Modular Verification of Concurrent Thread
Management

Yu Gud', Xinyu Fend, Zhong Sha, and Peizhi SHi

1 University of Science and Technology of China
{guoyu,xyfeng}@ustc.edu.cn seal0197@mail.ustc.edu.cn
2 Yale University
zhong.shao@Qyale.edu

Abstract. Thread management is an essential functionality in OS kerHew-
ever, verification of thread management remains a challehgeto two conflict-
ing requirements: on the one hand, a thread manager—amphaiow the thread
abstraction layer—should hide its implementation detail$ be verified indepen-
dently from the threads being managed; on the other hanthrtba&d management
code in many real-world systems is concurrent, which mighékecuted by the
threads being managed, so it seems inappropriate to aftstraads away in the
verification of thread managers. Previous approaches arekeerification view
thread managers as sequential code, thus cannot be applibckad manage-
ment in realistic kernels. In this paper, we propose a navellayer framework
to verify concurrent thread management. We choose a lowsraation level
than the previous approaches, where we abstract away thextswitch routine
only, and allow the rest of the thread management code toamcucrently in the
upper level. We also treat thread management data as ahstsaarces so that
threads in the environment can be specified in assertionb@ameasoned about
in a proof system similar to concurrent separation logic.

1 Introduction

Thread scheduling in modern operating systems providesittotionality of virtualiz-
ing processors: when a thread is waiting for an event, itgfive control of the processor
to another thread to create the illusion that each thread$asn processor.

Inside a kernel, a thread manager supervises all threadeigyistem by manip-
ulating data structures called thread control blocks (TCBSTCB is used to record
important information about a thread, such as the machintegb(or processor state),
the thread identifier, the status description, the locadia size of the stack, the prior-
ity for scheduling, and the entry point of thread code. Th&3$@re often implemented
using data structures such as queues for ready and waitiegds Clearly, modifying
thread queues and TCBs would drastically change the baisadidhreads. Therefore,
a correct implementation of thread management is cruciag@ranteeing the whole
system safety. Unfortunately, modular verification of reakld thread management
code remains a big challenge today.

The challenge comes from two apparently conflicting goalishvve want to achieve
at the same time: abstraction (for modular verification) afiitiency (for real-world

usability). On the one hand, TCBs, thread queues, and teadrscheduler are specifics
used to implement threads so they should sit at a lower atistndayer. It is natural to
abstract them away from threads, and to verify threads amthttead scheduler sepa-
rately at different abstraction layers. Previous work Hasag it is extremely difficult
to verify them together in one logic system[15]. On the otieand, in many real-world
systems such as Linux-2.6.10[12] and FreeBSD-5.2 [13]tlihead scheduler code
itself is alsoconcurrentin the sense that there may be multiple threads in the system
running the scheduler at the same time. For instance, wheread invokes a thread
scheduler routineg(g.,cleaning up dead threads, load balancing, or thread sahgglul
and traverses the thread queue, it may be preempted by btleaxds who may call
the same routine and traverse the queue too. Also, in sonensy$1Z,1] the thread
scheduling itself is implemented as a separate threaduhataoncurrently with other
threads. In these cases, we need to verify thread schedukefmulti-threaded” logic,
taking threads into account instead of abstracting thenyawa

Earlier work on thread scheduling verification fails to asfa the two goals at the
same time. Néet al. [15] verified both the thread switch and the threads in onielfdd],
which treats thread return addresses as first-class codeepiAlthough their method
may support concurrent thread schedulers in real systéruses the abstraction of
threads completely, and makes the logic and specificatmmgsdmplex for practical
use. Recent work[3,6] adopts two-layer verification frarogg to verify concurrent
kernels. Kernel code is divided into two layers: sequermiale in the lower layer and
concurrentin the upper layer. In their frameworks, theytpatcode manipulating TCBs
(e.g.thread schedulers) in the low layer, and hide the TCBs o&tiigén the upper layer
so that the threads cannot modify them. Then they use seguprigram logics to
verify thread management code. However, this approachtissadle for many realistic
kernels where thread managers themselves are concureetii@threads are allowed
to modify the TCBs. Other work on OS verification [111,9] onlypports non-reentrant
kernelsj.e.,there is only one thread running in the kernel at any time.

In this paper, we propose a more natural framework to vedfcarrent thread man-
agers. Our framework follows the two-layer approach, sacoomnt code at the upper
layer can be verified modularly with thread abstractionsveleer, the abstraction level
of our framework is much lower than previous framewoiKs[[3T&e majority of the
code manipulating thread queues and TCBs is put in the upger hnd can be veri-
fied as concurrent code. Our framework successfully achiewth verification goals: it
not only allows abstraction and modular verification, bgbadupports concurrency in
real-world thread management.

Our work is based on previous work on thread scheduler vatiifio, but makes the
following new contributions:

— We introduce a fine-grained abstraction in our two-layeifioation framework.
The abstraction protects only a small part of sensitive llaf&Bs, and at the same
time allows multiple threads to modify other part of TCBsedafOur division of
the two abstraction layers is consistent with many realsgst It is more natural
and can support more realistic thread managers than prewiork.

— In the upper layer, we introduce the idea of treatingads as resource3 he ab-
stract thread resources can be specified explicitly in tlserien language, and

v

o (I (D)
schedulin save)
- processg v Ccl,nuaxt — flndtne;(t
oa contex
— user thread [\ context o Qntex

Fig. 1. Three patterns of scheduling

their use by concurrent programs can be reasoned about artydollowing con-
current separation logic (CSL) [16]. By enforcing the ingat that the abstract
resource is consistent with the concrete thread meta dataawensure the safety
of the accesses over TCBs and thread queues inside threads.

