
Characterizing Progress Properties of
Concurrent Objects via Contextual Refinements

Hongjin Liang1,2, Jan Hoffmann2, Xinyu Feng1, and Zhong Shao2

1 University of Science and Technology of China
2 Yale University

Abstract. Implementations of concurrent objects should guarantee lin-
earizability and a progress property such as wait-freedom, lock-freedom,
obstruction-freedom, starvation-freedom, or deadlock-freedom. Conven-
tional informal or semi-formal definitions of these progress properties
describe conditions under which a method call is guaranteed to com-
plete, but it is unclear how these definitions can be utilized to formally
verify system software in a layered and modular way.
In this paper, we propose a unified framework based on contextual re-
finements to show exactly how progress properties affect the behaviors
of client programs. We give formal operational definitions of all common
progress properties and prove that for linearizable objects, each progress
property is equivalent to a specific type of contextual refinement that
preserves termination. The equivalence ensures that verification of such
a contextual refinement for a concurrent object guarantees both lineariz-
ability and the corresponding progress property. Contextual refinement
also enables us to verify safety and liveness properties of client programs
at a high abstraction level by soundly replacing concrete method imple-
mentations with abstract atomic operations.

1 Introduction

A concurrent object consists of shared data and a set of methods that provide
an interface for client threads to manipulate and access the shared data. The
synchronization of simultaneous data access within the object affects the progress
of the execution of the client threads in the system.

Various progress properties have been proposed for concurrent objects. The
most important ones are wait-freedom, lock-freedom and obstruction-freedom for
non-blocking implementations, and starvation-freedom and deadlock-freedom for
lock-based implementations. These properties describe conditions under which
method calls are guaranteed to successfully complete in an execution. For exam-
ple, lock-freedom guarantees that “infinitely often some method call finishes in
a finite number of steps” [9].

Nevertheless, the common informal or semi-formal definitions of the progress
properties are difficult to use in a modular and layered program verification be-
cause they fail to describe how the progress properties affect clients. In a modular
verification of client threads, the concrete implementation Π of the object meth-
ods should be replaced by an abstraction (or specification) ΠA that consists of

2 Hongjin Liang, Jan Hoffmann, Xinyu Feng, and Zhong Shao

equivalent atomic methods. The progress properties should then characterize
whether and how the behaviors of a client program will be affected if a client
uses Π instead of ΠA. In particular, we are interested in systematically study-
ing whether the termination of a client using the abstract methods ΠA will be
preserved when using an implementation Π with some progress guarantee.

Previous work on verifying the safety of concurrent objects (e.g., [4, 12]) has
shown that linearizability—a standard safety criterion for concurrent objects—
and contextual refinement are equivalent. Informally, an implementation Π is
a contextual refinement of a (more abstract) implementation ΠA, if every ob-
servable behavior of any client program using Π can also be observed when the
client uses ΠA instead. To obtain equivalence to linearizability, the observable
behaviors include I/O events but not divergence (i.e., non-termination). Re-
cently, Gotsman and Yang [6] showed that a client program that diverges using
a linearizable and lock-free object must also diverge when using the abstract
operations instead. Their work reveals a connection between lock-freedom and
a form of contextual refinement which preserves termination as well as safety
properties. It is unclear how other progress guarantees affect termination of
client programs and how they are related to contextual refinements.

This paper studies all five commonly used progress properties and their re-
lationships to contextual refinements. We propose a unified framework in which
a certain type of termination-sensitive contextual refinement is equivalent to
linearizability together with one of the progress properties. The idea is to iden-
tify different observable behaviors for different progress properties. For example,
for the contextual refinement for lock-freedom we observe the divergence of the
whole program, while for wait-freedom we also need to observe which threads in
the program diverge. For lock-based progress properties, e.g., starvation-freedom
and deadlock-freedom, we have to take fair schedulers into account.

Our paper makes the following new contributions:

– We formalize the definitions of the five most common progress properties:
wait-freedom, lock-freedom, obstruction-freedom, starvation-freedom, and
deadlock-freedom. Our formulation is based on possibly infinite event traces
that are operationally generated by any client using the object.

– Based on our formalization, we prove relationships between the progress
properties. For example, wait-freedom implies lock-freedom and starvation-
freedom implies deadlock-freedom. These relationships form a lattice shown
in Figure 1 (where the arrows represent implications). We close the lattice
with a bottom element that we call sequential termination, a progress prop-
erty in the sequential setting. It is weaker than any other progress property.

– We develop a unified framework to characterize progress properties via con-
textual refinements. With linearizability, each progress property is proved
equivalent to a contextual refinement which takes into account divergence of
programs. A companion TR [14] contains the formal proofs of our results.

By extending earlier equivalence results on linearizability [4], our contextual
refinement framework can serve as a new alternative definition for the full cor-
rectness properties of concurrent objects. The contextual refinement implied by

Characterizing Progress Properties via Contextual Refinements 3

Wait-freedom

Lock-freedom Starvation-freedom

Obstruction-freedom Deadlock-freedom

Sequential termination

Fig. 1: Relationships between Progress Properties

linearizability and a progress guarantee precisely characterizes the properties at
the abstract level that are preserved by the object implementation. When prov-
ing these properties of a client of the object, we can soundly replace the concrete
method implementations by its abstract operations. On the other hand, since the
contextual refinement also implies linearizability and the progress property, we
can potentially borrow ideas from existing proof methods for contextual refine-
ments, such as simulations (e.g., [13]) and logical relations (e.g., [2]), to verify
linearizability and the progress guarantee together.

