
TOWARD COMPOSITIONAL
VERIFICATION OF INTERRUPTIBLE OS
KERNELS AND DEVICE DRIVERS

Xiongnan (Newman) Wu
Joint work with Hao Chen, Zhong Shao, Joshua Lockerman, and Ronghui Gu

June 16, 2016

Yale University

PLDI 2016

Do we really need high-assurance OS?	

Computer
System

Transportation

Health

Aviation

Environment

Desktop

Mobile

Financial

cloud

Computer
System

Do we really need high-assurance OS?	

Transportation

Health

Aviation

Environment

Desktop

Mobile

Financial

cloud

Hardware

OS

Applications

Computer
System

Do we really need high-assurance OS?	

Transportation

Health

Aviation

Environment

Desktop

Mobile

Financial

cloud

Hardware

OS

Applications

Computer
System

Do we really need high-assurance OS?	

Accident

Life

Loss

Environment

Crash

Mobile

Financial

cloud

Hardware

OS

Applications

Formal Verification of OS Kernel

p  seL4 p  CertiKOS p  Verve	

Hardware

Kernel

Application

CPU Memory

Memory Mgmt.

Thread

IPC

Process Mgmt.

Virtualization

Trap

Formal Verification of OS Kernel

Applications

CPU Memory

Memory Mgmt.

Thread

IPC

Process Mgmt.

Virtualization

Trap

Memory Mgmt.

Thread

IPC

Process Mgmt.

Virtualization

Trap

CPU Memory

Applications

LAPIC IOAPIC

AHCI /
SATA
(disk)

U
SB

N
IC

Se
ria

l

… Ke
yb

d

VGA
(video)

Formal Verification of OS Kernel

Memory Mgmt.

Thread

IPC

Process Mgmt.

Virtualization

Trap

CPU Memory

Applications

LAPIC IOAPIC

AHCI /
SATA
(disk)

U
SB

N
IC

Se
ria

l

… Ke
yb

d

VGA
(video)

TSC LAPIC IOAPIC

APIC

Timer

Disk

AHCI

PCI Controller

PCI

PCI Dev. PCI Dev.

Serial Kbd Video

Console

Virtual Dev. N Virtual Dev. 1
VM

Monitor …

?

Device Drivers in Mainstream OS	

p  70% of Linux 2.4.1 kernel are device drivers.
p  70% of Windows crash are caused by third-party

driver code.	

mCertiKOS Overview [POPL’15]	

p  Single-core version of CertiKOS.
p  3k LOC, can boot Linux as guest.
p  Aggressive use of abstraction over deep

specification (37 layers).	

Every fine-grained processor step could be interrupted.	

MBoot

CPU Memory D1 D2

module <d1>:: puts() { ... }, ...

DSerialIntro

DSerial

module <Container>:: c_init() { ... }, ...

MContainer

...

Main Challenge	

?	

?	

Other Challenges	

¤  Interrupt hardware can be dynamically configured.

¤ Devices and CPU run in parallel.

¤ Device drivers are written in both C and assembly.

¤  The correctness results of different components should
be linked formally.	

Our Contributions	

The first formally verified interruptible OS kernel
with device drivers.

CPU

AHCI /
SATA
(Disk)

PCI

Se
ria

l

VGA
(Video)U

SB N
IC

... K
ey

b
o

ar
d

Serial VideoKbd

IOAPICLAPIC

LAPIC IOAPIC

APIC

Timer

Console

TSC

AHCI

Disk

PCI Root

...PCI DevicePCI Device

MemoryMgmt

ProcessMgmt

Virtualization

Trap

Thread

IPC

SharedMem

Memory

User-space
VMM

Virtual Device
1

Virtual Device
N... Applications

¤ New techniques for certifying abstraction layers with
multiple logical CPUs and devices.

¤ New techniques for building formal certified device

hierarchies.

¤ An abstraction-layer-based approach for reasoning
about interrupts.

¤ Case study: interruptible mCertiKOS with device
drivers.	

Our Contributions	

Linux Kernel Map	

Kernel components are sorted into different stacks of abstraction layers
based on their underlying hardware device.	

New Machine Model	

CPU D1Memory D2CPU D1

logical
CPU 0

logical
CPU 1

Memory

logical
CPU 2

D2CPU D1

logical
CPU 0

logical
CPU 1

Kernel logical
memory

D1 logical
memory

Memory

logical
CPU 2

D2 logical
memory

D2CPU D1

logical
CPU 0

logical
CPU 1

Kernel logical
memory

D1 logical
memory

Memory

logical
CPU 2

D2 logical
memory

D2CPU D1

logical
CPU 0

logical
CPU 1

Kernel logical
memory

D1 logical
memory

Memory

logical
CPU 2

D2 logical
memory

D2

MBoot

...

...

...

MShareOp

module <c>::c_init() { }

MContainer

CPU D1

logical
CPU 0

logical
CPU 1

Kernel logical
memory

D1 logical
memory

Memory

logical
CPU 2

D2 logical
memory

D2

MBoot

...

...

...

MShareOp

module <c>::c_init() { }

MContainer

D1_Raw

...

module <d1>::f1() { }

D1_Func

D1_Intr

module <d1>::puts() { }

D1_Puts

CPU D1

logical
CPU 0

logical
CPU 1

Kernel logical
memory

D1 logical
memory

Memory

logical
CPU 2

D2 logical
memory

D2

MBoot

...

...

...

MShareOp

module <c>::c_init() { }

MContainer

D1_Raw

...

module <d1>::f1() { }

D1_Func

D1_Intr

module <d1>::puts() { }

D1_Puts

D2_Raw

...

...

...

module <d2>::f2() { }

D2_Func

D2_Intr

¤ New techniques for certifying abstraction layers with
multiple logical CPUs and devices.

¤ New techniques for building formal certified device

hierarchies.

¤ An abstraction-layer-based approach for reasoning
about interrupts.

¤ Case study: interruptible mCertiKOS with device
drivers.	

Our Contributions	

Hardware Device Model	

¤ Devices are modeled as transition systems
parameterized by all possible lists of external events.

¤  Example external events:

n  Recv (s: list char)

n  KeyPressed (c: Z)

¤ State: observable registers.

