
Under consideration for publication in J. Functional Programming 1

Inlining as Staged Computation

STEFAN MONNIER and ZHONG SHAO
Dept. of Computer Science, Yale University, New Haven, CT 06520-8285, U.S.A.

(e-mail:monnier@cs.yale.edu, shao@cs.yale.edu)

Abstract

Inlining and specialization appear in various forms throughout the implementation of modern pro-
gramming languages. From mere compiler optimizations to sophisticated techniques in partial eval-
uation, they are omnipresent, yet each application is treated differently. This paper is an attempt at
uncovering the relations between inlining (as done in production compilers) and staged computation
(as done in partial evaluators) in the hope of bringing together the research advances in both fields.
Using a two-level lambda calculus as the intermediate language, we show how to model inlining as
a staged computation while avoiding unnecessary code duplication. The new framework allows us to
define inlining annotations formally and to reason about their interactions with module code. In fact,
we present a cross-module inlining algorithm that inlines all functions marked inlinable, even in the
presence of ML-style parameterized modules.

1 Introduction

Clear and maintainable code requires modularity and abstraction to enforce well-designed
interfaces between software components. The module language of Standard ML (Milner
et al., 1997) provides powerful tools for such high-level code structuring. But these con-
structs often incur a considerable performance penalty which forces the programmer to
break abstraction boundaries or to think twice before using advanced features like param-
eterized modules (e.g., ML functors).

Efficient implementation of these high-level language constructs often rely crucially on
function inlining. Inlining algorithms have been used for many years, but their “best-effort”
behavior prevents us from knowing or making sure that a function will always be inlined
(at least, wherever possible given the compilation model). For example, SML/NJ (Appel
& MacQueen, 1991) has several ad-hoc tricks sprinkled in the code to expand primitive
operations. These tricks tend to muddy up the abstraction boundaries so it would be nice if
they could be replaced by a general-purpose inlining algorithm.

But would the inliner perform as good a job inlining those primitive operations as with
the ad-hoc approaches? For simple cases, it is straightforward to ensure that primitive op-
erations are always inlined, but when higher-order functions or even higher-order modules
(such as SML/NJ functors or Java generics) come into play, coupled with separate compi-
lation, the question becomes more challenging. In the course of implementing an extension
of Blume and Appel’s cross-module inlining algorithm (1997), we tried to understand the
relationship between inlining opportunities and separate compilation. We felt a need to
formalize our solution to better understand its behavior.

2 Stefan Monnier and Zhong Shao

This paper is the result of our efforts to formalize our inlining algorithm. More specif-
ically, we borrow from the partial-evaluation community (Joneset al., 1993) to model
inlining as a staged computation. By using a two-levelλ-calculus (Moggi, 1997) as our
intermediate language, we can assign each function (in our program) with a binding-time
annotation ofstatic or dynamic: a static function call is executed at compile time thus is
always inlined, while a dynamic call is executed at run time thus is not inlined. The inlin-
ing optimization is then equivalent to the standard off-line partial evaluation: first use the
binding-time analysis to locate all the inlining candidates, then run the specialization phase
to do the actual inlining. The binding-time attributes can also be exported to the source level
(or the compiler front-end) to serve as inlining annotations and to allow programmers (or
the compiler writer) to control various inlining decisions manually.

Apparently, all partial evaluators support some form ofβ-reductions as part of the spe-
cialization, however, these techniques do not immediately apply to the inlining optimiza-
tion. Because of the different application domains, partial evaluators are generally much
more aggressive than compiler optimizers. Even the binding time annotations can pose
problems at the source level because they can clutter the module interface and interact
badly with ML functors; for example, we would have to add abstraction over binding-time
(commonly called “binding-time polymorphism”) in the type if we want to apply a functor
to modules with different binding time (but with same signature otherwise).

The main objective of this paper is to hammer out these details and to see what it would
take to launch various partial-evaluation techniques into real compilers. Our paper builds
upon previous work on cross-module inlining (Blume & Appel, 1997; Shao, 1998; Leroy,
1995) and two-levelλ-calculus (Moggi, 1997; Nielson & Nielson, 1992; Davies & Pfen-
ning, 1996; Taha & Sheard, 1997) but makes the following new contributions:

• As far as we know, our work is the first comprehensive study on how to model in-
lining as staged computation. The formalism from the staging calculus allows us
to explicitly reason about and manipulate the set of inlinable functions. Doing such
reasoning is much harder with a traditional inlining algorithm, especially in the pres-
ence of ML-style parameterized modules.

• By careful engineering of binding-time coercions, and combined with proper stag-
ing and splitting, we show how to model inlining as staged computation without
introducing unwanted code duplication (see Sec. 5).

• Adding inlining annotations to a surface language allows a programmer to mark a
function as inlinable explicitly. Inlining annotations, however, could pollute the mod-
ule interface with additional binding-time specifications. This makes the underlying
module language more complex. We show how to support inlining annotations while
still avoiding such pollution. In fact, our scheme is fully compatible with ML-style
modules and requires no change to its module language.

• Using a two-levelλ-calculus, we show how inlining annotations are compiled into
the internal binding-time annotations and how they interact with the module code.
This allows us to propagate inlining information across arbitrarily functorized code,
even in the presence of separate compilation.

• We extend binding-time coercions to work with parametric polymorphism.

The rest of this paper is organized as follows: Section 2 gives an overview of a compiler that

Inlining as Staged Computation 3

Source Language

?

Typed SRC (Sec. 3)

?
(Sec. 5) Staging+Split

TLC (Sec. 4)

?

Import Summaries (Sec. 6)

?
Partial Evaluation (Sec. 4)

TLC
(no static redexes)

- Export Summary (Sec. 6)

6BTR+Opts

?
(Sec. 5.3) λ-Split

Residual Code

?
Machine Code

Fig. 1. Structure of the compiler

supports cross-module inlining and shows how inlining annotations (at the source level)
and two-levelλ-calculus (as intermediate language) fit into the picture; Section 3 formally
defines our source language SRC which supports inlining annotations and (indirectly) ML-
style modules; Section 4 formally defines our target language TLC which is a two-level
λ-calculus supporting staged computation; Section 5 presents our detailed algorithm for
compiling SRC programs into TLC; the algorithm involves staging, splitting, and careful
insertion of binding-time coercions; Section 6 shows how to handle top-level issues for
inlining across multiple compilation units; Section 7 then presents several extensions over
the basic algorithm; finally, Section 8 and 9 describe related work and then conclude.

2 The Big Picture

To model inlining as staged computation, we first give an overview of a compiler that
supports cross-module inlining. We use our FLINT compiler (Shao, 1997b; Shaoet al.,
1998) as an example. Figure 1 shows various stages of compilation used in the compiler.
The source code is first turned into a strongly typed intermediate language based on a
predicative System-F calculus (we name it SRC and present its details in Sec. 3). The SRC
calculus contains a module language and a core language. Each core-language function
is annotated with inlining hints to indicate whether the function should be inlined or not.
Those hints could be provided by the user or by the earlier phases of a compiler (using
some inlining heuristics).

4 Stefan Monnier and Zhong Shao

The inlining hints are then turned into staging annotations, mapping inlinable functions
to static functions (functions executed at compile-time) and the rest to dynamic code (exe-
cuted at run-time), by translating the code into a two-level intermediate language extended
with polymorphism (we name it TLC and present its details in Sec. 4).

To minimize the performance cost of the module code, we want to mark it as static so as
to expose as many inlining opportunities as possible. But this would imply that each functor
application (SML’s equivalent to template instantiation) would create a duplicate copy of
the full functor body. This approach, while sometimes acceptable, can lead to excessive
code growth and compilation times for heavily functorized code, as any programmer who
has worked with C++ templates knows.

We use a variant of theλ-splitting technique (Blume & Appel, 1997) to split each mod-
ule function into a static part and a dynamic part. This splitting is done carefully to ensure
that it does not obfuscate any inlining opportunity. Splitting is done together with staging
in the main translation algorithm (see Sec. 5.4). The resulting code is completed by incor-
porating a copy of thesummariesfrom all the import modules (see Sec. 6); asummary
contains the code that should be inlined across compilation-units, similarly to OCaml’s
approximations(Leroy, 1995).

The static part of the code is then reduced by a straightforward partial evaluation re-
turning the same code but with no remaining static redexes. This code then goes through
a binding-time refinement (BTR) or other optimization phases which could introduce new
static code requiring a new pass through the partial evaluator.

Once these optimization steps are finished, we reuse theλ-splitting algorithm to split
the compilation-unit itself into asummarycontaining all the remaining static code (i.e.
inlinable code for future cross-compilation-unit inlining) and a fully dynamic residual code
(encompassing the bulk of the program) which is then passed to the code generator.

Inlining across compilation units increases the coupling between those units. If a unit is
modified, all units that import it will now need to be recompiled, even if the modification
was only internal and did not change the interface. This is automatically handled in our
case by a compilation manager (Blume, 1995).

3 The Source Calculus SRC

This section formally defines our source language SRC which is a variant of the polymor-
phic lambda calculus System-F (Girard, 1972; Reynolds, 1974). SRC differs from System-
F in that it has inlining annotations on the core functions and it has a stratified structure
with a polymorphic module language layered on top of a monomorphic core language.
Also the module language uses A-normal form (Flanaganet al., 1993) which means that
all intermediate values need to be named vialet-binding, thus making all sharing between
expressions explicit.

The syntax of SRC is given in Fig. 2. Here, an SRC program is just a module term (m).
Each module term can be either a variable (x), a structure (ιv(c)) consisting of a single core
term (c), a compound module consisting of a collection of other modules (〈x1,. . ., xn〉), an
i-th component from another module (πix), a parameterized module (over other modules:
λx :σ.m or over types:Λt.m), a module application (over other modules:@x1x2 or over
types:x[τ]), or a let declaration.

Inlining as Staged Computation 5

(ctypes) τ ::= int | t | τ1 → τ2

(mtypes) σ ::= V(τ) | 〈σ1,. . ., σn〉 | σ1 → σ2 | ∀t.σ
(inline) a ::= | i

(cterms) c ::= n | z | πvx | λaz :τ.c | c1c2

(mterms) m ::= x | ιv(c) | 〈x1,. . ., xn〉 | πix | λx :σ.m | @x1x2 | Λt.m | x[τ]
| let x = m1 in m2

Fig. 2. Syntax for the source calculus SRC

Because the module language can already express polymorphic functions, we intention-
ally restrict the core language to be a simply typed lambda calculus. A core term can be
either an integer constant (n), a variable (z), a value field of a module (πvx), a function
definition (λaz :τ.c) with inlining annotation (a), or a function application (c1c2).