In the remainder of this paper, we first informally explain our framework
in Section 2. We then introduce the formal setting in Section 3; including the
definition of linearizability as the safety criterion of objects. We formulate the
progress properties in Section 4 and the contextual refinement framework in
Section 5. We discuss related work and conclude in Section 6.

2 Informal Account

In this section, we informally describe our results. We first give an overview of
linearizability and its equivalence to the basic contextual refinement. Then we
explain the progress properties and summarize our new equivalence results.

Linearizability and Contextual Refinement. Linearizability is a standard
safety criterion for concurrent objects [9]. Intuitively, linearizability describes
atomic behaviors of object implementations. It requires that each method call
should appear to take effect instantaneously at some moment between its invo-
cation and return.

Linearizability intuitively establishes a correspondence between the object
implementation Π and the intended atomic operations ΠA. This correspondence
can also be understood as a contextual refinement. Informally, we say that Π is a
contextual refinement of ΠA, Π v ΠA, if substituting Π for ΠA in any context
(i.e., in a client program) does not add observable behaviors. External observers
cannot tell that ΠA has been replaced by Π from monitoring the behaviors of
the client program.

It has been proved [4, 12] that linearizability is equivalent to a contextual
refinement in which the observable behaviors are finite traces of I/O events. Thus

4 Hongjin Liang, Jan Hoffmann, Xinyu Feng, and Zhong Shao

this basic contextual refinement can be used to distinguish linearizable objects
from non-linearizable ones. But it cannot characterize progress properties of
objects.

Progress Properties. Figure 2 shows several implementations of a counter
with different progress guarantees that we study in this paper. A counter object
provides the two methods inc and dec for incrementing and decrementing a
shared variable x. The implementations given here are not intended to be prac-
tical but merely to demonstrate the meanings of the progress properties. We
assume that every command is executed atomically.

Informally, an object implementation is wait-free, if it guarantees that every
thread can complete any started operation of the data structure in a finite num-
ber of steps [7]. Figure 2(a) shows an ideal wait-free implementation in which the
increment and the decrement are done atomically. This implementation is obvi-
ously wait-free since it guarantees termination of every method call regardless of
interference from other threads. Note that realistic implementations of wait-free
counters are more complex and involve arrays and atomic snapshots [1].

Lock-freedom is similar to wait-freedom but only guarantees that some thread
will complete an operation in a finite number of steps [7]. Typical lock-free imple-
mentations (such as the well-known Treiber stack, HSY elimination-backoff stack
and Harris-Michael lock-free list) use the atomic compare-and-swap instruction
cas in a loop to repeatedly attempt an update until it succeeds. Figure 2(b)
shows such an implementation of the counter object. It is lock-free, because
whenever inc and dec operations are executed concurrently, there always exists
some successful update. Note that this object is not wait-free. For the following
program (2.1), the cas instruction in the method called by the left thread may
continuously fail due to the continuous updates of x made by the right thread.

inc(); ‖ while(true) inc(); (2.1)

Herlihy et al. [8] propose obstruction-freedom which “guarantees progress
for any thread that eventually executes in isolation” (i.e., without other active
threads in the system). They present two double-ended queues as examples. In
Figure 2(c) we show an obstruction-free counter that may look contrived but
nevertheless illustrates the idea of the progress property.

The implementation introduces a variable i, and lets inc perform the atomic
increment after increasing i to 10 and dec do the atomic decrement after decreas-
ing i to 0. Whenever a method is executed in isolation (i.e., without interference
from other threads), it will complete. Thus the object is obstruction-free. It is
not lock-free, because for the client

inc(); ‖ dec(); (2.2)

which executes an increment and a decrement concurrently, it is possible that
neither of the method calls returns. For instance, under a specific schedule, every
increment over i made by the left thread is immediately followed by a decrement
from the right thread.

Characterizing Progress Properties via Contextual Refinements 5

1 inc() { x := x + 1; }

2 dec() { x := x - 1; }

(a) Wait-Free (Ideal) Impl.

1 inc() {

2 local t, b;

3 do {

4 t := x;

5 b := cas(&x,t,t+1);

6 } while(!b);

7 }

(b) Lock-Free Impl.

1 inc() {

2 while (i < 10) {

3 i := i + 1;

4 }

5 x := x + 1;

6 }

7 dec() {

8 while (i > 0) {

9 i := i - 1;

10 }

11 x := x - 1;

12 }

(c) Obstruction-Free Impl.

1 inc() {

2 TestAndSet_lock();

3 x := x + 1;

4 TestAndSet_unlock();

5 }

(d) Deadlock-Free Impl.

1 inc() {

2 Bakery_lock();

3 x := x + 1;

4 Bakery_unlock();

5 }

(e) Starvation-Free Impl.