¤  Transition:
n  environmental transition:

n  I/O transition:

'�B5DZ'�B5DZ0%RRW

&38 '�

ORJLFDO
&38��

ORJLFDO
&38��

.HUQHO�ORJLFDO�
PHPRU\

'��ORJLFDO�
PHPRU\

0HPRU\

ORJLFDO
&38��

'��ORJLFDO�
PHPRU\

���

���
���

'�

��� ���

���
���

/HJHQG
+DUGZDUH

&RQWH[W

PRGXOH

ORJLFDO�KZ

/D\HU

6WDWHV

3

3

3

3

3

3

06KDUH2S

PRGXOH��F!��FBLQLW���^�������`

0&RQWDLQHU

PRGXOH��G�!��I����^�������`

'�B)XQF

'�B,QWU

PRGXOH��G�!��SXWV���^�����`

'�B3XWV

PRGXOH��G�!��I����^�������`

'�B)XQF

'�B,QWU

OLQN
LQWHUOHDYH

LPSOHPHQW
XVH
UHILQHUHILQH

VHTXHQWLDO

ORJLFDO�
VHSDUDWLRQ

FULWLFDO�DUHD

Figure 4. Building certified abstraction layers with hardware interrupts: our new approach

interrupted by the same device, and the interrupt handler of
the device. Next, we use contextual refinement to introduce a
new layer that has a more abstract interrupt model. On this
layer, we can introduce and verify even interruptible driver
code (e.g., puts) while still enforcing strong isolation and
providing clean interface to the kernel.

3. Machine Model with Devices
In this section, we present our machine model, which is
based on the Intel x86 architecture. We start from the LASM
machine model presented in Gu et al. [14], and extend it to
model devices and interrupts.

Our devices are modeled as finite state transition systems
interacting with the CPU and the external environments. Each
read/write (input/output) operation initiated from the CPU
triggers an atomic big-step transition in the corresponding
device. Device transitions (i.e., trans in Fig. 3) are affected
by two types of interactions, one by the CPU and another by
external events.

Device Transitions caused by the CPU The CPU may
trigger a device transition through I/O instructions or memory-
mapped I/O operations. These operations can be categorized
into the following two actions:
Definition 1 (CPU Operation on a Device).

O ::“ input n Read value from the register at address n
| output n v Write value v to the register at address n

For every device, we define an atomic transition function
�

CPU, which takes the current device state s and a CPU
operation o, and returns the new state s

1. Note that �CPU is
not a CPU transition, instead, it is strictly a device transition
triggered by a CPU I/O operation.

Device Transitions caused by External Events Device
transitions can also be caused by events from the external

environment, such as the keyboard or network, with specific
transitions depending on the kind of event. When model-
ing these external events, we take a minimalistic approach:
though the devices can receive all kinds of different exter-
nal events, we only model those that change the observable
behavior of the device. Thus, the events do not map one to
one to the transitions in the device hardware but rather to
the CPU observations on the hardware. We model the device
interfaces, not the device internals. The device interface con-
tains all the information that a programmer can know about
its states. Some example events are:
Definition 2 (Device External Events).
E ::“
(* UART device *)

| Recv ps : list charq UART receives string s
| NoSendingCompAck Sending is not complete
| SendingCompAck UART completes the sending

(* Keyboard device *)
| KeyPressed pc : Zq A specific key is pressed
| KeyReleased pc : Zq A specific key is released

¨ ¨ ¨
External events are unpredictable, as their causes are not

controlled by the OS. We determinize the behavior of each
device by parametrizing it with the set of all possible list of
events `env that will be processed sequentially when the CPU
performs I/O operations on this device. The atomic transition
function �

env takes an external event e as input and changes
the device states accordingly.

Note that events, even within a single device, can commute.
For example, a serial port serves two roles: to receive user
input and to send program output. Accordingly, among the
events a serial device can receive are one for the reception of
a new input string, and one signaling that some past output
operation has been completed. Consider a function that first
writes to a serial port, then waits until the write operation is

ps1
ic, IRQ nq “ intrICpsic, NDq

pd1
, ⇢

1q “ intrCPUpd, ⇢, IRQ nq
s

2
ic “ eoips1

icq
s

3
ic “ maskps2

ic, NDq pd2
, ⇢

2q “ stipd1
, ⇢

1q
ps1

D, `

1
iq “ intr_handlerDpsD, `i, `

envq
pd3

, ⇢

3q “ clipd2
, ⇢

2q
s

4
ic “ unmaskps3

ic , NDq pd4
, ⇢

4q “ iretpd3
, ⇢

3q
intrpd,m, ⇢, sic, sD, `i, `

envq “ pd4
,m, ⇢

4
, s

4
ic , s

1
D, `

1
iq

Figure 11. Interrupt transition for the whole system when
nested interrupts are allowed.

.HUQHO�

,&
'HY

(YHQW�DUULYDO

LQWU,&

LQWU&38

LQWUBKDQGOHU
HRL

8VHU
PDVN

VWL

3ULPLWLYH�FDOOHGPDVN

XQPDVN
SL

.HUQHO�

,&
'HY

(YHQW�DUULYDO

LQWUBKDQGOHU SL
3ULPLWLYH�FDOOHG

8VHU

LQWUBGLVDEOH

FOL LUHW

Figure 12. The contextual refinement between interrupt
models with nested interrupts.

nested interrupts is critical so that some high priority interrupt
processing is not delayed by the low priority ones. The inter-
rupt transition for the whole system with nested interrupts is
shown in Fig. 11. Here, before the interrupt handler is called,
we mask the interrupt line of the particular device (to make
sure there is no nested interrupt from the same device) and
then turn on the interrupt on the CPU. Accordingly, after
the interrupt handling, we disable the CPU interrupt, then
unmask the particular interrupt line before the iret transition
is performed. We have proved that this model also refines the
same abstract interrupt model (see Fig. 12).

5. Case Study
In this section, we present two case studies of our verified
drivers. First, we present our device model for a serial port,
and show how the relevant drivers are specified and verified.
Next, we present our interrupt controller model. We have
used a single controller in Sec. 4 to ease the presentation.
However, mCertiKOS utilizes two physical interrupt con-
troller devices: the I/O Advanced Programmable Interrupt
Controller (IOAPIC) and the Local Advanced Programmable
Interrupt Controller (LAPIC). In this section, we only present
the IOAPIC device model and the verification of its driver.

5.1 Serial Port
Fig. 13 illustrates a typical serial port with a bounded inter-
nal buffer of size 12. It consists of a RS-232 interface and a
Universal Asynchronous Receiver/Transmitter (UART) con-
troller. RS-232 delivers electrical signals between the UART

controller and the connected cable. The UART controller is
responsible for demodulating received data into digital bits
and storing them into the internal receiving (Rx) buffer, and
also modulating sent data from digital bits and inserting them
into the transmission (Tx) buffer.

The hardware UART controller has many features, and
the mCertiKOS serial driver only utilizes those parts needed
for sending and receiving character strings. When modeling
the serial port, we take the minimalistic approach of only
modeling the set of features utilized by the existing drivers.
The internal state of the serial port device is defined as:

s “ p RxBuf : list char, ô Receiving buffer
TxBuf : list char, ô Transmission buffer
irq : bool, ô Interrupt pending
Connected : bool, ô Power
Base : Z, ô Base address
ô Line and modem configurations:
RxIntEnable : bool, DLAB : bool, Baudrate : Z,
Databits : Z, Stopbits : Z, Parity : ParityType,
FIFO : Z, Modem : Z q.

