
Certified Software
Only if the programmer can prove (through formal machine-checkable proofs) it’s free of

bugs with respect to a claim of dependability.

Zhong Shao
Yale University

zhong.shao@yale.edu

Abstract
Certified software consists of a machine-executable program plus
a formal machine-checkable proof that the software is free of bugs
with respect to a claim of dependability. The conventional wisdom
is that certified software will never be feasible because thedepend-
ability of any real software must also rely on that of its underlying
operating system and execution environment which is too low-level
to be verifiable. In recent years, however, there have been many ad-
vances in the theory and engineering of mechanized proof systems
applied to verification of low-level code, including proof-carrying
code, certified assembly programming, local reasoning and separa-
tion logic, certified linking of heterogeneous components,and cer-
tified or certifying compilation. In this article, I give an overview
of this exciting new field, focusing on both foundational ideas and
key insights that make the work on certified software differ from
traditional program verification systems. I will also describe sev-
eral exciting recent advances and challenging open problems.

1. Introduction
Computer software is one of the most influential technologies ever
developed. Software has entered every aspect of our lives and
is used to control everything from computing and communica-
tion devices (such as computers, networks, cell phones, andWeb
browsers), to consumer products (such as cameras, TVs, and refrig-
erators), to cyber-physical systems (such as automobiles,medical
devices, and aviation systems), and to critical infrastructure (such
as financial, energy, communications, transportation, andnational
defense).

Unfortunately, software is also sometimes our least dependable en-
gineering artifact. Software companies lack the kind of meaning-
ful warranty most other engineering organizations are expected to
provide. Major corporations and government agencies worldwide
invest in fixing software bugs, but the prospect of building reliable
software is bleak. The pervasive presence of software bugs also
makes all existing computing and information systems vulnerable
to security and privacy attacks.

An important cause of such difficulty is the sheer complexityof the
software itself. If each line of code is viewed as an individual com-
ponent, software systems are easily the most complicated things we
humans have ever built. Unlike hardware components, software ex-
ecution can easily lead to an unbounded number of states, so testing
and model-checking techniques cannot guarantee reliability. As the
hardware community moves deep into new multi-core and cyber-
physical platforms, and as software is thoroughly integrated into
everyday objects and activities, the complexity of future software
could get much worse, even as demand for dependable software
becomes more urgent.

For most of today’s software, especially low-level forms like oper-
ating systems, nobody knows precisely when, how, and why they
actually work. These systems lack rigorous formal specifications
and were developed mostly by large teams of developers usingpro-
gramming languages and libraries with imprecise semantics. Even
if the original developers had a good informal understanding of
the inner workings, their knowledge and assumptions about system
behavior (often implicit) are easily lost or broken in subsequent de-
velopment or maintenance phases.

The software research community has sought to tackle these prob-
lems in recent years but remains hampered by three key difficulties:

Lack of metrics. Metrics are still lacking for measuring software
dependability, making it difficult to compare different tech-
niques and build steady progress in the field. Dependabilityof-
ten includes attributes like reliability, safety, availability, and
security. A system’s availability can be measured retroactively
as a percentage of its uptime in a given year; for example, six
nines, or 99.9999%, means 31.5 seconds downtime per year,
but quantifying other attributes is much more difficult. A pro-
gram with one bug is not necessarily 10 times more secure than
a program with 10 bugs. A system’s reliability depends on its
formal specification, which is often nonexistent.

Worse, software dependability is often confused with the de-
pendability of the software’s execution environment, which
consists of not just hardware devices but also human operators
and the physical world. Since the dependability of the execu-
tion environment is often beyond human control, many people
view software as a complex biological system, rather than asa
rigorous mathematical entity;

System software.A software application’s dependability also re-
lies on the dependability of its underlying system software, in-
cluding OS kernel, device driver, hypervisor, garbage collector,
and compiler. These low-level programs are often profoundly
complex and bug-prone, but little has been done to make them
truly dependable. For example, if an OS kernel or even a com-
piler has security holes, the entire system could be compro-
mised, regardless of what software developers do at a higher
level [31, 19]; and

Last-mile problem. Despite recent progress in formal-methods re-
search, program verification still involves a vexing “last-mile
problem.” Most software-verification research concentrates on
high-level models rather than on actual programs, valuablefor
finding bugs but leaving a big gap that must be closed before
meaningful dependability claims can be made about actual soft-
ware. Failure to reason about actual code also has big impli-
cations for maintainability; for example, it is difficult for pro-
grammers to pinpoint the source and a fix when a new bug is

identified and ensure that subsequent updates (to actual code)
will not break the code’s high-level model.

Leading research oncertified softwareaims to tackle all three. For
example, concerning the lack of good metrics, a line is drawnbe-
tween the actual machine-executable software and the surrounding
physical environment (e.g., hardware devices and human opera-
tors). We can neither predict the future of the physical world nor
formally certify human behavior, but at least under a well-defined,
stable hardware platform (such as the x86 instruction set),the be-
havior of each machine executable is a rigorous mathematical en-
tity. With a formal specification stating its desirable behavior, we
can (at least in theory) rigorously “certify” that the machine exe-
cutable behaves as expected. A good dependability metric isthen
just the formal claim developers make and certify about eachpro-
gram.

The long-term goal for research on certified software is to turn
code—often a system’s weakest link—into its most dependable
component. The formal specification given may not preciselycap-
ture the behavior of the physical environment, so the overall system
may still not function properly, but, at least, when a problem oc-
curs, programmers and users alike are assured that the behavior of
the software is properly documented and rigorously enforced. The
specifications for functional correctness of individual components
may occasionally be too large to be comprehensible, but manysys-
temwide safety, liveness, and security properties can be stated suc-
cinctly and certified with full confidence.