Fig. 2: Counter Objects with Methods inc and dec

Wait-freedom, lock-freedom, and obstruction-freedom are progress properties
for non-blocking implementations, where a delay of a thread cannot prevent other
threads from making progress. In contrast, deadlock-freedom and starvation-
freedom are progress properties for lock-based implementations. A delay of a
thread holding a lock will block other threads which request the lock.

Deadlock-freedom and starvation-freedom are often defined in terms of locks
and critical sections. Deadlock-freedom guarantees that some thread will succeed
in acquiring the lock, and starvation-freedom states that every thread attempting
to acquire the lock will eventually succeed [9]. For example, a test-and-set spin
lock is deadlock-free but not starvation-free. In a concurrent access, some thread
will successfully set the bit and get the lock, but there might be a thread that
is continuously failing to get the lock. Lamport’s bakery lock is starvation-free.
It ensures that threads can acquire locks in the order of their requests.

However, as noted by Herlihy and Shavit [10], the above definitions based on
locks are unsatisfactory, because it is often difficult to identify a particular field
in the object as a lock. Instead, they suggest defining them in terms of method
calls. They also notice that the above definitions implicitly assume that every
thread acquiring the lock will eventually release it. This assumption requires fair
scheduling, i.e., every thread gets eventually executed.

Following Herlihy and Shavit [10], we say an object is deadlock-free, if in
each fair execution there always exists some method call that can finish. As
an example in Figure 2(d), we use a test-and-set lock to synchronize the incre-
ments of the counter. Since some thread is guaranteed to acquire the test-and-set
lock, the method call of that thread is guaranteed to finish. Thus the object is
deadlock-free. Similarly, a starvation-free object guarantees that every method
call can finish in fair executions. Figure 2(e) shows a counter implemented with
Lamport’s bakery lock. It is starvation-free since the bakery lock ensures that
every thread can acquire the lock and hence every method call can eventually
complete.

6 Hongjin Liang, Jan Hoffmann, Xinyu Feng, and Zhong Shao

Wait-Free Lock-Free Obstruction-Free Deadlock-Free Starvation-Free

ΠA (t, Div.) Div. Div. Div. (t, Div.)

Π (t, Div.) Div. Div. if Isolating Div. if Fair (t, Div.) if Fair

Table 1: Characterizing Progress Properties via Contextual Refinements Π v ΠA

Our Results. None of the above definitions of the five progress properties
describes their guarantees regarding the behaviors of client code. In this paper,
we define several contextual refinements to characterize the effects over client
behaviors when the client uses objects with some progress properties. We show
that linearizability together with a progress property is equivalent to a certain
termination-sensitive contextual refinement. Table 1 summarizes our results.

For each progress property, the new contextual refinement Π v ΠA is de-
fined with respect to a divergence behavior and/or a specific scheduling at the
implementation level (the third row in Table 1) and at the abstract side (the
second row), in addition to the I/O events in the basic contextual refinement for
linearizability.

– For wait-freedom, we need to observe the divergence of each individual thread
t, represented by “(t, Div.)” in Table 1, at both the concrete and the abstract
levels. We show that, if the thread t of a client program diverges when the
client uses a linearizable and wait-free object Π, then thread t must also
diverge when using ΠA instead.

– The case for lock-freedom is similar, except that we now consider the diver-
gence behaviors of the whole client program rather than individual threads
(denoted by “Div.” in Table 1). If a client diverges when using a linearizable
and lock-free object Π, it must also diverge when it uses ΠA instead.

– For obstruction-freedom, we consider the behaviors of isolating executions
at the concrete side (denoted by “Div. if Isolating” in Table 1). In those
executions, eventually only one thread is running. We show that, if a client
diverges in an isolating execution when it uses a linearizable and obstruction-
free object Π, it must also diverge in some abstract execution.

– For deadlock-freedom, we only care about fair executions at the concrete
level (denoted by “Div. if Fair” in Table 1).

– For starvation-freedom, we observe the divergence of each individual thread
at both levels and restrict our considerations to fair executions for the con-
crete side (“(t, Div.) if Fair” in Table 1). Any thread using Π can diverge in
a fair execution, only if it also diverges in some abstract execution.

These new contextual refinements can characterize linearizable objects with
progress properties. We will formalize the results and give examples in Section 5.

3 Formal Setting and Linearizability

In this section, we formalize linearizability and show its equivalence to a contex-
tual refinement that preserves safety properties only. This equivalence is the basis
of our new results that relate progress properties and contextual refinements.

Characterizing Progress Properties via Contextual Refinements 7

(Expr) E ::= . . . (BExp) B ::= . . . (Instr) c ::= print(E) | . . .
(Stmt) C ::= skip | c | x := f(E) | return E | end

| 〈C〉 | C;C | if (B) C else C | while (B){C}
(Prog) W ::= skip | let Π in C ‖ . . .‖C

(ODecl) Π ::= {f1 ; (x1, C1), . . . , fn ; (xn, Cn)}

Fig. 3: Syntax of the Programming Language

(State) S ::= . . . (ThrdID) t ∈ Nat

(Evt) e ::= (t, f, n) | (t, ret, n) | (t,obj) | (t,obj,abort)
| (t,out, n) | (t, clt) | (t, clt,abort) | (t, term) | (spawn, n)

(ETrace) T ::= ε | e ::T (co-inductive)

Fig. 4: States and Event Traces

Language and Semantics. We use a similar language as in previous work of
Liang and Feng [12]. As shown in Figure 3, a program W consists of several
client threads that run in parallel. Each thread could call the methods declared
in the object Π. A method f is defined as a pair (x,C), where x is the formal
argument and C is the method body. The object Π could be either concrete
with fine-grained code that we want to verify, or abstract (usually denoted as
ΠA in the following) that we consider as the specification. For the latter case,
each method body should be an atomic operation of the form 〈C〉 and it should
be always safe to execute it. For simplicity, we assume there is only one object
in the program W and each method takes one argument only.