There are three external events for the serial device. The
serial event Recv s indicates that a string has been re-
ceived. The SendingCompAck event implies the device re-
ceived the acknowledgment that the characters in the trans-
mission buffer have been sent out successfully, while the
NoSendingCompAck events indicates that the sending of
characters in the transmission buffer is not yet complete. We
have configured the serial device to trigger an interrupt when
it receives data (a nonempty string). The device is configured
to not to trigger any interrupt when the transmission buffer
becomes empty, i.e., when the characters in the transmission
buffer are sent out successfully. Thus, before any data is writ-
ten to the serial port, we have to poll the transmission status
until it becomes empty. We have chosen this setup because it
covers both interrupt-triggering and polling events.

Note that, the states s.RxBuf and s.irq are disjoint from
s.TxBuf under the environment transitions in that the former
is for receiving data and the latter is for sending data only.
This allows us to use two separate local logs in our device
model, `tx (for transmission) and `rx (for receiving), to handle
these possibly commutative events.

Next, in Fig. 14, we define the transition functions �

env

and �

CPU, where �env needs to handle all the possible environ-
mental events against the current state, and �

CPU updates the
current state based on the input and output addresses and val-
ues. We use the notations r¨s and ++ to represent a singleton
list and list concatenation, respectively. The function last
takes a length n and a list l, and returns the last n elements
of l as a new list if the length of l exceeds n, and returns the
original list l otherwise. The function is used to model the
action of dropping some elements in the front of the buffer
when the length of the new buffer exceeds the hardware buffer
size (BufSize).

Extended Device
Object (Driver)

Raw Device
Object

state local
logstrans

(+) state

r ead/
wr i t e

(+)
pr i mi t i ves

code
irq

Raw Device
Object

state local
logstrans

r ead/
wr i t e

irq

¤  Local log for the list of observed external events.

¤ Multiple local logs to handle disjoint set of external
events asynchronously.

¤ Read/Write instructions: IN/OUT, memory mapped

I/O, etc.

Raw Device Object	

Extended Device Object

Extended Device
Object (Driver)

Raw Device
Object

state local
logstrans

(+) state

r ead/
wr i t e

(+)
pr i mi t i ves

code
irq

Overlay

Underlay

Memory Driver Function Device

Memory PrimitiveState

Data Invariant

Data

Device

context

Driver as a logical device.	

Recap: Machine Model	

CPU D1

logical
CPU 0

logical
CPU 1

Kernel logical
memory

D1 logical
memory

Memory

logical
CPU 2

D2 logical
memory

D2

MBoot

...

...

...

MShareOp

module <c>::c_init() { }

MContainer

CPU D1

logical
CPU 0

logical
CPU 1

Kernel logical
memory

D1 logical
memory

Memory

logical
CPU 2

D2 logical
memory

D2

MBoot

...

...

...

MShareOp

module <c>::c_init() { }

MContainer

D1_Raw

...

module <d1>::f1() { }

D1_Func

D1_Intr

module <d1>::puts() { }

D1_Puts

?	

¤ New techniques for certifying abstraction layers with
multiple logical CPUs and devices.

¤ New techniques for building formal certified device

hierarchies.

¤ An abstraction-layer-based approach for reasoning
about interrupts.

¤ Case study: interruptible mCertiKOS with device
drivers.	

Our Contributions	

Interrupt Models	

Kernel/

IC
Dev

Event arrival

intrIC

intrCPU

intr_handler
eoi

User
mask

sti

Primitive calledmask

unmask
pi

cli iret

New HW Interrupt Model

Kernel Device

p

mask

unmask

Kernel Device

p

intr_disable

intr_enable

Semantics of intr_disable	

D

DISABLENOINTR: Disable with no unhandled interrupt

pe, `1
iq “ nextp`env

, `iq stmp “ �

envps, eq
stmp.irq “ false s

1 “ sriFlag – 0s
intr_disableps, `i, `envq “ ps1

, `iq

DISABLEINTR: Disable with unhandled interrupts

pe, `1
iq “ nextp`env

, `iq s

1 “ �

envps, eq
s

1
.irq “ true ps2

, `

2
i q “ intr_handlerps1

, `

1
i, `

envq
ps3

, `

3
i q “ intr_disableps2

, `

2
i , `

envq
intr_disableps, `i, `envq “ ps3

, `

3
i q

ENABLENOINTR: Enable with no pending interrupt

s.irq “ false s

1 “ sriFlag – 1s
intr_enableps, `i, `envq “ ps1

, `iq

ENABLEINTR: Enable with pending interrupts

s.irq “ true ps1
, `

1
iq “ intr_handlerps, `i, `envq

ps2
, `

2
i q “ intr_enableps1

, `

1
i, `

envq
intr_enableps, `i, `envq “ ps2

, `

2
i q

Figure 9. Transition rules for intr_disable and intr_enable

At this stage, we have the formal specification of the
interrupt handler for a device. Next, through contextual
refinement, we encapsulate the behaviors of interrupts into
two primitives intr_enable and intr_disable at overlay for
the device, which, as shown in the top half of Fig. 6, render
interrupts transparent to the CPU and the IC. The precise
transition rules are given in Fig. 9. Here, iFlag is an abstract
state indicating whether the particular device interrupt is
turned on or off; the next function, as defined at the end of
Sec. 3, returns the next relevant event in `

env and a new local
log synchronized with `

env up to the returned event.
The intr_disable primitive first synchronizes the device

state with the previously unhandled interrupts then sets
interrupt as disabled. It performs the synchronization by
scanning the log from the last place intr_enable was called,
until we hit the first event that did not trigger any interrupt.
This ensures that subsequent observations on the device (in
the abstract model) will be consistent with those performed
under the hardware interrupt model. Note that intr_disable
is defined recursively: it performs the environment transition
�

env on each event until we hit an event that does not trigger
interrupts (i.e., the DISABLENOINTR case); the stmp state
should be discarded since the device transition stops at the
point where the last unhandled interrupt is handled.