— Because of the fine-grained abstraction of our approachse¢hwntics of thread
scheduling do not have to be hardwired in the logic. Theesfour framework
can be used to verify various implementation patterns aatirmanagement. We
show how to verify the three common patterns of thread sdivegin realistic OS
kernels (while previous two-layer frameworkg [3,6] canyoverify one of them).

— In our extended TR]7], we also use our framework to verifg#t schedulers with
hardware interrupts, scheduling over multiprocessor eitil-balancing, and a set
of other thread management routines such as thread crgjaiioand termination.

The rest of this paper is organized as follows: we first infiaa simplified abstract
machine model for the higher-layer of our framework in $&¢o3how our main idea,
we propose in Se€l 4 our proof system for concurrent threlaeldsding code over the
abstract machine. We show how to verify two prototypes oédciters based on context
switch in Sed b. We compare with related work in $éc. 6, ard tlonclude.

2 Challenges and our approach

In this section, we illustrate the challenges of verifyiragle of thread scheduling by
showing three patterns of schedulers and discuss the aigficissues. Then we infor-
mally explain the basic ideas of our approach.

2.1 Three patterns of thread scheduling

By deciding which thread to run next, the thread schedulezsponsible for best uti-

lizing the system and makes multiple threads run concuytélitie scheduling process
consists of the following steps: selecting which threadiomext in a thread queue by
modifying TCBs, saving the context data of the current treand loading the con-
text data of the next thread. Context data is the state of theggsor. By saving and
loading context data, the processor can run in multiplerobfiows, i.e., threads. Usu-

ally, context data can be saved on stacks or TCBs (we assuthis jpaper that context

>|j¢_| tcha

:',-—>L'|_i_¢_| tchs

D>

: _.>1LT¢__| tctb

/’t'hread queue

[1
thread queue ¢ o
—-—- contex
tchy tcbg tche 0o0oao
(@) (b)

Fig. 2. Abstraction in verification framework

data is saved in TCBs for the brevity of presentation). Tlageevarious ways to imple-
ment thread schedulers. In Fig. 1 we show three common inggléation patterns, all
modeled from real systems.

Pattern (1) is popular among embedded OS kernelg.(FreeRTOS) and some
micro-kernels €.g.,Minix [B] and Exokernel[[2]). The scheduler in this pattesnii-
voked by function calls or interrupts. Thereafter, the sithiag is done in the following
steps: (1) saving the current context data, (2) finding tixétheead, and (3) loading the
context data of the next thread (and switching to it imglditrough function return).

In pattern (Il), the scheduling process is a function with tbllowing steps: (1)
finding the next thread firstly, (2) performing context swi{saving the current context
data, loading the next one, and jumping to the next threadddiately), (3) and running
the remaining code of the function when the control is svétthack from other threads.
This patternis modeled from some mainstream monolithinddsre.g.,Linux [12], and
FreeBSD). Some embedded kernelg(,RTEMS and uClinux) adopt it too. Note that
both the involved threads should be allowed to access teadqueue and TCBs when
calling the scheduler.

Pattern (Ill) uses a separate thread, cafieldeduler threadto do scheduling. One
thread may perform scheduling by doing context switch tosttteeduler thread. The
scheduler thread is a big infinite loop: finding the next trgerforming context switch
to the next thread; and looping after return. This pattemlma seen in the GNU-pth
thread library, MIT-xv6 kernel, L4::Kagtc. Similar to pattern (I1), all involved threads
in this pattern should be allowed to access the TCB of thedsdbethread and the
thread queue.

2.2 Challenges

As we can see from the patterns in Hi§). 1, the control flow insttieeduling process
is very complicated. Threads switch back and forth via malaijing the thread queues
and TCBs. Itis very natural to share TCBs and the thread caewag threads in order
to support all these scheduling patterns. On the other litsisdmportant to ensure that
the TCBs are accessed in the right way. The system would gognfpfor instance, a
thread erased the context data of another by mistake, orgeadthread back into the
ready thread queue.

To guarantee the safety of the scheduling process, we nifibt¥uo requirements:

(1) No thread can incorrectly modify the context data in TCBs

ThreadA ThreadB
{[A] * (B) * next > _} /* coming back */
{mxté)B;) [A] * (B) * next — B » {[B] * <A>;\‘|< next — B}
* * next — next = A;
cswitch(A, next); cswitch(B, next);
(A * (B) » next s A} (A *[Blxnext = A [T gAY dext s |}

GINV £ {CThrdp * RThrdg
=74

Fig. 3. Abstract thread res. vs. concrete thread res.

(2) The scheduler should know the status of each thread thitbad queues and decide
which to run next.

To satisfy the requirement (1), some previous work|[3,6]msa two-layer-based
approach and protects the TCBs throwdistraction where the TCBs are simply hid-
den from kernel threads and become inaccessible. This apipean be used to verify
schedulers of pattern (1), for which we show the abstradfimmin Fig.[2 (a). Threads
above the line cannot modify TCBs, while the scheduler isWehis line and has full
access to them. The lower-layer scheduler provides anaabstterface to the verifi-
cation of concurrent thread code at the upper layer. Sincwdifies the TCBs in the
scheduling time only, we can view the scheduler as a seqiémtiction which does not
belong to any thread and can be verified by a conventionalddsigie logic. However,
this approach cannot verify the other two patterns, nor ddasill the requirement (2)
for concurrent schedulers, where the TCBs are manipulatedurrently (not sequen-
tially as in pattern (1)) and should be known by threads. Thate cannot completely
hide the TCBs from the upper-layer concurrent threads ftiepss (11) and (111).