A module type can either be a singleton-value type (V(τ) which refers to a module
consisting of a core term of typeτ), a compound module type (〈σ1,. . ., σn〉 with n sub-
modules, each with typeσi for i = 1, ..., n), or a parameterized module (over other mod-
ules:σ1 → σ2 or over types:∀t.σ). A core type can be either the integer type (int), a type
variable, or a function type (τ1 → τ2). The singleton-value typeV(τ) is used to distinguish
between cases likeV(int → int) andV(int) → V(int).

The SRC language was chosen to be expressive enough to exhibit the main difficul-
ties that an optimizer based on staged computation might encounter. The language is split
between the module and the core languages because the inliner needs to use two differ-
ent compilation strategies. Of course, we could merge the two languages and annotate the
terms to indicate whether or not to treat them like module code. Recent work (Shao, 1998;
Shao, 1999; Harperet al., 1990) has shown that Standard ML can be compiled into an
SRC-like typed intermediate language.

Figure 3 gives the static semantics for SRC. The environment∆ is the list of bound type
variables; the type environmentΓ maps both core and module variables to their respective
types. Both the type- and the term-formation rules are rather straight-forward. The lan-
guage is predicative in that the module language supports polymorphism but type variables
can only be instantiated to core types. SRC uses a call-by-value semantics (omitted since it
is straightforward); it is easy to show that the typing system for SRC is sound with respect
to the corresponding dynamic semantics.

The most interesting feature of SRC is the inlining annotationa. The annotationi means
that the underlying lambda expression should be inlined while the empty annotation means
it should not. Notice that we do not track inlining annotations in the types; a core function
λaz :τ.c is still assigned with the same type whether the annotationa is i or empty.

This design choice is deliberate. We believe inlining annotations should be made as non-
intrusive as possible. Tracking them in the types would significantly complicate the module
language; for example, we would have to add binding-time polymorphism in the type if we
want to apply a functor to modules with different inlining annotations (but with the same
signature otherwise).

When compiling SML to an SRC-like language, the SML module language maps to
the SRC module language as expected, but polymorphic core SML functions also map

6 Stefan Monnier and Zhong Shao

kind environment ∆ ::= · | ∆, t
type environment Γ ::= · | Γ, z :τ | Γ, x :σ�� ��∆ ` τ and ∆ ` σ and ∆ ` Γ

∆ ` int
t ∈ ∆
∆ ` t

∆ ` τ1 ∆ ` τ2

∆ ` τ1 → τ2

∆ ` τ
∆ ` V(τ)

∆ ` σi (1≤ i≤n)

∆ ` 〈σ1,. . ., σn〉

∆ ` σ1 ∆ ` σ2

∆ ` σ1 → σ2

∆, t ` σ

∆ ` ∀t.σ ∆ ` ·
∆ ` Γ ∆ ` τ

∆ ` Γ, z :τ
∆ ` Γ ∆ ` σ

∆ ` Γ, x :σ�� ��∆;Γ ` m : σ and ∆;Γ ` c : τ

∆ ` Γ
∆;Γ ` n : int

∆ ` Γ
∆;Γ ` z : Γ(z)

∆; Γ ` x : V(τ)

∆; Γ ` πvx : τ

∆;Γ, z :τ1 ` c : τ2

∆;Γ ` λaz :τ1.c : τ1 → τ2

∆;Γ ` c1 : τ2 → τ1 ∆;Γ ` c2 : τ2

∆;Γ ` c1c2 : τ1

∆ ` Γ
∆;Γ ` x : Γ(x)

∆; Γ ` c : τ

∆;Γ ` ιv(c) : V(τ)

∆; Γ ` xi : σi (1≤ i≤n)

∆; Γ ` 〈x1,. . ., xn〉 : 〈σ1,. . ., σn〉

∆;Γ ` x : 〈σ1,. . ., σn〉 1≤ i≤n

∆;Γ ` πix : σi

∆;Γ, x :σ1 ` m : σ2

∆; Γ ` λx :σ1.m : σ1 → σ2

∆;Γ ` x1 : σ2 → σ1 ∆; Γ ` x2 : σ2

∆;Γ ` @x1 x2 : σ1

∆, t; Γ ` m : σ

∆; Γ ` Λt.m : ∀t.σ

∆;Γ ` x : ∀t.σ

∆;Γ ` x[τ] : {τ/t}σ
∆; Γ ` m1 : σ1 ∆;Γ, x :σ1 ` m2 : σ2

∆; Γ ` let x = m1 in m2 : σ2

Fig. 3. Static semantics for SRC

to module-level type abstractions (together with a core-level function) in SRC. This does
not introduce any problem, however; since polymorphic recursion is not available, type
instantiations can be done statically, or hoisted to the top-level (Saha & Shao, 1998).

4 The Target Calculus TLC

This section formally defines our target language TLC. As a typed intermediate language,
TLC is is essentially a hybrid of System-F in A-normal form (Flanaganet al., 1993) and
the two-level lambda calculusλ2sd by Moggi (1997).

The syntax of TLC is given in Fig. 4. A TLC term (e) can be either a value (v), a record
selection, a function application, a type application, or a let expression. A TLC value (v) is
either an integer constant, a variable, ann-tuple, a function, or a type function. A TLC type
is either the integer type, a type variable, a record type, a function type, or a polymorphic

Inlining as Staged Computation 7

(kind) b, k ::= s | d
(type) σ ::= int | t | 〈σ1,. . ., σn〉b | σ1

b→ σ2 | ∀bt :k.σ

(term) e ::= v | πb
i v | @bv1 v2 | v[σ]b | let x = e1 in e2

(value) v ::= n | x | 〈v1,. . ., vn〉b | λbx :σ.e | Λbt :k.e

Fig. 4. Syntax for the target calculus TLC

type. Many of these are annotated with a binding-time annotation (called “kind”) that can
either bes for static code (evaluated at compile-time) ord for dynamic code (evaluated at
run-time).

Compared to SRC, TLC replaces inlining hints on core functions with staging anno-
tations on tuples, functions and type-abstractions and merges the module and the core
languages since the distinction between the two is only needed to direct the translation
from SRC. Notice also how∀ types have two binding-time annotations, one for the type
abstraction itself and another that constrains the possible types it can be instantiated to.

To simplify the presentation, we force the ground types (i.e.,int) to be considered as dy-
namic. This is justified by the fact that we are only interested in function-level reductions.
We may lift this restriction if we want to model constant propagation.

In the rest of this paper, we will also use the following syntactic sugar:

πb
i e ≡ let x = e in πb

i x

e[σ]b ≡ let x = e in x[σ]b

@be1 e2 ≡ let x1 = e1 in let x2 = e2 in @bx1 x2

〈e1,. . ., en〉b ≡ let x1 = e1 in . . . let xn = en in 〈x1,. . ., xn〉b
λb〈x1,. . ., xn〉b

′
:σ.e ≡ λbx :σ.let x1 = πb′

1 x in . . . let xn = πb′

n x in e

Essentially, we will put ane term where onlyv is allowed, leaving thelet transformation
implicit and we will use a pattern-matching variant oflet; we will also assume that alpha-
renaming is used so variables are never shadowed.

Figure 5 gives the typing rules for TLC. In addition to the usual type safety, these rules
also ensure binding-time correctness. Here the kind environment∆ maps type variables
to their binding time; the type environmentΓ maps variables to their types. To enforce
the usual restriction that no dynamic entity can contain or manipulate a static value, types
are classified as being either of dynamic kind or static kind, with a subkind relationship
between the two: a typeσ of dynamic kind can also be considered to have static kind but
not vice versa.

Figures 6 to 9 give the dynamic semantics for TLC as a set of primitive reductions
and single-step evaluation relations that determine where those reductions can be applied.
Figure 6 defines the primitive static reductione ;s e′. Figure 7 defines the single-step
partial evaluatione 7→s e′ together with the correspondingv 7→v

s v′ used for values. Note
how partial evaluation in this language amounts to reducing all the static redexes of a term.
Figures 8 and 9 show the corresponding reductions; and 7→ of a standard call-by-value
evaluator. In contrast to the partial evaluation case, those reductions apply to both static
and dynamic redexes but only to the outermost ones.

TLC is a variant of Moggi’s computational lambda calculusλc (1988) restricted to A-

8 Stefan Monnier and Zhong Shao

kind environment ∆ ::= · | ∆, t :k
type environment Γ ::= · | Γ, x :σ�� ��b1 ≤ b2

d ≤ d d ≤ s s ≤ s�� ��∆ ` σ : k and ∆ ` Γ

∆ ` int : d ∆ ` t : ∆(t)

∆ ` σ : b1 b1 ≤ b2

∆ ` σ : b2

∆ ` σi : b (1≤ i≤n)

∆ ` 〈σ1,. . ., σn〉b : b

∆ ` σ1 : b ∆ ` σ2 : b

∆ ` σ1
b→ σ2 : b

∆, t :k ` σ : b k ≤ b

∆ ` ∀bt :k.σ : b ∆ ` ·
∆ ` Γ ∆ ` σ : s

∆ ` Γ, x :σ�� ��∆;Γ ` e : σ and ∆;Γ ` v : σ

∆ ` Γ
∆;Γ ` n : int

∆ ` Γ
∆;Γ ` x : Γ(x)

∆; Γ ` v1 : σ2
b→ σ1 ∆;Γ ` v2 : σ2

∆;Γ ` @bv1 v2 : σ1

∆;Γ ` vi : σi (1≤ i≤n) ∆ ` 〈σ1,. . ., σn〉b : b

∆;Γ ` 〈v1,. . ., vn〉b : 〈σ1,. . ., σn〉b
∆;Γ ` v : 〈σ1,. . ., σn〉b 1≤ i≤n

∆;Γ ` πb
i v : σi

∆;Γ, x :σ1 ` e : σ2 ∆ ` σ1
b→ σ2 : b

∆;Γ ` λbx :σ1.e : σ1
b→ σ2

∆;Γ ` e1 : σ1 ∆;Γ, x :σ1 ` e2 : σ2

∆;Γ ` let x = e1 in e2 : σ2

∆, t :k; Γ ` e : σ ∆ ` ∀bt :k.σ : b

∆;Γ ` Λbt :k.e : ∀bt :k.σ

∆;Γ ` v : ∀bt :k.σ2 ∆ ` σ1 : k

∆;Γ ` v[σ1]
b : {σ1/t}σ2

Fig. 5. Static semantics for TLC

normal form; in fact, the primitive reduction relations in Fig. 6 and 8 are same as that for
λc (except that we added type applications and removedη-reductions). We can easily show
that the type system for TLC is sound and the static reduction7→s is strongly normalizing
and confluent. We can thus define a partial evaluation functionPe(e) that returns the static
normal form ofe. Similarly it is easy to show that7→ is confluent, so we can also define a
partial functionRe(e) which does the standard evaluation ofe:

Pe(e) = e′such thate 7→∗
s e′ and there is noe′′ for whiche′ 7→s e′′

Re(e) = e′such thate 7→∗ e′ and there is noe′′ for whiche′ 7→ e′′

where 7→∗ and 7→∗
s are the reflexive transitive closures of7→ and 7→s. TLC satisfies the

following important residualization property:

Theorem 4.1(Residualization)
If ∆; Γ ` e : σ and∆ ` σ : d and∀x∈ fv(e). ∆ ` Γ(x) : d, thenPe(e) is free of any
static subterms.