To address the second and third difficulties, software developers
must also certify the actual system-software code. Most needed is a
new “certified” computing platform where programmers have firm
control over the behavior of its system software stack, including
bootloader, OS kernel, device driver, hypervisor, and other runtime
services. Software consisting of mostly certified components would
be easier to maintain, because the effects of updating a certified
component would be easier to track, and new bugs would quickly
be localized down to the noncertified modules.

Constructing large-scale certified software systems is itself a chal-
lenge. Still unknown is whether it can be done at all and whether
it can be a practical technology for building truly dependable soft-
ware. In this article, I explore this new field, describing several ex-
citing recent advances and challenging open problems.

2. What Is It?
Certified softwareconsists of a machine-executable programC
plus a rigorous formal proofP (checkable by computer) that the
software is free of bugs with respect to a particular dependability
claim S. Both the proofP and the specificationS are written us-
ing a general-purpose mathematical logic, the same logic ordinary
programmers use in reasoning every day. The logic is also a pro-
gramming language; everything written in logic, includingproofs
and specifications, can be developed using software tools (such as
proof assistants, automated theorem provers, and certifying com-
pilers). Proofs can be checked automatically for correctness, on a
computer, by a small program called aproof checker. As long as
the logic used by programmers is consistent, and the dependability
specification describes what end users want, programmers can be
sure that the underlying software is free of bugs with respect to the
specification.

The work on certified software fits well into the Verified Software
Initiative (VSI) proposed by Hoare and Misra [15], but differs in
several distinct ways from traditional program-verification systems.

First, certified software stresses use of an expressive general-
purpose metalogic and explicit machine-checkable proofs to sup-

port modular reasoning and scale program verification to handle all
kinds of low-level code [32, 24, 10, 3]. Using a rich mechanized
metalogic allows programmers to define new customized “domain-
specific” logics (together with its meta theory), apply themto cer-
tify different software components, and link everything tobuild
end-to-end certified software [9]. With machine-checkableproofs,
proof-checking is automated and requires no outside assumptions.
As long as the metalogic is consistent, the validity of proofP
immediately establishes that the behavior of programC satisfies
specificationS.

Existing verification systems often use a rather restrictedasser-
tion language (such as first-order logic) to facilitate automation
but do not provide explicit machine-checkable proof objects. Pro-
gram components verified using different program logics or type
systems cannot be linked together to make meaningful end-to-end
dependability claims about the whole software system. These prob-
lems make it more difficult for independent third parties to validate
claims of dependability.

Second, with an expressive metalogic, certified software can be
used to establish all kinds of dependability claims, from simple
type-safety properties to more advanced safety, liveness,security,
and correctness properties. Building these proofs need notfollow
Hoare-style reasoning [14]; much of the earlier work on proof-
carrying code [23] constructed safety proofs automatically using
such technologies as type-preserving compilation [30, 29]and
typed assembly language [22]. However, most traditional program
verifiers concentrate on partial correctness properties only.

Third, certified software emphasizes proving properties for the ac-
tual machine executables, rather than their high-level counterparts,
though proofs can still be constructed at the high level and then
propagated down to the machine-code level using a certifying or
certified compiler. On the other hand, most existing programveri-
fiers target high-level source programs.

Fourth, to establish a rigorous dependability metric, certified soft-
ware aims to minimize the trusted computing base, or TCB, the
small part of a verification framework in which any error can sub-
vert a claim of end-to-end dependability. TCB is a well-known con-
cept in the verification and security community, as well as a source
of confusion and controversy [6].

The dependability of a computing system rests on the depend-
able behavior of its underlying hardware devices, human operators,
and software. Many program verifiers are comfortable with placing
complex software artifacts (such as theorem provers, OS, and com-
pilers) into the TCB because it seems that the TCB of any verifica-
tion system must include those “hard-to-reason-about” components
(such as hardware devices and human operators) so is alreadyquite
large.

Of course, all program-verification systems create a formalmodel
about the underlying execution environment. Any theorem proved
regarding the software is with respect to the formal model only, so
the TCB for any claim made regarding the software alone should
not include hardware devices and human operators.

Still, any bug in the TCB would (by definition) compromise the
credibility of the underlying verification system. A smaller TCB is
generally more desirable, but size is not necessarily the best indi-
cator; for example, a 200-line garbage collector is not necessarily
more reliable than a 2,000-line straightforward pretty printer. The
TCB of a good certified framework must include only components
whose soundness and integrity can also be validated by indepen-
dent third parties.

Yes

Dependability
Claim

Proof

machine

code

No
Devices &

Memory

Human & the

Physical World

Figure 1. Components of a certified framework

2.1 Components of a certified framework

A typical certified framework (see Figure 1) consists of five com-
ponents:

• The certified software itself.Including both machine code and
formal proof;

• Formal machine model.Providing the operational semantics for
all machine instructions;

• Formal dependability claim for the software.Including safety
property, security policy, and functional specification for cor-
rectness;

• Underlying mechanized metalogic (not shown).For coding all
proofs, specifications, and machine-level programs; and

• Proof checker.For checking the validity of all the proofs fol-
lowing the inference rules of the metalogic.

If the proof of a given certified software package can be validated
by the proof checker, then execution of the software on the formal
machine model is guaranteed to satisfy a formal dependability
claim.

Things can, however, still go wrong. First, the mechanized met-
alogic might be inconsistent, a risk that can be minimized ifthe
framework designers choose a simple, well-understood, general-
purpose metalogic and prove (perhaps on paper) why it is indeed
consistent.

