
Type-Preserving Compilation of Featherweight IL
(Extended Abstract)

Dachuan Yu Valery Trifonov Zhong Shao
Department of Computer Science, Yale University

New Haven, CT 06520-8285, U.S.A.
{yu,trifonov,shao}@cs.yale.edu

Abstract

We present a type-preserving compilation of Featherweight
IL. Featherweight IL is a significant subset of MS IL which
models new features including value classes and their inter-
action with reference classes. Our translation makes use of
a high-level intermediate language called Functional Feath-
erweight IL. The target language LFLINT is a low-level
language which is close to machine level implementations.
During the compilation, we preserve and further identify
the basic block structures of the program, and perform CPS
and closure conversions. We use memory based fixpoint to
handle mutually recursive classes at compile time. Standard
linking techniques can be applied for separate compilation.
A type-preservation theorem for the formal translation is
presented. In the long run, our work aims at supporting
certifying compilation of high-level class-based languages.

1 Introduction

The growing use of the Internet provides new possibilities as
well as new challenges. Distributed applications, web-based
services, and mobile code infrastructures pose various safety
and security requirements. The interoperation of programs
written in different languages and running on different plat-
forms further complicates the situation. For example, it
is usually desirable to run even untrusted code efficiently;
strong guarantees are crucial for safety critical systems; and
programs for special applications (e.g., embedded systems)
often face special requirements (e.g., resource usage). The
common practice in approaching these problems is to engage
a safety and security mechanism based on type-safe execu-
tion [27, 29, 11, 19, 12, 4, 37], and more generally, to reason
about program properties using types [13, 2, 32].

The JVM platform of Sun Microsystems and the .NET
framework of Microsoft make use of verifiable bytecode lan-
guages, namely JVML [21] and MS IL [23, 33], to approach
these problems. In these frameworks, software components
distributed in the object-oriented intermediate languages are
executed by the Java Virtual Machine or the Common Lan-
guage Runtime. The bytecode contains type signatures and
other symbolic information for verification purposes. The
soundness of the underlying type system guarantees certain
properties such as program safety. While JVML is more bi-
ased towards Java programs [8, 28, 3, 35], MS IL aims to sup-
port a wide variety of source languages and high-level con-
structs, so as to enable safe and proper interoperation and

integration of software components and provide the founda-
tion for developers to build various types of applications.

JVML and MS IL take important steps to overcome the
challenges, but these intermediate languages are still very
high-level. They require much further compilation and opti-
mization to run efficiently on real hardware. Since compilers
are huge pieces of software, it is at least suspectable that the
safety and other guarantees provided by the verifiable high-
level intermediate languages might be compromised. The
potential unsoundness in the huge Trusted Computing Base
(TCB) may undermine the safety of the entire system.

On the other hand, there has also been much recent work
focusing on using type systems and logics to reason about
program properties for low-level code [26, 25, 24, 1, 10]. This
work aims at practical systems for executing (untrusted)
code both safely and efficiently. Furthermore, type infor-
mation can be useful for low-level optimizations [34, 6] and
accurate garbage collection [5, 36].

The idea of type-preserving compilation is to try to elimi-
nate the gap between high-level verifiable programs and low-
level safe and efficient code. Type information is propagated
through compilation and optimization passes. Verification
or type checking is achievable on both the source and the
target sides of the compilation. By doing this, a significant
part of the compiler is removed from the TCB.

Our previous work [14, 18] developed encodings for many
Java features in our intermediate language FLINT, based
on Fω. These encodings were implemented in a JVML com-
piler [15] which uses a high-level language, λJVM [17], as
an intermediate representation between JVML and FLINT.
λJVM has the same primitive instructions and types as
JVML, but is easier to verify and more amenable to op-
timizations. Since MS IL serves better as a common high-
level intermediate language than JVML, we extend the type-
preserving compilation technique of our previous work to a
significant subset of MS IL, called FIL. The compilation of
FIL programs proceeds through a high-level intermediate
language Functional FIL (FFIL – the λJVM counterpart)
and targets a low-level intermediate language LFLINT. The
novel aspects of this work are as follows.

• The target of the compilation is a language LFLINT,
which is at a lower level than FLINT. While its type
system is similar to that of FLINT, the code structure
of LFLINT differs, in particular basic blocks are ex-
plicit in the syntax. This allows us to take advantage
of the control flow and basic block structure already

present in FFIL code. LFLINT describes programs in
continuation-passing, closure-passing style; by only re-
fining the basic block graph of FFIL programs during
the conversion to CPS, and by exploiting the fixed nest-
ing structure of method code in closure conversion, we
avoid performing the extra work involved in compiling
through a language with Fω-like control.

• MS IL provides support for a wide variety of pro-
gramming languages through a number of features and
constructs, some of which are not present in JVML.
Our compilation scheme covers value classes, invoke-
instance semantics, boxing and unboxing of objects
between value types and the corresponding reference
types, and managed pointers. Our techniques also ex-
tend to other features, including delegates [38].

• The target language LFLINT is at a sufficiently low
level of abstraction, where we can describe mutually-
recursive dependencies between code fragments directly
as circular references in the code heap. This eliminates
the necessity to perform linking of a set of compiled
mutually recursive classes by a fixpoint operator as in
our previous work. Separate compilation is beyond the
scope of this paper; however, the notion of location used
in our scheme can be extended to include “external ref-
erences,” which will enable the application of standard
linking technnology for similar object file formats [20].

• We use a high-level functional IL (called FFIL) when
compiling FIL. It makes data flow explicit, verification
simple, and is well-suited for translation into lower-level
representations like LFLINT. We present the type sys-
tems for both FFIL and LFLINT in the companion
technical report [38]. Based on them, we formalize the
type-preservation theorem of our translation.