The intr_enable primitive discharges any pending inter-
rupts, then sets interrupt as enabled. This models the physical
machine behavior, wherein interrupts (which can occur while
interrupts are disabled) get delayed until interrupts are re-
enabled. This causes the OS to immediately jump to the
interrupt handler after re-enabling interrupts. This repeats un-

ps1
ic, IRQ nq “ intrICpsic, NDq

pd1
, ⇢

1q “ intrCPUpd, ⇢, IRQ nq
s

2
ic “ eoips1

icq ps1
D, `

1
iq “ intr_handlerDpsD, `i, `

envq
pd2

, ⇢

2q “ iretpd1
, ⇢

1q
intrpd,m, ⇢, sic, sD, `i, `

envq “ pd2
,m, ⇢

2
, s

2
ic, s

1
D, `

1
iq

Figure 10. Interrupt transition for the whole system, in the
case when an interrupt is triggered by the device D on
interrupt line number ND.

til the device no longer attempts to trigger an interrupt within
the interrupt handler, and normal execution can continue.

With these two new primitives, the CPU transition in the
abstract interrupt model can be completely oblivious of the
device transitions. For example, in the top half of Fig. 6, the
purple box along the Kernel/User line can ignore any event
arrival from a device; the CPU for the Kernel/User line
would only force the device transitions when it wants to make
observations about a device (e.g., by calling intr_disable, then
a high-level device primitive pi, followed by intr_enable).

Contextual Refinement Between Two Interrupt Models
To show the contextual refinement between the two abstrac-
tion layers in Fig. 6, we prove that the behavior of an IRQ
can indeed be made transparent to the CPU and the IC.

Lemma 2. An IRQ is transparent to the CPU and the IC, i.e.,
the transitions triggered by the IRQ only change the states of
the corresponding device that triggered the interrupt.

Proof: When the interrupt is disabled on the CPU or the
particular interrupt line is masked in the IC, the proof is
obvious. When the interrupt is enabled, i.e., the corresponding
interrupt line is routed, not masked, and the EFLAGS.if
register bit is set, the state transition of the whole system is
shown in Fig. 10. Here, the transition intr takes an abstract
state d, the memory m, the register set ⇢, the state of interrupt
controller sic, the state of the device sD, a local log of the
device `i, the event list `env, and returns appropriate new
system states after the interrupt transition is fully performed.
In this case, we need to show that:

pd1
,m

1
, ⇢

1
, s

1
ic, s

1
D, `

1
iq “ intrpd,m, ⇢, sic, sD, `i, `

envq
ps1

D, `

1
iq “ intr_handlerDpsD, `i, `

envq^
d

1 “ d ^ m

1 “ m ^ ⇢

1 “ ⇢ ^ s

1
ic “ sic

This can be proven by composing the interrupt transition rules
of the CPU and the IC with Lemma 1.

Corollary 1. IRQs do not affect the kernel, i.e., they do not
change any of the kernel’s states1.

Nested Interrupts Note that the intrCPU transition in
Fig. 8 disables the interrupt. Thus between intrCPU and
iret in Fig. 10, the interrupt is turned off, which means that
no nested interrupts are allowed. In many cases, supporting

1 Remember, we consider device drivers a part of the device, not the kernel.

details in the paper	

p  Scans external events.
p  Recursively performs the

environmental transition.
p  Synchronizes unhandled

interrupts.

Semantics of intr_enable	

D

details in the paper	

p  Recursively discharges
pending interrupts.

p  Delayed interrupts that
occur while the interrupt
is disabled.	

DISABLENOINTR: Disable with no unhandled interrupt

pe, `1
iq “ nextp`env

, `iq stmp “ �

envps, eq
stmp.irq “ false s

1 “ sriFlag – 0s
intr_disableps, `i, `envq “ ps1

, `iq

DISABLEINTR: Disable with unhandled interrupts

pe, `1
iq “ nextp`env

, `iq s

1 “ �

envps, eq
s

1
.irq “ true ps2

, `

2
i q “ intr_handlerps1

, `

1
i, `

envq
ps3

, `

3
i q “ intr_disableps2

, `

2
i , `

envq
intr_disableps, `i, `envq “ ps3

, `

3
i q

ENABLENOINTR: Enable with no pending interrupt

s.irq “ false s

1 “ sriFlag – 1s
intr_enableps, `i, `envq “ ps1

, `iq

ENABLEINTR: Enable with pending interrupts

s.irq “ true ps1
, `

1
iq “ intr_handlerps, `i, `envq

ps2
, `

2
i q “ intr_enableps1

, `

1
i, `

envq
intr_enableps, `i, `envq “ ps2

, `

2
i q

Figure 9. Transition rules for intr_disable and intr_enable

At this stage, we have the formal specification of the
interrupt handler for a device. Next, through contextual
refinement, we encapsulate the behaviors of interrupts into
two primitives intr_enable and intr_disable at overlay for
the device, which, as shown in the top half of Fig. 6, render
interrupts transparent to the CPU and the IC. The precise
transition rules are given in Fig. 9. Here, iFlag is an abstract
state indicating whether the particular device interrupt is
turned on or off; the next function, as defined at the end of
Sec. 3, returns the next relevant event in `

env and a new local
log synchronized with `

env up to the returned event.
The intr_disable primitive first synchronizes the device

state with the previously unhandled interrupts then sets
interrupt as disabled. It performs the synchronization by
scanning the log from the last place intr_enable was called,
until we hit the first event that did not trigger any interrupt.
This ensures that subsequent observations on the device (in
the abstract model) will be consistent with those performed
under the hardware interrupt model. Note that intr_disable
is defined recursively: it performs the environment transition
�

env on each event until we hit an event that does not trigger
interrupts (i.e., the DISABLENOINTR case); the stmp state
should be discarded since the device transition stops at the
point where the last unhandled interrupt is handled.

The intr_enable primitive discharges any pending inter-
rupts, then sets interrupt as enabled. This models the physical
machine behavior, wherein interrupts (which can occur while
interrupts are disabled) get delayed until interrupts are re-
enabled. This causes the OS to immediately jump to the
interrupt handler after re-enabling interrupts. This repeats un-

ps1
ic, IRQ nq “ intrICpsic, NDq

pd1
, ⇢

1q “ intrCPUpd, ⇢, IRQ nq
s

2
ic “ eoips1

icq ps1
D, `

1
iq “ intr_handlerDpsD, `i, `

envq
pd2

, ⇢

2q “ iretpd1
, ⇢

1q
intrpd,m, ⇢, sic, sD, `i, `

envq “ pd2
,m, ⇢

2
, s

2
ic, s

1
D, `

1
iq

Figure 10. Interrupt transition for the whole system, in the
case when an interrupt is triggered by the device D on
interrupt line number ND.

til the device no longer attempts to trigger an interrupt within
the interrupt handler, and normal execution can continue.

With these two new primitives, the CPU transition in the
abstract interrupt model can be completely oblivious of the
device transitions. For example, in the top half of Fig. 6, the
purple box along the Kernel/User line can ignore any event
arrival from a device; the CPU for the Kernel/User line
would only force the device transitions when it wants to make
observations about a device (e.g., by calling intr_disable, then
a high-level device primitive pi, followed by intr_enable).

