
Modular Verification of Concurrent Thread
Management

Yu Guo1, Xinyu Feng1, Zhong Shao2, and Peizhi Shi1

1 University of Science and Technology of China
{guoyu,xyfeng}@ustc.edu.cn sea10197@mail.ustc.edu.cn

2 Yale University
zhong.shao@yale.edu

Abstract. Thread management is an essential functionality in OS kernels. How-
ever, verification of thread management remains a challenge, due to two conflict-
ing requirements: on the one hand, a thread manager—operating below the thread
abstraction layer–should hide its implementation detailsand be verified indepen-
dently from the threads being managed; on the other hand, thethread management
code in many real-world systems is concurrent, which might be executed by the
threads being managed, so it seems inappropriate to abstract threads away in the
verification of thread managers. Previous approaches on kernel verification view
thread managers as sequential code, thus cannot be applied to thread manage-
ment in realistic kernels. In this paper, we propose a novel two-layer framework
to verify concurrent thread management. We choose a lower abstraction level
than the previous approaches, where we abstract away the context switch routine
only, and allow the rest of the thread management code to run concurrently in the
upper level. We also treat thread management data as abstract resources so that
threads in the environment can be specified in assertions andbe reasoned about
in a proof system similar to concurrent separation logic.

1 Introduction

Thread scheduling in modern operating systems provides thefunctionality of virtualiz-
ing processors: when a thread is waiting for an event, it gives the control of the processor
to another thread to create the illusion that each thread hasits own processor.

Inside a kernel, a thread manager supervises all threads in the system by manip-
ulating data structures called thread control blocks (TCBs). A TCB is used to record
important information about a thread, such as the machine context (or processor state),
the thread identifier, the status description, the locationand size of the stack, the prior-
ity for scheduling, and the entry point of thread code. The TCBs are often implemented
using data structures such as queues for ready and waiting threads. Clearly, modifying
thread queues and TCBs would drastically change the behaviors of threads. Therefore,
a correct implementation of thread management is crucial for guaranteeing the whole
system safety. Unfortunately, modular verification of real-world thread management
code remains a big challenge today.

The challenge comes from two apparently conflicting goals which we want to achieve
at the same time: abstraction (for modular verification) andefficiency (for real-world



usability). On the one hand, TCBs, thread queues, and the thread scheduler are specifics
used to implement threads so they should sit at a lower abstraction layer. It is natural to
abstract them away from threads, and to verify threads and the thread scheduler sepa-
rately at different abstraction layers. Previous work has shown it is extremely difficult
to verify them together in one logic system [15]. On the otherhand, in many real-world
systems such as Linux-2.6.10 [12] and FreeBSD-5.2 [13], thethread scheduler code
itself is alsoconcurrentin the sense that there may be multiple threads in the system
running the scheduler at the same time. For instance, when a thread invokes a thread
scheduler routine (e.g.,cleaning up dead threads, load balancing, or thread scheduling)
and traverses the thread queue, it may be preempted by other threads who may call
the same routine and traverse the queue too. Also, in some systems [12,1] the thread
scheduling itself is implemented as a separate thread that runs concurrently with other
threads. In these cases, we need to verify thread schedulersin a “multi-threaded” logic,
taking threads into account instead of abstracting them away.

Earlier work on thread scheduling verification fails to achieve the two goals at the
same time. Niet al.[15] verified both the thread switch and the threads in one logic [14],
which treats thread return addresses as first-class code pointers. Although their method
may support concurrent thread schedulers in real systems, it loses the abstraction of
threads completely, and makes the logic and specifications too complex for practical
use. Recent work [3,6] adopts two-layer verification frameworks to verify concurrent
kernels. Kernel code is divided into two layers: sequentialcode in the lower layer and
concurrent in the upper layer. In their frameworks, they putthe code manipulating TCBs
(e.g.,thread schedulers) in the low layer, and hide the TCBs of threads in the upper layer
so that the threads cannot modify them. Then they use sequential program logics to
verify thread management code. However, this approach is not usable for many realistic
kernels where thread managers themselves are concurrent and the threads are allowed
to modify the TCBs. Other work on OS verification [11,9] only supports non-reentrant
kernels,i.e., there is only one thread running in the kernel at any time.

In this paper, we propose a more natural framework to verify concurrent thread man-
agers. Our framework follows the two-layer approach, so concurrent code at the upper
layer can be verified modularly with thread abstractions. However, the abstraction level
of our framework is much lower than previous frameworks [3,6]. The majority of the
code manipulating thread queues and TCBs is put in the upper layer and can be veri-
fied as concurrent code. Our framework successfully achieves both verification goals: it
not only allows abstraction and modular verification, but also supports concurrency in
real-world thread management.

Our work is based on previous work on thread scheduler verification, but makes the
following new contributions:

– We introduce a fine-grained abstraction in our two-layer verification framework.
The abstraction protects only a small part of sensitive datain TCBs, and at the same
time allows multiple threads to modify other part of TCBs safely. Our division of
the two abstraction layers is consistent with many real systems. It is more natural
and can support more realistic thread managers than previous work.

– In the upper layer, we introduce the idea of treatingthreads as resources. The ab-
stract thread resources can be specified explicitly in the assertion language, and
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their use by concurrent programs can be reasoned about modularly following con-
current separation logic (CSL) [16]. By enforcing the invariant that the abstract
resource is consistent with the concrete thread meta data, we can ensure the safety
of the accesses over TCBs and thread queues inside threads.

– Because of the fine-grained abstraction of our approach, thesemantics of thread
scheduling do not have to be hardwired in the logic. Therefore, our framework
can be used to verify various implementation patterns of thread management. We
show how to verify the three common patterns of thread scheduling in realistic OS
kernels (while previous two-layer frameworks [3,6] can only verify one of them).