Due to space constraints, we demonstrate the high-level idea
with selected translation rules. The complete formal trans-
lation can be found in the companion technical report [38].

2 Featherweight IL

Gordon and Syme [7] introduced Baby IL (BIL) which mod-
els a significant subset of MS IL. To the authors’ knowledge,
it is so far the largest subset of MS IL for which a soundness
theorem is proven. Our source language Featherweight IL
(FIL) is closely related to BIL, so its type system is based on
well-understood ideas. However, we have made some adap-
tations. The main difference is in the semantics of the unbox
instruction. According to MS IL documents [23], unboxing
“is not required to” make copies of objects. However, in C#
unboxing does create an extra copy of the object: “follow-
ing a boxing or unboxing operation, changes made to the
unboxed struct are not reflected in the boxed struct” [22].
The unbox instruction of FIL simulates the latter effect.

The syntax of FIL is shown in Figure 1. Semantically,
it is a stack-based language: Instructions (expressions) pop
operands off the stack, and push results onto the stack. We
omit the semantics of this language, since they are very sim-
ilar to those defined by Gordon and Syme.

The types (T) include primitive (Void and Int),
pointer (T&), reference (class C), and value types

(Type) T ::= Void | Int | class C
| value class V C | T&

(Class) C ::= RC | V C
(RDec) RD ::= ref class RC / RC {(T f)∗ K M∗}
(VDec) V D ::= val class V C / RC {(T f)∗ K M∗}
(Ctor) K ::= C::Ctor (T f)∗

(Meth) M ::= T m (T f)∗ {e}
(MDes) MD ::= T C::m (T)∗

(Expr) e ::= ldc i | cond e e e | while e e | seq e e
| ldind e | stind e e | ldarga j | starg e j
| newobj K e∗ | box e V C | unbox e V C
| ldflda e T C :: f | stfld e e T C :: f
| callvirt e MD e∗ | callinst e MD e∗

Figure 1: Syntax of FIL.

(value class V C). The semantics of an object of a refer-
ence type is similar to that in Java and other object-oriented
languages. The semantics of an object of a value type is
similar to that of a C struct. Every value class has a cor-
responding implicit reference class. Objects of value types
can be “boxed” into objects of reference types; boxed objects
can be “unboxed” back into objects of value types.

A class declaration (RD or V D) contains the name of the
new class and its super class, a sequence of field declarations,
a constructor, and a sequence of method declarations. Value
classes cannot be extended; they are “sealed”. For simplic-
ity we assume no field hiding, i.e., all fields in a class are
distinct from those in its superclass. We also assume that
every class contains exactly one constructor, which simply
assigns its arguments to the fields of the object being cre-
ated. A method declaration consists of the return type,
name, arguments, and body of the method. A method de-
scriptor provides the signature of a method (i.e., argument
types and result), and also specifies the name of the defining
class. This name is necessary in FIL (as well as in MS IL)
due to the use of value classes: Since a value-class object
contains only the values of the fields, there is no informa-
tion associated with it about the methods of the class, hence
a method invocation on a value class object must specify its
defining class. In general these type annotations also serve
as a “minimum type interface” for separate compilation.

Simple expressions include loading integer constants,
branch, loop and sequencing. Pointer operations (ldind,
stind) essentially model the managed pointers of MS IL. Ar-
guments in the current stack frame can be loaded and stored
using the corresponding instructions (ldarga, starg). Note
that ldarga loads the address of the specified argument.

The remaining expressions manipulate objects. The in-
struction newobj is used for creating instances of both ref-
erence classes and value classes; the constructor associated
with it contains information about the class. This instruc-
tion creates as well as initializes the object. There are box-
ing and unboxing instructions (box, unbox) to coerce objects
between value classes and their corresponding implicit ref-
erence classes. These instructions change representations of
objects and “make copies” of objects at run time. Instruc-
tions ldflda and stfld manipulates object fields; the type
and the defining class of the fields are explicit in the instruc-

2

(Type) T ::= Void | Int | (T1 . . . Tn)→ T
| class C | value class V C | T&

(Class) C ::= RC | V C
(RDec) RD ::= ref class RC / RC {(T f)∗ K M∗}
(VDec) V D ::= val class V C / RC {(T f)∗ K M∗}
(Ctor) K ::= C::Ctor (T f)∗

(Meth) M ::= T m (T f)∗ {t}
(MDes) MD ::= T C::m (T)∗

(Fun) fn ::= λ(x1 : T1 . . .xn : Tn).t

(Labl) L ::= ` | L.f

(Value) v ::= x | () | i | L

(Term) t ::= letrec (x : T = fn)∗.t | let x = p; t
| p; t | if v then t else t | return
| return v | v (v1 . . .vn)

(Prim) p ::= cell v | ! v | v := v | newobj C v∗

| callvirt v MD v∗ | box v V C
| callinst v MD v∗ | unbox v V C
| ldflda v T C :: f | stfld v v T C :: f

Figure 2: Syntax of FFIL.

tions. Note that ldflda loads the address of a specified field.

Methods of reference classes and value classes are in-
voked using different instructions to achieve different se-
mantics. The invoke-virtual semantics (using callvirt) is
the traditional virtual method invocation semantics. The
invoke-instance semantics (using callinst) is similar to the
invoke-special semantics in Java: The method being invoked
is resolved statically using the method descriptor specified
in the instruction. It also takes a self pointer as one of
the arguments. In MS IL, either semantics can be applied
to both reference-class and value-class objects. This is also
achievable in FIL and our compilation, because the method
descriptor contains the name of the class and is sufficient
to identify the nature of the object. However, here we use
discriminating semantics for simplicity.