Most commands are standard. Clients can use print(E) to produce observ-
able external events. We do not allow the object’s methods to produce external
events. To simplify the semantics, we also assume there are no nested method
calls. To discuss progress properties later, we introduce an auxiliary command
end. It is a special marker that can be added at the end of a thread, but is not
supposed to be used directly by programmers. The skip statement plays two
roles here: a statement that has no computation effects or a flag to show the end
of an execution.

We use S for a program state. Program transitions (W,S)
e7−→ (W ′,S ′) gen-

erate events e defined in Figure 4. A method invocation event (t, f, n) is produced
when thread t executes x := f(E), where n is the value of the argument E. A
return (t, ret, n) is produced with the return value n. print(E) generates an out-
put (t,out, n), and end generates a termination marker (t, term). Other steps
generate either normal object actions (t,obj) (for steps inside method calls) or
silent client actions (t, clt) (for client steps other than print(E)). For transi-
tions leading to the error state abort (e.g., invalid memory access), fault events
are produced: (t,obj,abort) by the object method code and (t, clt,abort) by
the client code. We also introduce an auxiliary event (spawn, n), saying that n
threads are spawned. It will be useful later when defining fair scheduling (in Sec-
tion 4). We write tid(e) for the thread ID in the event e. The predicate is clt(e)
states that the event e is either a silent client action, an output, or a client
fault. We write is inv(e) and is ret(e) to denote that e is a method invocation

8 Hongjin Liang, Jan Hoffmann, Xinyu Feng, and Zhong Shao

T JW,SK def
= {T | ∃W ′,S ′. (W,S)

T7−→∗ (W ′,S ′) ∨ (W,S)
T7−→∗ abort}

HJW,SK def
= {get hist(T) | T ∈ T JW,SK }

OJW,SK def
= {get obsv(T) | T ∈ T JW,SK }

Fig. 5: Generation of Finite Event Traces

and a return, respectively. The predicate is abt(e) denotes a fault of the object
or the client. Method invocations, returns and object faults are called history
events, which will be used to define linearizability below. Outputs, client faults
and object faults are called observable events.

An event trace T is a finite or infinite sequence of events. We write T (i) for
the i-th event of T . last(T) is the last event in a finite T . The trace T (1..i) is the
sub-trace T (1), . . . , T (i) of T , and |T | is the length of T (|T | = ω if T is infinite).
The trace T |t represents the sub-trace of T consisting of all events whose thread
ID is t. We can use get hist(T) to project T to the sub-trace consisting of all the
history events, and get obsv(T) for the sub-trace of all the observable events.
Finite traces of history events are called histories.

In Figure 5, we define T JW,SK for the prefix-closed set of finite traces pro-

duced by the executions of (W,S). We use (W,S)
T7−→ ∗ (W ′,S ′) for zero or

multiple-step program transitions that generate the trace T . We also define
HJW,SK and OJW,SK to get histories and finite observable traces produced by
the executions of (W,S). The TR [14] contains more details about the language.

Linearizability and Basic Contextual Refinement. We formulate lineariz-
ability following its standard definition [11]. Below we sketch the basic concepts.
Detailed formal definitions can be found in the companion TR [14].

Linearizability is defined using histories. We say a return e2 matches an
invocation e1, denoted as match(e1, e2), iff they have the same thread ID. An in-
vocation is pending in T if no matching return follows it. We can use pend inv(T)
to get the set of pending invocations in T . We handle pending invocations in
a history T in the standard way [11]: we append zero or more return events
to T , and drop the remaining pending invocations. The result is denoted by
completions(T). It is a set of histories, and for each history in it, every invoca-
tion has a matching return event.

Definition 1 (Linearizable Histories). T �lin T
′ iff

1. ∀t. T |t = T ′|t;
2. there exists a bijection π : {1, . . . , |T |} → {1, . . . , |T ′|} such that ∀i. T (i) =

T ′(π(i)) and ∀i, j. i < j ∧ is ret(T (i)) ∧ is inv(T (j)) =⇒ π(i) < π(j).

That is, T is linearizable w.r.t. T ′ if the latter is a permutation of the former,
preserving the order of events in the same threads and the order of the non-
overlapping method calls. Then an object is linearizable iff each of its concurrent
histories after completions is linearizable w.r.t. some legal sequential history. We
use ΠA B (Sa, T ′) to mean that T ′ is a legal sequential history generated by any
client using the specification ΠA with an abstract initial state Sa.