– In our extended TR [7], we also use our framework to verify thread schedulers with
hardware interrupts, scheduling over multiprocessor withload-balancing, and a set
of other thread management routines such as thread creation, join and termination.

The rest of this paper is organized as follows: we first introduce a simplified abstract
machine model for the higher-layer of our framework in Sec. 3; to show our main idea,
we propose in Sec. 4 our proof system for concurrent thread scheduling code over the
abstract machine. We show how to verify two prototypes of schedulers based on context
switch in Sec. 5. We compare with related work in Sec. 6, and then conclude.

2 Challenges and our approach

In this section, we illustrate the challenges of verifying code of thread scheduling by
showing three patterns of schedulers and discuss the verification issues. Then we infor-
mally explain the basic ideas of our approach.

2.1 Three patterns of thread scheduling

By deciding which thread to run next, the thread scheduler isresponsible for best uti-
lizing the system and makes multiple threads run concurrently. The scheduling process
consists of the following steps: selecting which thread to run next in a thread queue by
modifying TCBs, saving the context data of the current thread, and loading the con-
text data of the next thread. Context data is the state of the processor. By saving and
loading context data, the processor can run in multiple control flows, i.e., threads. Usu-
ally, context data can be saved on stacks or TCBs (we assume inthis paper that context
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data is saved in TCBs for the brevity of presentation). Thereare various ways to imple-
ment thread schedulers. In Fig. 1 we show three common implementation patterns, all
modeled from real systems.

Pattern (I) is popular among embedded OS kernels (e.g.,FreeRTOS) and some
micro-kernels (e.g.,Minix [8] and Exokernel [2]). The scheduler in this pattern is in-
voked by function calls or interrupts. Thereafter, the scheduling is done in the following
steps: (1) saving the current context data, (2) finding the next thread, and (3) loading the
context data of the next thread (and switching to it implicitly through function return).

In pattern (II), the scheduling process is a function with the following steps: (1)
finding the next thread firstly, (2) performing context switch (saving the current context
data, loading the next one, and jumping to the next thread immediately), (3) and running
the remaining code of the function when the control is switched back from other threads.
This pattern is modeled from some mainstream monolithic kernels (e.g.,Linux [12], and
FreeBSD). Some embedded kernels (e.g.,RTEMS and uClinux) adopt it too. Note that
both the involved threads should be allowed to access the thread queue and TCBs when
calling the scheduler.

Pattern (III) uses a separate thread, calledscheduler thread, to do scheduling. One
thread may perform scheduling by doing context switch to thescheduler thread. The
scheduler thread is a big infinite loop: finding the next thread; performing context switch
to the next thread; and looping after return. This pattern can be seen in the GNU-pth
thread library, MIT-xv6 kernel, L4::Ka,etc.. Similar to pattern (II), all involved threads
in this pattern should be allowed to access the TCB of the scheduler thread and the
thread queue.

2.2 Challenges

As we can see from the patterns in Fig. 1, the control flow in thescheduling process
is very complicated. Threads switch back and forth via manipulating the thread queues
and TCBs. It is very natural to share TCBs and the thread queueamong threads in order
to support all these scheduling patterns. On the other hand,it is important to ensure that
the TCBs are accessed in the right way. The system would go wrong if, for instance, a
thread erased the context data of another by mistake, or put adead thread back into the
ready thread queue.

To guarantee the safety of the scheduling process, we must fulfill two requirements:

(1) No thread can incorrectly modify the context data in TCBs.
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{[A] ∗ 〈B〉 ∗ next 7→ }
next = B;

{[A] ∗ 〈B〉 ∗ next 7→ B}
cswitch(A, next);

{[A] ∗ 〈B〉 ∗ next 7→ A}

/* coming back */
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next = A;
cswitch(B, next);
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[A] ∗ 〈B〉 ∗ next 7→ B

〈A〉 ∗ [B] ∗ next 7→ A

Fig. 3. Abstract thread res. vs. concrete thread res.

(2) The scheduler should know the status of each thread in thethread queues and decide
which to run next.

To satisfy the requirement (1), some previous work [3,6] adopts a two-layer-based
approach and protects the TCBs throughabstraction, where the TCBs are simply hid-
den from kernel threads and become inaccessible. This approach can be used to verify
schedulers of pattern (I), for which we show the abstractionline in Fig. 2 (a). Threads
above the line cannot modify TCBs, while the scheduler is below this line and has full
access to them. The lower-layer scheduler provides an abstract interface to the verifi-
cation of concurrent thread code at the upper layer. Since itmodifies the TCBs in the
scheduling time only, we can view the scheduler as a sequential function which does not
belong to any thread and can be verified by a conventional Hoare-style logic. However,
this approach cannot verify the other two patterns, nor doesit fulfill the requirement (2)
for concurrent schedulers, where the TCBs are manipulated concurrently (not sequen-
tially as in pattern (I)) and should be known by threads. Thatis, we cannot completely
hide the TCBs from the upper-layer concurrent threads for patterns (II) and (III).

2.3 Our approach

If we inspect the TCB data carefully, we can see that only a small part of the data is
crucial to thread behaviors and cannot be accessed concurrently. It is unnecessary to
access it concurrently either. The data includes the machine context data and the stack
location. We call themsafety-criticalvalues. Some values can be modified concurrently,
but their correctness is still important to the safety of thekernel,e.g., the pointers orga-
nizing thread queues and the status field belong to this kind of values. Other values of
TCBs have nothing to do with the safety of the kernel and can bemodified concurrently
definitely,e.g.,the name of a thread or debug information.