Second, the proof checker is a computer program, so it could go
wrong all by itself. But if the framework uses a simple logic with
a small number of inference rules, the proof checker can be made
quite small, written in assembly, and verified by hand.

Third, the formal machine model might not reflect hardware behav-
ior. Most hardware vendors perform intensive hardware verifica-
tion, so this risk can be minimized if hardware and software devel-
opers share the machine specifications. Even if this is not possible,
the framework designer can still validate the model by comparing
its operational semantics with the instruction-set reference manu-
als.

Finally, the formal dependability specification (SP) may not accu-
rately capture the behavior of the human or physical world. Never-
theless,SP is formally stated and the code is guaranteed to satisfy
SP. Here, I deliberately decoupled the correctness of verification
from the specification process. Existing efforts validating and test-
ing specifications are, of course, very valuable and complementary
to the certification process.

Since a dependability claim is made only regarding the formal ma-
chine model, the TCB of such a certified framework consists of
just the consistency proof of the metalogic and the integrity of the
proof checker, both of which should be demonstrable by indepen-
dent third parties (such as through the peer-review processof a top-
quality journal). If the computer science community can agree on
a single metalogic (a good thing), this task of standardizing a met-
alogic would need to be done only once. Certified software would
then no longer be the weakest link in a dependable system.

2.2 Mechanized metalogic

A key enabling technology for certified software is to write formal
proofs and specifications as typed functional programs, then have
a computer automatically check the validity of the proofs, in the
same way a static type-checker does type-checking. This idea came
from the well-known Curry-Howard correspondence referring to
the generalization of a syntactic analogy between systems of formal
logic and computational calculi first discovered by the American
logicians Haskell Curry and William Howard. Most advances for
developing large-scale machine-checkable proofs were made only
during the past 10 years; see the excellent survey by Barendregt and
Geuvers [2] and a 2008 overview article by Hales [11].

In the context of certified software, there are a few more require-
ments: the logic must be consistent and expressive so software
developers can express everything they want to say. It must also
support explicit machine-checkable proof objects and be simple
enough that the proof checker can be hand-verified for correctness.

Because software components may be developed using differ-
ent programming languages and certified using different domain-
specific logics and type systems, mechanized metalogic mustalso
support meta-reasoning. It can be used to represent the syntax,
inference rules, and meta-proofs (for their soundness) of the spe-
cialized object logics.

Much of the current work on certified software is carried out in
the Coq proof assistant [16]. Coq itself provides a rich higher-order
logic with powerful inductive definitions, both crucial forwriting
modular proofs and expressive specifications.

2.3 Advantages

With certified software, the dependability of a software system
would be measured by the actual formal dependability claim it is
able to certify. Because the claim comes with a formal proof,the
dependability can be checked independently and automatically in
an extremely reliable way.

A formal dependability claim can range from making almost no
guarantee, to simple type-safety property, to deep liveness, secu-
rity, and to correctness properties. It provides a great metric for
comparing different techniques and making steady progresstoward
the system’s overall dependability.

If the software community could agree on a metalogic and workout
the formal models of a few popular computing platforms, certified
software would provide an excellent framework for accumulating
dependable software components. Since proofs are incontrovertible
mathematical truths, once a software component is certified, its
trustworthiness (with respect to its specification) would presumably
last for eternity.

Unlike higher-level programming languages, certified software
places no restrictions on the efficiency of its underlying code and
the way programs are developed. Because the metalogic is as rich
as the one programmers use in daily reasoning, and everything
running on a computer must eventually be executed as a machine
executable, if programmers believe (informally) that their super-
efficient and sophisticated code really works as they claim,there
should be a way to formally write down their proofs. When de-
pendability is not an issue, the software can be used as is, assum-
ing proper isolation from the rest of the system; when program-
mers really care about dependability, they must provide theformal
machine-checkable proof.

On the other hand, certified software encourages the usual best
practices in software engineering and program verification. Cer-
tifying large-scale systems clearly benefits from high-level pro-
gramming abstraction, domain-specific logics, modular decom-
position and refinement, model-driven design and development,
the correctness-by-construction methodology [12], and automated
theorem-proving tools. The only difference is that they nowin-
sist on receiving hard evidence (such as machine-checkableproof
objects) as a way to deliver quality assurance and measure the ef-
fectiveness of the technologies.

Certified software also decouples the tools for proof construction
and program development from the proof-checking infrastructure.
The rich metalogic provides the ultimate framework for building up
layers of abstraction for complex software. Once they are formed,
programmers can build different software components and their
proofs using completely different methods. Because specifications
and proofs are both represented as programs (within a computer),
they can be debugged, updated, transformed, analyzed, and reused
by novel proof-engineering tools.

Certified software also significantly improves the maintainability of
the underlying system. A local change to an individual component
can be checked quickly against its specification, with its effect on
the overall system known immediately. A major reorganization of
the system can be done in a principled way by comparing the
changes against high-level specifications programmers have for
each certified component.

2.4 Challenges

The main challenge of certified software is the potentially huge cost
in constructing its specifications and proofs, though such cost can
be cut dramatically in the following ways.

First, how software is developed makes a huge difference in the
system’s future dependability. If the software is full of bugs or de-
veloped without consideration of the desirable dependability claim,
post-hoc verification would be extremely expensive in termsof
time and money, or simply impossible. A proactive approach (such
as correctness-by-construction [12]) should lower the cost signifi-
cantly.