Characterizing Progress Properties via Contextual Refinements 9

Definition 2 (Linearizability of Objects). The object’s implementation Π
is linearizable w.r.t.ΠA under a refinement mapping ϕ, denoted by Π�ϕΠA, iff
∀n,C1, . . . , Cn,S,Sa, T. T ∈ HJ(let Π in C1‖ . . .‖Cn),SK ∧ (ϕ(S) = Sa)

=⇒ ∃Tc, T
′. Tc ∈ completions(T) ∧ΠA B (Sa, T ′) ∧ Tc �lin T

′ .
Here the partial mapping ϕ :State⇀State relates concrete states to abstract ones.

The side condition ϕ(S) = Sa in the above definition requires the initial concrete
state S to be well-formed in that it represents a valid abstract state Sa. For
instance, ϕ may need S to contain a linked list and relate it to an abstract
mathematical set in Sa for a set object. Besides, ϕ should always require the
client states in S and Sa to be identical.

Next we define a contextual refinement between the concrete object and its
specification, which is equivalent to linearizability.

Definition 3 (Basic Contextual Refinement). Π vϕ ΠA iff

∀n,C1, . . . , Cn,S,Sa. (ϕ(S) = Sa)
=⇒ OJ(let Π in C1‖ . . .‖Cn),SK ⊆ OJ(let ΠA in C1‖ . . .‖Cn),SaK .

Remember that OJW,SK represents the prefix-closed set of observable event
traces generated during the executions of (W,S), which is defined in Figure 5.

Following Filipović et al. [4], we can prove that linearizability is equivalent
to this contextual refinement. We give the proofs in the TR [14].

Theorem 4 (Basic Equivalence). Π �ϕ ΠA ⇐⇒ Π vϕ ΠA.

Theorem 4 allows us to use Π vϕ ΠA to identify linearizable objects. However,
we cannot use it to characterize progress properties of objects. For the following
example, Π vϕ ΠA holds although no concrete method call of f could finish (we
assume this object contains a method f only).

Π(f) : while(true) skip; ΠA(f) : skip; C : print(1); f(); print(1);

The reason is that Π vϕ ΠA considers a prefix-closed set of event traces at the
abstract side. For the above client C, the observable behaviors of let Π in C
can all be found in the prefix-closed set of behaviors produced by let ΠA in C.

4 Formalizing Progress Properties

We define progress in Figure 6 as properties over both event traces T and object
implementations Π. We say an object implementation Π has a progress property
P iff all its event traces have the property. Here we use Tω to generate the event
traces. Its definition in Figure 6 is similar to T JW,SK of Figure 5, but TωJW,SK
is for the set of finite or infinite event traces produced by complete executions.

We use (W,S)
T7−→ω · to denote the existence of a T -labelled infinite execution.

(W,S)
T7−→ ∗ (skip,) represents a terminating execution that produces T . By

using bW c, we append end at the end of each thread to explicitly mark the
termination of the thread. We also insert the spawning event (spawn, n) at the

10 Hongjin Liang, Jan Hoffmann, Xinyu Feng, and Zhong Shao

Definition. An object Π satisfies P under a refinement mapping ϕ, Pϕ(Π), iff
∀n,C1,. . . ,Cn,S, T. T ∈ TωJ(letΠ in C1‖. . .‖Cn),SK ∧ (S∈dom(ϕ)) =⇒ P (T) .

TωJW,SK def
= {(spawn, |W |) ::T |

(bW c,S)
T7−→ω · ∨ (bW c,S)

T7−→∗(skip,) ∨ (bW c,S)
T7−→∗abort}

blet Π in C1‖ . . .‖Cnc
def
= let Π in (C1; end)‖ . . .‖(Cn; end)

|let Π in C1 ‖ . . . ‖ Cn|
def
= n tnum((spawn, n) ::T)

def
= n

pend inv(T)
def
= {e | ∃i. e=T (i) ∧ is inv(e) ∧ ¬∃j. (j > i ∧match(e, T (j)))}

prog-t(T) iff ∀i, e. e ∈ pend inv(T (1..i)) =⇒ ∃j. j > i ∧match(e, T (j))

prog-s(T) iff ∀i, e. e ∈ pend inv(T (1..i)) =⇒ ∃j. j > i ∧ is ret(T (j))

abt(T) iff ∃i. is abt(T (i))

sched(T) iff |T | = ω ∧ pend inv(T) 6= ∅ =⇒ ∃e. e ∈ pend inv(T) ∧ |(T |tid(e))| = ω

fair(T) iff |T | = ω =⇒ ∀t ∈ [1..tnum(T)]. |(T |t)| = ω ∨ last(T |t) = (t, term)

iso(T) iff |T | = ω =⇒ ∃t, i. (∀j. j ≥ i =⇒ tid(T (j)) = t)

wait-free iff sched =⇒ prog-t ∨ abt starvation-free iff fair =⇒ prog-t ∨ abt

lock-free iff sched =⇒ prog-s ∨ abt deadlock-free iff fair =⇒ prog-s ∨ abt

obstruction-free iff sched ∧ iso =⇒ prog-t ∨ abt

Fig. 6: Formalizing Progress Properties

lock-free ⇐⇒ wait-free ∨ prog-s starvation-free ⇐⇒ wait-free ∨ ¬fair
obstruction-free ⇐⇒ lock-free ∨ ¬iso deadlock-free ⇐⇒ lock-free ∨ ¬fair

Fig. 7: Relationships between Progress Properties

beginning of T , where n is the number of threads in W . Then we can use tnum(T)
to get the number n, which is needed to define fairness, as shown below.