2.3 Our approach

If we inspect the TCB data carefully, we can see that only allgpaat of the data is
crucial to thread behaviors and cannot be accessed contiyrieis unnecessary to
access it concurrently either. The data includes the maatontext data and the stack
location. We call thensafety-criticalvalues. Some values can be modified concurrently,
but their correctness is still important to the safety ofkbmel,e.qg., the pointers orga-
nizing thread queues and the status field belong to this Kivdlaes. Other values of
TCBs have nothing to do with the safety of the kernel and cambdified concurrently
definitely,e.g.,the name of a thread or debug information.

Lowering the abstraction levelTo protect the safety critical part of TCBs, we lower
the abstraction line, as shown in Fig. 2 (b). In our framewtitk safety-critical data of
TCBs is under the abstraction line and hidden from threalls. cbrresponding oper-
ations such as context saving, loading and switching areaabsd away from threads
too, with only interfaces exposed to the upper layer. Themopiart of TCBs are lifted
above this line, which can be accessed by concurrent threads

Building abstract threads.We still need to ensure the concurrent accesses of non-
safety-critical TCB data are correct. For instance, we oamtlow a dead thread to

be put onto a ready thread queue. To address this issue, Vdealnsiract threads to
carry information of threads from TCBs to guide modificaidny each other. In Figl 3,

we use the notatiofl] to specify the running thread, and the notation for a ready
thread. Here is the identifier of the thread. With the knowledge about tkistence of

a ready threa® pointed bynext (i.e., (B)), we know it is safe to switch to it via the
operationcswitch(A,next). Since abstract threads can be described in specifications,
it allows us to write more intuitive and readable specifimasi for kernel code.

Treating abstract threads as resourcdske heap resources, abstract thread resources
can be either local or shared. We canadmership transfersn thread resources. When
context switches, one thread will transfer some of the absthread resources (shared)
along with the shared memory to the next thread. As showngrFiwhen thread A
context switches to thread B, the notatjghwill be changed tdA) after context saving;

(A) and(B) are transferred to the thread B along with the shared menespurceext;
then(B) will be changed tdB] after context loading. With transferred thread resources,
threadB will know there is a ready threalto switch to. Therefore, by treating abstract
threads as resources, we find a simple and natural way tofg@ea reason about
context switches. We design a proof system similar to CSLnfodular verification
with the support of ownership transfers on thread resources

Defining concrete thread resource®o establish the soundness of our proof system, we
must ensure that the abstract threads can be reified by ¢ertbreads. The concrete
representation of abstract threads, including stack, T&€&scan be defined globally. In
Fig.[3, suppose that thread A is running, we ensure that #rersvo blocks of resources

in the system. One of them is the running threadrd, and the other is a ready thread
RThrdg. They correspond to the abstract thregglsand (B) in the assertions of thread
A. We use the concrete thread resources to specify the glolaaiant of the machine,
which allows us to prove the soundness of our proof system.

3 Machine model

In this section, we define a two-layer machine model. The ighymachine we use is
similar to realistic hardware, where no concept of threasgtexBased on it, we define
an abstract machine with logicabstract threadswhose meta-data is abstracted into
a thread pool. Moreover, the operation of context switchbistracted as a primitive
abstract instruction.

Physical machine.The formal definition of the physical machine is shown in Eyg.
(left side). A machine configuratioWw consists of a code block, a memory blockv,

a register fileR and a program counter. The machine has 6 general registers. Some
common instructions are defined to write programs in thisspapheir meanings, as
well as the operational semantics, follow the conventiBos simplicity, we omit many
realistic hardware details,g., address alignment and bits-arithmetic.

Abstract machineThe abstract machine is shown in Higj. 4 (right side), wheresiths
are introduced at this level. It is more intuitive to build@ef system (Setl4) to verify
concurrent kernel code at this level. A thread ppas a partial mapping from thread

(PhyMach) W ::= (C,M,R,pc) (AbsMach) W == (C,Spc)
(PhyCode) C = {f:i}* (State) S == (M,RP)
(PhyMem) M = {1:w}* (1=4n) (AbsCode) C = {f:ic}”
(PhyRegFile) R = {r:w}* (Mem) M {1iw}”
(Register) r = v0|a0|al|a2|sp|ra (RegFile) R {row}
(Instruction) i = addry, rs|addi ryg, w (Tb) t = w
| mov ry, rs|movi ry, w (Pool) P u= {t:T}*
| 1w ry, w(rs) | swrt, w(rs) (Thrd) T 2= run|(rdy,R)
| jmp £ | call £ | ret (Absinstr) ¢ = cswitch|i
| subi ry, w|bz ry, £ (TIDList) L = tuLnil

Fig. 4. Physical and abstract machine models

IDst to abstract threadb. Each abstract thread has a tag specifying its status, vigiich
either running iun) or ready (dy). Each ready thread has a copy of saved register file
as its machine context data. The abstract instructionsidiecan abstract operation of
context switch ¢switch) and other physical machine instructions defined on the left
We model the operational semantics using the step transiiationw — W’ defined

in Fig.[H. The abstract instructieswitch requires two thread IDs passed as arguments
in a0 andai, one of which is tagged byun and the other is taged bgly in the thread
pool. Aftercswitch, the two abstract threads exchange tags, and the contnaodgsor

is passed from the old thread to the new one. The registeltd dit@ad are saved in the
source abstract thread and the registers in the destirthtiesd are loaded into machine
state. Except foeswitch, the state transitions of other instructions are similahtise

of the physical machine.

Machine translation.In our proof system, once a program is proved safe at theaatbstr
machine level, it should be proved safe as well at the phiysieahine level. We define
a relation between abstract machine with physical machimethé TR). The code
block at the abstract machine level is extended with the addeplementation of
context switch, and the abstract instructiegitch is translated to a call instruction that
invokes the implementation code of context switch. The nmgrbtock at the abstract
machine level is translated to physical memory block by penerged with the memory
where context data is stored. By the translation, it can beqaf that any safe program
over the abstract machine is safe over the physical machine.