Contextual Refinement Between Two Interrupt Models
To show the contextual refinement between the two abstrac-
tion layers in Fig. 6, we prove that the behavior of an IRQ
can indeed be made transparent to the CPU and the IC.

Lemma 2. An IRQ is transparent to the CPU and the IC, i.e.,
the transitions triggered by the IRQ only change the states of
the corresponding device that triggered the interrupt.

Proof: When the interrupt is disabled on the CPU or the
particular interrupt line is masked in the IC, the proof is
obvious. When the interrupt is enabled, i.e., the corresponding
interrupt line is routed, not masked, and the EFLAGS.if
register bit is set, the state transition of the whole system is
shown in Fig. 10. Here, the transition intr takes an abstract
state d, the memory m, the register set ⇢, the state of interrupt
controller sic, the state of the device sD, a local log of the
device `i, the event list `env, and returns appropriate new
system states after the interrupt transition is fully performed.
In this case, we need to show that:

pd1
,m

1
, ⇢

1
, s

1
ic, s

1
D, `

1
iq “ intrpd,m, ⇢, sic, sD, `i, `

envq
ps1

D, `

1
iq “ intr_handlerDpsD, `i, `

envq^
d

1 “ d ^ m

1 “ m ^ ⇢

1 “ ⇢ ^ s

1
ic “ sic

This can be proven by composing the interrupt transition rules
of the CPU and the IC with Lemma 1.

Corollary 1. IRQs do not affect the kernel, i.e., they do not
change any of the kernel’s states1.

Nested Interrupts Note that the intrCPU transition in
Fig. 8 disables the interrupt. Thus between intrCPU and
iret in Fig. 10, the interrupt is turned off, which means that
no nested interrupts are allowed. In many cases, supporting

1 Remember, we consider device drivers a part of the device, not the kernel.

Refinement btw. The HW & Abstract
Interrupt Model	

Kernel/

IC
Dev

Event arrival

intrIC

intrCPU

intr_handler
eoi

User
mask

sti

Primitive calledmask

unmask
pi

Kernel/

IC
Dev

Event arrival
intr_handler pi

Primitive called

User

intr_disable

cli iret

Our Approach	

p  The driver code of each device runs on its own “logical CPU”, operates its
own internal states.

p  Interruptible code can be naturally reasoned on top of the abstract
interrupt model. 	

CPU D1

logical
CPU 0

logical
CPU 1

Kernel logical
memory

D1 logical
memory

Memory

logical
CPU 2

D2 logical
memory

D2

MBoot

...

...

...

MShareOp

module <c>::c_init() { }

MContainer

D1_Raw

...

module <d1>::f1() { }

D1_Func

D1_Intr

module <d1>::puts() { }

D1_Puts

D2_Raw

...

...

...

module <d2>::f2() { }

D2_Func

D2_Intr

¤ New techniques for certifying abstraction layers with
multiple logical CPUs and devices.

¤ New techniques for building formal certified device

hierarchies.

¤ An abstraction-layer-based approach for reasoning
about interrupts.

¤ Case study: interruptible mCertiKOS with device
drivers.	

Our Contributions	

Interruptible mCertiKOS with Drivers	

CPU

AHCI /
SATA
(Disk)

PCI

Se
ria

l

VGA
(Video)US

B

NI
C

... Ke
yb

oa
rd

Serial VideoKbd

IOAPICLAPIC

LAPIC IOAPIC

APIC

Timer

Console

TSC

AHCI

Disk

PCI Root

...PCI DevicePCI Device

MemoryMgmt

ProcessMgmt

Virtualization

Trap

Thread

IPC

SharedMem

Memory

User-space
VMM

Virtual Device
1

Virtual Device
N... Applications

Processor Core

I/O APIC

Current

Base Redirect
table

Local APIC

APIC Bus

Platform
Controller

Hub

ISA Bus

Id

MaxIntr

Esr

Pending

MaxLvt

Enable

Spurious

Lint0

Lint1

...

irqs

PCI Bus

PCI
Device

PCI
Device

Device

MIRQ1
2
3
4
5

6
7
8
9

RS-232

UART Controller
Base

RxInt
Enable

DLAB

Baudrate

Databits

StopbitsParity

Fifo

TxBuf

RxBuf

irq

Case Study: Modeling HW Devices

p  Serial Port, I/O APIC, Local APIC, CPU interrupt
handling.	

Case Study: Serial Device

p  States: see figure
p  Transitions: serial_trans_env + serial_trans_IO
p  Read/Write primitives: serial_read / serial_write	

1
2
3
4
5

6
7
8
9

RS-232

UART Controller
Base

RxInt
Enable

DLAB

Baudrate

Databits

StopbitsParity

Fifo

TxBuf

RxBuf

CPU

Internal Buses

irq

1
2
3
4
5

6
7
8
9

RS-232

UART Controller
Base

RxInt
Enable

DLAB

Baudrate

Databits

StopbitsParity

Fifo

TxBuf

RxBuf

CPU

Internal Buses

irq

Figure 13. The hardware connections of a serial port

s.Connected “ true s.RxIntEnable “ true
e “ Recv w w ‰ nil

newBuf “ lastpBufSize, ps.RxBuf++wqq
�

envps, eq “ srRxBuf – newBufsrirq – trues (recvd)

s.Connected “ true s.RxIntEnable “ true
e “ Recv w w “ nil

�

envps, eq “ s

(norcv)

s.Connected “ true e “ SendingCompAck

�

envps, eq “ srTxBuf – Hs (sent)

s.Connected “ true e “ NoSendingCompAck

�

envps, eq “ s

(noack)

s.Connected “ true o “ input n
n “ s.Base ` 0 s.DLAB “ false s.RxBuf “ w

�

CPUps, oq “ srRxBuf – tl wsrirq – falses (read)

s.Connected “ true o “ output n v

n “ s.Base ` 0 s.DLAB “ false s.TxBuf “ w

�

CPUps, oq “ srTxBuf – lastpBufSize, pw++rvsqqs (write)

Figure 14. The environment and CPU transition functions

By instantiating the device state and transition functions
from our general device model in Sec. 3, we create a concrete
model of the serial port with the read and write primitives.

Next, we show how the drivers are specified and verified
on top of this model. Fig. 15 shows a code fragment of
the function serial_putc. There, the serial_read and
serial_write are the two primitives in the serial hardware
model, while serial_exists is a new primitive (already
verified in some underlay) indicating whether the serial
device is already initialized. The if statement (line 3) prevents
any misuse of serial_putc() before initialization. If the
s.TxBuf buffer is initially empty, or the device receives
a SendingCompAck event during the loop (line 4-6), the
program sends the character c to the serial port (line 8). The

1 void serial_putc (unsigned int c) {
2 unsigned int lsr = 0, i;
3 if (serial_exists()){
4 for (i = 0; !lsr && i < 12800; i++) {
5 lsr = serial_read(0x3FD) & 0x20;
6 delay();
7 }
8 serial_write (0x3F8, c);
9 ...