Lowering the abstraction level.To protect the safety critical part of TCBs, we lower
the abstraction line, as shown in Fig. 2 (b). In our framework, the safety-critical data of
TCBs is under the abstraction line and hidden from threads. The corresponding oper-
ations such as context saving, loading and switching are abstracted away from threads
too, with only interfaces exposed to the upper layer. The other part of TCBs are lifted
above this line, which can be accessed by concurrent threads.

Building abstract threads.We still need to ensure the concurrent accesses of non-
safety-critical TCB data are correct. For instance, we cannot allow a dead thread to



be put onto a ready thread queue. To address this issue, we build abstract threads to
carry information of threads from TCBs to guide modifications by each other. In Fig. 3,
we use the notation[t] to specify the running thread, and the notation〈t〉, for a ready
thread. Heret is the identifier of the thread. With the knowledge about the existence of
a ready threadB pointed bynext (i.e., 〈B〉), we know it is safe to switch to it via the
operationcswitch(A,next). Since abstract threads can be described in specifications,
it allows us to write more intuitive and readable specifications for kernel code.

Treating abstract threads as resources.Like heap resources, abstract thread resources
can be either local or shared. We can doownership transferson thread resources. When
context switches, one thread will transfer some of the abstract thread resources (shared)
along with the shared memory to the next thread. As shown in Fig. 3, when thread A
context switches to thread B, the notation[A] will be changed to〈A〉 after context saving;
〈A〉 and〈B〉 are transferred to the thread B along with the shared memory resourcenext;
then〈B〉 will be changed to[B] after context loading. With transferred thread resources,
threadB will know there is a ready threadA to switch to. Therefore, by treating abstract
threads as resources, we find a simple and natural way to specify and reason about
context switches. We design a proof system similar to CSL formodular verification
with the support of ownership transfers on thread resources.

Defining concrete thread resources.To establish the soundness of our proof system, we
must ensure that the abstract threads can be reified by concrete threads. The concrete
representation of abstract threads, including stack, TCBsetc., can be defined globally. In
Fig. 3, suppose that thread A is running, we ensure that thereare two blocks of resources
in the system. One of them is the running threadCThrdA and the other is a ready thread
RThrdB. They correspond to the abstract threads[A] and〈B〉 in the assertions of thread
A. We use the concrete thread resources to specify the globalinvariant of the machine,
which allows us to prove the soundness of our proof system.

3 Machine model

In this section, we define a two-layer machine model. The physical machine we use is
similar to realistic hardware, where no concept of thread exists. Based on it, we define
an abstract machine with logicalabstract threads, whose meta-data is abstracted into
a thread pool. Moreover, the operation of context switch is abstracted as a primitive
abstract instruction.

Physical machine.The formal definition of the physical machine is shown in Fig.4
(left side). A machine configurationW consists of a code blockC, a memory blockM,
a register fileR and a program counterpc. The machine has 6 general registers. Some
common instructions are defined to write programs in this paper. Their meanings, as
well as the operational semantics, follow the conventions.For simplicity, we omit many
realistic hardware details,e.g., address alignment and bits-arithmetic.

Abstract machine.The abstract machine is shown in Fig. 4 (right side), where threads
are introduced at this level. It is more intuitive to build a proof system (Sec. 4) to verify
concurrent kernel code at this level. A thread poolP is a partial mapping from thread



(PhyMach) W ::= (C,M,R,pc)

(PhyCode) C ::= {f : i}∗

(PhyMem) M ::= {l : w}∗ (l=4n)

(PhyRegFile) R ::= {r : w}∗

(Register) r ::= v0 | a0 | a1 | a2 | sp | ra

(Instruction) i ::= add rd, rs | addi rd, w

| mov rd, rs | movi rd, w

| lw rt , w(rs) | sw rt , w(rs)

| jmp f | call f | ret

| subi rd, w | bz rt , f

(AbsMach) W ::= (C,S,pc)

(State) S ::= (M,R,P)

(AbsCode) C ::= {f : c}∗

(Mem) M ::= {l : w}∗

(RegFile) R ::= {r : w}∗

(TID) t ::= w

(Pool) P ::= {t : T}∗

(Thrd) T ::= run | (rdy,R)

(AbsInstr) c ::= cswitch | i

(TIDList) L ::= t :: L | nil

Fig. 4. Physical and abstract machine models

IDs t to abstract threadsT. Each abstract thread has a tag specifying its status, whichis
either running (run) or ready (rdy). Each ready thread has a copy of saved register file
as its machine context data. The abstract instructions include an abstract operation of
context switch (cswitch) and other physical machine instructions defined on the left.
We model the operational semantics using the step transition relationW 7−→W′ defined
in Fig. 5. The abstract instructioncswitch requires two thread IDs passed as arguments
in a0 anda1, one of which is tagged byrun and the other is taged byrdy in the thread
pool. Aftercswitch, the two abstract threads exchange tags, and the control of processor
is passed from the old thread to the new one. The registers of old thread are saved in the
source abstract thread and the registers in the destinationthread are loaded into machine
state. Except forcswitch, the state transitions of other instructions are similar tothose
of the physical machine.

Machine translation.In our proof system, once a program is proved safe at the abstract
machine level, it should be proved safe as well at the physical machine level. We define
a relation between abstract machine with physical machine (in the TR). The code
block at the abstract machine level is extended with the codeof implementation of
context switch, and the abstract instructioncswitch is translated to a call instruction that
invokes the implementation code of context switch. The memory block at the abstract
machine level is translated to physical memory block by being merged with the memory
where context data is stored. By the translation, it can be proved that any safe program
over the abstract machine is safe over the physical machine.