4 Proof system

In this section, we extend the assertion language of CSLdoigpthe thread resources,
and propose a small proof system supporting verificatiorontarrent code with mod-
ification of TCBs at the assembly level.

((M,R.P),pc) < (M',R,P),pc)
if c = | then

i ((M,R),pc) < (M,R),pc’) A P=P

cswitch | IR, P".M=M AR’'=R{ra:pc+1} At=R(a0)
At'=R(al) A pc’=R/(ra)

AP ={t:run, t': (rdy,R)}wP”

AP ={t:(dy,R"), t':run}wP”

RandR is complete.

((M,R),pc) < ((M',R),pc’)

if i= then

addry, rs | M=M AR =R{rq:R(rq)+R(rs)} A pc’=pc+1
call f M'=M AR =R{ra:pc+1} Apc'=¢f

jmp £ M'=MAR=RApc=f

ret M'=M AR =RA pc’=R(ra)

C(pc)=c (Spc) <> (S,pc))
(C,Spc)— (C,S,pc’)

Fig. 5. Operational semantics of abstract machine

4.1 Assertion language and code specification

We usep andq as assertion variables, which are predicates over mactatessThe
assertion constructs, adapted from separation logic ft&khallowly embeddeid the
meta language , as shown in HigJ. 6. In our assertion langtizge, are two special as-
sertion constructs for abstract threads. One of theft) Epecifying a ready thread and
the other ist] specifying a current running thread. Since threads ara@xpsources

in the abstract machine, their machine context data (valuesgisters) are preserved
across context switch. Hence the resources of registerddstibbe shared. We ex-
plicitly mark a pure assertion by, which forbids an assertion specifying resources.
An unary notation {p) mark an assertiop that only specifies shared resources but
no thread local resources.., registers). Registers are also treated as resources, and
r — w specifies a register with the value wfThe notationry,...,rn + wy,...,wy IS @
compact form for multiple registers.

We borrow the idea from SCARI[4] and us€ag) pair to specify instructions at
assembly-level. The pre-conditigndescribes the state before the first instruction of
an instruction sequence, while the actwpdescribes the actions done by the whole in-
struction sequence. In the proof system, each instrudcdiassociated with g, g) pair,
whereg describes the actions from this instruction to the end o€threent function. For
all instructions ircC, their (p,g) pairs are put inw, a global mapping from labels to spec-
ifications. The specification forrfp,g) is different from the traditional pre-condition
and post-condition, which are both assertions and relatedikiliary variables. We can
still use a notation to specify instructions in the tradiabstyle,

true 2 A(M,RP). True
false £ A(M,RP). False
emp = AMRP).M={}AR={}AP={}
pP*q £)\(M,R,P).E|M1,M2,R1,R2,P1,P2.M:Ml&JMZ/\R=R1L+JR2/\P:P]_LHPZ
AP (M1,Ry,P1) A g (Mg, Ry, P2)
p—+q 2 A(M,RP).YMy,R;,P,M R, P.(M=MwMAR=R&RAP =P uP)
— p (M1,Ry,P1) = q (MR, P')
PAG = AS.(PSA(QY
pvg = AS.(pSV (@9
Jv.p & AS.3v.pS
tp 2 AMRP).pAM={}AR={}AP={}
op £ AM,RP).p(M,RP)AR={}
r—w 2 AMRP).R={r:w} AM={}AP={}
r—w = AMRP).IR.R={r:u}wR
1—=w = AMRP).M={1:w}A1#NULLAR={}AP={}
t £ AM,RP).P={t:run} At ZNULLAM={-} AR=
[t] #
t £ AM,RP).P={t:(rdy,.)} AtANULLAM={} AR={-
{t) y #

Fig. 6. Definition of selected assertion constructs

ASS.VpP .VYVvi,...,Vn. (P(Va,...,Vn) * P') S— (q(V1,...,Vn) * P') S)

wherep is the pre-condition of instructions,is the post-condition, and, ..., v, are
auxiliary variables occurring in the precondition and tlestgondition. We define a
binary operator for composing two pairs into one.

(P.9r(P,g) = (AS.pSA(VS.gS S~ ' 9),
AS S .pS—(3S.gSSAg S T))
If an instruction sequence satisfigsg) and the following instruction sequence satis-

fies (p',d), then the composed instruction sequence would satisty > (p',g'). The
weakening relation between two pairs is defined as below:

(p.g)=(P.g) £ VS.pS—» P SA(VS.gSS—~gS9)
i.e., the preconditiorp be stronger thap’ and the actiony be weaker thag'.

(Assert) p,q := true|false|emp|p=*xq|p—*q|pAq|pVg|Iv.p|l—w
| 1) [gploplr—=w|r —w

(Action) ¢ € State — State — Prop

(Spec) W = {f:(p,g)}"

4.2 Invariant for shared resources and inference rules

As mentioned previously, our proof system draws ideas ofevamp transfer from
CSL. By defining invariants for shared resources, our prgstiesn ensures safe opera-
tions of TCBs.

Unlike the invariant in concurrent separation logic, theamant of shared resources
defined in our proof system is parameterized by two thread IRsty). Briefly, the
invariant describes the shared resources before contéchswith the direction from
the threads to ty. One of the benefits of parameters is that the invariant isaty
specific.

Like the abstract invariantin CSL, the invariant(ts,tq) is abstract and can be in-
stantiated to concrete definitions to verify various progsaas long as the instantiation
satisfies the requirement of beiptecise]17].

