Certified Software

Only if the programmer can prove (through formal machineeiable proofs) it’s free of
bugs with respect to a claim of dependability.

Zhong Shao

Yale University
zhong.shao@yale.edu

Abstract

Certified software consists of a machine-executable progras
a formal machine-checkable proof that the software is ffdmigs
with respect to a claim of dependability. The conventioneldom
is that certified software will never be feasible becauselgpend-
ability of any real software must also rely on that of its urhgiag
operating system and execution environment which is toeléwel
to be verifiable. In recent years, however, there have beewy ad:
vances in the theory and engineering of mechanized protérsgs
applied to verification of low-level code, including procésrying
code, certified assembly programming, local reasoning epdra-
tion logic, certified linking of heterogeneous componeats] cer-
tified or certifying compilation. In this article, | give arverview
of this exciting new field, focusing on both foundationaladeand
key insights that make the work on certified software diffenf
traditional program verification systems. | will also déersev-
eral exciting recent advances and challenging open prablem

1. Introduction

Computer software is one of the most influential technologheer
developed. Software has entered every aspect of our livds an
is used to control everything from computing and communica-
tion devices (such as computers, networks, cell phones\Weid
browsers), to consumer products (such as cameras, TVsehiwd r
erators), to cyber-physical systems (such as automoliledijcal
devices, and aviation systems), and to critical infrastmec(such

as financial, energy, communications, transportation, retnal
defense).

Unfortunately, software is also sometimes our least degiglecen-
gineering artifact. Software companies lack the kind of nieg:
ful warranty most other engineering organizations are ebgueto
provide. Major corporations and government agencies wadel
invest in fixing software bugs, but the prospect of buildietiable
software is bleak. The pervasive presence of software blsgs a
makes all existing computing and information systems valbke

to security and privacy attacks.

An important cause of such difficulty is the sheer complegitshe
software itself. If each line of code is viewed as an indigdcom-
ponent, software systems are easily the most complicaitegstive
humans have ever built. Unlike hardware components, softes
ecution can easily lead to an unbounded number of statessthog
and model-checking techniques cannot guarantee retialfik the
hardware community moves deep into new multi-core and eyber
physical platforms, and as software is thoroughly intemgtanto
everyday objects and activities, the complexity of futuréwsare

For most of today’s software, especially low-level fornieloper-
ating systems, nobody knows precisely when, how, and why the
actually work. These systems lack rigorous formal spedcitioa
and were developed mostly by large teams of developers psing
gramming languages and libraries with imprecise semariiesn

if the original developers had a good informal understagdin
the inner workings, their knowledge and assumptions ab@iem
behavior (often implicit) are easily lost or broken in suipsent de-
velopment or maintenance phases.

The software research community has sought to tackle thieke p
lems in recent years but remains hampered by three key diiisu

Lack of metrics. Metrics are still lacking for measuring software
dependability, making it difficult to compare different kec
nigues and build steady progress in the field. Dependaloifity
ten includes attributes like reliability, safety, availdl, and
security. A system'’s availability can be measured retioelgt
as a percentage of its uptime in a given year; for example, six
nines, or 99.9999%, means 31.5 seconds downtime per year,
but quantifying other attributes is much more difficult. Aopr
gram with one bug is not necessarily 10 times more secure than
a program with 10 bugs. A system’s reliability depends on its
formal specification, which is often nonexistent.

Worse, software dependability is often confused with the de
pendability of the software’s execution environment, vishic
consists of not just hardware devices but also human opsrato
and the physical world. Since the dependability of the execu
tion environment is often beyond human control, many people
view software as a complex biological system, rather thaa as
rigorous mathematical entity;

System software.A software application’s dependability also re-
lies on the dependability of its underlying system software
cluding OS kernel, device driver, hypervisor, garbagesmdr,
and compiler. These low-level programs are often profoundl
complex and bug-prone, but little has been done to make them
truly dependable. For example, if an OS kernel or even a com-
piler has security holes, the entire system could be compro-
mised, regardless of what software developers do at a higher
level [31, 19]; and

Last-mile problem. Despite recent progress in formal-methods re-
search, program verification still involves a vexing “lasile
problem.” Most software-verification research conceesain
high-level models rather than on actual programs, valufale
finding bugs but leaving a big gap that must be closed before
meaningful dependability claims can be made about acttial so
ware. Failure to reason about actual code also has big impli-

could get much worse, even as demand for dependable software cations for maintainability; for example, it is difficult fgoro-

becomes more urgent.

grammers to pinpoint the source and a fix when a new bug is

identified and ensure that subsequent updates (to actue) cod
will not break the code’s high-level model.

Leading research ocertified softwareims to tackle all three. For
example, concerning the lack of good metrics, a line is drhem
tween the actual machine-executable software and theustirg
physical environment (e.g., hardware devices and humaraeope
tors). We can neither predict the future of the physical darbr
formally certify human behavior, but at least under a welfiged,
stable hardware platform (such as the x86 instruction get)be-
havior of each machine executable is a rigorous mathematica
tity. With a formal specification stating its desirable bebg we
can (at least in theory) rigorously “certify” that the mauhiexe-
cutable behaves as expected. A good dependability mettiers
just the formal claim developers make and certify about gmoh
gram.

The long-term goal for research on certified software is to tu
code—often a system’s weakest link—into its most deperdabl
component. The formal specification given may not precisaly
ture the behavior of the physical environment, so the olgyatem
may still not function properly, but, at least, when a profblec-
curs, programmers and users alike are assured that theitwebfv
the software is properly documented and rigorously entbréae
specifications for functional correctness of individuaingmnents
may occasionally be too large to be comprehensible, but regsy
temwide safety, liveness, and security properties candtedssuc-
cinctly and certified with full confidence.