4 Proof system

In this section, we extend the assertion language of CSL to specify the thread resources,
and propose a small proof system supporting verification of concurrent code with mod-
ification of TCBs at the assembly level.



((M,R,P),pc)
c

→֒ ((M′,R′,P′),pc′)

if c= then

i ((M,R),pc)
i

→֒ ((M′,R′),pc′) ∧ P=P′

cswitch ∃R′′,P′′ .M=M′ ∧ R′′=R{ra : pc+1} ∧ t=R(a0)
∧ t ′=R(a1) ∧ pc′=R′(ra)

∧P ={t : run, t ′ : (rdy,R′)}⊎P′′

∧P′={t : (rdy,R′′), t ′ : run}⊎P′′

R andR′ is complete.

((M,R),pc)
i

→֒ ((M′,R′),pc′)

if i= then
add rd, rs M′=M ∧ R′=R{rd : R(rd)+R(rs)} ∧ pc′=pc+1

call f M′=M ∧ R′=R{ra : pc+1} ∧ pc′=f

jmp f M′=M ∧ R′=R∧ pc′=f

ret M′=M ∧ R′=R∧ pc′=R(ra)

C(pc)=c (S,pc)
c

→֒ (S′,pc′)

(C,S,pc) 7−→ (C,S′,pc′)

Fig. 5. Operational semantics of abstract machine

4.1 Assertion language and code specification

We usep andq as assertion variables, which are predicates over machine states. The
assertion constructs, adapted from separation logic [17],areshallowly embeddedin the
meta language , as shown in Fig. 6. In our assertion language,there are two special as-
sertion constructs for abstract threads. One of them is〈t〉 specifying a ready thread and
the other is[t] specifying a current running thread. Since threads are explicit resources
in the abstract machine, their machine context data (valuesin registers) are preserved
across context switch. Hence the resources of registers shouldn’t be shared. We ex-
plicitly mark a pure assertion by♯, which forbids an assertion specifying resources.
An unary notation (⋄ p) mark an assertionp that only specifies shared resources but
no thread local resources (e.g., registers). Registers are also treated as resources, and
r 7→ w specifies a register with the value ofw. The notationr1, . . . ,rn 7→ w1, . . . ,wn is a
compact form for multiple registers.

We borrow the idea from SCAP [4] and use a(p,g) pair to specify instructions at
assembly-level. The pre-conditionp describes the state before the first instruction of
an instruction sequence, while the actiong describes the actions done by the whole in-
struction sequence. In the proof system, each instruction is associated with a(p,g) pair,
whereg describes the actions from this instruction to the end of thecurrent function. For
all instructions inC, their(p,g) pairs are put inΨ, a global mapping from labels to spec-
ifications. The specification form(p,g) is different from the traditional pre-condition
and post-condition, which are both assertions and related by auxiliary variables. We can
still use a notation to specify instructions in the traditional style,



true , λ(M,R,P) . True

false , λ(M,R,P) . False

emp , λ(M,R,P) .M={·} ∧ R={·} ∧ P={·}

p ∗ q , λ(M,R,P) .∃M1,M2,R1,R2,P1,P2 .M=M1⊎M2 ∧ R=R1⊎R2 ∧ P=P1⊎P2

∧ p (M1,R1,P1) ∧ q (M2,R2,P2)

p−∗q , λ(M,R,P) .∀M1,R1,P1,M′,R′,P′ .(M′=M1⊎M ∧ R′=R1⊎R∧ P′=P1⊎P)

→ p (M1,R1,P1)→ q (M′,R′,P′)

p∧∧q , λS.(p S) ∧ (q S)

p∨∨q , λS.(p S) ∨ (q S)

∃∃ v. p , λS.∃v. p S

♯p , λ(M,R,P) . p∧ M={·} ∧ R={·} ∧ P={·}

⋄ p , λ(M,R,P) . p (M,R,P) ∧ R={·}

r 7→ w , λ(M,R,P) .R={r : w} ∧ M={·} ∧ P={·}

r →֒ w , λ(M,R,P) .∃R′ .R={r : w}⊎R′

l 7→ w , λ(M,R,P) .M={l : w} ∧ l 6= NULL ∧ R={·} ∧ P={·}

[t] , λ(M,R,P) .P={t : run} ∧ t 6= NULL ∧ M={·} ∧ R={·}

〈t〉 , λ(M,R,P) .P={t : (rdy, )} ∧ t 6= NULL ∧ M={·} ∧ R={·}

Fig. 6. Definition of selected assertion constructs

{

p

q

}(v1,...,vn)

, (λS.∃v1, . . . ,vn .(p(v1, . . . ,vn) ∗ true) S,

λS,S′ .∀ p′ .∀v1, . . . ,vn .(p(v1, . . . ,vn) ∗ p′) S→ (q(v1, . . . ,vn) ∗ p′) S′)

wherep is the pre-condition of instructions,q is the post-condition, andv1, . . . ,vn are
auxiliary variables occurring in the precondition and the postcondition. We define a
binary operator for composing two pairs into one.

(p,g)⊲ (p′,g′) , (λS. p S∧ (∀S′ .g S S′ → p′ S′),

λS,S′′ . p S→ (∃S′ .g S S′ ∧ g′ S′ S′′))

If an instruction sequence satisfies(p,g) and the following instruction sequence satis-
fies (p′,g′), then the composed instruction sequence would satisfy(p,g) ⊲ (p′,g′). The
weakening relation between two pairs is defined as below:

(p,g)⇒ (p′,g′) , ∀S. p S→ p′ S∧ (∀S′ .g′ S S′ → g S S′)

i.e., the preconditionp be stronger thanp′ and the actiong be weaker thang′.