Precisely, the invariantts,ty) describes the shared resources when the context switch
is invoked from the thread to the thready, but excluding the resources of the two
threads Since the control flow from one thread to anothedéserministicby context
switch, every two threads may negotiate a particular imvdrthat is different from pairs
of other threads. We can define different assertions (ofesh@sources) which depend
on the source and the destination threads of a context swiitdl is quite different
from concurrent code at user-level, where a context swiecton-deterministic and the
scheduling algorithm is abstracted away.

The judgment for instructions in our proof system is of thikofeing form: W1 -
{(p,9)} pc: c, whereWw andl are given as specifications. The judgement states that an
instruction sequence, started withat the label ofpc and ended with aet, satisfies
specification(p,g) under® and!l. Some selected inference rules for instructions are
shown in Fig[y.

In the rule of @DD), the premise says that the specificatipry) implies the action
of theadd instruction composed with the specification of the nextringion, W(pc+1).
The action ofadd instruction is that if the destination registgr contains the value of
wy, and the source registes contains the value of,, then after the instructiory will
contain the sum ofi; andw,, while rs will remain unchanged.

Functions are reasoned with the rules @a(L) and RET). The (CALL) rule
says that the specificatiqip,g) implies the action that is composed by (1) the action
of instructioncall, (2) the specification of theinctioninvokedw(£), (3) the action of
instructionret, and (4) the specification of the next instructi®pc+1). The RET)
rule says that the specificatidp, g) implies an empty action, which means the actions
of the current function should be fulfilled.

The most important rule iscsw) . The precondition otswitch requires the fol-
lowing resources: the current thread resource, the registecontaining the current
thread IDt andat containing the destination thread tD and the shared resource sat-
isfying the invariant1(t,t"). After return from context switch, the current thread will
own the shared resources (satisfying”.t) for somet”) again.

4.3 Invariant of global resources and soundness

Each abstract thread corresponds to the part of global res®uepresenting the con-
crete resources allocated for this thread. For examplegriaabstract threa), there

(wlw2)
(rg — W1) * (rs — W2)
W(pc+1
(rg — WL1+W2) * (rs — W) >¥lpett)

W1 +{(p,9)} pc:addry, s

(g@_${rakﬁ' }DW@)D{IaF&pC+1}Dw@C+Q

mwi{

(ADD)

ra — pc+1 ras
W1+ {(p,g)} pc:call (CALL)

(Qg)i>{::p} (p,g) = W(£) -
P (RET) W I F{(p,9)} pc: jmp £

W +{(p,9)} pc:ret

[t] * (20,a1,7a s t,t,) * (t') % ol (t,t')) oo
.0) = S W(pet
(9) [t] * (20,al,ra — t,t/,) « Ft" . (") x ol (t",1) (pet1)

W, +{(p,9)} pc: cswitch

(csw)

Fig. 7. Inference rules (selected)

exist resources of its TCB, stack, and private resourcestefbre, all resources can be
divided into parts and each of them is associated to onedhfgze global invariant
GINV, defined in Fig[B, describes the partition of all resourdebajly. The invariant
is the key for proving the soundness theorem of our proogsyst

First, for each thread, we define a prediaadet to specify its resources and control
flow, i.e. thecontinuationof this thread. The first parameteof this predicate specifies
the number of functions nested in the thread’s control flbwi¢ equal to zero, it means
that the thread is running in the topmost function, whickeguired to be an infinite loop
and cannot return. If the numbeis greater than zero, the predicate says that there is
a specificationp,g) in W atpc, such that the resources of the thread satigfiesdg
guarantees that the thread will continue to satzfit recursively after it returns to the
addressetaddr.

The concrete resources ofnning threadare specified by a continuatiaant with
an additional condition, the running thread owns all regstThe parametek points
to the next instruction the thread is going to run. Here wearsabbreviationR| to
denote the resources of all registers, except that the aliteis of no interest.

For aready threador a runnable thread), its concrete resources are definseby
arating implication—: if given (1) the resources of saved machine confBxt (2) the
abstract resource of its€tf, (3) another ready threatland (4) shared resources speci-
fied byol(t',t), the resources of the ready thread can be transformed iat@fiources
of a running thread. Its thread ID is specified by the secondrpater ofRThrd, and
the third parameter is the machine context data saved indi. Please note that the
program counter of a ready thread is saved into the register

The whole machine state can be partitioned, and each pastisby one thread,
which is either running or ready. Thus, the global invariamtv is defined in the form
of separating conjunction bgThrd andRThrd. The structure oGINV is isomorphic to
the thread pooP: the abstract running thread is mapped to the resourcefigueby

[I>

[R]

(ra — _) * (vO — R(v0)) * (sp — R(sp))
* (a0 — R(a0)) * (a1l — R(al)) * (a2 — R(a2))
Cont(n+1,W,pc) 2 AS.W(pc)=(p,g) A (p 9
A(VS.g'S $— (Tretaddr. (ra — retaddr) A Cont(n, W, retaddr)) S)

Cont(0,W,pc) = AS.W(pc)=(p,g) A (P A (VS.gS S— False)

CThrd(W,t,pc) An.Cont(n, ¥, pc) A ([t] *xIR. |R] * true)

RThrd(W,t,R) IR # [t] # 3. (t') % ol (t',t) —+CThrd(W,t,R(ra))

GINV(W,Ppc) = CThrd(W,t,pc) * RThrd(W,tg,Ro) * - -+ * RThrd(W,tn, Rn)
whereP={t :run, to: (rdy,Rp), ..., tn: (rdy,Rn)}

Fig. 8. Concrete threads and the global invariant

[I>

[I>

struct tcb { void schedule_p2()

struct context ctxt; {
struct tcb *prev; struct tcb *old, *new;
struct tcb *next; old = cur;

}; new = deq(&rq);

struct tcb *head; enq(&rq, old);
struct tcb *tail; cur = new;
};
struct tcb *cur;
struct queue rq;

cswitch(old,new);

|
|
|
|
|
struct queue { | if (new == NULL) return;
|
|
|
| return;
|

}

Fig. 9. Pseudo C code faschedule _p2()

CThrd; an abstract ready thread is mapped to a resource specifiethhy Note that
GINV requires that there be one and only one running abstragdhsace the physical
machine has only one single processor. Our proof systementhat the machine state
always satisfies the global invariansi{v(¥,P,pc) (M,R,P)).