To address the second and third difficulties, software dperb
must also certify the actual system-software code. Modegés a
new “certified” computing platform where programmers haw fi
control over the behavior of its system software stack,idicig
bootloader, OS kernel, device driver, hypervisor, and mtietime
services. Software consisting of mostly certified comptseould

be easier to maintain, because the effects of updating Hieert
component would be easier to track, and new bugs would quickl
be localized down to the noncertified modules.

Constructing large-scale certified software systems édfigschal-
lenge. Still unknown is whether it can be done at all and wéreth
it can be a practical technology for building truly deperidagoft-
ware. In this article, | explore this new field, describingesal ex-
citing recent advances and challenging open problems.

2. What s It?

Certified softwareconsists of a machine-executable progrém
plus a rigorous formal prooP (checkable by computer) that the
software is free of bugs with respect to a particular depleiitia
claim S. Both the proofP and the specificatio are written us-
ing a general-purpose mathematical logic, the same logiinary
programmers use in reasoning every day. The logic is als@-a pr
gramming language; everything written in logic, includipigpofs
and specifications, can be developed using software toath (@s
proof assistants, automated theorem provers, and cedifyom-
pilers). Proofs can be checked automatically for corrextnen a
computer, by a small program callecheoof checkerAs long as
the logic used by programmers is consistent, and the depiingla
specification describes what end users want, programmarbeca
sure that the underlying software is free of bugs with resgethe
specification.

The work on certified software fits well into the Verified Sodine
Initiative (VSI) proposed by Hoare and Misra [15], but difen
several distinct ways from traditional program-verificatsystems.

First, certified software stresses use of an expressivergene
purpose metalogic and explicit machine-checkable praofsup-

port modular reasoning and scale program verification tallesal
kinds of low-level code [32, 24, 10, 3]. Using a rich mechaxiz
metalogic allows programmers to define new customized “dema
specific” logics (together with its meta theory), apply thenter-
tify different software components, and link everythingttoild
end-to-end certified software [9]. With machine-checkaiigofs,
proof-checking is automated and requires no outside assomsp
As long as the metalogic is consistent, the validity of prdof
immediately establishes that the behavior of progi@nsatisfies
specificationS.

Existing verification systems often use a rather restrigsser-
tion language (such as first-order logic) to facilitate anstion

but do not provide explicit machine-checkable proof olgeétro-

gram components verified using different program logicsypet
systems cannot be linked together to make meaningful esddo
dependability claims about the whole software system. & pesb-

lems make it more difficult for independent third parties &tidate

claims of dependability.

Second, with an expressive metalogic, certified software i
used to establish all kinds of dependability claims, fromme
type-safety properties to more advanced safety, liversessyrity,
and correctness properties. Building these proofs needotiotv
Hoare-style reasoning [14]; much of the earlier work on proo
carrying code [23] constructed safety proofs automaticading
such technologies as type-preserving compilation [30, &9]
typed assembly language [22]. However, most traditionadj@m
verifiers concentrate on partial correctness propertigs on

Third, certified software emphasizes proving propertiesHe ac-
tual machine executables, rather than their high-levehtparts,
though proofs can still be constructed at the high level dueh t
propagated down to the machine-code level using a cergjfgin
certified compiler. On the other hand, most existing progvani+
fiers target high-level source programs.

Fourth, to establish a rigorous dependability metric,ified soft-
ware aims to minimize the trusted computing base, or TCB, the
small part of a verification framework in which any error cabs
vert a claim of end-to-end dependability. TCB is a well-kmovon-
cept in the verification and security community, as well aswase

of confusion and controversy [6].

The dependability of a computing system rests on the depend-
able behavior of its underlying hardware devices, humanatpes,

and software. Many program verifiers are comfortable witttiplg
complex software artifacts (such as theorem provers, QScam-
pilers) into the TCB because it seems that the TCB of any eerifi
tion system must include those “hard-to-reason-about’gmmnts
(such as hardware devices and human operators) so is atyaady
large.

Of course, all program-verification systems create a formadiel
about the underlying execution environment. Any theoreaved
regarding the software is with respect to the formal modé}, o
the TCB for any claim made regarding the software alone shoul
not include hardware devices and human operators.

Still, any bug in the TCB would (by definition) compromise the
credibility of the underlying verification system. A smallECB is
generally more desirable, but size is not necessarily tseibdi-
cator; for example, a 200-line garbage collector is not seaely
more reliable than a 2,000-line straightforward prettynfai. The
TCB of a good certified framework must include only compogent
whose soundness and integrity can also be validated by éndep
dent third parties.

Human & the

Dependability Physical World
Claim | |
| |
l No v .
Poof T Proof — 1 || T
machine Checker Yes | =
code - ./ cpus

S

T

Figure 1. Components of a certified framework

2.1 Components of a certified framework

A typical certified framework (see Figure 1) consists of figene
ponents:

¢ The certified software itselincluding both machine code and
formal proof;

e Formal machine modeProviding the operational semantics for
all machine instructions;

¢ Formal dependability claim for the softwarlncluding safety
property, security policy, and functional specificatiom &wr-
rectness;

¢ Underlying mechanized metalogic (not shows)r coding all
proofs, specifications, and machine-level programs; and

e Proof checkerFor checking the validity of all the proofs fol-
lowing the inference rules of the metalogic.

If the proof of a given certified software package can be waadid
by the proof checker, then execution of the software on thadb
machine model is guaranteed to satisfy a formal depentabili
claim.

Things can, however, still go wrong. First, the mechanizext-m
alogic might be inconsistent, a risk that can be minimizethé
framework designers choose a simple, well-understoodergén
purpose metalogic and prove (perhaps on paper) why it issthde
consistent.