Figure 15. The implementation of serial_putc in C

1 void serial_puts(char * s, int len) {
2 int i = 0;
3 while (i < len && s[i] != 0) {
4 serial_intr_disable();
5 serial_putc(s[i]);
6 serial_intr_enable();
7 i++;
8 }
9 }

Figure 16. The implementation of serial_puts in C

1 void serial_intr () {
2 unsigned int hasMore;
3 int t = 0;
4 hasMore = serial_getc ();
5 while (hasMore && t < CONSOLE_BUFFER_SIZE) {
6 hasMore = serial_getc ();
7 t++;
8 }
9 }

Figure 17. The implementation of serial_puts in C

function serial_putc is specified as follows:

s.TxBuf “ H s.serial_exists “ true
s

1 “ srTxBuf – rcss
pe, `1

txq “ nextp`env
, `txq pe1

, `

2
txq “ nextp`env

, `

1
txq

serial_putcps, c, `tx, `
envq “ ps1

, `

2
txq

s.TxBuf ‰ H s.serial_exists “ true
pe, `1

txq “ nextp`env
, `txq s

1 “ �

envps, eq
ps2

, `

2
txq “ serial_putcps1

, c, `

1
tx, `

envq
serial_putcps, c, `tx, `

envq “ ps2
, `

2
txq

The first rule above shows the case when the transmission
buffer is originally empty. Here, lsr immediately becomes 1
in the first loop iteration, and the character is written to the
transmission buffer in the device right away.

The second rule above shows the case when the initial
transmission buffer is not empty. Here, the device performs
transition based on the received event e, and repeats the same
process until it finally receives the SendingCompAck event.

1
2
3
4
5

6
7
8
9

RS-232

UART Controller
Base

RxInt
Enable

DLAB

Baudrate

Databits

StopbitsParity

Fifo

TxBuf

RxBuf

CPU

Internal Buses

irq

Figure 13. The hardware connections of a serial port

s.Connected “ true s.RxIntEnable “ true
e “ Recv w w ‰ nil

newBuf “ lastpBufSize, ps.RxBuf++wqq
�

envps, eq “ srRxBuf – newBufsrirq – trues (recvd)

s.Connected “ true s.RxIntEnable “ true
e “ Recv w w “ nil

�

envps, eq “ s

(norcv)

s.Connected “ true e “ SendingCompAck

�

envps, eq “ srTxBuf – Hs (sent)

s.Connected “ true e “ NoSendingCompAck

�

envps, eq “ s

(noack)

s.Connected “ true o “ input n
n “ s.Base ` 0 s.DLAB “ false s.RxBuf “ w

�

CPUps, oq “ srRxBuf – tl wsrirq – falses (read)

s.Connected “ true o “ output n v

n “ s.Base ` 0 s.DLAB “ false s.TxBuf “ w

�

CPUps, oq “ srTxBuf – lastpBufSize, pw++rvsqqs (write)

Figure 14. The environment and CPU transition functions

By instantiating the device state and transition functions
from our general device model in Sec. 3, we create a concrete
model of the serial port with the read and write primitives.

Next, we show how the drivers are specified and verified
on top of this model. Fig. 15 shows a code fragment of
the function serial_putc. There, the serial_read and
serial_write are the two primitives in the serial hardware
model, while serial_exists is a new primitive (already
verified in some underlay) indicating whether the serial
device is already initialized. The if statement (line 3) prevents
any misuse of serial_putc() before initialization. If the
s.TxBuf buffer is initially empty, or the device receives
a SendingCompAck event during the loop (line 4-6), the
program sends the character c to the serial port (line 8). The

1 void serial_putc (unsigned int c) {
2 unsigned int lsr = 0, i;
3 if (serial_exists()){
4 for (i = 0; !lsr && i < 12800; i++) {
5 lsr = serial_read(0x3FD) & 0x20;
6 delay();
7 }
8 serial_write (0x3F8, c);
9 ...

Figure 15. The implementation of serial_putc in C

1 void serial_puts(char * s, int len) {
2 int i = 0;
3 while (i < len && s[i] != 0) {
4 serial_intr_disable();
5 serial_putc(s[i]);
6 serial_intr_enable();
7 i++;
8 }
9 }

Figure 16. The implementation of serial_puts in C

1 unsigned int serial_getc () {
2 unsigned int rv = 0;
3 unsigned int rx;
4 if (serial_exists()) {
5 if (serial_read(COM1 + COM_LSR, BIT1) % 2 == 1)

{
6 rx = serial_read(COM1 + COM_RX, M_ALL);
7 cons_buf_write(rx);
8 rv = 1;
9 }

10 }
11 return rv;
12 }

Figure 17. The implementation of serial_puts in C

function serial_putc is specified as follows:

s.TxBuf “ H s.serial_exists “ true
s

1 “ srTxBuf – rcss
pe, `1

txq “ nextp`env
, `txq pe1

, `

2
txq “ nextp`env

, `

1
txq

serial_putcps, c, `tx, `
envq “ ps1

, `

2
txq

s.TxBuf ‰ H s.serial_exists “ true
pe, `1

txq “ nextp`env
, `txq s

1 “ �

envps, eq
ps2

, `

2
txq “ serial_putcps1

, c, `

1
tx, `

envq
serial_putcps, c, `tx, `

envq “ ps2
, `

2
txq

The first rule above shows the case when the transmission
buffer is originally empty. Here, lsr immediately becomes 1
in the first loop iteration, and the character is written to the
transmission buffer in the device right away.

Serial Interrupt Handler	

serial_exists	

cons_buf_write	

serial_getc	

serial_getc	

serial_getc	

serial_intr	

Serial Driver	

1
2
3
4
5

6
7
8
9

RS-232

UART Controller
Base

RxInt
Enable

DLAB

Baudrate

Databits

StopbitsParity

Fifo

TxBuf

RxBuf

CPU

Internal Buses

irq

Figure 13. The hardware connections of a serial port

s.Connected “ true s.RxIntEnable “ true
e “ Recv w w ‰ nil

newBuf “ lastpBufSize, ps.RxBuf++wqq
�

envps, eq “ srRxBuf – newBufsrirq – trues (recvd)

s.Connected “ true s.RxIntEnable “ true
e “ Recv w w “ nil

�

envps, eq “ s

(norcv)

s.Connected “ true e “ SendingCompAck

�

envps, eq “ srTxBuf – Hs (sent)

s.Connected “ true e “ NoSendingCompAck

�

envps, eq “ s

(noack)

s.Connected “ true o “ input n
n “ s.Base ` 0 s.DLAB “ false s.RxBuf “ w

�

CPUps, oq “ srRxBuf – tl wsrirq – falses (read)

s.Connected “ true o “ output n v

n “ s.Base ` 0 s.DLAB “ false s.TxBuf “ w

�

CPUps, oq “ srTxBuf – lastpBufSize, pw++rvsqqs (write)

Figure 14. The environment and CPU transition functions

By instantiating the device state and transition functions
from our general device model in Sec. 3, we create a concrete
model of the serial port with the read and write primitives.