(Assert) p,q ::= true | false | emp | p ∗ q | p−∗q | p∧∧q | p∨∨q | ∃∃ v. p | l 7→ w

| [t] | 〈t〉 | ♯p | ⋄ p | r 7→ w | r →֒ w

(Action) g ∈ State → State → Prop

(Spec) Ψ ::= {f : (p,g)}∗



4.2 Invariant for shared resources and inference rules

As mentioned previously, our proof system draws ideas of ownership transfer from
CSL. By defining invariants for shared resources, our proof system ensures safe opera-
tions of TCBs.

Unlike the invariant in concurrent separation logic, the invariant of shared resources
defined in our proof system is parameterized by two thread IDs: I(ts, td). Briefly, the
invariant describes the shared resources before context switch with the direction from
the threadts to td. One of the benefits of parameters is that the invariant is thread-
specific.

Like the abstract invariantI in CSL, the invariantI(ts, td) is abstract and can be in-
stantiated to concrete definitions to verify various programs, as long as the instantiation
satisfies the requirement of beingprecise[17].

Precisely, the invariantI(ts, td) describes the shared resources when the context switch
is invoked from the threadts to the threadtd, but excluding the resources of the two
threads. Since the control flow from one thread to another isdeterministicby context
switch, every two threads may negotiate a particular invariant that is different from pairs
of other threads. We can define different assertions (of shared resources) which depend
on the source and the destination threads of a context switch. This is quite different
from concurrent code at user-level, where a context switch is non-deterministic and the
scheduling algorithm is abstracted away.

The judgment for instructions in our proof system is of the following form: Ψ, I ⊢
{(p,g)} pc : c, whereΨ andI are given as specifications. The judgement states that an
instruction sequence, started withc at the label ofpc and ended with aret, satisfies
specification(p,g) underΨ and I . Some selected inference rules for instructions are
shown in Fig. 7.

In the rule of (ADD) , the premise says that the specification(p,g) implies the action
of theadd instruction composed with the specification of the next instruction,Ψ(pc+1).
The action ofadd instruction is that if the destination registerrd contains the value of
w1, and the source registerrs contains the value ofw2, then after the instruction,rd will
contain the sum ofw1 andw2, while rs will remain unchanged.

Functions are reasoned with the rules of (CALL ) and (RET) . The (CALL ) rule
says that the specification(p,g) implies the action that is composed by (1) the action
of instructioncall, (2) the specification of thefunctioninvokedΨ(f), (3) the action of
instructionret, and (4) the specification of the next instructionΨ(pc+1). The (RET)
rule says that the specification(p,g) implies an empty action, which means the actions
of the current function should be fulfilled.

The most important rule is (CSW) . The precondition ofcswitch requires the fol-
lowing resources: the current thread resource, the registers a0 containing the current
thread IDt anda1 containing the destination thread IDt ′, and the shared resource sat-
isfying the invariant⋄ I(t, t ′). After return from context switch, the current thread will
own the shared resources (satisfying⋄ I(t ′′, t) for somet ′′) again.

4.3 Invariant of global resources and soundness

Each abstract thread corresponds to the part of global resources representing the con-
crete resources allocated for this thread. For example, foran abstract thread〈t〉, there



(p,g)⇒

{

(rd 7→ w1) ∗ (rs 7→ w2)

(rd 7→ w1+w2) ∗ (rs 7→ w2)

}(w1,w2)

⊲Ψ(pc+1)

Ψ, I ⊢ {(p,g)} pc : add rd, rs
(ADD)

(p,g)⇒

{

ra 7→

ra 7→ pc+1

}

⊲Ψ(f)⊲

{

ra 7→ pc+1

ra 7→

}

⊲Ψ(pc+1)

Ψ, I ⊢ {(p,g)} pc : call f
(CALL )

(p,g)⇒

{

emp

emp

}

Ψ, I ⊢ {(p,g)} pc : ret
(RET)

(p,g)⇒ Ψ(f)

Ψ, I ⊢ {(p,g)} pc : jmp f
(JMP)

(p,g)⇒

{

[t] ∗ (a0,a1,ra 7→ t, t ′, ) ∗ 〈t ′〉 ∗ ⋄ I(t, t ′)

[t] ∗ (a0,a1,ra 7→ t, t ′, ) ∗ ∃∃ t ′′ .〈t ′′〉 ∗ ⋄ I(t ′′, t)

}(t,t ′)

⊲Ψ(pc+1)

Ψ, I ⊢ {(p,g)} pc : cswitch
(CSW)

Fig. 7. Inference rules (selected)

exist resources of its TCB, stack, and private resources. Therefore, all resources can be
divided into parts and each of them is associated to one thread. The global invariant
GINV, defined in Fig. 8, describes the partition of all resources globally. The invariant
is the key for proving the soundness theorem of our proof system.

First, for each thread, we define a predicateCont to specify its resources and control
flow, i.e. thecontinuationof this thread. The first parametern of this predicate specifies
the number of functions nested in the thread’s control flow. If n is equal to zero, it means
that the thread is running in the topmost function, which is required to be an infinite loop
and cannot return. If the numbern is greater than zero, the predicate says that there is
a specification(p,g) in Ψ at pc, such that the resources of the thread satisfiesp; andg
guarantees that the thread will continue to satisfyCont recursively after it returns to the
addressretaddr.

The concrete resources of arunning threadare specified by a continuationCont with
an additional condition, the running thread owns all registers. The parameterpc points
to the next instruction the thread is going to run. Here we usean abbreviation⌊R⌋ to
denote the resources of all registers, except that the valuein ra is of no interest.