Second, the proof checker is a computer program, so it conld g
wrong all by itself. But if the framework uses a simple logidhw

a small number of inference rules, the proof checker can lema
quite small, written in assembly, and verified by hand.

Third, the formal machine model might not reflect hardwaredve
ior. Most hardware vendors perform intensive hardwareficeri
tion, so this risk can be minimized if hardware and softwarett
opers share the machine specifications. Even if this is regtiple,
the framework designer can still validate the model by cainga
its operational semantics with the instruction-set refeeemanu-
als.

Finally, the formal dependability specificatioB®) may not accu-
rately capture the behavior of the human or physical workelex-

Since a dependability claim is made only regarding the formre
chine model, the TCB of such a certified framework consists of
just the consistency proof of the metalogic and the integrtthe
proof checker, both of which should be demonstrable by iadep
dent third parties (such as through the peer-review praafessop-
quality journal). If the computer science community caneggon

a single metalogic (a good thing), this task of standardizinmet-
alogic would need to be done only once. Certified softwarelavou
then no longer be the weakest link in a dependable system.

2.2 Mechanized metalogic

A key enabling technology for certified software is to writerhal
proofs and specifications as typed functional programs) heve
a computer automatically check the validity of the proofsthe
same way a static type-checker does type-checking. Thascaieme
from the well-known Curry-Howard correspondence refeyria
the generalization of a syntactic analogy between systéfosmal
logic and computational calculi first discovered by the Aizem
logicians Haskell Curry and William Howard. Most advances f
developing large-scale machine-checkable proofs weresroaly
during the past 10 years; see the excellent survey by Barghaind
Geuvers [2] and a 2008 overview article by Hales [11].

In the context of certified software, there are a few more iregu
ments: the logic must be consistent and expressive so seftwa
developers can express everything they want to say. It nisst a
support explicit machine-checkable proof objects and bepla
enough that the proof checker can be hand-verified for coress.

Because software components may be developed using differ-
ent programming languages and certified using differentaiom
specific logics and type systems, mechanized metalogic ahsst
support meta-reasoning. It can be used to represent thaxsynt
inference rules, and meta-proofs (for their soundnesshefkpe-
cialized object logics.

Much of the current work on certified software is carried aut i
the Coq proof assistant [16]. Coq itself provides a rich bigbrder
logic with powerful inductive definitions, both crucial ferriting
modular proofs and expressive specifications.

2.3 Advantages

thelessSPis formally stated and the code is guaranteed to satisfy With certified software, the dependability of a softwaretegs

SP. Here, | deliberately decoupled the correctness of vetifina
from the specification process. Existing efforts validgtémd test-
ing specifications are, of course, very valuable and comgieany
to the certification process.

would be measured by the actual formal dependability claiis i
able to certify. Because the claim comes with a formal priuo,
dependability can be checked independently and autoriigtina
an extremely reliable way.

A formal dependability claim can range from making almost no
guarantee, to simple type-safety property, to deep livenssscu-
rity, and to correctness properties. It provides a grearimétr
comparing different techniques and making steady prodoessd
the system'’s overall dependability.

If the software community could agree on a metalogic and wotk
the formal models of a few popular computing platforms, itiect
software would provide an excellent framework for accurtinga
dependable software components. Since proofs are incantifnle
mathematical truths, once a software component is cettified
trustworthiness (with respect to its specification) woulespmably
last for eternity.

Unlike higher-level programming languages, certified wafe
places no restrictions on the efficiency of its underlyingeand
the way programs are developed. Because the metalogic iishas r
as the one programmers use in daily reasoning, and evegythin
running on a computer must eventually be executed as a nechin
executable, if programmers believe (informally) that thaiper-
efficient and sophisticated code really works as they claliare
should be a way to formally write down their proofs. When de-
pendability is not an issue, the software can be used assisias
ing proper isolation from the rest of the system; when progra
mers really care about dependability, they must providdadtmaal
machine-checkable proof.

On the other hand, certified software encourages the ussal be
practices in software engineering and program verificater-
tifying large-scale systems clearly benefits from higtelepro-
gramming abstraction, domain-specific logics, modularodec
position and refinement, model-driven design and developme
the correctness-by-construction methodology [12], artdraated
theorem-proving tools. The only difference is that they niow
sist on receiving hard evidence (such as machine-checkabtd
objects) as a way to deliver quality assurance and measarefth
fectiveness of the technologies.

Certified software also decouples the tools for proof caision
and program development from the proof-checking infrastme.
The rich metalogic provides the ultimate framework for Birify up
layers of abstraction for complex software. Once they anméal,
programmers can build different software components aed th
proofs using completely different methods. Because spatifins
and proofs are both represented as programs (within a cemput
they can be debugged, updated, transformed, analyzedeased
by novel proof-engineering tools.

Certified software also significantly improves the mairaaitity of
the underlying system. A local change to an individual congm
can be checked quickly against its specification, with ifsafon
the overall system known immediately. A major reorgananf

the system can be done in a principled way by comparing the

changes against high-level specifications programmers fav
each certified component.

2.4 Challenges

The main challenge of certified software is the potentiallgdcost
in constructing its specifications and proofs, though swgt can
be cut dramatically in the following ways.

First, how software is developed makes a huge differencéen t
system’s future dependability. If the software is full ofgsuor de-
veloped without consideration of the desirable depenitgloiaim,
post-hoc verification would be extremely expensive in tewhs
time and money, or simply impossible. A proactive approatteif
as correctness-by-construction [12]) should lower the sigmifi-
cantly.

Second, building certified software does not mean that progr
mers must verify the correctness of every component or igor
used in its code; for example, in micro-kernels or virtuaahine

monitors, it is often possible for programmers to verify aafiraet

of components that in turn perform run-time enforcementegis

rity properties on other components [33].