Next, we show how the drivers are specified and verified
on top of this model. Fig. 15 shows a code fragment of
the function serial_putc. There, the serial_read and
serial_write are the two primitives in the serial hardware
model, while serial_exists is a new primitive (already
verified in some underlay) indicating whether the serial
device is already initialized. The if statement (line 3) prevents
any misuse of serial_putc() before initialization. If the
s.TxBuf buffer is initially empty, or the device receives
a SendingCompAck event during the loop (line 4-6), the
program sends the character c to the serial port (line 8). The

1 void serial_putc (unsigned int c) {
2 unsigned int lsr = 0, i;
3 if (serial_exists()){
4 for (i = 0; !lsr && i < 12800; i++) {
5 lsr = serial_read(0x3FD) & 0x20;
6 delay();
7 }
8 serial_write (0x3F8, c);
9 ...

Figure 15. The implementation of serial_putc in C

1 void serial_puts(char * s, int len) {
2 int i = 0;
3 while (i < len && s[i] != 0) {
4 serial_intr_disable();
5 serial_putc(s[i]);
6 serial_intr_enable();
7 i++;
8 }
9 }

Figure 16. The implementation of serial_puts in C

function serial_putc is specified as follows:

s.TxBuf “ H s.serial_exists “ true
s

1 “ srTxBuf – rcss
pe, `1

txq “ nextp`env
, `txq pe1

, `

2
txq “ nextp`env

, `

1
txq

serial_putcps, c, `tx, `
envq “ ps1

, `

2
txq

s.TxBuf ‰ H s.serial_exists “ true
pe, `1

txq “ nextp`env
, `txq s

1 “ �

envps, eq
ps2

, `

2
txq “ serial_putcps1

, c, `

1
tx, `

envq
serial_putcps, c, `tx, `

envq “ ps2
, `

2
txq

The first rule above shows the case when the transmission
buffer is originally empty. Here, lsr immediately becomes 1
in the first loop iteration, and the character is written to the
transmission buffer in the device right away.

The second rule above shows the case when the initial
transmission buffer is not empty. Here, the device performs
transition based on the received event e, and repeats the same
process until it finally receives the SendingCompAck event.
Then, by definition of �env in Fig. 14, the transmission buffer
becomes empty and the next recursive call falls into the first
case of the specification.

In Fig. 16, we show the implementation of the driver
function serial_puts that writes a string into the serial device
by repeatedly calling serial_putc for each character in the
input string. Each call to serial_putc is wrapped with calls
to serial_intr_disable and serial_intr_enable (both derived
from those in Fig. 9) to protect the critical section.

Most of our drivers are implemented in ClightX [14],
which is an extension of the CompCert Clight language [23]
with abstract states and primitives. For each driver function,

1
2
3
4
5

6
7
8
9

RS-232

UART Controller
Base

RxInt
Enable

DLAB

Baudrate

Databits

StopbitsParity

Fifo

TxBuf

RxBuf

CPU

Internal Buses

irq

Figure 13. The hardware connections of a serial port

s.Connected “ true s.RxIntEnable “ true
e “ Recv w w ‰ nil

newBuf “ lastpBufSize, ps.RxBuf++wqq
�

envps, eq “ srRxBuf – newBufsrirq – trues (recvd)

s.Connected “ true s.RxIntEnable “ true
e “ Recv w w “ nil

�

envps, eq “ s

(norcv)

s.Connected “ true e “ SendingCompAck

�

envps, eq “ srTxBuf – Hs (sent)

s.Connected “ true e “ NoSendingCompAck

�

envps, eq “ s

(noack)

s.Connected “ true o “ input n
n “ s.Base ` 0 s.DLAB “ false s.RxBuf “ w

�

CPUps, oq “ srRxBuf – tl wsrirq – falses (read)

s.Connected “ true o “ output n v

n “ s.Base ` 0 s.DLAB “ false s.TxBuf “ w

�

CPUps, oq “ srTxBuf – lastpBufSize, pw++rvsqqs (write)

Figure 14. The environment and CPU transition functions

By instantiating the device state and transition functions
from our general device model in Sec. 3, we create a concrete
model of the serial port with the read and write primitives.

Next, we show how the drivers are specified and verified
on top of this model. Fig. 15 shows a code fragment of
the function serial_putc. There, the serial_read and
serial_write are the two primitives in the serial hardware
model, while serial_exists is a new primitive (already
verified in some underlay) indicating whether the serial
device is already initialized. The if statement (line 3) prevents
any misuse of serial_putc() before initialization. If the
s.TxBuf buffer is initially empty, or the device receives
a SendingCompAck event during the loop (line 4-6), the
program sends the character c to the serial port (line 8). The

1 void serial_putc (unsigned int c) {
2 unsigned int lsr = 0, i;
3 if (serial_exists()){
4 for (i = 0; !lsr && i < 12800; i++) {
5 lsr = serial_read(0x3FD) & 0x20;
6 delay();
7 }
8 serial_write (0x3F8, c);
9 ...

Figure 15. The implementation of serial_putc in C

1 void serial_puts(char * s, int len) {
2 int i = 0;
3 while (i < len && s[i] != 0) {
4 serial_intr_disable();
5 serial_putc(s[i]);
6 serial_intr_enable();
7 i++;
8 }
9 }

Figure 16. The implementation of serial_puts in C

function serial_putc is specified as follows:

s.TxBuf “ H s.serial_exists “ true
s

1 “ srTxBuf – rcss
pe, `1

txq “ nextp`env
, `txq pe1

, `

2
txq “ nextp`env

, `

1
txq

serial_putcps, c, `tx, `
envq “ ps1

, `

2
txq

s.TxBuf ‰ H s.serial_exists “ true
pe, `1

txq “ nextp`env
, `txq s

1 “ �

envps, eq
ps2

, `

2
txq “ serial_putcps1

, c, `

1
tx, `

envq
serial_putcps, c, `tx, `

envq “ ps2
, `

2
txq

The first rule above shows the case when the transmission
buffer is originally empty. Here, lsr immediately becomes 1
in the first loop iteration, and the character is written to the
transmission buffer in the device right away.