Second, building certified software does not mean that program-
mers must verify the correctness of every component or algorithm
used in its code; for example, in micro-kernels or virtual-machine
monitors, it is often possible for programmers to verify a small set
of components that in turn perform run-time enforcement of secu-
rity properties on other components [33].

Dynamic validation (such as translation validation for compiler
correctness [26]) also simplifies proofs significantly; forexample, it
may be extremely difficult to verify that a sophisticated algorithm
A always takes an inputX and generates an outputY such that
R(X,Y) holds; instead, a programmer could extendA by adding
an additional validation phase, or a validator, that checkswhether
the inputX and the outputY indeed satisfy the predicateR, assum-
ing R is decidable. If this check fails, the programmer can invoke
an easier-to-verify (though probably less-efficient) version of the
algorithmA. To build certified software, all the programmer needs
is to certify the correctness of the validator and the easierversion
of the algorithm, with no need to verify algorithmA anymore.

Third, the very idea that proofs and specifications can be repre-
sented as programs (within a computer) means that developers
should be able to exploit the synergy between engineering proofs
and writing large programs, building a large number of toolsand
proof infrastructures to make proof construction much easier.

Finally, formal proofs for certified software ought to be much sim-
pler and less sophisticated than those used in formal mathemat-
ics [11]. Software developers often use rather elementary proof
methods to carry out informal reasoning of their code. Proofs for
software are more tedious but also more amenable for automatic
generation [28, 5].

Certified software also involves other challenges. For example, the
time to market is likely terrible, assuming dependability is not a
concern, so the cost of certification would be justified only if end
users truly value a dependability guarantee. Deployment would
be difficult since most real-world engineers do not know how to
write formal specifications, let alone proofs. Pervasive certifica-
tion requires fundamental changes to every phase in most existing
software-development practices, something few organizations are
able to undertake. The success of certified software critically relies
on efforts initially developed in the research community.

3. Recent Advances
Advances over the past few years in certified software have been
powered by advances in programming languages, compilers, for-
mal semantics, proof assistants, and program verification.Here, I
sample a few of these efforts and describe the remaining challenges
for delivering certified software.

3.1 Proof-carrying code

Necula’s and Lee’s 1996 work [23] on proof-carrying code (PCC)
is the immediate precursor to the large body of more recent work on
certified software. PCC made a compelling case for the importance
of having explicit witness, or formal machine-checkable evidence,
in such applications as secure mobile code and safe OS kernel
extensions. PCC allows a code producer to provide a (compiled)
program to a host, along with a formal proof of safety. The host
specifies a safety policy and a set of axioms for reasoning about
safety; the producer’s proof must be in terms of these axioms.

PCC relies on the same formal methods as program verification
but has the advantage that proving safety properties is mucheasier
than program correctness. The producer’s formal proof doesnot, in
general, prove that the code produces a correct or meaningful result

L
1

L
2

L
3

L
4

(a) The One-for-All Logic (b) Domain-Specific Logics

Figure 2. Using domain-specific logics to verify modules

but does guarantee that execution of the code satisfies the desirable
safety policy.

Checking proofs is an automated process about as simple as
programming-language type-checking; on the other hand, finding
proofs of theorems is, in general, intractable. Subsequentwork on
PCC focused on building a realistic certifying compiler [4]that
automatically constructs proofs (for simple type-safety properties)
for a large subset of Java and on reducing the size of proof witness,
an important concern in the context of mobile code.

An important PCC advantage inherited by certified software is that
the software does not require use of a particular compiler orof
any compiler. As long as the code producer provides the proof, the
code consumer is assured of safety. This significantly increases the
flexibility available to system designers.

The PCC framework is itself quite general, but the original PCC
systems suffered from several major limitations: Most notable was
that the proof checker had to rely on a rather specific set of typing
rules so did not support more expressive program properties; the
typing rules were also error-prone, with their soundness often not
proved, so a single bug could undermine the integrity of the entire
PCC system.

Foundational PCC, or FPCC [1, 13], tackled these problems by
constructing and verifying its proofs using a metalogic, with no
type-specific axioms. However, FPCC concentrated on building
semantic models for high-level type-safe languages, rather than
performing general program verification.

3.2 Certified assembly programming

Certified Assembly Programming (CAP) [32] is a logic-based ap-
proach for carrying out general program verification insidea rich
mechanized metalogic (such as the one provided by Coq). Like
Hoare logic, a CAP program consists of assembly code anno-
tated with pre- and post-conditions and program invariants. Un-
like traditional Hoare-style verification, all CAP language con-
structs (such as assembly instruction sets), program assertions, in-
ference rules, operational semantics, and soundness proofs are im-
plemented inside the mechanized metalogic. This design makes it
possible to build a complete certified software package withfor-
mal dependability-claim and machine-checkable proofs. With help
from a proof assistant, programmers are able to combine manually
developed proof scripts with automated proof tactics and theorem
provers, allowing CAP to support verification of even undecidable
program properties.

CAP marries type-based FPCC with Hoare-style program verifi-
cation, leading to a great synergy in terms of modularity andex-
pressiveness. Hoare logic is well-known for its limited support for
higher-order features; most Hoare systems do not even support ver-
ification of simple type-safety properties. However, both shortcom-
ings are easily overcome in type-based approaches. Subsequent
work on CAP over the past five years developed new specialized
program logics for reasoning about such low-level constructs as
embedded code pointers [24], stack-based control abstractions [10],
self-modifying code [3], and garbage collectors [21].