The soundness property of our proof system states that amygm that is well-
formed in our proof system will run safely on the abstract hiae. The property can
be proved by the global invariagtnv, which always holds through machine execution.
We can first prove that if every machine configuration sagsi&v, it can run forward
for one step. And we can also prove that if a machine configurgsatisfyingGinv)
can proceed, the next machine configuration will also satigfv. Hence by the invari-
antGINv, the soundness theorem of our proof system can be provedrdbé of the
soundness theorem has been formalized in Coq [7].

5 \Verification cases

In this section, we show how to use the proof system to vewfy $schedulers of pat-
tern (1) and (Ill) shown in Fig[dL. We give the code written piseudo C to explain

the programs and their specifications. The correspondisgnaisly code and selected
assertions of the two schedulers are shown in[Elp. 10.

Scheduler as functionThe scheduler functioschedule_p2() (see Fig[D) follows the
process discussed in S&¢. 2. The functiaesg) andenq() are used to remove and
insert nodes in thread queues. The main task of the schddutechoose a candidate
from the thread queue and then perform context switch fraacthrrent thread to the
candidate. There are two global variables; andrq. The variablecur points to the
TCB of the running thread:q points to the thread queue containing TCBs of all other
runnable (ready) threads.

The notatiort ™5 w specifies a named field in the structure. The notagion(t)
specifies a part of TCB including the fields ©fxt andprev. The predicat&Q(q,L)
specifies a doubly linked list as a thread queue pointed tp WwherelL is a list of thread
IDs of the thread queue. We also usgas an abbreviation fatg) * (t1) * -+ * (tn), if L

iSto ity -+ ity i nil, and usa — (W_ to specifyn continuous memory cells.
field
15w £ +offset of the field in the struct> w

[I>

preb() =) ()

RQseg(pv,tl,t,nil)
RQseg(pv,tl,t,t’ L")

[I>

t 7% py) « (t "'t') « RQseg(t,th,t/, L)

[1>

(I
(2
(t " pv) 3 (¢ "X NULL) * 4(t=t])
(
(

head tail

RQ(q, nil) £ (g—>NULL) * (q— NULL)
RQ(q,t:: L) 2 Fpv.3t. (q"%) « (-2 1) + RQseg(py,tl,t, L)
K(bp,n,wg :wy i ... iwm i nil) 2 Jsp.(sp — Sp) f(sp=bp+4n) * (bp — (V)
*(SP> wp) * (SP+4 — w1) * -+ x (SPH4AM — wp)
K(bp,n) £ K(bp,n, nil)

The specification ofchedule_p2() is shown below:

[t] # pteb(t) * (cur v t) * IL.RQ(xq,L) * (L) * (ra ~s ret) (tretbp)
xK(bp,20) x (v0,a0,a1 — _,_,_)

[t] * ptcb(t) * (cur — t) * IL.RQ(rq,L) % (L) * (ra — ret)
xK(bp,20) x (v0,a0,a1 — _,_,_)

Here we use a notatiat(bp,n,w::w :: ---) to describe a stack frame. The first parameter
bp is the base address of a stack frame. The second paramisttre size of unused
space (number of words). And the third parameter is a list afds, representing the
values on stack top down, that is, the leftmost value in tteidi the topmost value in
the stack frame. If the stack frame is empty, we omit the thathmeter.

The abstract invariantis instantiated to a concrete definition specifying the stiar
resourcebeforeandafter context switch for this implementation of scheduler.

I(t,t") £ pteb(t’) * (cur — t') * IL.RQ(xq,t :: L) * (L)

schedule_p2:
{[t] * pteb(t) * (cur — t) *IL.RQ(xq,L)

x(L) % (a0,al,v0,ra — _,_,_,ret)
xK(bp, 20) }
subi sp, 12
sw ra, 8(sp)
movi ao, cur
1w v0, 0(a0)
sw v0, 0(sp)

{[t] * pteb(t) * (cur — t) *IL.RQ(rq,L)
x(L) * (a0,a1,v0,ra > cur,_,t,_)
*K(bp,17,t :: _ zret::nil)}

movi a0, rq
call deq
bz vO, Ls_ret

{[t] * pteb(t) * (t') x pteb(t’) xIL.RQ(xrq,L)
*(L) * (a0,a1,v0,ra > rq,_,t’,_)
xK(bp,17,t :: _ :iret:inil) * (cur — t)}

sw v0, 4(sp)
1w al, 0(sp)
call enq

{[t] = {t') * pteb(t’) * IL.RQ(xq,t i1 L) * (L)
*(a0,al1,v0,ra +—» rq,t,0,_)
xK(bp,17,t i1t/ i ret:inil) * (cur — t)}

1w al, 4(sp)
movi ao, cur

sw al, 0(a0)
1w a0, 0(sp)

{[t] * (') *IL.RQ(zq,t :: L) * (L) * ptcb(t")
x(a0,a1,v0,ra > t,t’,0,_)
*K(bp,17,t :: 1" ret::nil) * (cur — t')}
cswitch
{[t] * pteb(t) «Ft”. ") *HL.RQ(xq,t” :: L)
*(L) * (a0,a1,v0,ra — t,t’,_,)
xK(bp,17,t :: _ :iret:inil) * (cur — t)}