For aready thread(or a runnable thread), its concrete resources are defined bysep-
arating implication−∗ : if given (1) the resources of saved machine context⌊R⌋, (2) the
abstract resource of itself[t], (3) another ready threadt ′ and (4) shared resources speci-
fied by⋄ I(t ′, t), the resources of the ready thread can be transformed into the resources
of a running thread. Its thread ID is specified by the second parameter ofRThrd, and
the third parameter is the machine context data saved in its TCB. Please note that the
program counter of a ready thread is saved into the registerra.

The whole machine state can be partitioned, and each part is owned by one thread,
which is either running or ready. Thus, the global invariantGINV is defined in the form
of separating conjunction byCThrd andRThrd. The structure ofGINV is isomorphic to
the thread poolP: the abstract running thread is mapped to the resource specified by



⌊R⌋ , (ra 7→ ) ∗ (v0 7→ R(v0)) ∗ (sp 7→ R(sp))

∗(a0 7→ R(a0)) ∗ (a1 7→ R(a1)) ∗ (a2 7→ R(a2))

Cont(n+1,Ψ,pc) , λS.Ψ(pc)=(p,g) ∧ (p S)

∧(∀S′ .g S S′ → (∃∃ retaddr.(ra →֒ retaddr)∧∧Cont(n,Ψ, retaddr)) S′)

Cont(0,Ψ,pc) , λS.Ψ(pc)=(p,g) ∧ (p S) ∧ (∀S′ .g S S′ → False)

CThrd(Ψ, t,pc) , ∃∃ n.Cont(n,Ψ,pc)∧∧([t] ∗ ∃∃ R.⌊R⌋ ∗ true)

RThrd(Ψ, t,R) , ⌊R⌋ ∗ [t] ∗ ∃∃ t ′ .〈t ′〉 ∗ ⋄ I(t ′, t) −∗CThrd(Ψ, t,R(ra))

GINV(Ψ,P,pc) , CThrd(Ψ, t,pc) ∗ RThrd(Ψ, t0,R0) ∗ · · · ∗ RThrd(Ψ, tn,Rn)

whereP={t : run, t0 : (rdy,R0), . . . , tn : (rdy,Rn)}

Fig. 8.Concrete threads and the global invariant

struct tcb { | void schedule_p2()

struct context ctxt; | {

struct tcb *prev; | struct tcb *old, *new;

struct tcb *next; | old = cur;

}; | new = deq(&rq);

struct queue { | if (new == NULL) return;

struct tcb *head; | enq(&rq, old);

struct tcb *tail; | cur = new;

}; | cswitch(old,new);

struct tcb *cur; | return;

struct queue rq; | }

Fig. 9.Pseudo C code forschedule p2()

CThrd; an abstract ready thread is mapped to a resource specified byRThrd. Note that
GINV requires that there be one and only one running abstract thread, since the physical
machine has only one single processor. Our proof system ensures that the machine state
always satisfies the global invariant, (GINV(Ψ,P,pc) (M,R,P)).

The soundness property of our proof system states that any program that is well-
formed in our proof system will run safely on the abstract machine. The property can
be proved by the global invariantGINV, which always holds through machine execution.
We can first prove that if every machine configuration satisfies GINV, it can run forward
for one step. And we can also prove that if a machine configuration (satisfyingGINV)
can proceed, the next machine configuration will also satisfy GINV. Hence by the invari-
antGINV, the soundness theorem of our proof system can be proved. Theproof of the
soundness theorem has been formalized in Coq [7].

5 Verification cases

In this section, we show how to use the proof system to verify two schedulers of pat-
tern (II) and (III) shown in Fig. 1. We give the code written inpseudo C to explain



the programs and their specifications. The corresponding assembly code and selected
assertions of the two schedulers are shown in Fig. 10.

Scheduler as function.The scheduler functionschedule p2() (see Fig. 9) follows the
process discussed in Sec. 2. The functionsdeq() and enq() are used to remove and
insert nodes in thread queues. The main task of the scheduleris to choose a candidate
from the thread queue and then perform context switch from the current thread to the
candidate. There are two global variables,cur andrq. The variablecur points to the
TCB of the running thread;rq points to the thread queue containing TCBs of all other
runnable (ready) threads.

The notationt
field
7−→ w specifies a named field in the structure. The notationptcb(t)

specifies a part of TCB including the fields ofnext andprev. The predicateRQ(q,L)
specifies a doubly linked list as a thread queue pointed to byq, whereL is a list of thread
IDs of the thread queue. We also use〈L〉 as an abbreviation for〈t0〉 ∗ 〈t1〉 ∗ · · · ∗ 〈tn〉, if L
is t0 :: t1 :: · · · :: tn :: nil, and usel 7→ (n) to specifyn continuous memory cells.

l
field
7−→ w , (l+offset of the field in the struct) 7→ w

ptcb(t) , (t
prev
7−→ ) ∗ (t

next
7−→ )

RQseg(pv, tl, t,nil) , (t
prev
7−→ pv) ∗ ∃∃ t ′ .(t

next
7−→ NULL) ∗ ♯(t= tl)

RQseg(pv, tl, t, t ′ :: L′) , (t
prev
7−→ pv) ∗ (t

next
7−→ t ′) ∗ RQseg(t, tl , t ′,L′)

RQ(q,nil) , (q
head
7−→ NULL) ∗ (q

tail
7−→ NULL)

RQ(q, t :: L) , ∃∃ pv.∃∃ tl .(q
head
7−→ t) ∗ (q

tail
7−→ tl) ∗ RQseg(pv, tl, t,L)

K(bp,n,w0 :: w1 :: . . . :: wm :: nil) , ∃∃ sp.(sp 7→ sp) ∗ ♯(sp=bp+4n) ∗ (bp 7→ (n) )