Under type-based FPCC, function returns and exception handlers
are often treated as first-class functions, as in continuation-passing
style (CPS), even though they have more limited scope than general
first-class continuations. For functional programmers, CPS-based
code is conceptually simple but requires complex higher-order rea-
soning of explicit code pointers (and closures). For example, if a
function needs to jump to a return address (treated as continua-
tion), the function must assert that the return address is indeed a
valid code pointer to jump to . But the function does not know ex-
actly what the return address will be, so it must abstract over prop-
erties of all possible return addresses, something difficult to do in
first-order logic.

In the work on stack-based control abstraction [10], my colleagues
and I showed that return addresses (or exception handlers) are much
more disciplined than general first-class code pointers; a return ad-
dress is always associated with some logical control stack,the va-
lidity of which can be established statically; a function can cut to
any return address if it establishes the validity of its associated log-
ical control stack. Such safe cutting to any return address allows
programmers to certify the implementation of sophisticated stack
operations (such as setjmp/longjmp, weak continuations, general
stack cutting, and context switches) without resorting to CPS-based
reasoning. For example, when programmers certify the body of
a function, they do not need to treat its return address as a code
pointer; all they need is to make sure that at the return, the control
is transferred to the original return address. It is the caller’s respon-
sibility to set up a safe return address or valid code pointer; this is
much easier because a caller often knows the return address that
must be used.

3.3 Local reasoning and separation logic

Modular reasoning is the key technique for making program ver-
ification scale. Development of a certified software system would
benefit from a top-down approach where programmers first work
out the high-level design and specification, then decomposethe en-

 Mechanized Meta-Logic

OCAP Operational Semantics

OCAP Inference Rules

[
[]]
L1

OCAP

soundness

L
1

sound

...

...

[[]]
Ln

L
n

sound

...

...

module
 module

proof

trusted

base

...

certified

package

...

...

Figure 3. An open framework for building certified software

tire system into smaller modules, refine high-level specifications
into actual implementation, and finally certify each component and
link everything together into a complete system.

However, there is yet another critical dimension to making pro-
gram verification modular. Traditional Hoare logics often use pro-
gram specifications with arbitrarily large “footprints.” Separation
logic [27, 17] advocates “local reasoning” using small-footprint
specifications; that is, the specification of each module (orpro-
cedure) should refer only to data structures actually touched by a
module’s underlying code. By concisely specifying the separation
of heap and other resources, separation logic provides succinct yet
powerful inference rules for reasoning about shared mutable data
structures and pointer anti-aliasing.

Concurrent separation logic (CSL) [25] applies the same idea to
reason about shared-memory concurrent programs, assumingthe
invariant that there always exists a partition of memory among
different concurrent entities and that each entity can access only
its own part of memory. This assumption might seem simple but
is surprisingly powerful. There are two important points about this
invariant. First, the partition islogical; programmers do not need
to change their model of the physical machine, which has onlyone
global shared data heap, and the logical partition can be enforced
through separation logic primitives. Second, the partition is not
static and can be adjusted dynamically during program execution
by transferring the ownership of memory from one entity to the
other.

Under CSL, a shared-memory program can be certified as if it were
a sequential program since it is always manipulating its private
heap; to access shared memory, it must invoke an atomic operation
that transfers resources between the shared heap and the local
heap. Several recent efforts have extended CSL with rely-guarantee
reasoning, so even lock-free concurrent code can be certified using
modular small-footprint specifications.

3.4 Domain-specific logics and certified linking

A key first step toward making certified software practical isto
show it is possible to carry out end-to-end certification of acom-
plete software system. Large software systems, especiallylow-level
system software, use many different language features and span
many different abstraction levels. For example, the Yale FLINT
group’s (http://flint.cs.yale.edu) ongoing project [8] toverify a sim-
plified OS kernel exposes such challenges. In it, the kernel includes
a simple bootloader, kernel-level threads and a thread scheduler,
synchronization primitives, hardware interrupt handlers, and a sim-
plified keyboard driver. Although it has only 1,300 lines of x86 as-
sembly code, it uses such features as dynamic code loading, thread
scheduling, context switching, concurrency, hardware interrupts,
device drivers, and I/O. How would a programmer use machine-
checkable proofs to verify the safety or correctness properties of
such a system?

Verifying the whole system in a single program-logic or typesys-
tem is impractical because, as in Figure 2(a), such a verification
system would have to consider all possible interactions among
these features, including dynamic code loading, concurrency, hard-
ware interrupts, thread scheduling, context switching, and embed-
ded code pointers, many at different abstraction levels. The result-
ing logic, if it exists, would be highly complex and difficultto
use. Fortunately, software developers seem to never use allfea-
tures simultaneously. Instead, they use only a limited combination
of features—at a certain abstraction level—in individual program
modules. It would be much simpler to design and use specialized
“domain-specific” logics (DSL) to verify individual program mod-
ules, as in Figure 2(b). For example, for the simplified OS kernel,
dynamic code loading is used only in the OS boot loader, and in-
terrupts are always turned off during context switching; embedded
code pointers are not needed if context switching can be imple-
mented as a stack-based control abstraction.

To allow interactions of modules and build a complete certified
software system, programmers must also support interoperability
of different logics. In 2007 my colleagues and I developed a new
open framework for CAP, or OCAP [7], to support verification
using specialized program logics and for certified linking of low-
level heterogeneous components. OCAP lays a set of Hoare-style
inference rules over the raw operational semantics of a machine
language (see Figure 3), and the soundness of these rules is proved
in a mechanized metalogic so it is not in the TCB.OCAP uses
an extensible and heterogeneous program-specification language
based on the higher-order logic provided by Coq. OCAP rules are
expressive enough to embed most existing verification systems for
low-level code. OCAP assertions can be used to specify invariants
enforced in most type systems and program logics (such as memory
safety, well-formedness of stacks, and noninterference between
concurrent threads). The soundness of OCAP ensures that these
invariants are maintained when foreign systems are embedded in
the framework.