Ls_ret:
1w ra, 8(sp)
addi sp, 12
{[t] * pteb(t) * (cur — t) *IL.RQ(xq,L)
x(L) % (a0,al,v0,ra — _,_,_,ret)
+K(bp,20)}
ret

schedth:
{[sched] * (cur — _) x3FL.RQ(xq,L) (L)

*(a0,a1,v0,ra > _,_,_,_)
*x3bp.K(bp,10) }
movi a0, rq
call deq
bz vO, schedth
movi a2, cur
sW v0, 0(a2)
mov al, vO
1w a0, sched

{[sched] x (t') * (cur > t’) x ptch(t)
*3IL.RQ(rq,L) * (L)
*(a0,a1,v0,ra — sched,t’,_,)
*3bp.K(bp,10) }
cswitch
{[sched] x3t” . (t") % ptcb(t”) * (cur — t")
*JIL.RQ(rq,L) * (L) xFbp.K(bp,10)

*(a0,a1,v0,ra > sched,_,_,_)}
movi a0, rq
1w al, 0(a2)
call enq
jmp schedth

schedule_p3:
{[t] * ptcb(t) * (sched) * (cur — t)
x(a0,al,ra — _,_,ret) « K(bp,10)}

subi sp, 4

sw ra, 0(sp)
movi al, cur
1w a0, 0(al)
movi al, sched

{[t] * ptcb(t) * (sched) * (cur > t)
*(a0,al,ra — t,sched,ret) x K(bp,9,ret)}
cswitch
{[t] * ptcb(t) * (sched) * (cur — t)
x(a0,al,ra — _,_,ret) x K(bp,9,ret)}
1w ra, 0(sp)
addi sp, 4
{[t] * ptcb(t) * (sched) * (cur — t)
x(a0,al,ra — _,_,ret) « K(bp,10)}

ret

Fig. 10. Verification of schedule_p2 (), schedth() andschedule_p3()

struct tcb sched; schedth ()

|

struct tcb *cur; | o

struct queue rq; | while(1){

schedule_p3() | cur = deq(&rq);

{ | cswitch(&sched, cur);
cswitch(cur,&sched); | enq(&rq, cur);
return; | }

} |}

Fig. 11.Pseudo C code faschedule _p3()

Scheduler as a separated thread.scheduler in the pattern (lll) is implemented as a
separated thread (see Higl 11), which does schedulingrjasinfinite loop. A global
variablesched is added to represent the TCB of the scheduler thread. A stuttibn
schedule_p3() can be invoked by other threads to do scheduling. As showaowbel
the specification ofchedule_p3() function is different from the one afchedule p20).
The schedule function in this implementation doesn’t owattiread queue, which is
owned by the scheduler threédhed) instead since all of the operations over the thread
queue are putinto the separated thread.

[t] * ptcb(t) * (cur — t) * (sched) * (a0,al,ra — _,_,ret) = K(bp, 10) (t-bprey
[t] * ptcb(t) * (cur — t) * (sched) * (a0,al,ra — _,_,ret) « K(bp, 10)

The specification ofchedth () function is shown below:

[sched] * (cur — _) * IL.RQ(rq,L) * (L)
x(a0,al,a2,v0,ra — _,_,_,_,_) * Fbp.K(bp, 10)

false

Since the ready thread queue is only owned by the scheduéardhit does not need to
be shared by other threads and occur in the invariant foritheesl resources,

[(t,t") £ (4(t'=sched) * (cur — t) * ptch(t)) WV (#(t=sched) * (cur ~ t’) * ptch(t’))

The invariantl (t,t) is defined by two cases on the direction of context switchhef t
destination thread is the scheduler thragdt’) requires that the value ikur be equal
to the ID of the source thread,or if the source thread is the scheduler thrdéudt’)
requires that the value ikur be equal to the ID of the destination thread.

6 Related work and conclusions

Gotsman and Yan{[6] proposed a two-layer framework to yadhedulers. The proof
system in the lower-layer is for verifying code manipulgtiiCBs, while the upper-
layer is for verifying the rest concurrent code of the ker®hce thread queues and
TCBs are hidden from the upper-layer, one thread could nat hay knowledge of the
others, thus their proof system is unable to verify the sahed pattern of Il and Ill.
Similar to our assertioRrThrd(---), they introduced a primitive predicafrocesgs) to

relate TCBs in the lower-layer with threads in the uppeefaput there is no counter-
part of (t) in their framework.

Fenget al. also verified a kernel prototyp&][3] in a two-layer framewo@ode
manipulating TCBs needs to be verified in the lower-layerhairt framework. The
TCBs are connected with actual threads in the upper layenliytarpretation function
of their framework. Our use of global invariant is similatheir use of the interpretation
function. In the upper-layer, information of threads is @dately hidden. Thus, their
framework also fails to support the verification of the sakledpattern of Il and III.

Ni et al. verified a small thread manager with a logic system[[15,14psuting
modular reasoning about code including embedded codegpsinh their logic, how-
ever, there is no abstraction of threads. Multithreadedarms are seen as sequential
interleaving of pieces of code in low-level continuatiorsgiag style. Therefore, TCBs
with embedded code pointers can be treated as normal datairi®e the reasoning
level is too low without any abstraction, TCBs have to be #getby over-complicated
logic expressions and then it is very difficult to apply theiethod to realistic code.

Klein et al. verified a micro-kernel, seL4 [11], where the kernel codesrsequen-
tially. Thus they used a sequential proof system to verifghod the kernel code. The
scheduling pattern of seL4 is similar to our pattern I, byttrusted the code doing
context saving and loading, and left it unverified. Sincey tth@ not verify user processes
upon the kernel, they need not relate TCBs in the kernel vathad user processes.