Inlining as Staged Computation 9

(βλ) @s(λsx :σ.e) (v) ;s {v/x}e
(βΛ) (Λst :k.e)[σ]s ;s {σ/t}e
(π) πs

i〈v1,. . ., vn〉s ;s vi if 1≤ i≤n
(let) let x = v in e ;s {v/x}e
(asc) let x2 = (let x1 = e1 in e2) in e3

;s let x1 = e1 in let x2 = e2 in e3

Fig. 6. Primitive static reduction for TLC

e ;s e′ ⇒ e 7→s e′

e 7→s e′ ⇒ let x = e in e2 7→s let x = e′ in e2

e 7→s e′ ⇒ let x = e2 in e 7→s let x = e2 in e′

e 7→s e′ ⇒ λbx :σ.e 7→v
s λbx :σ.e′

e 7→s e′ ⇒ Λbt :k.e 7→v
s λbt :k.e′

v 7→v
s v′ ⇒ 〈v1, . . . , v, . . . , vn〉b 7→v

s 〈v1, . . . , v
′, . . . , vn〉b

v 7→v
s v′ ⇒ @bv v2 7→s @bv′ v2

v 7→v
s v′ ⇒ @bv2 v 7→s @bv2 v′

v 7→v
s v′ ⇒ v[σ]b 7→s v′[σ]b

v 7→v
s v′ ⇒ πb

i v 7→s πb
i v

′

Fig. 7. Single-step partial evaluation for TLC

(;s) e ; e′ if e ;s e′

(βλ) @d(λdx :τ.e) (v) ; {v/x}e
(βΛ) (Λdt :k.e)[τ]d ; {τ/t}e
(π) πd

i 〈v1,. . ., vn〉d ; vi if 1≤ i≤n

Fig. 8. Primitive reduction relation for TLC

e ; e′ ⇒ e 7→ e′

e 7→ e′ ⇒ let x = e in e2 7→ let x = e′ in e2

Fig. 9. Single-step call-by-value standard evaluation for TLC

In other words, given an expressione with dynamic typeσ, partially evaluatinge will inline
all of its inlinable functions and result in an expression free of static subterms.

Next we show why inlining does not affect the semantics of the program. We first intro-
duce a notion of semantic equivalence on well-typed TLC values:

Definition 4.2(Equivalence)
If ·; · ` v : σ and·; · ` v′ : σ, we say thatv ' v′ if one of the following holds:

(int) v ≡ v′.
(×) v = 〈v1,. . ., vn〉b andv′ = 〈v′1,. . ., v′n〉b and∀i∈ [1..n].vi ' v′i.

(→) σ = σ1
b→ σ2 and for any valuew of typeσ1 thenRe(@bv w) ' Re(@bv′ w).

(∀) σ = ∀bt :k.σ1 and for any well-formed typeσ2 :k thenRe(v[σ2]b) ' Re(v′[σ2]b).

The correctness theorem can then be proved by induction over the reduction steps ofPe(e).

10 Stefan Monnier and Zhong Shao

Theorem 4.3(Correctness)

If ·; · ` e : σ and· ` σ : d thenRe(Pe(e)) ' Re(e).

5 Translation from SRC to TLC

The translation from SRC to TLC involves both staging and splitting, executed in an inter-
leaved manner. Staging translates inlining annotations in the core language into binding-
time annotations. It also calls the splitting algorithm to divide each module term into a
static part and a dynamic part. The static part is used to propagate inlining information and
implement cross-module inlining. In the rest of this section, we first give a quick overview
of our approach; we then show how to stage core terms and split module terms; finally, we
give the main translation algorithm that links all the parts together.

5.1 A quick overview

The translation from SRC to TLC mostly consists of adding staging annotations. This is
usually known as binding-time analysis and has been extensively studied in the partial
evaluation community.

One desirable goal is to make sure that binding-time annotations do not hide opportuni-
ties for static evaluation. For example, let’s take the inlinable compose functiono defined
as follows:

o = λi f :τ1 → τ2.λ
i g :τ2 → τ3.λx :τ1.g(fx)

When translating it, we probably do not want to assign it the following type:

o : (τ1
d→ τ2)

s→ (τ2
d→ τ3)

s→ (τ1
d→ τ3)

(i.e. a static function that composes two dynamic functions) since it would force us to make
sure that all the functions passed to it are not inlinable, which mostly defeats the purpose
of inlining it in the first place. Now clearly, if we mark it as:

o : (τ1
s→ τ2)

s→ (τ2
s→ τ3)

s→ (τ1
d→ τ3)

that will make it impossible to call it with a non-inlinable function. We could work around
this problem by using polymorphism at the binding-time level (Henglein & Mossin, 1994;
Glynnet al., 2001), but we decided to keep our calculus simple. With monomorphic staging
annotations, we have two options: code duplication to provide a poor man’s polymorphic
binding-time, or coercions in the form of binding-time improvements (Danvyet al., 1996;
Danvy, 1996).

A compiler needs to be very careful about duplicating code so we decided to use coer-
cions instead, especially since they provide us with a lot of flexibility. More specifically,
we can completely avoid the need for a full-blown binding-time analysis and use a sim-
ple one-pass translation instead, by optimistically markings any place that might need to
accommodate a static value and inserting coercions when needed, just like the unboxing
coercions (Leroy, 1992; Shao, 1997a). It also allows us to simplify our types: all types are
either (completely) dynamic or completely static.

Inlining as Staged Computation 11

5.2 Staging the core

Staging could be done via any kind of binding-time analysis (Consel, 1993; Birkedal &
Welinder, 1995), but this would be too costly for our application, so instead of performing
global code analysis to add the annotations, we add them in a single traversal of the code
using only local information. In order to maximize the amount of static computation, we
make extensive use of binding-time improvements (Danvyet al., 1996).

Binding-time improvements are usually some form ofη-redexes that coerce an object
between its static and dynamic representations. They improve the binding-time annotations
by allowing values to be used statically at one place and dynamically at another and even
to make this choice “dynamically” during specialization.

Staging is then simple: based on the inlining annotations, SRC terms can either be trans-
lated to completely static or dynamic entities (except forint, which is always dynamic).
Because inlining annotations are not typechecked in SRC, the resulting TLC terms may
use dynamic subterms in a static context or vice versa. We insert coercions whenever there
is such a mismatch.

We define two type-translation functions|·|s and|·|d that turn any SRC type into either its
fully static or its fully dynamic TLC equivalent, and two coercion functions↓τ : |τ |s s→ |τ |d
and↑τ : |τ |d s→ |τ |s. Those coercions (and corresponding type translations) could simply
be:

↓intx = x

↓τ1→τ2x = λdx1 : |τ1|d. ↓τ2(@sx (↑τ1x1))
· · ·

↑intx = x

↑τ1→τ2x = λsx1 : |τ1|s. ↑τ2(@dx (↓τ1x1))
· · ·

|int|d = int

|τ1 → τ2|d = |τ1|d
d→ |τ2|d

· · ·
|int|s = int

|τ1 → τ2|s = |τ1|s
s→ |τ2|s

· · ·

But this would run the risk of introducing unexpected code duplication.

Spurious copiesA naive coercion of a static function to its dynamic equivalent tends to
introduce static redexes which cause the function to be inlined unnecessarily at the place
where it escapes. Consider the following piece of SRC code:

let id =λi x : int.x

big =λf : int → int. ...big body...

in 〈id,@big id〉

A simple-minded staging scheme would turn it into:

let id =λsx : int.x

big =λdf : int
d→ int. ...big body...

in 〈 ↓int→intid,@dbig (↓int→intid)〉d

where the coercions get expanded to:

let id =λsx : int.x

big =λdf : int
d→ int. ...big body...

in 〈λdx : int.@sid x,@dbig (λdx : int.@sid x)〉d

12 Stefan Monnier and Zhong Shao

|int|d = int

|τ1 → τ2|d = |τ1|d
d→ |τ2|d

↓τ : |τ |s s→ |τ |d
↓intx = x

↓τ1→τ2x = πs
2x

|int|s = int

|τ1 → τ2|s = 〈|τ1|s
s→ |τ2|s, |τ1 → τ2|d〉s

↑τ : |τ |d s→ |τ |s
↑intx = x

↑τ1→τ2x = 〈λsx1 : |τ1|s. ↑τ2(@dx (↓τ1x1)), x〉s

|∆;Γ;Σ | = ∆;Γ′

whereΓ′ = {x : |Γ(x)|s | x ∈ dom(Γ)} ∪ {z : |τ |b | τ = Γ(z) andb = Σ(z)}
and(binding-time environment) Σ ::= · | Σ, z :b

Fig. 10. Core type translations| · | and coercions↓ and↑.