Before formulating each progress property over event traces, we first define
some auxiliary properties in Figure 6. prog-t(T) guarantees that every method
call in T eventually finishes. prog-s(T) guarantees that some pending method
call finishes. Different from prog-t, the return event T (j) in prog-s does not have
to be a matching return of the pending invocation e. abt(T) says that T ends
with a fault event.

There are three useful conditions on scheduling. The basic requirement for
a good schedule is sched. If T is infinite and there exist pending calls, then at
least one pending thread should be scheduled infinitely often. In fact, there are
two possible reasons causing a method call of thread t to pend. Either t is no
longer scheduled, or it is always scheduled but the method call never finishes.
sched rules out the bad schedule where no thread with an invoked method is
active. For instance, the following infinite trace does not satisfy sched.

(t1, f1, n1) :: (t2, f2, n2) :: (t1,obj) :: (t3, clt) :: (t3, clt) :: (t3, clt) :: . . .

Characterizing Progress Properties via Contextual Refinements 11

div tids(T)
def
= {t | (|(T |t)| = ω) }

OωJW,SK def
= {get obsv(T) | T ∈ TωJW,SK }

OiωJW,SK def
= {get obsv(T) | T ∈ TωJW,SK ∧ iso(T)}

OfωJW,SK def
= {get obsv(T) | T ∈ TωJW,SK ∧ fair(T)}

OtωJW,SK def
= {(get obsv(T), div tids(T)) | T ∈ TωJW,SK }

OftωJW,SK def
= {(get obsv(T), div tids(T)) | T ∈ TωJW,SK ∧ fair(T)}

Fig. 8: Generation of Complete Event Traces

If T is infinite, fair(T) requires every non-terminating thread be scheduled in-
finitely often; and iso(T) requires eventually only one thread be scheduled. We
can see that a fair schedule is a good schedule satisfying sched.

At the bottom of Figure 6 we define the progress properties formally. We
omit the parameter T in the formulae to simplify the presentation. An event
trace T is wait-free (i.e., wait-free(T) holds) if under the good schedule sched, it
guarantees prog-t unless it ends with a fault. lock-free(T) is similar except that
it guarantees prog-s. Starvation-freedom and deadlock-freedom guarantee prog-t
and prog-s under fair scheduling. Obstruction-freedom guarantees prog-t if some
pending thread is always scheduled (sched) and runs in isolation (iso).

Figure 7 contains lemmas that relate progress properties. For instance, an
event trace is starvation-free, iff it is wait-free or not fair. These lemmas give us
the relationship lattice in Figure 1. To close the lattice, we also define a progress
property in the sequential setting. Sequential termination guarantees that every
method call must finish in a trace produced by a sequential client. The formal
definition is given in the companion TR [14], and we prove that it is implied by
each of the five progress properties for concurrent objects.

5 Equivalence to Contextual Refinements

We extend the basic contextual refinement in Definition 3 to observe progress
as well as linearizability. For each progress property, we carefully choose the
observable behaviors at the concrete and the abstract levels.

5.1 Observable Behaviors

In Figure 8, we define various observable behaviors for the termination-sensitive
contextual refinements.

We use OωJW,SK to represent the set of observable event traces produced
by complete executions of (W,S). Recall that get obsv(T) gets the sub-trace
of T consisting of all the observable events only. Unlike the prefix-closed set
OJW,SK, this definition utilizes TωJW,SK (see Figure 6) whose event traces are
all complete and could be infinite. Thus it allows us to observe divergence of the
whole program. Oiω and Ofω take the complete observable traces of isolating
and fair executions respectively. Here iso(T) and fair(T) are defined in Figure 6.

12 Hongjin Liang, Jan Hoffmann, Xinyu Feng, and Zhong Shao

P wait-free lock-free obstruction-free deadlock-free starvation-free

Π vP
ϕ ΠA Otω ⊆ Otω Oω ⊆ Oω Oiω ⊆ Oω Ofω ⊆ Oω Oftω ⊆ Otω

Table 2: Contextual Refinements Π vP
ϕ ΠA for Progress Properties P

We could also observe divergence of individual threads rather than the whole
program. We define div tids(T) to collect the set of threads that diverge in the
trace T . Then we write OtωJW,SK to get both the observable behaviors and the
diverging threads in the complete executions. OftωJW,SK is defined similarly but
considers fair executions only.

More on divergence. In general, divergence means non-termination. For example,
we could say that the following two-threaded program (5.1) must diverge since
it never terminates.

x := x + 1; ‖ while(true) skip; (5.1)

But for individual threads, divergence is not equivalent to non-termination, since
a non-terminating thread may either have an infinite execution or simply be not
scheduled from some point due to unfair scheduling. We view only the former
case as divergence. For instance, in an unfair execution, the left thread of (5.1)
may never be scheduled and hence it has no chance to terminate. It does not
diverge. Similarly, for the following program (5.2),

while(true) skip; ‖ while(true) skip; (5.2)

the whole program must diverge, but it is possible that a single thread does not
diverge in an execution.