Lastly, an program in FIL consists of a set of (mutually
recursive) class declarations and a main expression.

3 Functional Featherweight IL

Our first step in translating FIL is to a high-level interme-
diate language called Functional Featherweight IL (FFIL).
FFIL is specially designed for FIL. It has the same primitive
instructions and types. The difference is that FFIL replaces
the implicit operand stack and untyped local variables with
explicit data flow and fully-typed single-assignment bind-
ings. In FFIL, functions are lightweight and can be imple-
mented as jumps (tail calls). They are used in recursive func-
tion bindings (letrec). The translation from FIL to FFIL
largely follows the ideas described in previous work [17]. The
first step is to find the basic blocks in a method body. Next,
data flow analysis must infer types for the stack and local
variables at each program point. Lastly, we use symbolic
execution to translate each block to a function.

There is a non-trivial difference due to the fact that
ldarga loads the address of the argument. Thus arguments
on the stack, whose address may be taken, have to be rep-
resented using reference cells. The simplest way is to use
reference cells for all the arguments, which is clearly inef-
ficient. Wrapping function arguments into mutable records
may help, but for simplicity, we are using reference cells to
simulate mutable records in LFLINT. Describing the anal-
ysis to determine which arguments need to be mutable is
beyond the goals of this paper. Similar issues arise in the
compilation of exceptions in Java programs [9, 17].

The syntax of FFIL is shown in Figure 2. Special re-
served variables (e.g., the self pointer this) are not shown.
The types are similar to those of FIL, except that an arrow
type for functions is added. Reference types (class C) are
inhabited by reference class objects and boxed value class
objects; value types (value class V C) are inhabited by
value class objects. Class declarations, constructors, meth-
ods and method descriptors remain the same as FIL. The
only major difference from FIL is that expressions are sep-
arated into three categories: values, terms, and primitives.

FFIL values include variables, unit, integers, and labels
for modeling the dynamic semantics of reference cells. FFIL
terms include binding forms which bind mutually recursive
functions and results of primitive operation. If the result
of a primitive is unused, the sequencing form may be used.
Following BIL, conditional terms test integers against zero
instead of using booleans. Loop expressions of FIL are com-
piled into basic blocks. Finally, the base cases of terms are
the return and the function call.

FFIL primitives cover those FIL instructions which are
not for control flow or stack manipulation. There are three
instructions managing pointers. The instruction cell v cre-
ates a reference cell which holds the value v. In FIL, pointers
are introduced by instructions which load the address of ar-
guments or fields. The FFIL instructions ! v and v := v
correspond to FIL instructions ldind and stind. Based on
the assumption that a class defines exactly one construc-
tor, we replace the constructor with the class name in the
object creation instruction to get newobj C v∗. The re-
maining object manipulating primitives, including method
invocation, field operation, boxing and unboxing, are essen-
tially the same as in FIL. Note that the stack manipulating
primitives (ldarga and starg) are compiled away because
arguments on the stack are turned into function arguments.

An FFIL program (CT, t) consists of a fixed class table
CT , mapping class names to declarations, and a main term
t. For ease of presentation we extend CT to include map-
pings for the implicit reference classes, whose names have
the subscript 2 after the names of the corresponding value
classes. An implicit reference class V C2 declares the same
superclass, fields and constructor as the corresponding value
class V C. However, the methods are different. A method
M of class V C expects a self pointer to a value type object,
while the corresponding method M2 of class V C2 expects
a self pointer to a boxed object. Thus to reuse the method
body of M , an unboxing operation is performed on the self
pointer (this) at the beginning of the method body of M2.

CT (V C) = val class V C / RC {(T f)∗ K M∗}
CT (V C2) = ref class V C2 / RC {(T f)∗ K M2

∗}

3

Kinds κ ::= Type | RL | κ⇒κ′ | {(l::κ)∗}

Types τ ::= α | λα::κ. τ | τ τ ′ | {(l= τ)∗} | τ ·l
| int | ref | ¬ | AbsL | l : τ ; τ ′ | {τ}
| ∀α::κ. τ | ∃α::κ. τ | µα::κ. τ

Selectors s ::= ◦ | s·l

Values v ::= i | ` | {(l= v)∗} | v [τ]
| 〈α::κ= τ , v : τ ′〉
| fold v as µα::κ. τ at λγ::κ. s[γ]

Primitives p ::= x | v | p.l | cell p | ! p
| unfold p as µα::κ. τ at λγ::κ. s[γ]

Operations q ::= p | p := p′

Computations e ::= jmp p p′ | let x : τ = q in e
| ifz p then e else e′

| open p as 〈α::κ, x : τ〉 in e

Heap blocks b ::= v | λx : τ . e | Λα::κ. b

Heap H ::= {(` : τ 7→ b)∗}

Figure 3: Syntax of LFLINT.

4 LFLINT

The syntax and derived forms of our low level common
intermediate language are shown in Figure 3 and Fig-
ure 4. Except for the control flow constructs designed
for continuation-passing, closure-passing representation, the
constructs of this language are similar to those we have used
in Java [15] and SML/NJ [31] compilers: existential and re-
cursive types, row polymorphism, ordered records, reference
cells, etc. The metavariable ` ranges over heap locations; the
dynamic semantics fetches the corresponding values stored
in the heap when appropriate.

The basic block structure is maintained by separating ex-
pressions into values, primitives, operations, computations,
and heap blocks. Values v have no computational effects;
type applications are considered values because they have no
effect at run time under type-erasure semantics [25]. Primi-
tives pmay have side effects (e.g., creation of reference cells),
but they cannot interfere with each other. Operations q may
have interfering side effects, hence their order is important.
That is why a computation e, corresponding to a basic block,
performs sequences of operations and control branches, end-
ing with a jump (jmp) to a continuation. Heap blocks b are
either data (values) or code (single-argument computations,
written as lambda abstractions); they are stored at locations
` in the heap H. Finally, a program (H, e) consists of a heap
and a root computation.