Note that the two escaping uses ofid have been turned now intoη-redexes whereid
is called directly. Thus specialization will happily inline two copies ofid even though
no optimization will be enabled since both uses are really escaping. We do not want to
introduce such wasteful code duplication.

In other words, we want to ensure that there can be only one non-inlined copy of any
function, shared among all its escaping uses. To this end, we must arrange for↓σ not to in-
troduce spurious redexes. We could simply introduce a specialcoerce primitive operation
with an ad-hoc treatment in the partial-evaluator, but depending on the semantics chosen
(e.g. binding-time erasure) it can end up leaking static code to run-time, introducing un-
wanted run-time penalties and it does not easily solve the problem of ensuring a unique
dynamic copy of a function, even in the presence of cross-module inlining.

So we decided to choose a fancier representation for the static translation of a function,
where each static function is now represented as a pair of the real static function and the
already-coerced dynamic function. Now↓σ1→σ2 becomesπs

2 and the only real coercion
happens once, making it clear that only one instance of the dynamic version will exist. The
definition of our type translations| · |s and| · |d and coercions↓τ and↑τ for the core calculus
is shown in Fig. 10. The previous example is now staged as follows:

let id = 〈λsx : int.x, λdx : int.x〉s

big =λdf : int
d→ int. ...big body...

in 〈 ↓int→intid,@dbig (↓int→intid)〉d

Since the coercion↓int→int is nowπs
2, it just selects the dynamic version ofid, with no code

duplication.
Partial evaluators have long used such paired representation in their specializer for simi-

lar reasons (Asai, 1999), although our case is slightly different in that the pairs are explicit
in the program being specialized rather than used internally by the specializer.

This pairing approach can also be seen as a poor man’s polymorphic binding-time
where we only allow the two extreme cases (all dynamic or all static). Minamide and
Garrigue (1998) used the same pairing approach when trying to avoiding the problem of

Inlining as Staged Computation 13�� ��∆;Γ;Σ ` Jc : τK b⇒ e such that|∆;Γ;Σ | ` e : |τ |b

∆ ` Γ

∆;Γ;Σ ` Jn : intK b⇒ n

∆ ` Γ Σ(z) = b

∆;Γ;Σ ` Jz : Γ(τ)K b⇒ z

∆;Γ ` x : V(τ)

∆; Γ;Σ ` Jπvx : τK s⇒ x

∆;Γ, z :τ1; Σ, z :s ` Jc : τ2K
s⇒ e

∆;Γ;Σ ` Jλi z :τ1.c : τ1 → τ2K
s⇒

let xs = λsz : |τ1|s.e
xd = λdz : |τ1|d. ↓τ2(@sxs (↑τ1z))

in 〈xs, xd〉s

∆;Γ, z :τ1; Σ, z :d ` Jc : τ2K
d⇒ e

∆; Γ;Σ ` Jλz :τ1.c : τ1 → τ2K
d⇒ λdz : |τ1|d.e

∆;Γ;Σ ` Jc1 : τ1 → τ2K
d⇒ e1 ∆;Γ;Σ ` Jc2 : τ1K

d⇒ e2

∆;Γ;Σ ` Jc1c2 : τ2K
d⇒ @de1 e2

∆;Γ;Σ ` Jc1 : τ1 → τ2K
s⇒ e1 ∆;Γ;Σ ` Jc2 : τ1K

s⇒ e2

∆;Γ;Σ ` Jc1c2 : τ2K
s⇒ @s(πs

1e1) e2

∆;Γ;Σ ` Jc : τK d⇒ e

∆;Γ;Σ ` Jc : τK s⇒↑τe

∆; Γ;Σ ` Jc : τK s⇒ e

∆;Γ;Σ ` Jc : τK d⇒↓τe

Fig. 11. Core code translation.

accumulative coercion wrappers that appears when unboxing coercions are used to recon-
cile polymorphism and specialized data representation.

The staging algorithm is shown in Fig. 11. The judgment∆; Γ;Σ ` Jc : τK b⇒ e says
that a core SRC termc of typeτ (under contexts∆ andΓ) is translated into a TLC terme.
The environmentΣ maps core variables to the binding-time of the corresponding variable
in e. Theb on the arrow indicates whether a static or a dynamic terme is expected.

Most rules come in two forms, depending on whether the context expects a dynamic or
static term. The dynamic case is trivial (it corresponds to the no-inlining case so we do not
need to do anything) while the static case needs to build the static/dynamic pair (in theλ

case) or to extract the static half of the pair before applying it (in the@ case).

5.3 Splitting

Module-level functions are typically used differently from core-level functions. They also
do not have any inlining annotations thus deserve special treatment during the translation.
As noted earlier, it is desirable to mark all the module code as static to “compile it away”
or at least, to allow inlining information to flow freely through module boundaries. But that
would imply that every single module-level function application gets its own copy of the
body, which leads to unnecessary code duplication.

To overcome this difficulty, we use a form of partial inlining inspired from Blume and
Appel’s λ-splitting (1997) that splits each function into a static and a dynamic part. It
rewrites a TLC expressione into a list oflet bindings and copies every inlinable (i.e. static)
binding from e into ei, and puts the rest into the expressionee (the e subscript stands
for “expansive”) in such a way that the two can be combined to get back an expression
equivalent toe with e ' let 〈fv〉 = ee in ei wherefv is the list of free variables ofei. Since

14 Stefan Monnier and Zhong Shao�� ��∆;Γ `split JeK σ
=⇒⇒ Ee ; ei where∆;Γ ` e : |σ|s

∆;Γ `split Jlet x1 = e1 in let x2 = e2 in e3K
σ

=⇒⇒ Ee ; ei

∆;Γ `split Jlet x2 = let x1 = e1 in e2 in e3K
σ

=⇒⇒ Ee ; ei

(sp-asc)

x 6∈ fv(ei) ∨∆ ` σ1 : d

∆;Γ ` e1 : σ1 ∆;Γ, x :σ1 `split Je2K
σ

=⇒⇒ Ee ; ei

∆;Γ `split Jlet x = e1 in e2K
σ

=⇒⇒ (let x = e1 in Ee) ; ei

(sp-share)

∆;Γ ` e1 : σ1 ∆; Γ, x :σ1 `split Je2K
σ

=⇒⇒ Ee ; ei

∆;Γ `split Jlet x = e1 in e2K
σ

=⇒⇒
(let x = e1 in Ee) ; (let x = e1 in ei)

(sp-dup)

Ee = (let xfv = • in 〈 ↓σx, xfv〉d)

∆; Γ `split JxK σ
=⇒⇒ Ee ; x

(sp-var)
∆;Γ `split Jlet x = e in xK σ

=⇒⇒ Ee ; ei

∆;Γ `split JeK σ
=⇒⇒ Ee ; ei

(sp-exp)

Fig. 12. Theλ-split algorithm.

ei is small, it can be copied wherevere was originally used, while the main part of the code
is kept separate inee.

Basically,ei is just likee but where all the non-inlinable code has been taken out (and
the variables that refer to it are thus free), whereasee is a complete copy ofe except that
it returns all those values that have been taken out ofei, so it can be used to close over the
free variables ofei. Take for example the following expressione wherelookup is inlinable
but balance is not (note that the algorithm assumes that the return value ofe is completely
static):

e = let balance =λd〈t, x〉d :〈treed, elemd〉d. . . .
lookup =λs〈t, p〉s :〈trees, elems s→ bool〉s.

let x = @s(@sfind p) t in @dbalance 〈 ↓treet, ↓elemx〉d
in lookup

This expressione will be split into a dynamicee and a staticei wherebalance has been
taken out since it is not inlinable.ei will look like:

ei = let lookup =λs〈t, p〉s :〈trees, elems s→ bool〉s.
let x = @s(@sfind p) t in @dbalance 〈 ↓treet, ↓elemx〉d

in lookup

The free variables ofei are provided byee which carries all the old code and returns all
the missing bindings forei to use. In this example,balance is the only free variable, so the
result looks like:

ee = let balance =λd〈t, x〉d :〈treed, elemd〉d. . . .
lookup =λs〈t, p〉s :〈trees, elems s→ bool〉s.

let x = @s(@sfind p) t in @dbalance 〈 ↓treet, ↓elemx〉d
in 〈balance〉d

Inlining as Staged Computation 15

And we can combineee andei back together withe ' let 〈fv〉d = ee in ei wherefv is the
list of free variables ofei. We could of course removelookup from ee, but we might need
it for something else (as will be shown in the next section) and it is easier to take care of it
in a separate dead code elimination pass.

Becauseee has to return all the free variables ofei, which are not known untilei is
complete, we cannot conveniently buildee directly as we buildei. Instead we build an
expression with a holeEe such thatee ≡ Ee[〈fv〉d]:

Ee = let balance = . . . lookup = . . . in 〈•〉d

Here a TLC term with a holeE is formally defined as follows:

E ::= let x = • in e | let x = e in E

E[e] then fills the hole inE by textually substitutinge for •withoutavoiding name capture:

(let x = • in e)[e1] ≡ (let x = e1 in e)
(let x = e in E)[e1] ≡ (let x = e in E[e1])

The splitting rules are shown in Fig. 12. The judgment∆; Γ `split JeK σ=⇒⇒ Ee ; ei states
thatEe andei are a valid split ofe in contexts∆ andΓ assuming thate : |σ|s. The rules
only guarantee correctness of the split, but do not specify a deterministic algorithm. In
practice, whenever several rules can apply, the splitting algorithm chooses the first rule
shown that applies:sp-ascis preferred oversp-sharewhich is preferred oversp-dup, while
sp-expis only applied when there is no other choice (i.e. whene is neither alet binding
nor a mere variable). This ensures that we return the smallestei.

The way the rules work is as follows:sp-asctogether withsp-expturn e into a list of
let bindings that ends by returning a variable;sp-sharecopies dynamic bindings toEe but
omits them fromei while sp-dupcopies static bindings to bothEe andei; finally sp-var
replaces the terminating variable with a hole inEe.

5.3.1 Splitting functions

When splitting a functionf , we could apply the above algorithm to the body, and then
combine the two results into two functionsfe andfi:

f = λsx : |σ|s.e =⇒ fe = λdxd : |σ|d.let x =↑σxd in ee

fi = λsx : |σ|s.let 〈fv〉d = @dfe (↓σx) in ei

From then onfi can be used in place off (assuming thatfe is in scope), so thatei will be
inlined without having to ever duplicateee.