To embed a specialized verification systemL, OCAP developers
first define an interpretation[[]]

L
that maps specifications inL into

OCAP assertions; then they prove system-specific rules/axioms
as lemmas based on the interpretation and OCAP rules. Proofs
constructed in each system can be incorporated as OCAP proofs
and linked to compose the complete proof.

There are still many open issues on the design of OCAP: For
example, to reason about information-flow properties, OCAPmust
provide a semantic-preserving interpretation of high-order types (in
an operational setting). And to support liveness properties, OCAP
must support temporal reasoning of program traces.

3.5 Certified garbage collectors and thread libraries

In 2007, my colleagues and I used OCAP to certify several appli-
cations involving both user-program code and low-level runtime

scheduler & ctxt switching & ...

. . .

ISR
. . .

.

.

.

A

B

C

1

1

0

1

1

0

1

0

irq0

irq1

irq2

irq3

irq4

irq5

irq6

irq7

cond var.
locks
 I/O & Driver

. . .

sti/cli

Figure 4. Decomposition of a preemptive thread implementation

code. In one application [7], we successfully linked programs in
typed assembly language (TAL) [22] with a certified memory-
management library. TAL supports only type-preserving mem-
ory updates, and the free memory is invisible to TAL code. We
certified the memory-management library in stack-based CAP, or
SCAP [10], which supports reasoning about operations over free
memory while ensuring that the invariants of TAL code are main-
tained.

Also in 2007, in another application [21], we developed a gen-
eral framework for certifying a range of garbage collectorsand
their mutators. If we had tried to develop a single type system to
type-check both an ML-like type-safe language and the underly-
ing garbage collector (requiring fancy runtime type analysis), the
result would have involved analyzing polymorphic types, which is
extremely complex. However, the ML type system never needs to
know about runtime tagging and the internals of the garbage collec-
tor. Moreover, implementation of the collector need not understand
the polymorphic type system used in type-checking ML code; it
needs to only distinguish pointers from non-pointers. A better ap-
proach, which we followed in 2007, is to certify these modules us-
ing different domain-specific logics, thus avoiding the difficult task
of designing a universal program logic. Certified garbage collectors
can then be linked with certified mutator code to form a complete
system.

A year later, in a third application [8], we successfully certified the
partial correctness of a preemptive thread library extracted from our
simplified OS kernel. The kernel was implemented in 16-bit x86
assembly and worked in real mode for uniprocessor only. It con-
sisted of thread context switching, scheduling, synchronizations,
and hardware interrupt handlers. We stratified the thread implemen-
tation by introducing different abstraction layers with well-defined
interfaces. In Figure 4, at the highest level (Level A), preemptive
threads follow the standard concurrent programming model.The
execution of a thread can interleave with or be preempted by other
threads. Synchronization operations are treated as primitives. Hard-
ware interrupts are abstracted away and handled at Level B where
code involves both hardware interrupts and threads; synchroniza-
tion primitives, input/output operations, device drivers, and inter-
rupt handlers are all implemented at this level; interrupt handling
is enabled/disabled explicitly usingsti/cli. At the lowest level
(Level C), the thread scheduler and the context switching routine
manipulate the threads’ execution contexts stored in thread queues
(on the heap). Interrupts are invisible at this level because they are
always disabled. Libraries implemented at a lower level areex-
posed as abstract primitives for the level above it, and their opera-

tional semantics in the high-level abstract machine serve as formal
specifications for the low-level implementation.

The stratified system model gives programmers a systematic and
principled approach for controlling complexity. Programmers can
thus focus on a subset of language features at each level and certify
different software components using specialized program logics.

3.6 Certified and certifying compilation

Much work in the program-verification community concentrates
on source-level programs written in high-level languages (such as
C, Java, and C#). In order to turn these programs into certified
assembly components suitable for linking in the OCAP framework,
OCAP developers must show that their corresponding compiler is
also trustworthy.

CompCert is a certified compiler for a subset of C (called C minor,
or Cm) developed in 2006 by Leroy [20]. By “certified” compiler, I
mean the compiler itself is proved correct. Indeed, Leroy specified
formal operational semantics for Cm, as well as for the machine
language, building a machine-checkable proof in Coq whereby the
compiler preserves behavior from one operational semantics to an-
other. However, the current CompCert compiler supports only se-
quential Cm programs. It also must be bootstrapped by the OCaml
compiler, even though the OCaml compiler is not verified.

On the other hand, a certifying compiler is not necessarily correct
but will take a (certified) source program and generate certified
assembly code. Much work on certifying compilation focuseson
type-safe source languages and can preserve only type-safety prop-
erties. A challenging open problem is to extend certifying compila-
tion to preserve deep correctness and security properties.

3.7 Lightweight formal methods

Building large-scale certified software systems does not always re-
quire heavyweight program verification. Most software systems are
built from modular components at several levels of abstraction.
At the lowest levels are the kernel and runtime-system compo-
nents discussed earlier. At the highest levels are components with
a restricted structure operating on well-defined interfaces. The re-
stricted structure can use a type-safe, high-level programming lan-
guage with high-level concurrency primitives or C programs(even
concurrent C programs) in a style understandable to static-analysis
tools. Both restricted styles are in widespread commercialuse to-
day.