Most of the language constructs and the type language of
LFLINT are explained in great detail in previous work [16].
We briefly explain some of the constructs here. ¬α is the
type of a continuation which takes an argument of type α.
Following Rémy [30] we introduce a kind of rows RL, where
L is the set of labels banned from the row. AbsL is the
empty row missing L, and l : τ ; τ ′ constructs a row from the
element l of type τ and the row τ ′. The record constructor
{·} lifts a complete row type (with no labels missing) to kind
Type. We refer interested readers to the companion technical
report for the semantics of the computation language.

void ≡ {Abs∅}
l1 : τ1, . . . , ln : τn ≡ l1 : τ1 ; . . . ln : τn ; Abs{l1...ln}

τ1 × · · · × τn ≡ {1 : τ1, . . . , n : τn}
cont τ ≡ ∃α::Type.¬(τ × α)× α

〈v1, . . . , vn〉 ≡ {1 = v1, . . . , n= vn}
λ{x1 : τ1, . . . , xn : τn}. e ≡ λx : (τ1 × · · · × τn).

let x1 =x.1
in . . . let xn =x.n in e

where x /∈ {x1, . . . , xn}

Figure 4: Derived syntactic forms of LFLINT.

5 Translation

In the beginning of the compilation, we create a unique lo-
cation ` for every class, and map class names to these loca-
tions in a mapping Cmap. This Cmap is propagated through
the compilation so that classes can refer to each other using
locations. Each FFIL class (including both reference class
and value class) is compiled into a closed LFLINT record
which refers to class information of other classes through lo-
cations, and provides its own class information. A reference
class (including the implicit corresponding reference class of
a value class) is compiled into a record of two elements; one
for the method table, the other for the constructor. Besides
these two, a value class is compiled into a record with extra
components for boxing and unboxing operations.

The compilation produces a program consisting of a main
computation and an initial heap in which the computation
can be carried on. Based on the mapping Cmap, the initial
heap maps locations to the corresponding LFLINT records.

5.1 Object encoding

In previous work [16] we defined the following encoding for
Java objects. An object is essentially a record which con-
tains both a vtable pointer and the fields. This record is
folded with a recursive type for typing the self argument of
its methods. It is further wrapped within an existential to
provide subtyping (an object of a given class may be used as
an object of a superclass), hiding some methods and fields.
The following example shows an incomplete type for objects
of a given class C. It indicates that class C contains meth-
ods getx, setx and fields x, y. However, further methods and
fields may be hidden in the tail, if the dynamic class of the
object is a proper subclass of C.

∃tail. µself.{vtab :{getx : self→int ;
setx : (self× int)→void ;
tail·m self};

x : int ; y : int ; tail·f}

This is not the whole story yet, because object types may
refer to each other recursively due to recursive references
among classes. Suppose the object types of all classes are
put together in a type tuple World ; then the type of an ob-
ject of any class would be dependent on this World , which
means World is recursive. Thus there would be another re-
cursive binding outside the above incomplete type example.

Detailed explanations of this object encoding can be
found in the previous work [16]. For the rest of this paper, it
should suffice to know that based on this encoding, objects

4

are often built using a “fold-pack-fold” idiom. On the other
hand, objects are often “de-constructed” using an “unfold-
open-unfold” idiom before their members are accessed. The
folding, unfolding, packing and opening operations ensure
type-correctness, but they have no effect or overhead at run
time in type-erasure semantics.

In the FFIL compilation of this paper, we use the same
object encoding for reference type objects and boxed value
type objects. However, the encoding of value type objects
is much simpler. Based on the intention of value types,
these objects simply consist of the values of the fields. Thus
we encode such an object as a record which contains all
its fields. In comparison with our encoding for reference
type objects, the recursive type for self arguments and the
vtable is clearly unnecessary for value types, since value type
objects do not contain the method table. The existential
package is not needed for value types either: On one hand,
value classes are sealed and do not have subclasses; on the
other hand, an object of a value type cannot be upcast to a
superclass (it will have to be boxed before being upcast).

However, a value class VC may still have fields of other
class types, which in turn may have fields of type VC. Hence
value class types are translated as recursive records, and
value type objects must be folded and unfolded properly.

Before we move on to explain the translations, we should
note that it would be more efficient to represent objects by
mutable records. However, in this paper mutable records
are simulated using records of reference cells for simplicity.

Now we need to define a function mapping types from
FFIL to LFLINT. Informally, if an FFIL expression exp has
type T , then its translation in LFLINT should have type
typ(w, T), in a context where w is a type record which
contains all object types (i.e., the World).

typ(w, Void) ≡ void
typ(w, Int) ≡ int
typ(w, class RC) ≡w·RC
typ(w, class VC) ≡w·VC2

typ(w, value class VC)≡w·VC
typ(w, T&) ≡ ref typ(w, T)
typ(w, (T1 . . . Tn)→ T) ≡
¬(typ(w, T1)× · · · × typ(w, Tn)× cont (typ(w, T)))

Due to space constraints, we omitted from this extended
abstract some macros for defining object types.

5.2 Expression translation

The translation of FFIL expressions is separated into three
categories: the translation of values, functions, and terms.
Primitives are inlined into the let bindings for the transla-
tion. Selected translation rules are shown in Figure 5.

The value translation val[Γ; v] maps the FFIL value v to
a LFLINT value, given a FFIL variable environment Γ. The
rules for this translation, as well as the function translation
fun, are straightforward and omitted.