The second rule above shows the case when the initial
transmission buffer is not empty. Here, the device performs
transition based on the received event e, and repeats the same
process until it finally receives the SendingCompAck event.
Then, by definition of �env in Fig. 14, the transmission buffer
becomes empty and the next recursive call falls into the first
case of the specification.

In Fig. 16, we show the implementation of the driver
function serial_puts that writes a string into the serial device
by repeatedly calling serial_putc for each character in the
input string. Each call to serial_putc is wrapped with calls
to serial_intr_disable and serial_intr_enable (both derived
from those in Fig. 9) to protect the critical section.

Most of our drivers are implemented in ClightX [14],
which is an extension of the CompCert Clight language [23]
with abstract states and primitives. For each driver function,

serial_read	

serial_write	

serial_putc	
serial_intr_disable	

serial_intr_enable	

What We Have Proved	

p  Total functional correctness.
p  Safety.
p  Contextual refinement between the lowest and the top

level abstract machine:

p  Data invariants:

n  Console’s circular buffer is always well-formed.
n  Interrupt controller states are always consistent.

p  The framework also ensures that:
n  No code injection attacks, buffer overflow, integer overflow,

null pointer access, etc.

1 void ioapic_init(void) {
2 int j = 0, maxintr = ioapic_read(1) >> 24;
3 while(j <= maxintr) {
4 ioapic_write(0x10 + 2 * j, 0x10000 | gsi + j);
5 ioapic_write(0x10 + 2 * j + 1, 0);
6 }
7 }

Figure 20. The implementation of ioapic_init in C

be edge-triggered, active high, and masked (i.e. not routed to
any LAPIC). The behavior of this function can be described
using the following rule:

l “ s.maxIntr s

1 “ srmasksr1..ls – Maskeds
s

2 “ s

1rdestr1..ls – 0sr◆ – pNone,Noneqs
ioapic_initpsq “ s

2

6. Evaluation and Lessons Learned
What We Have Proved The final theorem we proved for
our kernel is the contextual refinement relation between our
lowest level hardware machine model x86 (which defines the
x86 instructions, the serial device, and the ioapic and lapic
devices, etc.), and the top level machine mCertiKOS (which
defines the abstract system call interface). Let rr¨ssx86 and
rr¨ssmCertiKOS denote the whole-machine semantics of each
machine model, and K denote the (assembly) source code of
mCertiKOS, then the theorem is formalized as:

Theorem 1. @P, rrK’P ssx86 Ñ rrP ssmCertiKOS.

The theorem states that for any kernel/user/guest/host
context program P , there is a simulation between program P

running on top of the top level abstract machine mCertiKOS,
and the program P linked with the mCertiKOS source code
K, running atop the bottom-most machine x86.

The abstraction layers also define the data invariants that
are proved to hold at any moment of the whole program
execution. Some example invariants are: the console’s circular
buffer is always wellformed, and the interrupt controller states
are always consistent, etc.

Besides this, our framework automatically derives that all
the system calls always run safely and terminate; there are no
code injection attacks, no buffer overflows, no null pointer
access, no integer overflows, etc.

Isolation We take the existing implementation of the
CertiKOS infrastructure [14], and extend it with our device
and interrupt models. On top of the extended machine model,
we have verified a subset of the device drivers in mCertiKOS
with 10 abstraction layers. Some layers are introduced to
verify concrete driver implementation, while others are in-
troduced purely for logical abstraction (e.g., from a circular
console buffer implementation in memory to an abstract list,
from the hardware interrupt model to the abstract interrupt
model enforcing isolation, etc). These abstraction layers are

inserted into the existing layers of mCertiKOS as a certified
plugin. Thanks to our isolation policy, this does not invalidate
most of the existing proofs of mCertiKOS, and the integration
only required minimal effort, despite the existing mCertiKOS
proofs being unaware of interrupts.

Execution Model and Completeness The majority of our
device drivers are specified and verified at C level, then
compiled by a modified version of the CompCert verified
compiler [14]. The entire kernel (both C and assembly)
source code, together with the source code for the verified
compiler, are extracted into an OCaml program through Coq’s
extraction mechanism. When this program gets executed, it
compiles the extracted C source code into the assembly, and
merges it with the existing assembly kernel source code,
to produce a piece of assembly code corresponding to our
verified kernel. Thus, our deliverable comes with a piece
of assembly code for the entire verified kernel, a high level
deep specification of various kernel behaviors, and a machine
checkable proof object stating the assembly code running on
the actual hardware satisfies the high level specification.

The verified assembly code is then linked with the rest of
kernel code (the boot loader and remaining unverified drivers)
to produce the actual binary image of the OS. The resulting
kernel is practical: it runs on stock x86 hardware and can
successfully boot a guest version of Linux.

Verification Effort Using our general device interface, we
have modeled a serial device and two interrupt controller
devices. On top of these device models, we have verified the
related drivers and interrupt handlers. The entire verification
effort consists of roughly 20k lines of Coq code added to
the existing mCertiKOS verification code base. Regarding
the specification, there are 510 lines of code used to specify
the machine model including the device hardware, and 126
lines of code for specification of the additional system call
interfaces. There are additional 9,829 lines of Coq code that
were used to define auxiliary definitions, lemmas, theorems,
invariants, etc. Note that these 9,829 lines of definitions are
outside our TCB, thus does not need to be trusted. In terms
of proof size, there are 3,671 lines of Coq code for the layer
refinement proofs, 3,589 lines for code verification, 1,802
lines for proving invariants, and 307 lines for linking different
modules together.

The entire verification effort took roughly 7 person months,
the majority of which went into the design and development
of the framework itself, including the extended machine
model, general device framework, the interrupt refinement,
and the tactic libraries for automating most of the non-
intellectual parts of verification task. We anticipate the cost of
verification for future drivers would be dramatically reduced.

Bugs Found An extended version of the mCertiKOS kernel
has been deployed in a practical system that is used in the
context of a large DARPA-funded research project [14]. Yet,
through the verification of the console driver, we found a

Size of TCB and Spec/Proof	

p  In the TCB
n  X86 hardware model
n  Hardware device/interrupt model (510 LOC)
n  System call specification (126 LOC)
n  Bootloader
n  Coq proof checker
n  Pretty-printing phase of the CompCert compiler

p  Rest of the spec/proof (about 20k LOC)
n  Intermediate and auxiliary specifications and definitions
n  Coq proof scripts	

Conclusion	

p  Compositional framework for building certified
interruptible kernel with device drivers.
n  Certified abstraction layers with multiple logical CPUs.
n  An abstraction-layer-based approach for expressing

interrupts.
p  The first formally verified interruptible OS kernel

with device drivers.
p  Extensions:

n  Other drivers
n  Concurrency
n  Larger kernel

 	

Thank You	