Lightweight formal methods (such as high-level type system, spe-
cialized program logic, with decidable decision procedure, and
static analysis) can help guarantee important safety properties with

moderate programmer effort; error messages from the typechecker,
decision procedure, and static-analyzer usually give appropriate
feedback in the programming process. These safety properties are
sometimes also even security properties, as in this example: “Mod-
ule A cannot read the private variables of module B, except through
the public methods provided by B.” Using information-flow type
systems or static analysis a programmer can obtain a stronger ver-
sion of the same guarantee while also adding “... and not onlythat,
but the public methods of module B do not leak the value of private
variablex.”

Lightweight formal methods can be used to dramatically cut the
cost of building certified software. For a programmer, the chal-
lenge is to make them generate explicit proof witness (automat-
ically) and link them with certified low-level kernel and runtime
components. With proper embedding, lightweight formal methods
would fit nicely into the DSL-centric OCAP framework for con-
structing end-to-end certified software.

3.8 Automation and proof engineering

The end goal of certified software is a machine-checkable depend-
ability metric for high-assurance software systems. Certified soft-
ware advocates the use of an expressive metalogic to capturedeep
invariants and support modular verification of arbitrary machine-
code components. Machine-checkable proofs are necessary for al-
lowing third parties to quickly establish that a software system in-
deed satisfies a desirable dependability claim. Automated proof
construction is extremely important and desirable but should be
done only without violating the overall integrity and expressiveness
of the underlying verification system.

Much previous research on verification reflected full automation
as a dominating concern. This is reasonable if the primary goal is
finding bugs and having an immediate effect on the real world’s
vast quantity of running software. Unfortunately, insisting on full
automation also severely hinders the power and applicability of
formal verification; many interesting program properties (that end
users care about) are often undecidable (full automation isimpos-
sible), so human intervention is unavoidable. Low-level program
modules often have subtle requirements and invariants thatcan be
specified only through high-order logic; programming libraries ver-
ified through first-order specifications often have to be adapted and
verified again at different call sites.

Nevertheless, there is still a great synergy in combining these
two lines of software-verification work. The OCAP framework
described here emphasizes domain-specific (including decidable
first-order) logics to certify various components in a software sys-
tem. Successful integration would allow programmers to getthe
best of both lines.

Developing large-scale mechanized proofs and human-readable
formal specifications will become an exciting research fieldon its
own, with many open issues. Existing automated theorem provers
and Satisfiability Modulo Theories solvers [5] work only on first-
order logic, but this limited functionality is in conflict with the
rich metalogic (often making heavy use of quantifiers) required for
modular verification of low-level software. Proof tactics in existing
proof assistants (such as Coq) must be written in a different“un-
typed” language, making it painful to develop large-scale proofs.

4. Conclusions
Certified software aligns well with a 2007 study on software
for dependable systems [18] by the National Research Council
(http://sites.nationalacademies.org/NRC/index.htm) that argued for
a direct approach to establishing dependability whereby software

developers make explicit the dependability claim and provide di-
rect evidence that the software indeed satisfies the claim. However,
the study did not explain what would make a clear and explicitde-
pendability claim, what serves as valid evidence, and how tocheck
the underlying software to ensure that it really satisfies the claim
without suffering credibility problems [6].

The study also said that the dependability of a computer system
relies not only on the dependability of its software but alsoon the
behavior of all other components in the system, including human
operators and the surrounding physical environment. Certified soft-
ware alone cannot guarantee the dependability of the computer sys-
tem. However, as explained earlier, many advantages followfrom
separating the dependability argument for the software from the ar-
gument for the software’s execution environment.

Computer software is a rigorous mathematical entity for which pro-
grammers can formally certify its dependability claim. However,
the behavior of human operators depends on too many factors out-
side mathematics; even if they try hard, they would probablynever
achieve the kind of rigor they can for software. By focusing on soft-
ware alone and insisting that all certified software come with ex-
plicit machine-checkable proofs, we can use the formal dependabil-
ity claim as a metric for measuring software dependability.Formal
specifications are also more complete and less ambiguous than in-
formal specifications written in natural languages; this should help
human operators better understand the behavior of the underlying
software.

A key challenge in building dependable systems is to identify the
right requirements and properties for verification and decide how
they would contribute to the system’s overall dependability. Certi-
fied software does not make this task easier. Research on certifying
low-level system software would give software developers more
insight into how different programming-abstraction layers would
work together. Insisting on machine-checkable proof objects would
lead to new high-level certified programming tools, modularverifi-
cation methodologies, and tools for debugging specifications, all of
which would make developing dependable software more econom-
ical and painless.

Acknowledgments

I would like to thank Xinyu Feng, Daniel Jackson, George Nec-
ula, Ashish Agarwal, Ersoy Bayramoglu, Ryan Wisnesky, and the
anonymous reviewers for their valuable feedback.

References
[1] A. W. Appel. Foundational proof-carrying code. InProc. 16th Annual

IEEE Symposium on Logic in Computer Science, pages 247–258, June
2001.

[2] H. P. Barendregt and H. Geuvers. Proof-assistants usingdependent
type systems. In A. Robinson and A. Voronkov, editors,Handbook
of Automated Reasoning, pages 1149–1238. Elsevier Scientific
Publishing B.V., 2001.

[3] H. Cai, Z. Shao, and A. Vaynberg. Certified self-modifying code. In
Proc. 2007 ACM Conference on Programming Language Design and
Implementation, pages 66–77, 2007.

[4] C. Colby, P. Lee, G. Necula, F. Blau, M. Plesko, and K. Cline. A
certifying compiler for Java. InProc. 2000 ACM Conference on
Programming Language Design and Implementation, pages 95–107,
2000.