Term translations are formulated using the judgement
exp[Γ; cty; Cmap;H; t] = (H ′, e). Γ is the FFIL type envi-
ronment. The cast specification cty is of the form T1 ⇒ T2,
where T1 is the type of the term t being translated, and
T2 is the type expected by the context of t. Most transla-

val[Γ; v] = v

exp[Γ;T1 ⇒ T2; Cmap;H; return v] =
(H,upcast[T1;T2; v;x; comp])
where comp =

open retcont
as 〈α::Type, y : (¬(typ(w, T2)× α))× α〉
in jmp (y.1) 〈x, y.2〉

(RETV)

val[Γ; v] = v
exp[Γ,x :T ; cty; Cmap;H; t] = (H ′, e)

exp[Γ; cty; Cmap;H; let x = ldflda v T RC :: f; t] =
(H ′,
open (unfold v as World at λw::kcn.w·RC)

as 〈tail::ktail [RC], y : SelfTy [RC] World tail〉
in let x : typ(World , T) = (unfold y).f in e)

(RLDFLDA)

Γ′ = Γ,x :T typ(World , T) = τ
Γ′ ` t : T ′ typ(World , T ′) = τ ′

exp[Γ′; cty; Cmap;H; t] = (H ′, e)
FV (e)− {x} = {x1, . . . , xm}
τenv = Γ(x1)× · · · × Γ(xn) `K /∈ dom(H ′)

wrap[Γ; cty; Cmap;H; (let x :T = •; t); comp] =
(H ′[`K : ¬(τ × τenv) 7→ λ{x : τ, x′ : τenv}.

let (xj = x′.j)j∈{1...m} in e],
let k = 〈α::Type = τenv,

〈`K , 〈x1, . . . , xm〉〉 : (¬(τ × α))× α〉
in comp)

(WRAP)

MD = T RC′ m {T1 . . . Tn}
◦; Γ ` v : class RC val[Γ; v] = v
◦; Γ ` vi : T ′i
T ′i ⊆ Ti

val[Γ; vi] = vi
}
i∈{1...n}

exp[Γ; cty; Cmap;H;
let x :T = callvirt v MD v1 . . .vn; t] =

wrap[Γ; cty; Cmap;H; (let x :T = •; t); comp0]
where
∀i ∈ {1 . . . n}. compi−1 = upcast[T ′i ;Ti; vi;xi; compi],
compn = open (unfold v as World at λw::kcn.w·RC)

as 〈tail::ktail [RC], y : SelfTy [RC] World tail〉
in jmp ((unfold y).vtab.m)

〈y, x1, . . . , xn, k〉
(CALLVIRT)

val[Γ; v] = v `VC = Cmap(VC)

exp[Γ; cty; Cmap;H; let x :T = box v VC; t] =
wrap[Γ; cty; Cmap;H; (let x :T = •; t); comp]
where comp = jmp (`VC.box) 〈v, k〉

(BOX)

Figure 5: Selected translation rules.

tion rules just propagate this cty argument; it is used non-
trivially only when a value is returned (rule RETV). The
environment Cmap maps class names to unique locations in
the heap; some of the translation rules rely on this mapping
to generate references to other classes. The parameter H
is a heap, i.e., a mapping from labels to heap blocks. The
final argument t is the term to be translated, The result of
the translation is a pair of a new heap H ′, extending H with
the newly generated heap blocks of code, and a root com-

5

putation e, whose evaluation in the context of H simulates
the evaluation of t.

The translations of terms except let bindings are rela-
tively straightforward. The only case deserving special care
is the translation of return instructions. FFIL uses return v
to return from a method body. In the translation, before re-
turning v we have to cast it up to the type expected by the
context. Rule RETV uses an upcast macro to perform this.
Essentially, upcast[T1;T2; v;x; comp] converts the value v
of type typ(World , T1) to a value of type typ(World , T2),
where T1 is a subtype of T2. Then it binds the result value
to the specified variable x and continues with the rest of
the computation specified by comp. After this is done in
rule RETV, the computation continues by fetching the con-
tinuation closure from the special variable retcont, which
is bound in the prologue of the method translation (to be
explained in section 5.3).

The primitives of FFIL can be separated into two cate-
gories, based on whether or not they involve implicit control
flow transfer. Simple primitives include those manipulating
reference cells and object fields. As an example, rule RLD-

FLDA uses the “unfold-open-unfold” idiom (mentioned in
section 5.1) to get access to the field.

The translation of the remaining primitives introduce
new blocks into the heap (H). We extract the commonalities
into a macro as shown in rule WRAP. Informally speaking,
wrap[Γ; cty; Cmap;H; (let x :T = •; t); comp] creates a new
code block `K , which performs the computation of the body
t, and encloses the computation comp within a continuation
binding of k, with the intention that comp will use k to jump
to `K when it completes.

The remaining two selected rules use wrap for the trans-
lation. Now that all the new blocks and control transfer are
abstracted away, all we need to understand here is the trans-
lation of the primitives, i.e., what is the last argument comp
provided to the wrap macro. The translation of virtual
method invocation (CALLVIRT) uses the “unfold-open-
unfold” idiom to manipulate the self pointer, and selects the
corresponding method from the vtable. Before jumping to
that method, the arguments have to be cast to the expected
types. We chain up some upcast macros (which involve
computations) to achieve that. The upcasts are type opera-
tions which have no run-time effect. The translation of the
boxing primitive delegates the task to the boxing function
found in the record generated for the corresponding class.
We will explain the boxing function and the generation of
the class location mapping Cmap in the coming sections. For
now, it suffices to say that `C.box yields the location of code
which converts an object of a value type to an object of the
corresponding reference type.