Dynamic validation (such as translation validation for qiler
correctness [26]) also simplifies proofs significantly;égample, it
may be extremely difficult to verify that a sophisticatedalthm

A always takes an inpuk and generates an outplit such that
R(X,Y) holds; instead, a programmer could extetdy adding

an additional validation phase, or a validator, that checksther
the inputX and the outpuY” indeed satisfy the predicafe assum-
ing R is decidable. If this check fails, the programmer can invoke
an easier-to-verify (though probably less-efficient) i@rsof the
algorithm A. To build certified software, all the programmer needs
is to certify the correctness of the validator and the eastesion

of the algorithm, with no need to verify algorithr anymore.

Third, the very idea that proofs and specifications can beerep
sented as programs (within a computer) means that devsloper
should be able to exploit the synergy between engineeriagfer
and writing large programs, building a large number of tcoisl
proof infrastructures to make proof construction mucherasi

Finally, formal proofs for certified software ought to be rhigim-
pler and less sophisticated than those used in formal mattiem
ics [11]. Software developers often use rather elementeopfp
methods to carry out informal reasoning of their code. Pydof
software are more tedious but also more amenable for aumat
generation [28, 5].

Certified software also involves other challenges. For gtanthe
time to market is likely terrible, assuming dependabiliyniot a
concern, so the cost of certification would be justified oflgrid
users truly value a dependability guarantee. Deploymentldvo
be difficult since most real-world engineers do not know how t
write formal specifications, let alone proofs. Pervasiveifiea-
tion requires fundamental changes to every phase in mostirexi
software-development practices, something few orgapizsitare
able to undertake. The success of certified software diiticglies
on efforts initially developed in the research community.

3. Recent Advances

Advances over the past few years in certified software haee be
powered by advances in programming languages, compilers, f
mal semantics, proof assistants, and program verificakiene, |
sample a few of these efforts and describe the remainindgectogs
for delivering certified software.

3.1 Proof-carrying code

Necula’s and Lee’s 1996 work [23] on proof-carrying code (JC
is the immediate precursor to the large body of more recerk oo

certified software. PCC made a compelling case for the irapos

of having explicit witness, or formal machine-checkabl&ence,

in such applications as secure mobile code and safe OS kernel
extensions. PCC allows a code producer to provide a (codjpile
program to a host, along with a formal proof of safety. Thethos
specifies a safety policy and a set of axioms for reasoningitabo
safety; the producer’s proof must be in terms of these axioms

PCC relies on the same formal methods as program verification
but has the advantage that proving safety properties is reasier
than program correctness. The producer’s formal proof dogsn
general, prove that the code produces a correct or meahnegfult

(a) The One-for-All Logic

(b) Domain-Specific Logics

Figure 2. Using domain-specific logics to verify modules

but does guarantee that execution of the code satisfies siralle
safety policy.

Checking proofs is an automated process about as simple a
programming-language type-checking; on the other handinn
proofs of theorems is, in general, intractable. Subsequeri on
PCC focused on building a realistic certifying compiler [pt
automatically constructs proofs (for simple type-safatyperties)

for a large subset of Java and on reducing the size of prookss,

an important concern in the context of mobile code.

An important PCC advantage inherited by certified softwarthat
the software does not require use of a particular compileofor
any compiler. As long as the code producer provides the ptoef
code consumer is assured of safety. This significantly aswe the
flexibility available to system designers.

The PCC framework is itself quite general, but the origin@ICP
systems suffered from several major limitations: Most hiztavas
that the proof checker had to rely on a rather specific setpingy
rules so did not support more expressive program propetties
typing rules were also error-prone, with their soundnessnoiot
proved, so a single bug could undermine the integrity of titee
PCC system.

Foundational PCC, or FPCC [1, 13], tackled these problems by
constructing and verifying its proofs using a metalogicthwio
type-specific axioms. However, FPCC concentrated on mmgldi
semantic models for high-level type-safe languages, réatien
performing general program verification.

3.2 Certified assembly programming

Certified Assembly Programming (CAP) [32] is a logic-baspd a
proach for carrying out general program verification insidech
mechanized metalogic (such as the one provided by Coq). Like

CAP marries type-based FPCC with Hoare-style program verifi
cation, leading to a great synergy in terms of modularity exd
ressiveness. Hoare logic is well-known for its limited ot for
igher-order features; most Hoare systems do not even gupgge
ification of simple type-safety properties. However, bdthrscom-
ings are easily overcome in type-based approaches. Sudgequ
work on CAP over the past five years developed new specialized
program logics for reasoning about such low-level conssras
embedded code pointers [24], stack-based control abistnadi.O],
self-modifying code [3], and garbage collectors [21].

Under type-based FPCC, function returns and exceptionléand
are often treated as first-class functions, as in contiongiassing
style (CPS), even though they have more limited scope thaerge
first-class continuations. For functional programmersS@Rsed
code is conceptually simple but requires complex highdeorea-
soning of explicit code pointers (and closures). For examibla
function needs to jump to a return address (treated as cm@ntin
tion), the function must assert that the return addressdedd a
valid code pointer to jump to . But the function does not know e
actly what the return address will be, so it must abstract preap-
erties of all possible return addresses, something difftoutio in
first-order logic.