Gargancet al. used a framework CVM]5] to build verified kernels in the Vefis
project. CVM is a computational model for concurrent usecpsses, which interleave
through a micro-kernel. Starostin and Tsyban presentecdhaaicapproacH [18] to rea-
son about context switch between user processes. The teatiégh code and proofs
are integrated in a framework for building verified kerneld/(M) [L0]. Their frame-
work keeps a global invariantyeak consistencyo relate TCBs in the kernel with user
processes outside the kernel. Since the kernel itself isesel, their process schedul-
ing follows pattern I. The other two patterns cannot be \exifi

In this paper, we proposed a novel approach to verify coeotithread manage-
ment code, which allows multiple threads to modify their atread control blocks.
The assertions of the code and inference rules of the pradésyare straightforward
and easy to follow. Moreover, it can be easily extended t@sttpther kernel features
(e.g., preemptive scheduling, multi-core systems, syruhations) and to be practi-
cally applied to realistic OS code.

Acknowledgements. We thank anonymous referees for suggestions and comments on
an earlier version of this paper. Yu Guo, Xinyu Feng and Resth are supported in

part by grants from National Natural Science Foundation lin&€ (Nos. 61073040,
61202052 and 61229201), the Fundamental Research Funtief@entral Universi-

ties (Nos. WK0110000018 and WK0110000025), and ProgranNé&w Century Ex-
cellent Talents in Universities (NCET). Zhong Shao is sufgmbin part by DARPA un-

der agreement numbers FA8750-10-2-0254 and FA8750-1293;@nd by NSF grants
CNS-0910670, CNS-0915888, and CNS-1065451. Any opinfordings, and conclu-
sions contained in this document are those of the authord@ndt reflect the views of
these agencies.

References

10.

11.

12.
13.

14.

15.

16.

17.

18.

R. S. Engelschall. Portable multithreading: the sigtetlstrick for user-space thread cre-
ation. InProc. of ATEC'0Qpages 20-20, Berkeley, CA, USA, 2000. USENIX Association.

. D.R. Engler, M. F. Kaashoek, and J. O'Toole Jr. Exokermelperating system architecture

for application-level resource managementPhoceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP '98ages 251-266, Copper Mountain Resort, Col-
orado, December 1995.

. X.Feng, Z. Shao, Y. Guo, and Y. Dong. Combining domaircsjpeand foundational logics

to verify complete software systems. Broc. VSTTE'08pages 5469, Toronto, Canada,
October 2008.

. X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni. Modularification of assembly code

with stack-based control abstractions.Froc. PLDI'06, pages 401-414, June 2006.

. M. Gargano, M. Hillebrand, D. Leinenbach, and W. Paul. fadorrectness of operating

system kernels. In J. Hurd and T. F. Melham, editénsc. TPHOLS'05 volume 3603 of
Lecture Notes in Computer Scienpages 1-16. Springer, 2005.

. A. Gotsman and H. Yang. Modular verification of preemptigekernels. IrProc. ICFP’11,

pages 404-417, Tokyo, Japan, 2011. ACM.

. Y. Guo, X. Feng, Z. Shao, and P. Shi. Modular verificationafcurrent thread management

(technical report and coq proofiittp: //kyhcs.ustcsz.edu.cn/~guoyu/sched/, June
2012.

. J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenb&inix 3: a highly reliable,

self-repairing operating systerBIGOPS Oper. Syst. Re#0:80-89, July 2006.

. M. Hohmuth and H. Tews. The vfiasco approach for a verifiegtating system. IiPro-

ceedings of the 2nd ECOOP Workshop on Programming Languagke®©perating Systems
2005.

T. In der Rieden and A. Tsyban. CVM — A verified frameworkrfacrokernel programmers.
In Proc. SSV’'08volume 217C oElectronic Notes in Theoretical Computer Scignuages
151-168. Elsevier Science B.V., 2008.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. €oe. Derrin, D. Elkaduwe, K. En-
gelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and\8inwood. selL4: Formal
verification of an OS kernel. IRroc. SOSP’09pages 207-220, Big Sky, MT, USA, Oct
2009. ACM.

R. Love.Linux Kernel Development (2nd Edition) (Novell Predspvell Press, 2005.

M. K. McKusick and G. V. Neville-Neil.The Design and Implementation of the FreeBSD
Operating SystemPearson Education, 2004.

Z.Niand Z. Shao. Certified assembly programming witheshlled code pointers. Froc.
POPL'06, pages 320-333, Jan. 2006.

Z. Ni, D. Yu, and Z. Shao. Using XCAP to certify realisticseems code: Machine context
management. I®Proc. TPHOLs’07 volume 4732 ofLecture Notes in Computer Science
pages 189-206. Springer-Verlag, September 2007.

P. W. OHearn. Resources, concurrency, and local reagofheor. Comput. Sgi375(1-
3):271-307, 2007.

J. C. Reynolds. Separation logic: A logic for shared iletalata structures. IhICS '02:
Proceedings of the 17th Annual IEEE Symposium on Logic ingDten Sciencepages 55—
74, Washington, DC, USA, 2002. IEEE Computer Society.

A. Starostin and A. Tsyban. Verified process-context@dwior C-programmed kernels. In
J. Woodcock and N. Shankar, editoPpc. VSTTE'08volume 5295 ofLecture Notes in
Computer Sciencgages 240—-254, Toronto, Canada, Oct. 2008. Springer.

http://kyhcs.ustcsz.edu.cn/~guoyu/sched/

	Modular Verification of Concurrent Thread Management