We have sketched the expression translation. To state
the type preservation theorem, we define the translation
Env [Γ] of a FFIL typing environment Γ to a LFLINT typing
environment, by mapping each type T in the range of Γ to
typ(World , T). By inspection of the definition of the type
translation function typ it is easy to show that Env [Γ] is
a well-formed environment, assuming that all class names
occurring in the range of Γ are also in cn.

Theorem 1 (Type preservation) If

`C are distinct locations, where C ranges over cn;

Cmap = (C : ClassF [C] 7→ `C)C∈cn ;

Σ0 = (`C : ClassF [C])C∈cn ;
T ⊆ T ′;
`h H : Σ;
◦; Γ `c t : T ;
exp[Γ;T ⇒ T ′; Cmap;H; t] = (H ′, e); and
`h H ′ : Σ′,

then Σ′⊆sΣ and
Φ; (Σ0,Σ

′); (Env [Γ], retcont : typ(World , T)) `c e.

5.3 Class encoding

Each reference class declaration is compiled into a record
with two elements, which are the locations of the extensible
class dictionary and the class constructor. The extensible
dictionary is constructed by building a method table, which
is a record, polymorphic over the tail of the self type, con-
taining type applications of the locations of the class meth-
ods to the tail. Thus, given the empty tail or the specific
tail of a subclass as a type argument, the dictionary acts
as a specialized method table for the class itself or the cor-
responding subclass, respectively. The constructor in FFIL
simply takes as arguments the initial valus of all the fields
in the correct order. In our translation, we build a record of
the vtable and all the fields, properly packed and folded.

As with expression translation, some rules need to refer
to the result of translating other classes. We achieve this
using a special set of locations which act as “external ref-
erences.” Whenever we need to refer to a class C, we use
a location `C; the mapping from class names to these loca-
tions is provided to the class translation as the map Cmap,
and propagated to the expression translation. The transla-
tion of the program (section 5.4) performs the “linking” of
classes by placing the class record for C at location `C.

During the compilation of a reference class declaration,
new heap blocks are introduced. The class translation func-
tion takes a set of heap blocks as an argument (H), and
extends it with its own blocks. An additional map Mmap in
class translation provides directly the locations of the dic-
tionary and methods of a class, which we use to compile an
inherited method as simply the location of the correspond-
ing method in the superclass, without any indirection.

The translation of implicit reference classes is no different
than that of other reference classes. However, value classes
are translated into records with four components: the lo-
cations of the sealed dictionary, the class constructor, and
the boxing and unboxing code. Selected parts of the value
class translation are shown in Figure 6. With the definitions
of some macros for dictionary, constructor, and class types
omitted, the translation rules may look mysterious. How-
ever, ignoring the types in these rules, it should suffice to
demonstrate the basic ideas.

The value class translation (VCDEC) resorts to a dictio-
nary translation DICTv for constructing the dictionary. How-
ever, unlike for reference classes, the resulting dictionary is
not polymorphic, because value classes are sealed. The lo-
cation of the polymorphic dictionary of the corresponding
boxed type class is obtained from Mmap. This dictionary is
then instantiated (via type application) and passed to the
boxing translation BOX as the vtable pointer. There are two
other helper translations NEWv and UNBOX which are used to
produce the constructor and the unboxing operation. The
values obtained from these compilations are placed at fresh

6

Class declaration translation:

DICTv[VC; Cmap;H] = (H ′, vdict)
π1(Mmap(VC2)) = `rdict
{`dict, `new, `box, `unbox} ∩ dom(H ′) = ∅
H ′′ = H ′[

`dict: Dict [VC] w (SelfTy [VC] w) 7→ vdict,
`new : (Ctor [VC] w) 7→ NEWv[VC],
`box : (Box [VC] w) 7→ BOX[VC; `rdict [Empty [VC2]]],
`unbox : (Unbox [VC] w) 7→ UNBOX[VC]]
where w = World

CDECv[Cmap; Mmap;H; VC] = (H ′′,
{dict= `dict, new = `new, box = `box, unbox = `unbox})

(VCDEC)
Dictionary construction:

methvec(VC) = [(m1, Sig1) . . . (mn, Sigm)]
∀i ∈ {1 . . . n} METHv[VC; mi;Hi−1; Cmap] = (Hi, vi)
{`1, . . . , `n} ∩ dom(Hn) = ∅
τj = Ty[(SelfTy [VC] World); World ;Sigj]

H ′ = Hn[(`j : τj 7→ vj)
j∈{1...n}]

DICTv[H0; Cmap; VC] = (H ′,{m1 = `1, . . . ,mn = `n})
(VDICT)

Method code:

CT (VC) = val class VC / RC {. . .K M1 . . .Mn}
∃j : Mj = T m (T1 x1 . . . Tm xm) {t}
Γ = x1 :T1, . . . ,xm :Tm, this : (value class VC)
Γ ` t : T ′ T ′ ⊆ T
exp[Γ;T ′ ⇒ T ; Cmap;H; t] = (H ′, e)

METHv[VC; m;H; Cmap] = (H ′,
λ{this : SelfTy [VC] World ,
x1 : typ(World , T1), . . . , xm : typ(World , Tm),
retcont : cont (typ(World , τ))}. e

(VMETH)
Boxing:

fields(VC) = [(f1, T1) . . . (fm, Tm)]

BOX[VC; vtab] =
λ{vobj : ref (ObjTy [VC] World), k : cont World ·VC2}.
let x0 = unfold (! vobj)
in let x1 = cell (! (x0.f1)) in . . .

let xn = cell (! (x0.fn))
in let x= fold {vtab= vtab, f1 =x1, . . . ,fn =xn}

as SelfTy [VC2] World Empty [VC2]
in open k as 〈α::Type, y :¬(World ·VC2 × α)× α〉

in jmp (y.1) 〈pack[VC2; Empty [VC2];x], y.2〉
(CBOX)

Figure 6: Translations of value class definitions.

locations in the heap. Finally, a record of these locations is
formed as the class record.