In the work on stack-based control abstraction [10], myeagiues
and | showed that return addresses (or exception handters)uch
more disciplined than general first-class code pointersfuam ad-
dress is always associated with some logical control sthekya-
lidity of which can be established statically; a functiomaait to
any return address if it establishes the validity of its a&ggted log-
ical control stack. Such safe cutting to any return addrédes/s
programmers to certify the implementation of sophistidagtack
operations (such as setjmp/longjmp, weak continuatioasegl
stack cutting, and context switches) without resorting Rschased
reasoning. For example, when programmers certify the bddy o
a function, they do not need to treat its return address asla co

Hoare logic, a CAP program consists of assembly code anno- pointer; all they need is to make sure that at the return, dnéral

tated with pre- and post-conditions and program invariadts
like traditional Hoare-style verification, all CAP langwagon-
structs (such as assembly instruction sets), programtassgrin-
ference rules, operational semantics, and soundnessspm®fm-
plemented inside the mechanized metalogic. This desigresnitk
possible to build a complete certified software package fath
mal dependability-claim and machine-checkable proofsh\Welp
from a proof assistant, programmers are able to combine afiginu
developed proof scripts with automated proof tactics aedrm
provers, allowing CAP to support verification of even undabie
program properties.

is transferred to the original return address. It is theetalrespon-
sibility to set up a safe return address or valid code paitiés is
much easier because a caller often knows the return addratss t
must be used.

3.3 Local reasoning and separation logic

Modular reasoning is the key technique for making program ve
ification scale. Development of a certified software systemla/
benefit from a top-down approach where programmers first work
out the high-level design and specification, then decompiesen-

L, L, certified
ackage
sound] [], (sound] 0o, I paciad
OCAP Inference Rules @ proof
OCAP
SRS OCAP Operational Semantics g
Mechanized Meta-Logic trlt;ztsee

Figure 3. An open framework for building certified software

tire system into smaller modules, refine high-level spediitns
into actual implementation, and finally certify each comgmarand
link everything together into a complete system.

However, there is yet another critical dimension to making- p
gram verification modular. Traditional Hoare logics oftesepro-
gram specifications with arbitrarily large “footprints.’®efaration
logic [27, 17] advocates “local reasoning” using smalltfirant
specifications; that is, the specification of each modulep(or
cedure) should refer only to data structures actually teddby a
module’s underlying code. By concisely specifying the sapan
of heap and other resources, separation logic providesratiget
powerful inference rules for reasoning about shared metdhata
structures and pointer anti-aliasing.

Concurrent separation logic (CSL) [25] applies the sama ime
reason about shared-memory concurrent programs, assuhgng
invariant that there always exists a partition of memory ago
different concurrent entities and that each entity can scomly
its own part of memory. This assumption might seem simple but
is surprisingly powerful. There are two important pointeabthis
invariant. First, the partition itogical; programmers do not need
to change their model of the physical machine, which has oné/
global shared data heap, and the logical partition can beresd
through separation logic primitives. Second, the paniti® not
static and can be adjusted dynamically during program ei@tu
by transferring the ownership of memory from one entity te th
other.

Under CSL, a shared-memory program can be certified as ifri¢ we
a sequential program since it is always manipulating itsapei
heap; to access shared memory, it must invoke an atomictapera
that transfers resources between the shared heap and #ide loc
heap. Several recent efforts have extended CSL with redyagiee
reasoning, so even lock-free concurrent code can be cdrtifieg
modular small-footprint specifications.

3.4 Domain-specific logics and certified linking

A key first step toward making certified software practicatds
show it is possible to carry out end-to-end certification aoa-
plete software system. Large software systems, espeltialiievel
system software, use many different language features pad s
many different abstraction levels. For example, the Yal¢NAL
group’s (http:/flint.cs.yale.edu) ongoing project [8Merify a sim-
plified OS kernel exposes such challenges. In it, the kencihdes

a simple bootloader, kernel-level threads and a threaddstdre
synchronization primitives, hardware interrupt handlarsl a sim-
plified keyboard driver. Although it has only 1,300 lines 86xas-
sembly code, it uses such features as dynamic code loatinegct
scheduling, context switching, concurrency, hardwareriopts,
device drivers, and 1/0O. How would a programmer use machine-
checkable proofs to verify the safety or correctness piasenf
such a system?

Verifying the whole system in a single program-logic or tygyes-
tem is impractical because, as in Figure 2(a), such a verdita
system would have to consider all possible interactionsrgmo
these features, including dynamic code loading, concuaytérard-
ware interrupts, thread scheduling, context switching, embed-
ded code pointers, many at different abstraction levels. rEsult-
ing logic, if it exists, would be highly complex and difficuld
use. Fortunately, software developers seem to never udeaall
tures simultaneously. Instead, they use only a limited doatlon

of features—at a certain abstraction level—in individuedgram
modules. It would be much simpler to design and use speedliz
“domain-specific” logics (DSL) to verify individual prognamod-
ules, as in Figure 2(b). For example, for the simplified OSh&kr
dynamic code loading is used only in the OS boot loader, and in
terrupts are always turned off during context switchinghedded
code pointers are not needed if context switching can beeimpl
mented as a stack-based control abstraction.

To allow interactions of modules and build a complete cedifi
software system, programmers must also support interbitigra

of different logics. In 2007 my colleagues and | developecta n
open framework for CAP, or OCAP [7], to support verification
using specialized program logics and for certified linkiridaov-
level heterogeneous components. OCAP lays a set of Hogee-st
inference rules over the raw operational semantics of a imach
language (see Figure 3), and the soundness of these rulesésip

in a mechanized metalogic so it is not in the TCB.OCAP uses
an extensible and heterogeneous program-specificatiquage
based on the higher-order logic provided by Coq. OCAP rules a
expressive enough to embed most existing verification sysfer
low-level code. OCAP assertions can be used to specifyianviar
enforced in most type systems and program logics (such aomem
safety, well-formedness of stacks, and noninterferendevdsn
concurrent threads). The soundness of OCAP ensures tles the
invariants are maintained when foreign systems are embeitde
the framework.

