15]. Almost all versions of Separation
Logic — including their concurrent [3, 10, 4], higher-order [2], and relational [14]
variants, as well as mechanized implementation (e.g., [1]) — have always used
the same locality definition that matches the well-known Safety and Termination
Monotonicity properties and the Frame Property [15].

In this paper, we argued a case for strengthening the definition of locality
to enforce behavior preservation. This means that the behavior of a program
when executed on a small state is identical to the behavior when executed on
a larger state — put another way, excess, unused state cannot have any effect
on program behavior. We showed that this change can be made to have no
effect on the usage of Separation Logic, and we gave multiple examples of how
it simplifies reasoning about metatheoretical properties. Behavior preservation
has a particularly large impact on the theory of data refinement, as it opens up
the possibility for proving module equivalence.
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Determinism Constancy One related work that calls for comparison is the prop-
erty of “Determinism Constancy” presented by Raza and Gardner [12], which is
also a strengthening of locality. While they use a slightly different notion of ac-
tion than we do, it can be shown that Determinism Constancy, when translated
into our context (and ignoring divergence behaviors), is logically equivalent to:

σ0JCKσ′0 ∧ σ′0#σ1 =⇒ σ0#σ1 ∧ (σ0 · σ1)JCK(σ′0 · σ1)

For comparison, we repeat our Forwards Frame Property here:

σ0JCKσ′0 ∧ σ0#σ1 =⇒ σ′0#σ1 ∧ (σ0 · σ1)JCK(σ′0 · σ1)

While our strengthening of locality prevents programs from increasing state dur-
ing execution, Determinism Constancy prevents programs from decreasing state.
The authors use Determinism Constancy to prove the same property regarding
footprints that we proved in Section 5.1. Note that, while behavior preservation
does not imply Determinism Constancy, our concrete logic of Section 3 does have
the property since it never decreases state (we chose to have the free command
put the deallocated cell back onto the free list, rather than get rid of it entirely).

While Determinism Constancy is strong enough to prove the footprint prop-
erty, it does not provide behavior preservation — an execution on a small state
can still become invalid on a larger state. Thus it will not, for example, help in
resolving the dilemma of growing relations in the data refinement theory. Due
to the lack of behavior preservation, we do not expect the property to have a
significant impact on the metatheory as a whole. Note, however, that there does
not seem to be any harm in using both behavior preservation and Determin-
ism Constancy. The two properties together enforce that the area of memory
accessible to a program be constant throughout execution.

Module Reasoning Besides our discussion of data refinement in Section 5.2, there
has been some previous work on reasoning about modules and their implementa-
tions. In [11], a “Hypothetical Frame Rule” is used to allow modular reasoning
when a module’s implementation is hidden from the rest of the code. In [2],
a higher-order frame rule is used to allow reasoning in a higher-order language
with hidden module or function code. However, neither of these works discuss re-
lational reasoning between different modules. We are not aware of any relational
logic for reasoning about modules.

For future work, it would be desirable to find more situations in the literature
in which behavior preservation simplifies the theory or opens up new ideas to
explore. One area that we are currently exploring is using behavior preservation
in a security context. A corollary of behavior preservation is that there is no way
for a program to determine any information about unused state (if there were,
then this would imply a difference in behavior between executing the program
with the unused state and executing without it). Therefore it would be perfectly
safe to run the program in a state containing top secret data, as long as the
program were known to execute safely on a state without that secret data.

Another direction for future work would be to define a behavior-preserving
version of Concurrent Separation Logic that has the same inference rules as
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standard CSL. The commands that acquire and release locks should be able to
be expressed in a behavior-preserving fashion by including both local and shared
state in the underlying state model. A lock acquire will move memory from the
shared state into the local state, while a lock release will move it from local into
shared. Neither command requires an increase in total state. The model could
get quite interesting if we allow threads to allocate memory. One possible way
to implement this might be to assign a separate free list to each thread. Another
way might be to use a single free list, and, at any point in execution, we consider
the free list to be owned by the currently-executing thread.
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