The dictionary construction (VDICT) chains the com-
pilation of each of the methods. The method translation
(VMETH) abstracts the computation e, obtained by trans-
lating the method body, over the self pointer, the method
arguments specified by the signature, and the continuation
closure retcont (the special variable that the translation of a
return instruction refers to). Also recall that the expression
translation casts the result to the expected type.

The code generated for boxing (CBOX) coerces objects
from value types to reference types by copying the object’s

Cmap = (C : ClassF [C] 7→ `C)C∈cn where `C are all distinct
H0 = () Mmap0 = () ◦; ◦ ` t : T
∀ RCi ∈ rcn i ∈ {1 . . . n} RCi are ordered
CDEC[Cmap; Mmapi−1;Hi−1; RCi] = (Mmapi, H

′
i, vi)

Hi = H ′i[`RCi : ClassF [RCi] 7→ vi]
∀ VCj ∈ vcn j ∈ {1 . . .m}
CDECv[Cmap; Mmapn;Hn+j−1; VCj] = (H ′n+j , vj)
Hn+j = H ′n+j [`VCj : ClassF [VCj] 7→ vj]

PROG[cn; t] = exp[◦;T ⇒ T ; Cmap;Hn+m; t]

Figure 7: Program translation.

fields and adding a vtable entry. The pack macro, used also
in the upcast and creation of new objects, not only packs the
folded object record x but also folds it to typ(World , VC2).

5.4 Program translation

Figure 7 gives the translation of FFIL programs. First,
we create the mapping Cmap, assigning unique locations to
all class names in cn. Then we translate all the reference
classes. As usual, this also includes the implicit classes VC2.
These classes have to be ordered according to the class hier-
archy so that no class is compiled before its direct superclass.
The compilations of these classes are chained, accumulat-
ing results via the method map and code heap arguments
(Mmap and H). The next step is to compile all the value
classes. Again, these compilations are chained to produce
the final set of basic blocks Hn+m. Lastly, we translate the
main body of the program, using the trivial cast type as the
cty to indicate that the final result need not be cast.

Separate compilation is sacrificed when we use this
memory-based fixpoint scheme to translate class declara-
tions. However, it is well known how to write a linker for
this kind of programs. Each class declaration would be com-
piled separately using external references to refer to other
classes. These external references are resolved by the linker
and replaced with the actual locations at link time. That is
to say, standard linking techniques [20] can be applied here
to achieve separate compilation.

Theorem 2 (Type-preserving program compilation)
If ◦; ◦ `c t : T , PROG[cn; t] = (H, e), and `h H : Σ, then
◦; Σ; (retcont : typ(World , T)) `c e.

6 Conclusion

We have presented a type-preserving compilation of Feather-
weight IL. Most interesting new features of MS IL, including
value classes, invoke-instance semantics, boxing and unbox-
ing operations, and managed pointers, are supported. In
comparison with our previous work that targeted FLINT,
using LFLINT as our target language enables us to take a
more direct compilation path. Basic block structures, identi-
fied in the intermediate compilation step, are preserved and
further divided in the final form, which is very close to the
machine level. We use heap locations to compile efficiently
mutually recursive references between classes, and inherited
methods. Standard linking techniques can be applied to ob-
tain separate compilation. We intend to apply this formal
translation to an MS IL compiler in the near future.

7

References

[1] A. W. Appel. Foundational proof-carrying code. In Proc.
16th Annual IEEE Symposium on Logic in Computer Sci-
ence, pages 247–258, June 2001.

[2] H. P. Barendregt and H. Geuvers. Proof-assistants using de-
pendent type systems. In A. Robinson and A. Voronkov, ed-
itors, Handbook of Automated Reasoning. Elsevier Sci. Pub.
B.V., 1999.

[3] N. Benton, A. Kennedy, and G. Russell. Compiling Standard
ML to Java bytecodes. In Proc. 1998 ACM SIGPLAN Int’l
Conf. on Functional Prog., pages 129–140, 1998.

[4] K. Crary and S. Weirich. Resource bound certification. In
Proc. 27th ACM Symp. on Principles of Prog. Lang., pages
184–198. ACM Press, 2000.

[5] A. Diwan. Compiler support for garbage collection in a stat-
ically typed language. In Proc. ACM SIGPLAN ’92 Conf.
on Prog. Lang. Design and Implementation, New York, June
1992. ACM Press.

[6] A. Diwan, K. S. McKinley, and J. E. B. Moss. Type-based
alias analysis. In Proceedings of the ACM SIGPLAN’98
Conference on Programming Language Design and Imple-
mentation (PLDI), pages 106–117, Montreal, Canada, June
1998.

[7] A. D. Gordon and D. Syme. Typing a multi-language in-
termediate code. In Proc. 28th ACM Symp. on Principles
of Prog. Lang., pages 248–260, London, United Kingdom,
January 2001.

[8] J. Gosling, B. Joy, and G. Steele. The Java Language Spec-
ification. Addison-Wesley, 1996.

[9] M. Gupta, J. Choi, and M. Hind. Optimizing Java programs
in the presence of exceptions. In Proc. 14th European Conf.
on Object-Oriented Program, June 2000.

[10] N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni.
A syntactic approach to foundational proof-carrying code.
In Proc. Seventeenth Annual IEEE Symposium on Logic In
Computer Science (LICS’02), July 2002.