To embed a specialized verification systémOCAP developers
first define an interpretatign.] . that maps specifications finto
OCAP assertions; then they prove system-specific rulesfai

as lemmas based on the interpretation and OCAP rules. Proofs
constructed in each system can be incorporated as OCAPsproof
and linked to compose the complete proof.

There are still many open issues on the design of OCAP: For
example, to reason about information-flow properties, OQARt
provide a semantic-preserving interpretation of higheotgipes (in

an operational setting). And to support liveness propertBECAP
must support temporal reasoning of program traces.

3.5 Certified garbage collectors and thread libraries

In 2007, my colleagues and | used OCAP to certify severaliappl
cations involving both user-program code and low-leveltima

locks cond var.

1/0 & Driver

<«—irq0
<—irql

«~—irq2
ISR q

, ~—irg3

«—irq4

«—irg5
«—irg6

scheduler & ctxt switching & ...

«—irq7

[ol=[o]=[=[o]=]-]

g

i

Figure 4. Decomposition of a preemptive thread implementation

code. In one application [7], we successfully linked progsan
typed assembly language (TAL) [22] with a certified memory-
management library. TAL supports only type-preserving mem
ory updates, and the free memory is invisible to TAL code. We
certified the memory-management library in stack-based, @AP
SCAP [10], which supports reasoning about operations aear f
memory while ensuring that the invariants of TAL code arermai
tained.

Also in 2007, in another application [21], we developed a-gen
eral framework for certifying a range of garbage collectarsl
their mutators. If we had tried to develop a single type syste
type-check both an ML-like type-safe language and the upder
ing garbage collector (requiring fancy runtime type anialyshe
result would have involved analyzing polymorphic typesjchtis
extremely complex. However, the ML type system never needs t
know about runtime tagging and the internals of the garbatiecz
tor. Moreover, implementation of the collector need notamsthnd
the polymorphic type system used in type-checking ML cotle; i
needs to only distinguish pointers from non-pointers. Adredp-
proach, which we followed in 2007, is to certify these module-
ing different domain-specific logics, thus avoiding thdidiflt task

of designing a universal program logic. Certified garbadlectors
can then be linked with certified mutator code to form a coneple
system.

A year later, in a third application [8], we successfullytdied the
partial correctness of a preemptive thread library ex#ghéitom our
simplified OS kernel. The kernel was implemented in 16-b& x8
assembly and worked in real mode for uniprocessor only. it co
sisted of thread context switching, scheduling, synclzations,
and hardware interrupt handlers. We stratified the threateimen-
tation by introducing different abstraction layers withllaefined
interfaces. In Figure 4, at the highest level (Level A), pnpéve
threads follow the standard concurrent programming mottet
execution of a thread can interleave with or be preemptedtmsro
threads. Synchronization operations are treated as préwitHard-
ware interrupts are abstracted away and handled at LeveléBevh
code involves both hardware interrupts and threads; spncha-
tion primitives, input/output operations, device driveasd inter-
rupt handlers are all implemented at this level; interrigmdiing

is enabled/disabled explicitly usingti/cli. At the lowest level
(Level C), the thread scheduler and the context switchingime
manipulate the threads’ execution contexts stored in thge@ues
(on the heap). Interrupts are invisible at this level beedhsy are
always disabled. Libraries implemented at a lower level ere
posed as abstract primitives for the level above it, and tméra-

tional semantics in the high-level abstract machine sesveranal
specifications for the low-level implementation.

The stratified system model gives programmers a systemadic a
principled approach for controlling complexity. Prograens can
thus focus on a subset of language features at each leveedifg ¢
different software components using specialized proggits.

3.6 Certified and certifying compilation

Much work in the program-verification community concergsat
on source-level programs written in high-level languageglt as
C, Java, and C#). In order to turn these programs into cettifie
assembly components suitable for linking in the OCAP fraor&w
OCAP developers must show that their corresponding comigile
also trustworthy.

CompCert is a certified compiler for a subset of C (called Camin
or Cm) developed in 2006 by Leroy [20]. By “certified” compilé
mean the compiler itself is proved correct. Indeed, Leracied
formal operational semantics for Cm, as well as for the maehi
language, building a machine-checkable proof in Coq whetied
compiler preserves behavior from one operational sensatdian-
other. However, the current CompCert compiler supporty sat
guential Cm programs. It also must be bootstrapped by thex®Ca
compiler, even though the OCaml compiler is not verified.

On the other hand, a certifying compiler is not necessanlyact

but will take a (certified) source program and generate fadti
assembly code. Much work on certifying compilation focuees
type-safe source languages and can preserve only typiy-pede-

erties. A challenging open problem is to extend certifyingpila-

tion to preserve deep correctness and security properties.

3.7 Lightweight formal methods

Building large-scale certified software systems does neayd re-
quire heavyweight program verification. Most software eyst are
built from modular components at several levels of abswact
At the lowest levels are the kernel and runtime-system cempo
nents discussed earlier. At the highest levels are comperath
a restricted structure operating on well-defined integaddie re-
stricted structure can use a type-safe, high-level prograg lan-
guage with high-level concurrency primitives or C progrgegen
concurrent C programs) in a style understandable to saatitysis
tools. Both restricted styles are in widespread commetsalto-
day.

Lightweight formal methods (such as high-level type systepe-
cialized program logic, with decidable decision procedwaed
static analysis) can help guarantee important safety ptiepavith

moderate programmer effort; error messages from the tyodeh,
decision procedure, and static-analyzer usually give Gpate
feedback in the programming process. These safety prepeaate
sometimes also even security properties, as in this exariitl-
ule A cannot read the private variables of module B, exceptih
the public methods provided by B.” Using information-flonpgy
systems or static analysis a programmer can obtain a strepge
sion of the same guarantee while also adding “... and nottbaly
but the public methods of module B do not leak the value ofgeiv
variablez.”