5.2 New Contextual Refinements and Equivalence Results

In Table 2, we summarize the definitions of the termination-sensitive contextual
refinements. Each new contextual refinement follows the basic one in Definition 3
but takes different observable behaviors as specified in Table 2. For example, the
contextual refinement for wait-freedom is formally defined as follows:

Π vwait-free
ϕ ΠA iff (∀n,C1, . . . , Cn,S,Sa. (ϕ(S) = Sa) =⇒

OtωJ(letΠ in C1‖ . . .‖Cn),S)K ⊆ OtωJ(letΠA in C1‖ . . .‖Cn),SaK).

Theorem 5 says that linearizability with a progress property P together is equiv-
alent to the corresponding contextual refinement vP

ϕ .

Theorem 5 (Equivalence). Π �ϕ ΠA ∧ Pϕ(Π) ⇐⇒ Π vP
ϕ ΠA , where P is

wait-free, lock-free, obstruction-free, deadlock-free or starvation-free.

Here we assume the object specification ΠA is total, i.e., the abstract operations
never block. We provide the proofs of our equivalence results in the TR [14].

The contextual refinement for wait-freedom takes Otω at both the concrete
and the abstract levels. The divergence of individual threads as well as I/O
events are treated as observable behaviors. The intuition of the equivalence is as

Characterizing Progress Properties via Contextual Refinements 13

follows. Since a wait-free object Π guarantees that every method call finishes,
we have to blame the client code itself for the divergence of a thread using Π.
That is, even if the thread uses the abstract object ΠA, it must still diverge.

As an example, consider the client program (2.1). Intuitively, for any execu-
tion in which the client uses the abstract operations, only the right thread t2
diverges. Thus Otω of the abstract program is a singleton set {(ε, {t2})}. When
the client uses the wait-free object in Figure 2(a), its Otω set is still {(ε, {t2})}.
It does not produce more observable behaviors. But if it uses a non-wait-free
object (such as the one in Figure 2(b)), the left thread t1 does not necessarily
finish. The Otω set becomes {(ε, {t2}), (ε, {t1, t2})}. It produces more observable
behaviors than the abstract client, breaking the contextual refinement. Thanks
to observing div tids that collects the diverging threads, we can rule out non-
wait-free objects which may cause more threads to diverge.

Π vlock-free
ϕ ΠA takes coarser observable behaviors. We observe the divergence

of the whole client program by using Oω at both the concrete and the abstract
levels. Intuitively, a lock-free object Π ensures that some method call will finish,
thus the client using Π diverges only if there are an infinite number of method
calls. Then it must also diverge when using the abstract object ΠA.

For example, consider the client (2.1). The whole client program diverges in
every execution both when it uses the lock-free object in Figure 2(b) and when
it uses the abstract one. The Oω set of observable behaviors is {ε} at both levels.
On the other hand, the following client must terminate and print out both 1 and
2 in every execution. The Oω set is {1::2 ::ε, 2::1 ::ε} at both levels.

inc(); print(1); ‖ dec(); print(2); (5.3)

Instead, if the client (5.3) uses the non-lock-free object in Figure 2(c), it may
diverge and nothing is printed out. The Oω set becomes {ε, 1 :: 2 :: ε, 2 :: 1 :: ε},
which contains more behaviors than the abstract side. Thus Π vlock-free

ϕ ΠA fails.
Obstruction-freedom ensures progress for isolating executions in which even-

tually only one thread is running. Correspondingly, Π vobstruction-free
ϕ ΠA restricts

our considerations to isolating executions. It takes Oiω at the concrete level and
Oω at the abstract level.

To understand the equivalence, consider the client (5.3) again. For isolating
executions with the obstruction-free object in Figure 2(c), it must terminate and
print out both 1 and 2. The Oiω set at the concrete level is {1::2 ::ε, 2::1 ::ε}, the
same as the set Oω of the abstract side. Non-obstruction-free objects in general
do not guarantee progress for some isolating executions. If the client uses the
object in Figure 2(d) or (e), the Oiω set is {ε, 1 :: 2 :: ε, 2 :: 1 :: ε}, not a subset of
the abstract Oω set. The undesired empty observable trace is produced by unfair
executions, where a thread acquires the lock and gets suspended and then the
other thread would keep requesting the lock forever (it is executed in isolation).

Π vdeadlock-free
ϕ ΠA uses Ofω at the concrete side, ruling out undesired di-

vergence caused by unfair scheduling. For the client (5.3) with the object in
Figure 2(d) or (e), its Ofω set is same as the set Oω at the abstract level.

For Π vstarvation-free
ϕ ΠA, we still consider only fair executions at the concrete

level (similar to deadlock-freedom), but observe the divergence of individual

14 Hongjin Liang, Jan Hoffmann, Xinyu Feng, and Zhong Shao

threads rather than the whole program (similar to wait-freedom). It uses Oftω

at the concrete side and Otω at the abstract level. For the client (5.3) with the
starvation-free object in Figure 2(e), no thread diverges in any fair execution.
Then the set Oftω of observable behaviors is {(1 ::2 ::ε, ∅), (2 ::1 ::ε, ∅)}, which is
same as the set Otω at the abstract level.