As we have seen before when staging inlinable core functions, the static representation
of a function is a pair of the dynamic and the static version of that functionf = 〈fd, fs〉s. A
similar representation needs to be used for module-level functions. One would be tempted
to just usefi for fs andfe for fd, but a bit more work is required. First, we cannot usefe

directly because it only returns the free variables offi instead of the expected return value
of fd, but we can simply coercefi (which hasfe as a free variable) to a dynamic value:

fs = fi fd = λdxd : |σ1|d. ↓σ2(@sfi (↑σ1xd))

16 Stefan Monnier and Zhong Shao

The problem with this approach is that there might be some code duplication between
ei andee, sofd might contain unnecessary copies of code already existing infe. To work
around this, we slightly change the way splitting is done, so thatee returns not only the
free variables ofei but also the original output ofe (see thesp-varrule):

Ee = let balance = . . . lookup = . . . in 〈 ↓σlookup, •〉d

Of course, we need to adjustfi so as to select the second component offe’s result to bind
to its free variables. On the other hand,fe is unchanged:

f = λsx : |σ|s.e =⇒ fe = λdxd : |σ|d.let x =↑σxd in ee

fi = λsx : |σ|s.let 〈fv〉d = πd
2(@

dfe (↓σx)) in ei

Sincefe now returns the original result in its first field, we can use it directly almost as is
to buildfd and we can of course still usefi asfs:

fs = fi fd = π1 ◦ fe = λdxd : |σ1|d.πd
1(@

dfe xd)

5.3.2 Properties

To define and show correctness of the splitting algorithm, we need an extended notion of
equivalence that applies to expressions rather than just values:

e ' e′ if and only if
for anyE such that·; · ` E[e] : σ then·; · ` E[e′] : σ andRe(E[e]) ' Re(E[e′])

Splitting turns an expressione into a dynamic partEe and a static partei. The follow-
ing theorems state that combiningEe andei yields a well-typed term that is semantically
equivalent toe.

Theorem 5.1(Type preservation)
if ∆; Γ ` e : |σ|s and∆; Γ `split JeK σ=⇒⇒ Ee ; ei andfv = fv(ei)− dom(Γ) then
∆; Γ ` let 〈fv〉d = πd

2(Ee[〈fv〉d]) in ei : |σ|s.

Theorem 5.2(Correctness)
if ∆; Γ ` e : |σ|s and∆; Γ `split JeK σ=⇒⇒ Ee ; ei andfv = fv(ei)− dom(Γ) then
e ' let 〈fv〉d = πd

2(Ee[〈fv〉d]) in ei.

Both theorems can be proved via induction on the splitting derivation with the help of an
invariant. For correctness, the invariant is:

For any terme′ and set of variablesxs
such that(fv(e′)− fv(Ee[e′]) ⊆ xs ⊆ fv(e′)
thenEe[e′] ' let 〈xs〉d = πd

2(Ee[〈xs〉d]) in e′

The invariant for type preservation is similar.
The splitting algorithm also satisfies the following property:

Theorem 5.3(Static closure)
if ∆; Γ ` e : |σ|s and∆; Γ `split JeK σ=⇒⇒ Ee ; ei then all free variables inei are either
bound inΓ or they have dynamic type (in the context ofEe).

Inlining as Staged Computation 17

tco = 〈td
s→ ts, ts

s→ td〉s

|int|s = int
|t|s = ts

|τ1 → τ2|s = 〈|τ1|s
s→ |τ2|s, |τ1 → τ2|d〉s

|V(τ)|s = |τ |s
|〈σ1,. . ., σn〉|s = 〈〈|σ1|s,. . ., |σn|s〉s, |〈σ1,. . ., σn〉|d〉s

|σ1 → σ2|s = 〈|σ1|s
s→ |σ2|s, |σ1 → σ2|d〉s

|∀t.σ|s = 〈∀sts :s.∀std :d.tco
s→ |σ|s, |∀t.σ|d〉s

|int|d = int
|t|d = td

|τ1 → τ2|d = |τ1|d
d→ |τ2|d

|V(τ)|d = |τ |d
|〈σ1,. . ., σn〉|d = 〈|σ1|d,. . ., |σn|d〉d

|σ1 → σ2|d = |σ1|d
d→ |σ2|d

|∀t.σ|d = ∀dt :d.|σ|d

|∆;Γ;Σ | = ∆′; Γ′

where∆′={ts :s , td :d | t ∈ dom(∆)}
andΓ′={x : |Γ(x)|s | x ∈ dom(Γ)} ∪ {xt : tco | t ∈ dom(∆)}

∪ {z : |τ |b | τ = Γ(z) andb = Σ(z)}

Fig. 13. Type and environment translation.

We prove this property by inspection of the rules: if a variable is free inei but not inΓ
it can only be because thesp-sharerule was used, but that rule only applies to dynamic
variables or variables which are not free inei.

Static closure implies thatei contains all the inlinable sub-terms ine so splitting does
not hide any inlining opportunities. In other words, when doing partial evaluation of a term
containinge, we can substituteei for e without preventing any reduction (except reductions
internal to the terms omitted inei, obviously). This in turn implies that compilation-unit
boundaries have no influence on whether or not a core function gets inlined at a particular
call site. We call it thecompletenessproperty.

5.4 The main algorithm

The main algorithm is the translation of the module language, which works similarly to
(and uses) the core translation presented earlier, but is interleaved with the splitting algo-
rithm. It also relies on the use of pairs that keep both a dynamic and a static version of
every module-level value to avoid unnecessary code duplication.

Figures 13 and 14 extend the type translations| · |s and| · |d and the coercions↓ and↑
to the module calculus. The main change is the case for the type abstraction which we will
explain later.

The full staging algorithm is shown in Fig. 15. The judgment∆; Γ ` Jm : σK m⇒ e

means that under the environments∆ andΓ, the SRC modulem of type σ is translated
into the TLC terme. Most rules are straightforward. The translation of expressionsιv(c) is
delegated to the core translation.

The case for module-level function and type abstraction are most interesting. The trans-
lation of a module-level functionλx : σ.m begins by recursively translating the bodym,
and then splitting it. This is done with the judgment∆; Γ ` Jm : σK =⇒⇒ ee ; E i. We then
build a pairf = 〈fd, fs〉s as described in the previous section. The translation of a type
abstractionΛt.m follows the same pattern, except for a subtle complication introduced by
typing problems discussed below.

18 Stefan Monnier and Zhong Shao�� ��↓σ: |σ|s s→ |σ|d and ↑σ: |σ|d s→ |σ|s

↓intx = x
↓tx = @s(πs

2xt) x

↓τ1→τ2x = πs
2x

↓V(τ)x = ↓τx

↓〈σ1,...,σn〉x = πs
2x

↓σ1→σ2x = πs
2x

↓∀t.σx = πs
2x

↑intx = x
↑tx = @s(πs

1xt) x

↑τ1→τ2x = 〈λsx1 : |τ1|s. ↑τ2(@dx (↓τ1x1)), x〉s

↑V(τ)x = ↑τx

↑〈σ1,...,σn〉x = 〈〈 ↑σ1(πd
1x),. . ., ↑σn(πd

nx)〉s, x〉s
↑σ1→σ2x = 〈λsx1 : |σ1|s. ↑σ2(@dx (↓σ1x1)), x〉s
↑∀t.σx = 〈Λsts :s.Λ

std :d.λsxt : tco. ↑σ(x[td]
d), x〉s

Fig. 14. Binding-time coercions.

�� ��∆;Γ ` Jm : σK m⇒ e such that|∆;Γ; · | ` e : |σ|s

∆ ` Γ

∆;Γ ` Jx : Γ(x)K m⇒ x

∆;Γ; · ` Jc : τK s⇒ e

∆;Γ ` Jιv(c) : V(τ)K m⇒ e

∆;Γ ` xi : σi (1≤ i≤n) σ = 〈σ1,. . ., σn〉

∆;Γ ` J〈x1,. . ., xn〉 : σK m⇒
let xs = 〈x1,. . ., xn〉s

xd = 〈 ↓σ1x1,. . ., ↓σnxn〉d
in 〈xs, xd〉s

∆;Γ ` x : 〈σ1,. . ., σn〉 1≤ i≤n

∆;Γ ` Jπix : σiK
m⇒ πs

i(π
s
1x)

∆; Γ ` x1 : σ2 → σ1 ∆; Γ ` x2 : σ2

∆;Γ ` J@x1 x2 : σ2K
m⇒ @s(πs

1x1) x2

∆;Γ, x :σ1 ` Jm : σ2K =⇒⇒ ee ; E i

∆;Γ ` Jλx :σ1.m : σ1 → σ2K
m⇒

let xe = λdxd : |σ1|d. let x =↑σ1xd in ee

xi = λsx : |σ1|s. E i[π
d
2(@

dxe (↓σ1x))]

in 〈xi, λ
dxd : |σ1|d.πd

1(@
dxe xd)〉s

∆, t; Γ ` Jm : σK =⇒⇒ ee ; E i

∆;Γ ` JΛt.m : ∀t.σK m⇒
let xe = Λdt :d. {t/td, t/ts, 〈ids

t, id
s
t〉s/xt}ee

xi = Λsts :s.Λ
std :d.λsxt : tco. E i[π

d
2(xe[td]

d)]

in 〈xi, Λ
dt :d.πd

1(xe[t]
d)〉s

∆;Γ ` x : ∀t.σ

∆;Γ ` Jx[τ] : {τ/t}σK m⇒ @s(πs
1x)[|τ |s]s[|τ |d]s 〈 ↓τ, ↑τ〉

∆;Γ ` Jm1 : σ1K
m⇒ e1 ∆;Γ, x :σ1 ` Jm2 : σ2K

m⇒ e2

∆;Γ ` Jlet x = m1 in m2 : σ2K
m⇒ let x = e1 in e2

�� ��∆;Γ ` Jm : σK =⇒⇒ ee ; E i

such that|∆;Γ; · | ` E i[π
d
2ee] : |σ|s

∆;Γ ` Jm : σK m⇒ e |∆;Γ; · | `split JeK σ
=⇒⇒ Ee ; ei

fv = fv(ei)− dom(Γ) E i = (let 〈fv〉d = • in ei)

∆; Γ ` Jm : σK =⇒⇒ Ee[〈fv〉d] ; E i

Fig. 15. Module code translation.idb
t is a shorthand forλbx : t.x.