Lightweight formal methods can be used to dramatically bet t
cost of building certified software. For a programmer, thalch
lenge is to make them generate explicit proof witness (aatom
ically) and link them with certified low-level kernel and time
components. With proper embedding, lightweight formalhods
would fit nicely into the DSL-centric OCAP framework for con-
structing end-to-end certified software.

3.8 Automation and proof engineering

The end goal of certified software is a machine-checkablemt&p
ability metric for high-assurance software systems. Gedisoft-
ware advocates the use of an expressive metalogic to cajgepe
invariants and support modular verification of arbitrarycimae-
code components. Machine-checkable proofs are necessaa f
lowing third parties to quickly establish that a softwarsteyn in-
deed satisfies a desirable dependability claim. Automatedfp
construction is extremely important and desirable but Ehbe
done only without violating the overall integrity and expsveness
of the underlying verification system.

Much previous research on verification reflected full autiboma
as a dominating concern. This is reasonable if the primaay} igo
finding bugs and having an immediate effect on the real werld’
vast quantity of running software. Unfortunately, insigtion full
automation also severely hinders the power and applitatwfi
formal verification; many interesting program propertitrea{ end
users care about) are often undecidable (full automatiamp®s-
sible), so human intervention is unavoidable. Low-levelgram
modules often have subtle requirements and invariantsctrabe
specified only through high-order logic; programming lifea ver-
ified through first-order specifications often have to be sethpnd
verified again at different call sites.

Nevertheless, there is still a great synergy in combiningsé¢h
two lines of software-verification work. The OCAP framework
described here emphasizes domain-specific (includingddble
first-order) logics to certify various components in a safitevsys-
tem. Successful integration would allow programmers totget
best of both lines.

Developing large-scale mechanized proofs and human-péada
formal specifications will become an exciting research faldts
own, with many open issues. Existing automated theoremepsov
and Satisfiability Modulo Theories solvers [5] work only orsti
order logic, but this limited functionality is in conflict i the
rich metalogic (often making heavy use of quantifiers) rezgifor
modular verification of low-level software. Proof tactiosdxisting
proof assistants (such as Coq) must be written in a diffeéhamt
typed” language, making it painful to develop large-scat®fs.

4. Conclusions

Certified software aligns well with a 2007 study on software
for dependable systems [18] by the National Research Clunci
(http://sites.nationalacademies.org/NRC/index.htra) argued for
a direct approach to establishing dependability wherelftyvace

developers make explicit the dependability claim and ptewdi-
rect evidence that the software indeed satisfies the claoweier,
the study did not explain what would make a clear and explieit
pendability claim, what serves as valid evidence, and hoshézk
the underlying software to ensure that it really satisfiesdlaim
without suffering credibility problems [6].

The study also said that the dependability of a computeresyst
relies not only on the dependability of its software but aleahe
behavior of all other components in the system, includingén
operators and the surrounding physical environment. et oft-
ware alone cannot guarantee the dependability of the canpys-
tem. However, as explained earlier, many advantages fdlom
separating the dependability argument for the softwara fiee ar-
gument for the software’s execution environment.

Computer software is a rigorous mathematical entity foroluro-
grammers can formally certify its dependability claim. Hewer,
the behavior of human operators depends on too many faaibrs o
side mathematics; even if they try hard, they would probalelyer
achieve the kind of rigor they can for software. By focusimgsoft-
ware alone and insisting that all certified software comé \git-
plicit machine-checkable proofs, we can use the formal niéapeil-
ity claim as a metric for measuring software dependabifitymal
specifications are also more complete and less ambiguonsrtha
formal specifications written in natural languages; thisut help
human operators better understand the behavior of the lyirder
software.

A key challenge in building dependable systems is to idgrtié
right requirements and properties for verification and diediow
they would contribute to the system’s overall dependabiGterti-
fied software does not make this task easier. Research dfyiogrt
low-level system software would give software developeanm
insight into how different programming-abstraction lag/@vould
work together. Insisting on machine-checkable proof dbjeould
lead to new high-level certified programming tools, moduenifi-
cation methodologies, and tools for debugging specifinatiall of
which would make developing dependable software more eneno
ical and painless.

Acknowledgments

I would like to thank Xinyu Feng, Daniel Jackson, George Nec-
ula, Ashish Agarwal, Ersoy Bayramoglu, Ryan Wisnesky, drad t
anonymous reviewers for their valuable feedback.

References

[1] A. W. Appel. Foundational proof-carrying code. Proc. 16th Annual
IEEE Symposium on Logic in Computer Sciempages 247-258, June
2001.

[2] H. P. Barendregt and H. Geuvers. Proof-assistants wd@pgndent
type systems. In A. Robinson and A. Voronkov, editdtandbook
of Automated Reasoningages 1149-1238. Elsevier Scientific
Publishing B.V., 2001.

[3] H. Cai, Z. Shao, and A. Vaynberg. Certified self-modifyicode. In
Proc. 2007 ACM Conference on Programming Language Design an
Implementationpages 66—77, 2007.

[4] C. Colby, P. Lee, G. Necula, F. Blau, M. Plesko, and K. ElinA
certifying compiler for Java. IfProc. 2000 ACM Conference on
Programming Language Design and Implementatipages 95-107,
2000.

[5] L. M. de Moura and N. Bjgrner. Z3: An Efficent SMT Solver. In
Proc. 14th International Conference on Tools and Algorithior the
Construction and Analysis of Systems (TACAS'p8yes 337-340,
April 2008.