Observing threaded divergence allows us to distinguish starvation-free objects
from deadlock-free objects. Consider the client (2.1). Under fair scheduling, we
know only the right thread t2 would diverge when using the starvation-free ob-
ject in Figure 2(e). The set Oftω is {(ε, {t2})}. It coincides with the abstract
behaviors Otω. But when using the deadlock-free object of Figure 2(d), the Oftω

set becomes {(ε, {t2}), (ε, {t1, t2})}, breaking the contextual refinement.

6 Related Work and Conclusion

There is a large body of work discussing the five progress properties and the con-
textual refinements individually. Our work in contrast studies their relationships,
which have not been considered much before.

Gotsman and Yang [6] propose a new linearizability definition that preserves
lock-freedom, and suggest a connection between lock-freedom and a termination-
sensitive contextual refinement. We do not redefine linearizability here. Instead,
we propose a unified framework to systematically relate all the five progress
properties plus linearizability to various contextual refinements.

Herlihy and Shavit [10] informally discuss all the five progress properties.
Our definitions in Section 4 mostly follow their explanations, but they are more
formal and close the gap between program semantics and their history-based
interpretations. We also notice that their obstruction-freedom is inappropriate
for some examples (see TR [14]), and propose a different definition that is closer
to the common intuition [9]. In addition, we relate the progress properties to
contextual refinements, which consider the extensional effects on client behaviors.

Fossati et al. [5] propose a uniform approach in the π-calculus to formulate
both the standard progress properties and their observational approximations.
Their technical setting is completely different from ours. Also, their observational
approximations for lock-freedom and wait-freedom are strictly weaker than the
standard notions. Their deadlock-freedom and starvation-freedom are not formu-
lated, and there is no observational approximation given for obstruction-freedom.
In comparison, our framework relates each of the five progress properties (plus
linearizablity) to an equivalent contextual refinement.

There are also formulations of progress properties based on temporal logics.
For example, Petrank et al. [15] formalize the three non-blocking properties and
Dongol [3] formalize all the five progress properties, using linear temporal logics.
Those formulations make it easier to do model checking (e.g., Petrank et al. [15]
also build a tool to model check a variant of lock-freedom), while our contextual
refinement framework is potentially helpful for modular Hoare-style verification.

Conclusion. We have introduced a contextual refinement framework to unify
various progress properties. For linearizable objects, each progress property is

Characterizing Progress Properties via Contextual Refinements 15

equivalent to a specific termination-sensitive contextual refinement, as summa-
rized in Table 1. The framework allows us to verify safety and liveness properties
of client programs at a high abstraction level by replacing concrete method im-
plementations with abstract operations. It also makes it possible to borrow ideas
from existing proof methods for contextual refinements to verify linearizability
and a progress property together, which we leave as future work.

Acknowledgments. We would like to thank anonymous referees for their help-
ful suggestions and comments. This work is supported in part by China Scholar-
ship Council, NSFC grants 61073040 and 61229201, NCET grant NCET-2010-
0984, and the Fundamental Research Funds for the Central Universities (Grant
No. WK0110000018). It is also supported in part by DARPA grants FA8750-
10-2-0254 and FA8750-12-2-0293, ONR grant N000141210478, and NSF grants
0915888 and 1065451. Any opinions, findings, and conclusions contained in this
document are those of the authors and do not reflect the views of these agencies.

References

1. Aspnes, J., Herlihy, M.: Wait-free data structures in the asynchronous PRAM
model. In: SPAA. pp. 340–349 (1990)

2. Birkedal, L., Sieczkowski, F., Thamsborg, J.: A concurrent logical relation. In:
CSL. pp. 107–121 (2012)

3. Dongol, B.: Formalising progress properties of non-blocking programs. In: ICFEM.
pp. 284–303 (2006)

4. Filipovic, I., O’Hearn, P., Rinetzky, N., Yang, H.: Abstraction for concurrent ob-
jects. Theor. Comput. Sci. 411(51-52), 4379–4398 (2010)

5. Fossati, L., Honda, K., Yoshida, N.: Intensional and extensional characterisation
of global progress in the π-calculus. In: CONCUR. pp. 287–301 (2012)

6. Gotsman, A., Yang, H.: Liveness-preserving atomicity abstraction. In: ICALP. pp.
453–465 (2011)

7. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991)

8. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-
ended queues as an example. In: ICDCS. pp. 522–529 (2003)

9. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann (Apr 2008)

10. Herlihy, M., Shavit, N.: On the nature of progress. In: OPODIS. pp. 313–328 (2011)
11. Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent ob-

jects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)
12. Liang, H., Feng, X.: Modular verification of linearizability with non-fixed lineariza-

tion points. In: PLDI. p. to appear (2013)
13. Liang, H., Feng, X., Fu, M.: A rely-guarantee-based simulation for verifying con-

current program transformations. In: POPL. pp. 455–468 (2012)
14. Liang, H., Hoffmann, J., Feng, X., Shao, Z.: The extended version of the present

paper (2013), http://kyhcs.ustcsz.edu.cn/relconcur/prog
15. Petrank, E., Musuvathi, M., Steensgaard, B.: Progress guarantee for parallel pro-

grams via bounded lock-freedom. In: PLDI. pp. 144–154 (2009)