Inlining as Staged Computation 19

Since all module-level code is considered static, it is tempting to think that we do not
need pairing at all and can simply represent module entities with the static counterpart. But
theee component obtained fromλ-split is dynamic and we thus need coercions to interact
with it: both thesp-varrule ofλ-split (see Fig. 12) and the construction offi out ofei (see
Sec. 5.3.1) introduce coercions. And since modules tend to be larger than core functions,
it is even more important to avoid spurious copies.

Type abstractionsAs mentioned above, type abstractions introduce some complications.
The problem appears when we try to define coercion functions. The naive approach would
look like:

↓∀t.σx=Λdt :d. ↓σ(x[t]s)
↑∀t.σx=Λst :s. ↑σ(x[t]d)

but this is not type correct, sincet in the second rule can be static and hence cannot be
passed to the dynamicx. Obviously, we need here the same kind of (contra-variant) argu-
ment coercion as we use on functions, but our language does not provide us with any way
to create a↓ operator to apply to types.

Furthermore, the two inner coercions↓σ and↑σ are not very well defined sinceσ can
have a free variablet. This begs the question: what should↑t do ?

There are several ways to solve these two problems:

• Give up on static type arguments and force any type-variable to be dynamic. This
restriction is fairly minor in practice. It only manifests itself when a function is ma-
nipulated as data by polymorphic code, such as when a function is passed to the
identity functionid: the function returned by@id f cannot be inlined even iff is.

• Extend our language with a more powerful type-system that allows intensional type-
analysis (Harper & Morrisett, 1995). This seems possible, but would complicate the
type-system considerably and potentially the staging and the coercions as well.

• Use a dictionary-passing approach (Wadler & Blott, 1989): instead of trying to co-
erce our statict into a dynamict, we can simply always provide both versionsts
and td along with both↓t and↑t so that the coercions are constructed at the type
application site, wheret is statically known.

The first solution is simple and effective, but we opted for the third alternative because it has
fewer limitations. The static version ofΛt.m (before pairing with its dynamic counterpart)
looks like:

Λsts :s.Λstd :d.λsxt : tco.e

This means that for everyt in the SRC∆ environment, we now have two corresponding
type variablests andtd plus one value variablext which holds the two coercion functions
↓t and↑t As can be seen in Fig. 13 (which refines Fig. 10) wheretco is also defined. This
notation is used for convenience in all the figures.

Such an encoding might look convoluted and cumbersome, but type abstractions only
represent a small fraction of the total code size and the run-time code size is unaffected, so
it is a small price to pay in exchange for the ability to inline code that had to pass through
a function likeid.

20 Stefan Monnier and Zhong Shao

Theorem 5.4(Type preservation)
If ∆; Γ ` m : σ and∆; Γ ` Jm : σK =⇒⇒ ee ; E i then|∆; Γ; · | ` E i[πd

2ee] : |σ|s.

Together with the residualization theorem 4.1, this means that after specialization all the
inlinable code has been inlined away.

6 Handling the Top Level

The above presentation only explains how to translate each SRC compilation unit into its
TLC counterpart. This section describes in detail how to handle top-level issues to link
multiple compilation units together.

Handling of compilation units is not difficult, but is worth looking at not only to get
a better idea of how the code flows through the compiler, but also because the treatment
of side-effects depends on the specifics of the evaluation of each compilation unit (see
Sec. 7.1).

As can be seen in Fig. 1, we applyλ-split twice. This derives from the need to handle the
top-level of the compilation unit in a special way where splitting internal module functions
should be done early, while splitting the top-level should be done late. Here is a slightly
more detailed diagram:

sum1..n

↘
sum

↗
PRGS

stage+split−−−−−−−→ PRG1
⊕−−→ PRG2

Pe−−→ PRG3
split−−−→ PRG4

Instead of spreading the split into two parts, we could of course do it once and for all
at the very beginning, but then we would lose the opportunity to move into the export
summary copies of wrapper functions (used e.g. for uncurrying, unboxing or flattening)
introduced by the intermediate optimization phases.

Doing the split in two steps also forces us to apply the split to TLC terms (it would be
silly to have two splitting algorithms). This also motivates our choice to interleave the stag-
ing and splitting since the splitting algorithm needs to know which functions are modules
and which are not because splitting core functions is often detrimental to performance.

The top-level also gets a special treatment because of separate compilation. A compila-
tion-unit can contain free variables, which are essentially the imports of the unit. Instead
of considering such an open term, we close it by turning it into a function from its imports
to its exports. More specifically, a compilation-unit in SRC will look like:

PRGS = λ〈imp1,. . ., impn〉 :〈σ1,. . ., σn〉.m

The translation to TLC assumes that the function is static as well as the imports (these will
be import summaries, which are by essence inlinable, after all) and simply translates the
body using:

·; {impi : |σi|s | 1 ≤ i ≤ n} ` Jm : σK m⇒ e

This recursively splits each and every internal module-level function (the recursion is done
by the staging part of the translation which callsλ-split when needed, see the rules forλ

andΛ in Fig. 15), but leaves the top-level function alone. These internal splits are necessary

Inlining as Staged Computation 21

to allow inlining across module boundaries but still within a compilation unit. The program
now looks like:

PRG1 = λs〈imp1,. . ., impn〉s :〈|σ1|s,. . ., |σn|s〉s.e

The next step is to bring in copies of the import summaries. Everyimpi has a corre-
sponding summarysumi generated when that import was compiled. Summaries are theei

half of a split and thus contain free dynamic variables. So we replace eachimpi argument
with a copy ofsumi, and add the corresponding new free variablesimpij as new arguments:

PRG2 = λs〈imp11,. . ., impnk〉d :〈σ11,. . ., σnk〉d.
let imp1 = sum1

· · ·
impn = sumn

in e

After that comes the actual partial-evaluation and optimization which ends with a term
PRG3 very much likePRG2 but with an optimized bodyeo exempt of any static redex:

PRG3 = Pe(PRG2) = λs〈imp11,. . ., impnk〉d :〈σ11,. . ., σnk〉d. eo

We then pass it to the secondλ-split, along with the SRCσ output type that we remembered
from the staging phase:

∆; Γ `split JeoK
σ=⇒⇒ Ee ; ei

This split gives us a residual program and an export summarysum that will be used as a
sumi next time around:

sum = λs〈fv〉d :〈σfv〉d.ei wherefv = fv(ei)
PRG4 = λd〈imp11,. . ., impnk〉d :〈σ11,. . ., σnk〉d.Ee[〈fv〉d]

The export summarysum will be stashed somewhere to be used when a compilation unit
wants to import it. As forPRG4, it continues through the remaining compilation stages
down to machine code.

When the program is run, all the compilation units need to be instantiated in the proper
order. Once all the importsimpij of our unit have been built,PRG4 is run as follows:

〈exp, 〈fv〉d〉d = Re(@dPRG4 〈imp11,. . ., impnk〉d)

Hereexp is the original exports of this compilation unit. They will be ignored for all but
the main compilation unit (unless one of the dependent units was compiled without cross-
module inlining, in which caseexp will be used by that unit).〈fv〉d is the set of exports
generated by theλ-split and needed for all the compilation units that depend on the current
unit and hence importedsum. When running those dependent units, the current〈fv〉d will
then appear as the argumentsimpi1 . . . impik.

Note thatPRG4 will only be run once and for all whereassum will be evaluated as many
times as it is imported by dependent compilation units. Also,PRG4 is not completely
dynamic since the coercion↓σx of the sp-var rule (in Fig. 12) introduces static redexes;
we have to perform another round of partial evaluation onPRG4 before feeding it to the
backend code generator.

22 Stefan Monnier and Zhong Shao

(type) σ ::= ... | ∃bt :k.σ

(term) e ::= ... | openb v as (t, x) in e

(value) v ::= ... | packb(t = σ :k, e)

|σ1 → σ2|s = ∃st :d.〈|σ1|s
s→ t

s→ |σ2|s, |σ1|d
d→ 〈|σ2|d, t〉d〉s

↓σ1→σ2x = λdx1 : |σ1|d.opens x as (t, x) in πd
1(@

d(πs
2x) x1)

↑σ1→σ2x = packs(t = 〈〉d :d,

let xs = λsx1 : |σ1|s.λsx2 : t. ↑σ2(@dx x1)

xd = λdx3 : |σ1|d.〈@dx x3, 〈〉d〉d
in 〈xs, xd〉s)

∆; Γ ` x1 : σ2 → σ1 ∆;Γ ` x2 : σ2

∆;Γ ` J@x1 x2 : σ2K
m⇒

opens x1 as (t, x)

in let xe = @d(πs
2x) (↓σ1x2)

in @s(@s(πs
1x) x2) (πd

2xe)

∆; Γ, x :σ1 ` Jm : σ2K =⇒⇒ ee ; E i

∆;Γ ` Jλx :σ1.m : σ1 → σ2K
m⇒

packs(t = σfv :d,

let xe = λdxd : |σ1|d. let x =↑σ1xd in ee

xi = λsx : |σ1|s.λsy : t. E i[y]
in 〈xi, xe〉s)

Fig. 16. New rules using existential types.
The type, kind, and evaluation semantics should be extended correspondingly. Furthermore, the last
rule needs the typeσfv of the free variables ofei which can easily be propagated during splitting.

7 Extensions

In order to model real world inliners faithfully, our translation still needs various additions
which we have not explored in depth yet. We present some here along with other potential
extensions.