[6] R. A. DeMillo, R. J. Lipton, and A. J. Perlis. Social prases and
proofs of theorems and programs. Rroceedings of the 4th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL'77pages 206-214, Jan. 1977.

X. Feng, Z. Ni, Z. Shao, and Y. Guo. An open framework fouarie
dational proof-carrying code. IRroc. 2007 ACM SIGPLAN Interna-
tional Workshop on Types in Language Design and Implenientat
pages 67-78, Jan. 2007.

X.Feng, Z. Shao, Y. Dong, and Y. Guo. Certifying low-lépeograms
with hardware interrupts and preemptive threads?rioc. 2008 ACM
Conference on Programming Language Design and Implemnientat
pages 170-182, 2008.

X. Feng, Z. Shao, Y. Guo, and Y. Dong. Combining domaipesfic

and foundational logics to verify complete software systemProc.
2nd IFIP Working Conference on Verified Software: TheofTes|s,

and Experiments (VSTTE’Q8)olume 5295 olLNCS pages 54—69.
Springer-Verlag, October 2008.

[10] X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni. Modula
verification of assembly code with stack-based controlrabgbns.
In Proc. 2006 ACM Conference on Programming Language Design
and Implementationpages 401414, June 2006.

[11] T. C. Hales. Formal proofNotices of the AMS5(11):1370-1380,
December 2008.

[12] A. Hall and R. Chapman. Correctness by constructioruelimping
a commercial secure systemEEE Software 19(1):18-25, Jan-
uary/February 2002.

N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni.sntactic
approach to foundational proof-carrying code.Piroc. Seventeenth
Annual IEEE Symposium on Logic In Computer Science (LIQS'02
July 2002.

C. A. R. Hoare. An axiomatic basis for computer programm
Communications of the ACM2(10), Oct. 1969.

[15] T. Hoare and J. Misra. Verified software: theories, $pekperiments.
In Proc. 1st IFIP Working Conference on Verified Software: Thesp
Tools, and Experiments (VSTTE'QSplume 4171 oLLNCS pages
1-18. Springer-Verlag, October 2005.

G. Huet, C. Paulin-Mohring, et al. The Coq proof assistaference
manual. The Coq release v6.3.1, May 2000.

[17] S.Ishtiaq and P. W. O’'Hearn. Bl as an assertion langfiag@utable
data structures. IiProc. 28th ACM Symposium on Principles of
Programming Languagepages 14-26, Jan. 2001.

[18] D. Jackson, M. Thomas, and L. MillettSoftware for Dependable
Systems: Sufficient Evidenc&®e National Academic Press, 2007.

[19] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Vgarand
J. R. Lorch. Subvirt: Implementing malware with virtual rhates.
In Proceedings of the 2006 IEEE Symposium on Security anddriva
(Oakland) pages 314-327, May 2006.

[20] X. Leroy. Formal certification of a compiler back-end Brogram-
ming a compiler with a proof assistant. Rroceedings of the 33rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL'06)an. 2006.

[21] A. McCreight, Z. Shao, C. Lin, and L. Li. A general framesk for
certifying garbage collectors and their mutators Phoc. 2007 ACM
Conference on Programming Language Design and Implementat
pages 468-479, 2007.

[22] G. Morrisett, D. Walker, K. Crary, and N. Glew. From Sgrst F
to typed assembly language. Rroc. 25th ACM Symposium on
Principles of Programming Languaggsages 85-97, Jan. 1998.

[7

—

8

—_

9

—

[13]

[14]

[16]

[23] G. Necula and P. Lee. Safe kernel extensions withouitiraa
checking. InProc. 2nd USENIX Symposium on Operating System
Design and Impl.pages 229-243, 1996.

[24] Z. Niand Z. Shao. Certified assembly programming wittbedded
code pointers. IProc. 33rd Symp. on Principles of Prog. Lang.
pages 320-333, Jan. 2006.

[25] P. W. O’Hearn. Resources, concurrency and local reagoin Proc.
15th Int'l Conf. on Concurrency Theory (CONCUR’'0¢plume 3170
of LNCS pages 49-67, 2004.

[26] A. Pnueli, M. Siegel, and E. Singerman. Translationdatlon.
In Proc. 4th International Conference on Tools and Algorithiors
Construction and Analysis of Systems (TACAS'98lume 1384 of
LNCS pages 151-166. Springer-Verlag, March 1998.

[27] J. C. Reynolds. Separation logic: A logic for shared able data
structures. InProc. 17th Annual IEEE Symposium on Logic in
Computer Scien¢gages 55-74, July 2002.

[28] W. Schulte, S. Xia, J. Smans, and F. Piessens. A glimpseerifying
C compiler. InProceedings of the C/C++ Verification Workshaluly
2007.

[29] Z. Shao. An overview of the FLINT/ML compiler. IRroc. ACM
SIGPLAN Workshop on Types in Compilatidnne 1997.

[30] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harerd P. Lee.
TIL: A type-directed optimizing compiler for ML. liProc. 1996 ACM
Conference on Programming Language Design and Implemenjat
pages 181-192, 1996.

[31] K. Thompson. Reflections on trusting tru@ommunications of the
ACM, 27(8):761-763, August 1984,

[32] D. Yu, N. A. Hamid, and Z. Shao. Building certified libasi for PCC:
Dynamic storage allocation. roc. 2003 European Symposium on
Programming (ESOP’03)volume 2618 ofLNCS pages 363-379.
Springer-Verlag, Apr. 2003.

[33] N. Zeldovich. Securing Untrustworthy Software Using Information
Flow Control PhD thesis, Department of Computer Science, Stanford
University, October 2007.

Zhong Shao(zhong.shao@yale.edu) is a professor in the Depart-
ment of Computer Science at Yale University, New Haven, CT.