[11] N. Heintze and J. G. Riecke. The SLam calculus: program-
ming with secrecy and integrity. In ACM, editor, Conference
record of POPL ’98: the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
365–377, New York, NY, USA, January 1998. ACM Press.

[12] M. Hennessy and J. Riely. Type-safe execution of mobile
agents in anonymous networks. In Secure Internet Program-
ming: Proceedings of 4th Workshop on Mobile Object Sys-
tems, pages 95–115. Springer-Verlag, 1998.

[13] W. A. Howard. The formulae-as-types notion of construc-
tions. In To H.B.Curry: Essays on Computational Logic,
Lambda Calculus and Formalism. Academic Press, 1980.

[14] C. League, Z. Shao, and V. Trifonov. Representing Java
classes in a typed intermediate language. In Proc. 1999 ACM
SIGPLAN Int’l Conf. on Functional Prog., pages 183–196.
ACM Press, Sept. 1999.

[15] C. League, Z. Shao, and V. Trifonov. Precision in prac-
tice: A type-preserving Java compiler. Technical Report
YALEU/DCS/TR-1223, March 2002.

[16] C. League, Z. Shao, and V. Trifonov. Type-preserving compi-
lation of Featherweight Java. ACM Trans. on Programming
Languages and Systems, (to appear) 2002.

[17] C. League, V. Trifonov, and Z. Shao. Functional Java byte-
code. In Proc. 2001 Workshop on Intermediate Represen-
tation Engineering for the Java Virtual Machine at the 5th
World Multi-conference on Systemics, Cybernetics, and In-
formatics, July 2001.

[18] C. League, V. Trifonov, and Z. Shao. Type-preserving com-
pilation of Featherweight Java. In Foundations of Object-
Oriented Languages (FOOL8), London, January 2001.

[19] X. Leroy and F. Rouaix. Security properties of typed ap-
plets. In Conference Record of POPL 98: The 25TH ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 391–403, New York, NY, January
1998. ACM Press.

[20] J. R. Levine. Linkers and Loaders. Morgan Kaufmann Pub-
lishers, 2000.

[21] T. Lindholm and F. Yellin. The Java Virtual Machine Spec-
ification (Second Edition). Addison-Wesley, 1999.

[22] Microsoft Corp., et al. C# language specification. Drafts
of the ECMA TC39/TG3 standardization process. http://
msdn.microsoft.com/net/ecma/, 2001.

[23] Microsoft Corp., et al. Common language infrastructure.
Drafts of the ECMA TC39/TG3 standardization process.
http://msdn.microsoft.com/net/ecma/, 2001.

[24] G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels,
F. Smith, D. Walker, S. Weirich, and S. Zdancewic. TALx86:
a realistic typed assembly language. In 1999 ACM SIG-
PLAN Workshop on Compiler Support for System Software,
pages 25–35, Atlanta, GA, May 1999.

[25] G. Morrisett, D. Walker, K. Crary, and N. Glew. From Sys-
tem F to typed assembly language. In Proc. 25th ACM
Symp. on Principles of Prog. Lang., pages 85–97. ACM
Press, Jan. 1998.

[26] G. Necula. Proof-carrying code. In Proc. 24th ACM Symp.
on Principles of Prog. Lang., pages 106–119, New York, Jan.
1997. ACM Press.

[27] G. Necula and P. Lee. Safe kernel extensions without run-
time checking. In Proc. 2nd USENIX Symp. on Operating
System Design and Impl., pages 229–243, 1996.

[28] M. Odersky and P. Wadler. Pizza into Java: Translat-
ing theory into practice. In Proc. 24th ACM Symp. on
Principles of Prog. Lang., pages 146–159, 1997. http:
//cm.bell-labs.com/cm/cs/who/wadler/pizza/Docs/.

[29] J. Palsberg and P. Ørbæk. Trust in the λ-calculus. Journal
of Functional Programming, 7(6):557–591, November 1997.

[30] D. Rémy. Syntactic theories and the algebra of record terms.
Technical Report 1869, INRIA, 1993.

[31] Z. Shao. An overview of the FLINT/ML compiler. In Proc.
1997 ACM SIGPLAN Workshop on Types in Compilation,
June 1997.

[32] Z. Shao, B. Saha, V. Trifonov, and N. Papaspyrou. A type
system for certified binaries. In Proc. 29th ACM Symp.
on Principles of Prog. Lang., pages 217–232, Portland, OR,
Jan. 2002. ACM Press.

[33] D. Syme. ILX: extending the .NET Common IL for func-
tional language interoperability. In Proc. BABEL Work-
shop on Multi-Language Infrastructure and Interoperability.
ACM, 2001.

[34] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and
P. Lee. TIL: A type-directed optimizing compiler for ML. In
Proc. 1996 ACM Conf. on Prog. Lang. Design and Impl.,
pages 181–192. ACM Press, 1996.

[35] R. Tolksdorf. Programming languages for the Java
Virtual Machine. http://flp.cs.tu-berlin.de/~tolk/
vmlanguages.html.

[36] A. Tolmach. Tag-free garbage collection using explicit type
parameters. In Proc. 1994 ACM Conf. on Lisp and Func-
tional Programming, pages 1–11. ACM Press, June 1994.

[37] D. Walker. A type system for expressive security policies. In
Proc. 27th ACM Symp. on Principles of Prog. Lang., pages
254–267, 2000.

[38] D. Yu, V. Trifonov, and Z. Shao. Type-preserving
compilation of Featherweight IL. Technical Report
YALEU/DCS/TR-1228, Dept. of Computer Science, Yale
Univeristy, New Haven, CT, May 2002. http://flint.cs.
yale.edu/.

8