7.1 Side effects

Introducing side-effects is mostly straightforward, with just one exception: Thesp-duprule
in Fig. 12 cannot be applied to non-pure terms since it would duplicate their effects. But
reverting to thesp-sharerule (also in Fig. 12) for those side-effecting terms is not an option
either because we would then lose the completeness property that we are looking for. An
alternative is to use the followingsp-moverule that moves the binding toei instead of
merely copying it:

∆; Γ ` e1 : σ1 ∆; Γ, x :σ1 `split Je2K
σ=⇒⇒ Ee ; ei

∆; Γ `split Jlet x = e1 in e2K
σ=⇒⇒

let x1 = λdx :σ1.Ee[〈fv〉d] in • ;
let x = e1 in let 〈fv〉d = @dx1 (↓σ1x) in ei

As presented, this rule is not quite correct because the coercion↓σ1 assumesσ1 is an
SRC type butσ1 is really a TLC type. This can be easily resolved by passing all the SRC
types during the translation. Alternatively, we could represent|int|s as〈int, int〉s, then the
coercion↓ simply becomesπs

2 for all types.
A potential issue is that, as can be seen in Sec. 6, the top-levelEe is evaluated once

Inlining as Staged Computation 23

and for all in a global environment, whileei will be evaluated each time it is imported
into a client unit. This means that the top-levelei must be free of side-effects. Luckily,
we can show that this problem does not appear: the compilation unit does not contain any
static free variables or static redexes; so the only static code to split intoei is composed
exclusively of values, which have no side effects.

This sp-moverule could also be used for other purposes, such as specializing a binding
in the context of the client, as was suggested briefly in Blume and Appel’s paper (they did
not have such a rule).

Another approach altogether to the handling of side-effects is to notice that sinceei has
to be pure, we can turn@sx1 x2 into @d(@sxi x2) (πd

2(@
dxe (↓x2))) and then split out the

remaining static application which is known to be pure. We do not even need to change the
splitting algorithm itself, but just two rules in Fig. 15.

The key is that we can do this rewrite even if we do not knowx1. We simply need to
representx1 as a pair〈xi, xe〉s. But of course, this is already the case for other reasons, so
the changes are very minor.

Of course, there is a catch: the type of the free variables ofei suddenly leak into the type
of |σ1 → σ2|s which becomes an existential type.

Figure 16 shows what the rules would look like. Some of the work is now shifted from
the function definition to the function application, but overall, the complexity of terms
is not seriously impacted. Apart from the introduction of existential types, this transla-
tion variant also requires an impredicative calculus. TLC was already impredicative, so no
changes were required there.

7.2 Recursion

The TLC calculus lacks fixpoint. Adding recursive functions does not pose any conceptual
problem, except for the risk of compilation not terminating. There are several reasonable
solutions to this problem either from the inlining community or from the partial evaluation
community. The most trivial solution is to allow fixpoint on dynamic terms only, which
amounts to disallowing inlining of recursive functions, but since it can be important to
allow inlining even in the presence of recursion, one can also do a little bit of analysis to
find a conservative estimate of whether or not a risk of infinite recursion is present (Peyton
Jones & Marlow, 1999).

Recursion on types is more challenging since recursive data-structures cannot (or should
not) be coerced. In our case, however, this restriction only applies to coercions fromd to s,
so we can always work around the problematic cases by forcing recursive data-structures
to be dynamic.

7.3 Optimizations as staged computation

With a full λ-calculus available at compile-time, we can now provide facilities similar to
macros, or rather to Lisp’s compiler macros. For example, a compiler macro for multipli-
cation could test its arguments at compile time and replace the multiplication with some
other operations depending on whether or not one of the value is statically known and what

24 Stefan Monnier and Zhong Shao

value it takes. Using such a facility we could move some of the optimizations built into the
compiler into a simple library, making them easily extensible.

A more realistic use in the short term is to encode the predicate for conditional inlining
directly into the language. The current inliner allows inlining hints more subtle than the
ones present in SRC. They can express a set of conditions that should hold at the call site
in order for the call to be inlined. For example,map will only be inlined if it is applied to
a known function.

We could now strip out those ad-hoc annotations and simply writemap as a compile-
time function that intensionally analyzes its arguments and either returns a copy of its body
if the function argument is aλ-expression or returns just a call to the common version if
the argument is a variable (i.e. an escaping function).

7.4 Staging refinement

Partial evaluation as well as other optimizations will sufficiently change the shape of the
code to justify or even require refining the binding-time annotations. This can happen be-
cause a function has been optimized down to just a handful of statements, or because it has
been split into a wrapper and a main body or any other reason.

Turning a dynamic function into a static one is not very difficult to implement, but more
work needs to be done to express it cleanly within our framework.

It seems to require among other things the ability to optimize away pairs of coercions
that cancel each other out such as not only↓σ↑σx (which is trivially done by the partial
evaluator) but also↑σ↓σx which appears to involve evaluation of dynamic code at compile-
time.

7.5 Link-time optimizations

Another extension is to add multiple levels so that we can express compile-time execution,
link-time execution, run-time code generation and more.

This will require extending a calculus such asλ© (Davies, 1996) with at least some
form of polymorphism, but should not pose any real problem, except that the kind of tricks
we used to work around the lack of simple coercion for type abstraction might need to
be generalized ton-levels. If n is unbounded, it might not be possible and even if it is
bounded, it might be impractical.

Also, the use of pairs of fully-static and fully-dynamic representations of the same origi-
nal expressions would not generalize ton-levels easily, but could still be kept for the benefit
of the compile stage.

7.6 Implementation

As mentioned in the introduction, this paper was motivated by the need to better understand
the behavior of our inliner in SML/NJ. Since our implementation handles the complete
SML language in a production compiler, it has to deal with all the issues mentioned above.
Here are the most important differences between the model presented in this paper and the
actual code:

Inlining as Staged Computation 25

• For historical reasons, our intermediate language is predicative, which prevents us
from using existential packages to solve the problem of side effects. Instead we sim-
ply revert to using thesp-sharerule and lose the completeness property.

• Our language allows recursion both for dynamic and for static functions. Termina-
tion ofPe(e) is ensured by a simple conservative loop detection.

• The dynamic and static pairs we use to avoid spurious code duplication are repre-
sented in an ad-hoc way that eliminates the redundancy. This ad-hoc representation
looked like a good idea at the time, but made it unnecessarily painful to add the
refinement described in Sec. 5.3.1.

8 Related Work

Functional-language compilers such as O’Caml (Leroy, 1995), SML/NJ (Appel, 1991),
GHC (Peyton Jones & Marlow, 1999), and TIL (Tarditi, 1996), all spend great efforts
to provide better support to inlining. Although none of them models inlining as staged
computation, the heuristics for detecting what functions should be inlined are still useful
in our framework. In fact, our FLINT optimizer (Monnieret al., 1999) inherits most of the
heuristics used in the original SML/NJ compiler.

Control-flow analysis (CFA) (Shivers, 1991; Ashley, 1997) is an alternative toλ-splitting
to propagate inlining information across functions and functors. It tries to find, for example
via abstract interpretation, the set of functions possibly invoked at each call site in the
program. It offers the advantage of requiring less code duplication and may expose more
opportunities for inlining inside a compilation unit. For example, in a code such as:

let f x y = ..y x.. and g x = ... in 〈f 1 g, f 2 g〉

CFA can inline the functiong into f without inliningf whereas our inliner will only reach
the same result if it can first inline the two calls tof . On the other hand, in a code such as
f g x wheref is a functor that ends up returning its argument unchanged, our inliner will
be able to replace the code withg x, no matter howf is defined, whereas in the case of
CFA, if the definition off is sufficiently complex, a costly polyvariant analysis is needed
to discover that the code can be replaced withg x.

Partial evaluation is a very active research area. Jones et al (1993) gives a good summary
about some of the earlier results. Danvy’s paper (1996) on type-directed partial evaluation
inspired us to look into sophisticated forms of binding-time coercions.

Tempo (Consel & Nöel, 1996; Marletet al., 1999) is a C compiler that makes extensive
use of partial-evaluation technologies. Its main emphasis is however on efficient runtime
code generation. Sperber and Thiemann (1996; 1997) worked on combining compilation
with partial evaluation, however they were not concerned with modeling the inlining opti-
mization as done in a production compiler.

Nielson and Nielson (1992) gave an introduction to a two-levelλ-calculus. Davies and
Pfenning (1996) proposed to use modal logic to express staged computation. Moggi (1997)
pointed out that both of these calculi are subtly different from the two-level calculus used in
partial evaluation (Joneset al., 1993). Taha et al (Taha, 1999; Taha & Sheard, 1997; Moggi
et al., 1999) showed how to combine these different calculi into a single framework.

Our TLC calculus (see Sec. 4) is an extension of Moggi’s two-levelλ2sd calculus

26 Stefan Monnier and Zhong Shao

(Moggi, 1997) with the System-F-style polymorphism (Girard, 1972; Reynolds, 1974).
Davies (1996) used the temporal logic to model ann-level calculus which naturally ex-
tendsλ2sd.

Foster et al. (1999) proposed to use qualified types to model source-level program di-
rectives. Their framework can be applied to binding time annotations but these annotations
would have to become parts of the type specifications. Our inlining annotations on the
other hand do not change the source-level type specifications.

Blume and Appel (1997) suggestedλ-splitting to support cross module inlining. Their
algorithm is based on a weakly-typedλ-calculus and provides a convenient cross-module
inlining algorithm. Our work extends theirs by porting their algorithm to a much more
powerful language and formalizing it. By using the two-levelλ-calculus we can express
some of the inliner’s behavior in the types.

O’Caml (Leroy, 1995) collects the small inlinable functions of a module into itsapprox-
imationand then reads in this extra info (if available) when compiling a client module. It
works very well across modules and can even inline functions from within a functor to the
client of the functor, but is unable to inline the argument of a functor. For example, passing
a module through a trivial “adaptor” functor (which massages a module to adapt it to some
other signature, e.g.) will lose theapproximation, preventing inlining.

By encoding the equivalent ofapproximationsdirectly into types, Shao (1998) presents
an alternative approach which allows the full inlining information to be completely propa-
gated across functor applications by propagating it along with the types. But this comes at
the cost of a further complication of the module elaboration. Another problem is that some
of the functions we might want to inline (such as uncurry wrappers) do not yet exist at the
time of module elaboration.

Recently, Ganz et al (2001) presented an expressive, typed language that supports gener-
ative macros. The language, MacroML, is defined by an interpretation into MetaML (Taha
& Sheard, 1997). This is similar to our approach because macros can also be viewed as
inlinable functions; the translation from MacroML to MetaML resembles our translation
from the source calculus SRC to the target calculus TLC. There are, however, several ma-
jor differences. First, in MacroML, macros and functions are different language constructs;
macros never escape so they can be unconditionally marked as “static” and no coercions
or polymorphic binding-time annotations are ever needed; in our SRC calculus, however,
functions that are marked as inlinable are still treated as regular functions so they can es-
cape in any way they like. Second, it is unclear how MacroML can be extended to support
ML-style modules; MacroML assigns different types to macros and functions so export-
ing macros would require adding new forms of specifications into ML signatures; in our
SRC language, however, a function is always assigned the same type whether it is marked
as inlinable or not, so we can just reuse the existing ML module language. Third, unlike
MacroML, we presented various techniques to control code duplication—this is cruicial
for cross-module inlining since naively expanding every functor in ML would certainly
cause code explosion.