[5] L. M. de Moura and N. Bjørner. Z3: An Efficent SMT Solver. In
Proc. 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’08), pages 337–340,
April 2008.

[6] R. A. DeMillo, R. J. Lipton, and A. J. Perlis. Social processes and
proofs of theorems and programs. InProceedings of the 4th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’77), pages 206–214, Jan. 1977.

[7] X. Feng, Z. Ni, Z. Shao, and Y. Guo. An open framework for foun-
dational proof-carrying code. InProc. 2007 ACM SIGPLAN Interna-
tional Workshop on Types in Language Design and Implementation,
pages 67–78, Jan. 2007.

[8] X. Feng, Z. Shao, Y. Dong, and Y. Guo. Certifying low-level programs
with hardware interrupts and preemptive threads. InProc. 2008 ACM
Conference on Programming Language Design and Implementation,
pages 170–182, 2008.

[9] X. Feng, Z. Shao, Y. Guo, and Y. Dong. Combining domain-specific
and foundational logics to verify complete software systems. InProc.
2nd IFIP Working Conference on Verified Software: Theories,Tools,
and Experiments (VSTTE’08), volume 5295 ofLNCS, pages 54–69.
Springer-Verlag, October 2008.

[10] X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni. Modular
verification of assembly code with stack-based control abstractions.
In Proc. 2006 ACM Conference on Programming Language Design
and Implementation, pages 401–414, June 2006.

[11] T. C. Hales. Formal proof.Notices of the AMS, 55(11):1370–1380,
December 2008.

[12] A. Hall and R. Chapman. Correctness by construction: Developing
a commercial secure system.IEEE Software, 19(1):18–25, Jan-
uary/February 2002.

[13] N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. Asyntactic
approach to foundational proof-carrying code. InProc. Seventeenth
Annual IEEE Symposium on Logic In Computer Science (LICS’02),
July 2002.

[14] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10), Oct. 1969.

[15] T. Hoare and J. Misra. Verified software: theories, tools, experiments.
In Proc. 1st IFIP Working Conference on Verified Software: Theories,
Tools, and Experiments (VSTTE’05), volume 4171 ofLNCS, pages
1–18. Springer-Verlag, October 2005.

[16] G. Huet, C. Paulin-Mohring, et al. The Coq proof assistant reference
manual. The Coq release v6.3.1, May 2000.

[17] S. Ishtiaq and P. W. O’Hearn. BI as an assertion languagefor mutable
data structures. InProc. 28th ACM Symposium on Principles of
Programming Languages, pages 14–26, Jan. 2001.

[18] D. Jackson, M. Thomas, and L. Millett.Software for Dependable
Systems: Sufficient Evidence?The National Academic Press, 2007.

[19] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, and
J. R. Lorch. Subvirt: Implementing malware with virtual machines.
In Proceedings of the 2006 IEEE Symposium on Security and Privacy
(Oakland), pages 314–327, May 2006.

[20] X. Leroy. Formal certification of a compiler back-end or: Program-
ming a compiler with a proof assistant. InProceedings of the 33rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL’06), Jan. 2006.

[21] A. McCreight, Z. Shao, C. Lin, and L. Li. A general framework for
certifying garbage collectors and their mutators. InProc. 2007 ACM
Conference on Programming Language Design and Implementation,
pages 468–479, 2007.

[22] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F
to typed assembly language. InProc. 25th ACM Symposium on
Principles of Programming Languages, pages 85–97, Jan. 1998.

[23] G. Necula and P. Lee. Safe kernel extensions without run-time
checking. InProc. 2nd USENIX Symposium on Operating System
Design and Impl., pages 229–243, 1996.

[24] Z. Ni and Z. Shao. Certified assembly programming with embedded
code pointers. InProc. 33rd Symp. on Principles of Prog. Lang.,
pages 320–333, Jan. 2006.

[25] P. W. O’Hearn. Resources, concurrency and local reasoning. In Proc.
15th Int’l Conf. on Concurrency Theory (CONCUR’04), volume 3170
of LNCS, pages 49–67, 2004.

[26] A. Pnueli, M. Siegel, and E. Singerman. Translation validation.
In Proc. 4th International Conference on Tools and Algorithmsfor
Construction and Analysis of Systems (TACAS’98), volume 1384 of
LNCS, pages 151–166. Springer-Verlag, March 1998.

[27] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. InProc. 17th Annual IEEE Symposium on Logic in
Computer Science, pages 55–74, July 2002.

[28] W. Schulte, S. Xia, J. Smans, and F. Piessens. A glimpse of a verifying
C compiler. InProceedings of the C/C++ Verification Workshop, July
2007.

[29] Z. Shao. An overview of the FLINT/ML compiler. InProc. ACM
SIGPLAN Workshop on Types in Compilation, June 1997.

[30] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper,and P. Lee.
TIL: A type-directed optimizing compiler for ML. InProc. 1996 ACM
Conference on Programming Language Design and Implementation,
pages 181–192, 1996.

[31] K. Thompson. Reflections on trusting trust.Communications of the
ACM, 27(8):761–763, August 1984.

[32] D. Yu, N. A. Hamid, and Z. Shao. Building certified libaries for PCC:
Dynamic storage allocation. InProc. 2003 European Symposium on
Programming (ESOP’03), volume 2618 ofLNCS, pages 363–379.
Springer-Verlag, Apr. 2003.

[33] N. Zeldovich. Securing Untrustworthy Software Using Information
Flow Control. PhD thesis, Department of Computer Science, Stanford
University, October 2007.

Zhong Shao(zhong.shao@yale.edu) is a professor in the Depart-
ment of Computer Science at Yale University, New Haven, CT.