∗(sp 7→ w0) ∗ (sp+4 7→ w1) ∗ · · · ∗ (sp+4m 7→ wm)

K(bp,n) , K(bp,n,nil)

The specification ofschedule p2() is shown below:



















[t] ∗ ptcb(t) ∗ (cur 7→ t) ∗ ∃∃ L .RQ(rq,L) ∗ 〈L〉 ∗ (ra 7→ ret)
∗K(bp,20) ∗ (v0,a0,a1 7→ , , )

[t] ∗ ptcb(t) ∗ (cur 7→ t) ∗ ∃∃ L .RQ(rq,L) ∗ 〈L〉 ∗ (ra 7→ ret)
∗K(bp,20) ∗ (v0,a0,a1 7→ , , )



















(t,ret,bp)

Here we use a notationK(bp,n,w :: w′ :: · · ·) to describe a stack frame. The first parameter
bp is the base address of a stack frame. The second parametern is the size of unused
space (number of words). And the third parameter is a list of words, representing the
values on stack top down, that is, the leftmost value in the list is the topmost value in
the stack frame. If the stack frame is empty, we omit the thirdparameter.

The abstract invariantI is instantiated to a concrete definition specifying the shared
resourcesbeforeandaftercontext switch for this implementation of scheduler.

I(t, t ′) , ptcb(t ′) ∗ (cur 7→ t ′) ∗ ∃∃ L .RQ(rq, t :: L) ∗ 〈L〉



schedule p2:

{[t] ∗ ptcb(t) ∗ (cur 7→ t) ∗ ∃∃ L .RQ(rq,L)
∗〈L〉 ∗ (a0,a1,v0,ra 7→ , , , ret)
∗K(bp,20)}

subi sp, 12

sw ra, 8(sp)

movi a0, cur

lw v0, 0(a0)

sw v0, 0(sp)

{[t] ∗ ptcb(t) ∗ (cur 7→ t) ∗ ∃∃ L .RQ(rq,L)
∗〈L〉 ∗ (a0,a1,v0,ra 7→ cur, , t, )
∗K(bp,17, t :: :: ret :: nil)}

movi a0, rq

call deq

bz v0, Ls ret

{[t] ∗ ptcb(t) ∗ 〈t ′〉 ∗ ptcb(t ′) ∗ ∃∃ L .RQ(rq,L)
∗〈L〉 ∗ (a0,a1,v0,ra 7→ rq, , t ′, )
∗K(bp,17, t :: :: ret :: nil) ∗ (cur 7→ t)}

sw v0, 4(sp)

lw a1, 0(sp)

call enq

{[t] ∗ 〈t ′〉 ∗ ptcb(t ′) ∗ ∃∃ L .RQ(rq, t :: L) ∗ 〈L〉
∗(a0,a1,v0,ra 7→ rq, t,0, )
∗K(bp,17, t :: t ′ :: ret :: nil) ∗ (cur 7→ t)}

lw a1, 4(sp)

movi a0, cur

sw a1, 0(a0)

lw a0, 0(sp)

{[t] ∗ 〈t ′〉 ∗ ∃∃ L .RQ(rq, t :: L) ∗ 〈L〉 ∗ ptcb(t ′)
∗(a0,a1,v0,ra 7→ t, t ′,0, )
∗K(bp,17, t :: t ′ :: ret :: nil) ∗ (cur 7→ t ′)}

cswitch

{[t] ∗ ptcb(t) ∗ ∃∃ t ′′ .〈t ′′〉 ∗ ∃∃ L .RQ(rq, t ′′ :: L)
∗〈L〉 ∗ (a0,a1,v0,ra 7→ t, t ′, , )
∗K(bp,17, t :: :: ret :: nil) ∗ (cur 7→ t)}

Ls ret:

lw ra, 8(sp)

addi sp, 12

{[t] ∗ ptcb(t) ∗ (cur 7→ t) ∗ ∃∃ L .RQ(rq,L)
∗〈L〉 ∗ (a0,a1,v0,ra 7→ , , , ret)
∗K(bp,20)}

ret

schedth:

{[sched] ∗ (cur 7→ ) ∗ ∃∃ L .RQ(rq,L) ∗ 〈L〉
∗(a0,a1,v0,ra 7→ , , , )
∗∃∃ bp.K(bp,10)}

movi a0, rq

call deq

bz v0, schedth

movi a2, cur

sw v0, 0(a2)

mov a1, v0

lw a0, sched

{[sched] ∗ 〈t ′〉 ∗ (cur 7→ t ′) ∗ ptcb(t ′)
∗∃∃ L .RQ(rq,L) ∗ 〈L〉
∗(a0,a1,v0,ra 7→ sched, t ′, , )
∗∃∃ bp.K(bp,10)}

cswitch

{[sched] ∗ ∃∃ t ′′ .〈t ′′〉 ∗ ptcb(t ′′) ∗ (cur 7→ t ′′)
∗∃∃ L .RQ(rq,L) ∗ 〈L〉 ∗ ∃∃ bp.K(bp,10)
∗(a0,a1,v0,ra 7→ sched, , , )}

movi a0, rq

lw a1, 0(a2)

call enq

jmp schedth

schedule p3:

{[t] ∗ ptcb(t) ∗ 〈sched〉 ∗ (cur 7→ t)
∗(a0,a1,ra 7→ , , ret) ∗ K(bp,10)}

subi sp, 4

sw ra, 0(sp)

movi a1, cur

lw a0, 0(a1)

movi a1, sched

{[t] ∗ ptcb(t) ∗ 〈sched〉 ∗ (cur 7→ t)
∗(a0,a1,ra 7→ t,sched, ret) ∗ K(bp,9, ret)}

cswitch

{[t] ∗ ptcb(t) ∗ 〈sched〉 ∗ (cur 7→ t)
∗(a0,a1,ra 7→ , , ret) ∗ K(bp,9, ret)}

lw ra, 0(sp)

addi sp, 4

{[t] ∗ ptcb(t) ∗ 〈sched〉 ∗ (cur 7→ t)
∗(a0,a1,ra 7→ , , ret) ∗ K(bp,10)}

ret

Fig. 10.Verification ofschedule p2(), schedth() andschedule p3()



struct tcb sched; | schedth()

struct tcb *cur; | {

struct queue rq; | while(1){

schedule_p3() | cur = deq(&rq);

{ | cswitch(&sched, cur);

cswitch(cur,&sched); | enq(&rq, cur);

return; | }

} | }

Fig. 11.Pseudo C code forschedule p3()

Scheduler as a separated thread.A scheduler in the pattern (III) is implemented as a
separated thread (see Fig. 11), which does scheduling jobs in an infinite loop. A global
variablesched is added to represent the TCB of the scheduler thread. A stub function
schedule p3() can be invoked by other threads to do scheduling. As shown below,
the specification ofschedule p3() function is different from the one ofschedule p2().
The schedule function in this implementation doesn’t own the thread queue, which is
owned by the scheduler thread〈sched〉 instead since all of the operations over the thread
queue are put into the separated thread.







[t] ∗ ptcb(t) ∗ (cur 7→ t) ∗ 〈sched〉 ∗ (a0,a1,ra 7→ , , ret) ∗ K(bp,10)

[t] ∗ ptcb(t) ∗ (cur 7→ t) ∗ 〈sched〉 ∗ (a0,a1,ra 7→ , , ret) ∗ K(bp,10)







(t,bp,ret)

The specification ofschedth() function is shown below:










[sched] ∗ (cur 7→ ) ∗ ∃∃ L .RQ(rq,L) ∗ 〈L〉
∗(a0,a1,a2,v0,ra 7→ , , , , ) ∗ ∃∃ bp.K(bp,10)

false











Since the ready thread queue is only owned by the scheduler thread, it does not need to
be shared by other threads and occur in the invariant for the shared resources,I :

I(t, t ′) , (♯(t ′=sched) ∗ (cur 7→ t) ∗ ptcb(t))∨∨(♯(t=sched) ∗ (cur 7→ t ′) ∗ ptcb(t ′))

The invariantI(t, t ′) is defined by two cases on the direction of context switch: if the
destination thread is the scheduler thread,I(t, t ′) requires that the value incur be equal
to the ID of the source thread,t; or if the source thread is the scheduler thread,I(t, t ′)
requires that the value incur be equal to the ID of the destination thread.

6 Related work and conclusions

Gotsman and Yang [6] proposed a two-layer framework to verify schedulers. The proof
system in the lower-layer is for verifying code manipulating TCBs, while the upper-
layer is for verifying the rest concurrent code of the kernel. Since thread queues and
TCBs are hidden from the upper-layer, one thread could not have any knowledge of the
others, thus their proof system is unable to verify the scheduling pattern of II and III.
Similar to our assertionRThrd(· · ·), they introduced a primitive predicateProcess(G) to



relate TCBs in the lower-layer with threads in the upper-layer, but there is no counter-
part of〈t〉 in their framework.

Fenget al. also verified a kernel prototype [3] in a two-layer framework. Code
manipulating TCBs needs to be verified in the lower-layer of their framework. The
TCBs are connected with actual threads in the upper layer by an interpretation function
of their framework. Our use of global invariant is similar totheir use of the interpretation
function. In the upper-layer, information of threads is completely hidden. Thus, their
framework also fails to support the verification of the scheduler pattern of II and III.

Ni et al. verified a small thread manager with a logic system [15,14] supporting
modular reasoning about code including embedded code pointers. In their logic, how-
ever, there is no abstraction of threads. Multithreaded programs are seen as sequential
interleaving of pieces of code in low-level continuation passing style. Therefore, TCBs
with embedded code pointers can be treated as normal data. But since the reasoning
level is too low without any abstraction, TCBs have to be specified by over-complicated
logic expressions and then it is very difficult to apply theirmethod to realistic code.

Klein et al. verified a micro-kernel, seL4 [11], where the kernel code runs sequen-
tially. Thus they used a sequential proof system to verify most of the kernel code. The
scheduling pattern of seL4 is similar to our pattern I, but they trusted the code doing
context saving and loading, and left it unverified. Since they do not verify user processes
upon the kernel, they need not relate TCBs in the kernel with actual user processes.

Garganoet al. used a framework CVM [5] to build verified kernels in the Verisoft
project. CVM is a computational model for concurrent user processes, which interleave
through a micro-kernel. Starostin and Tsyban presented a formal approach [18] to rea-
son about context switch between user processes. The context switch code and proofs
are integrated in a framework for building verified kernels (CVM) [10]. Their frame-
work keeps a global invariant,weak consistency, to relate TCBs in the kernel with user
processes outside the kernel. Since the kernel itself is sequential, their process schedul-
ing follows pattern I. The other two patterns cannot be verified.

In this paper, we proposed a novel approach to verify concurrent thread manage-
ment code, which allows multiple threads to modify their ownthread control blocks.
The assertions of the code and inference rules of the proof system are straightforward
and easy to follow. Moreover, it can be easily extended to support other kernel features
(e.g., preemptive scheduling, multi-core systems, synchronizations) and to be practi-
cally applied to realistic OS code.
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