Inlining as Staged Computation 27

9 Conclusions and Future Work

Expressing inlining in terms of a staged computation allows us to better formalize the
behavior of the inliner and provide strong guarantees of what gets inlined where.

We have shown how this can be done in the context of a realistic two-level polymorphic
language and how it interacts with cross-module inlining. The formalism led us to a clean
design in which we can easily show that code is only and always duplicated when useful.

The present design eliminates run-time penalties usually imposed by the powerful ab-
straction mechanism offered by parameterized modules, enabling a more natural program-
ming style. More importantly, our algorithm provides such flexibility while still maintain-
ing separate compilation.

An interesting question is whether or not using monomorphic staging annotations was
a good choice. It seems that polymorphism could allow us to do away with the coercions,
although it would at least require the use of continuation passing style in order to maintain
precision of annotations.

Acknowledgements

We would like to thank the anonymous referees as well as Dominik Madon, Chris League,
and Walid Taha for their comments and suggestions on an early version of this paper. This
research was sponsored in part by the Defense Advanced Research Projects Agency ISO
under the title “Scaling Proof-Carrying Code to Production Compilers and Security Poli-
cies,” ARPA Order No. H559, issued under Contract No. F30602-99-1-0519, and in part
by NSF Grants CCR-9633390 and CCR-9901011. The views and conclusions contained
in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.

References

Appel, Andrew W. (1991).Compiling with continuations. Cambridge University Press. ISBN 0-
521-41695-7.

Appel, Andrew W., & MacQueen, David B. (1991). Standard ML of New Jersey.Pages 1–13 of:
Wirsing, Martin (ed),Third int’l symp. on prog. lang. implementation and logic programming.
New York: Springer-Verlag.

Asai, Kenichi. 1999 (Sept.). Binding-time analysis for both static and dynamic expressions.Pages
117–133 of: Static analysis symposium.

Ashley, Michael J. (1997). The effectiveness of flow analysis for inlining.In: (ICFP’97, 1997).

Birkedal, Lars, & Welinder, Morten. (1995). Binding-time analysis for Standard ML.Lsc, 8(3),
191–208.

Blume, Matthias. (1995).Standard ML of New Jersey compilation manager. Manual accompanying
SML/NJ software.

Blume, Matthias, & Appel, Andrew W. (1997). Lambda-splitting: A higher-order approach to cross-
module optimizations.In: (ICFP’97, 1997).

Consel, Charles. (1993). Polyvariant binding-time analysis for applicative languages.Pages 145–154
of: Symposium on partial evaluation and semantics-based program manipulation.

28 Stefan Monnier and Zhong Shao

Consel, Charles, & Nöel, Francois. (1996). A general approach for run-time specialization, and its
application to C.In: (POPL’96, 1996).

Danvy, Olivier. (1996). Type-directed partial evaluation.In: (POPL’96, 1996).

Danvy, Olivier, Malmkjær, Karoline, & Palsberg, Jens. (1996). Eta-expansion does The Trick.Trans-
actions on programming languages and systems, 8(6), 730–751.

Davies, Rowan. 1996 (July). A temporal-logic approach to binding-time analysis.Pages 184–195
of: 11th annual symposium on logic in computer science.

Davies, Rowan, & Pfenning, Frank. (1996). A modal analysis of staged computation.In: (POPL’96,
1996).

Flanagan, Cormac, Sabry, Amr, Duba, Bruce F., & Felleisen, Matthias. (1993). The essence of
compiling with continuations.Pages 237–247 of: Proc. acm sigplan ’93 conf. on prog. lang.
design and implementation. New York: ACM Press.

Foster, Jeffrey S., F̈ahndrich, Manuel, & Aiken, Alexander. (1999). A theory of qualified types.In:
(PLDI’99, 1999).

Ganz, Steve, Sabry, Amr, & Taha, Walid. (2001). Macros as multi-stage computations: Type-safe,
generative, binding macros in macroml.International conference on functional programming.
ACM Press.

Girard, J. Y. (1972). Interprétation fonctionnelle et́elimination des coupures dans l’arithmétique
d’ordre suṕerieur. Ph.D. thesis, University of Paris VII.

Glynn, Kevin, Stuckey, Peter J., Sulzmann, Martin, & Sndergaard, Harald. (2001). Boolean con-
straints for binding-time analysis.Pages 39–62 of: Program as data objects.

Harper, Bob, & Morrisett, Greg. 1995 (Jan.). Compiling polymorphism using intensional type anal-
ysis. Pages 130–141 of: Symposium on principles of programming languages.

Harper, Robert, Mitchell, John C., & Moggi, Eugenio. (1990). Higher-order modules and the phase
distinction. Pages 341–344 of: Seventeenth annual acm symp. on principles of prog. languages.
New York: ACM Press.

Henglein, Fritz, & Mossin, Christian. 1994 (Apr.). Polymorphic binding-time analysis.Pages 287–
301 of: European symposium on programming.

ICFP’97. (1997).International conference on functional programming. ACM Press.

ICFP’98. (1998).International conference on functional programming. ACM Press.

Jones, Neil D., Gomard, Carsten K., & Sestoft, Peter. (1993).Partial evaluation and automatic
program generations. Prentice Hall International.

Leroy, Xavier. 1992 (Jan.). Unboxed objects and polymorphic typing.Pages 177–188 of: Symposium
on principles of programming languages.

Leroy, Xavier. 1995 (nov).Le syst̀eme Caml Special Light: Modules et compilation efficace en Caml.
Tech. rept. 2721. Institut National de Recherche en Informatique et Automatique.

Marlet, Renaud, Consel, Charles, & Boinot, Philippe. (1999). Efficient incremental run-time special-
ization for free.In: (PLDI’99, 1999).

Milner, Robin, Tofte, Mads, Harper, Bob, & MacQueen, David B. (1997).The definition of Standard
ML revised. Cambridge, Massachusetts: MIT Press.

Minamide, Yasuhiko, & Garrigue, Jacques. (1998). On the runtime complexity of type-directed
unboxing.In: (ICFP’98, 1998).

Moggi, Eugenio. (1988).Computational lambda-calculus and monads. Tech. rept. ECS-LFCS-88-
86. University of Edinburgh.

Moggi, Eugenio. 1997 (Mar.). A categorical account of two-level languages.13th conference on the
mathematical foundations of programming semantics.

Moggi, Eugenio, Taha, Walid, Benaissa, Zine El-Abidine, & Sheard, Tim. 1999 (March). An ide-

Inlining as Staged Computation 29

alized MetaML: simpler, and more expressive.Pages 193–207 of: Proceedings of the european
symposium on programming.

Monnier, Stefan, Blume, Matthias, & Shao, Zhong. 1999 (March).Cross-functor inlining in FLINT.
Tech. rept. YALEU/DCS/TR-1189. Dept. of Computer Science, Yale University, New Haven, CT.

Nielson, Flemming, & Nielson, Hanne Riis. (1992).Two-level functional languages. New York:
Cambridge University Press.

Peyton Jones, Simon, & Marlow, Simon. 1999 (September). Secrets of the Glasgow Haskell Com-
piler inliner. Proceedings of the international workshop on implementation of declarative lan-
guages.

PLDI’96. (1996).Symposium on programming languages design and implementation. ACM Press.

PLDI’99. (1999).Symposium on programming languages design and implementation. ACM Press.

POPL’96. (1996).Symposium on principles of programming languages. ACM Press.

Reynolds, John C. (1974). Towards a theory of type structure.Pages 408–425 of: Proceedings,
colloque sur la programmation, lecture notes in computer science, volume 19. Springer-Verlag,
Berlin.

Saha, Bratin, & Shao, Zhong. 1998 (Mar.). Optimal type lifting.International workshop on types in
compilation.

Shao, Zhong. (1997a). Flexible representation analysis.In: (ICFP’97, 1997).

Shao, Zhong. (1997b). An overview of the FLINT/ML compiler.Proc. 1997 acm sigplan workshop
on types in compilation. Published as Boston College Computer Science Dept. Technical Report
BCCS-97-03.

Shao, Zhong. (1998). Typed cross-module compilation.Pages 141–152 of: Proc. 1998 acm sigplan
international conference on functional programming. ACM Press.

Shao, Zhong. (1999). Transparent modules with fully syntactic signatures.Pages 220–232 of: Proc.
1999 acm sigplan international conference on functional programming (icfp’99). ACM Press.

Shao, Zhong, League, Christopher, & Monnier, Stefan. (1998). Implementing typed intermediate
languages.Pages 313–323 of: Proc. 1998 acm sigplan international conference on functional
programming (icfp’98). ACM Press.

Shivers, Olin. 1991 (May).Control-flow analysis of higher-order languages. Ph.D. thesis, Carnegie
Mellon University. CMU-CS-91-145.

Sperber, Michael, & Thiemann, Peter. (1996). Realistic compilation by partial evaluation.In:
(PLDI’96, 1996).

Sperber, Michael, & Thiemann, Peter. (1997). Two for the price of one: Composing partial eval-
uation and compilation.Pages 215–225 of: Symposium on programming languages design and
implementation. ACM Press.

Taha, Walid. 1999 (November).Multi-stage programming: Its theory and applications. Ph.D. thesis,
Oregon Graduate Institute, Beaverton, Oregon.

Taha, Walid, & Sheard, Tim. 1997 (June). Multi-stage programming with explicit annotations.Pages
203–217 of: Symposium on partial evaluation and semantics-based program manipulation.

Tarditi, David. 1996 (Dec.).Design and implementation of code optimizations for a type-directed
compiler for standard ml. Ph.D. thesis, Carnegie Mellon University. CMU-CS-97-108.

Wadler, Philip, & Blott, Stephen. 1989 (Jan.). How to make ad-hoc polymorphism less ad hoc.
Symposium on principles of programming languages.

