
A Simple Model for Certifying Assembly Programs
with First-Class Function Pointers

Wei Wang† Zhong Shao‡ Xinyu Jiang† Yu Guo†
†School of Computer Science and Technology ‡Department of Computer Science

University of Science and Technology of China Yale University
Hefei, Anhui 230026, China New Haven, CT 06520-8285, U.S.A

{wqsh, wewewe}@mail.ustc.edu.cn guoyu@ustc.edu.cn zhong.shao@yale.edu

Abstract—First-class function pointers are common in low-level
assembly languages. Higher-level features such as closures, vir-
tual functions, and call-backs are all compiled down to assembly
code with function pointers. Function pointers are, however, hard
to reason about. Previous program logics for certifying assembly
programs either do not support first-class function pointers,
or follow Continuation-Passing-Style reasoning which does not
provide the same partial correctness guarantee as in high-level
languages. In this paper, we present a simple semantic model for
certifying the partial correctness property of assembly programs
with first-class function pointers. Our model does not require any
complex domain-theoretical construction, instead, it is based on
a novel step-indexed, direct-style operational semantics for our
assembly language. From the model, we derive a new program
logic named ISCAP (or Indexed SCAP). We use an example to
demonstrate the power and simplicity of ISCAP. The semantic
model, the ISCAP logic, and the soundness proofs have been
implemented in the Coq proof assistant.

I. INTRODUCTION

Low-level languages such as C and assembly do not have
a rich type system to describe whether a function pointer
indeed points to a valid block of code satisfying a desirable
specification. Previous work on Foundational Proof-Carrying
Code (FPCC) [1]–[3], Typed Assembly Languages (TAL) [4],
and Certified Assembly Programming with Embedded Code
Pointers (XCAP) [5] can support first-class code pointers but
only by rewriting all programs into Continuation-Passing Style
(CPS) [6]. Under CPS, function returns are viewed as indirect
calls to continuation functions. For example, in the following
skeletal assembly program,

movi r, foo | bar : −{spec0}
jmp bar | 〈∗ ∗ CodeA ∗ ∗〉
. . . | callr r

foo : −{spec1} | −{spec2}〈∗ ∗ CodeB ∗ ∗〉 | 〈∗ ∗ CodeC ∗ ∗〉
ret | ret∗

CodeA : the code which saves the return address
CodeB : the code which requires the condition that r1 > 0

and decreases r1 by one
CodeC : the code which requires nothing and increments r1 by one
ret∗ : the code after the ret requires r1 < 2

the function pointer foo was moved into register r and then
invoked inside the bar function. Under CPS-based systems,
each function, continuation, or program point can be certified
using a single state predicate (similar to a pre-condition in

Hoare logic [7]); because a call to function or continuation
never returns, no post-condition is necessary. The above as-
sembly programs can be specified as follows:

spec0 � cptr(r, spec1) ∧ cptr(ra, r1 < 2) ∧ r1 = 1

spec1 � cptr(ra, r1 < 1) ∧ r1 = 1 ∧ . . .

spec2 � r1 < 1 ∧ cptr(ra, r1 < 2)

Here cptr(r, p) means that r contains a code pointer with pre-
condition p; and ra denotes the return address register. The pre-
condition of bar, i.e., spec0, needs to worry about the safety
of calling function foo and all the code after bar returns.
The pre-condition of foo not only ensures that the value in
r1 is positive, but the safety of all the code executed after
the function foo returns. Note that in spec1 the information
about the return address of bar is also needed (though we
have omitted it here).

CPS-style reasoning makes the underlying language more
uniform, but it obscures high-level program structures. From
the specifications above, one cannot tell when a code pointer
is a continuation and when a function actually returns. It is
difficult to certify large software using CPS-style reasoning.

In this paper, we present a new program logic, named
ISCAP (or Indexed SCAP [8]), for reasoning about the partial
correctness property of assembly programs with first-class
function pointers. We show how to certify unstructured as-
sembly programs without resorting to CPS-based reasoning,
so function abstraction is still preserved. We achieve this by
combining a novel direct-style mixed-step operational seman-
tics (for assembly programs) with step-indexing [1]. We show
how our techniques can be used to build a simple semantic
model for first-class function pointers. Under ISCAP, each
assembly code block is specified with a pre-condition p and a
post-condition g; here p ensures the safe execution from the
current program point to the end of the underlying function;
and g specifies how the program state changes from the current
program point to the end of the current function. Under ISCAP,
the specifications for the example above would be as follows:

spec0 � (fptr(r, spec1) ∧ r1 > 0, r′1 = r1)

spec1 � (r1 > 0, r′1 = r1 − 1 ∧ ra′ = ra)

spec2 � (True, r′1 = r1 + 1)

Here, the assertions before the commas are pre-conditions and
the ones after the commas are post-conditions. In all post-

2011 Fifth IEEE International Conference on Theoretical Aspects of Software Engineering

978-0-7695-4506-6/11 $26.00 © 2011 IEEE

DOI 10.1109/TASE.2011.16

125

conditions, r denotes the value in register r of the starting
states (the current point) and r ′ denotes the value in register
r of the ending states (the point when the current function
returns). The pre-condition of spec0 says that the function bar
will execute safely if the value in r1 is positive and r contains
a function pointer with specification spec1. The post-condition
of bar ensures that the value in r1 will not be changed. The
specification spec1 says that foo will execute safely if r1 is
positive, and it will decrease r1 by one and keeps the return
address register ra unchanged. The specification spec2 says
that the code CodeC will execute safely and it will increment
r1 by one. Note that the specifications for bar and foo do not
need to worry about any code executed after the (function)
return. The specifications are more intuitive and follow the
high-level function abstraction.

Our paper makes the following new contributions:

• We present a new program logic ISCAP that supports
modular verification of the partial correctness property
for assembly programs with first-class function pointers.
Previous work on SCAP [8] also supports direct-style rea-
soning of function call and return in assembly languages,
but it does not support first-class function pointers.

• In Hoare-style logics [7], [9], partial correctness of a
program with pre-condition p and post-condition q guar-
antees that under any state satisfying p, the program
can execute safely without fault, and if the program
terminates, the ending state will satisfy q. Under CPS-
based reasoning [1], [2], [4], [5], the assembly code
has no notion of “finishing”; partial correctness here
only guarantees that if the “post-condition” (i.e., the
pre-condition for the return continuation) specifies a
safe return point then the pre-condition also specifies a
safe program point. Our system fixes this limitation by
introducing direct-style mixed-step operational semantics.
More specifically, we give function call a big-step seman-
tics but this semantics is based on the small-step machine-
level semantics so the partial correctness property we
prove is indeed designed for the assembly language itself,
not any high-level extension. We also use a binary state
relation—an action—as the post-condition which avoids
the use of auxiliary variables [8].

• Our new program logic is proven sound using a simple se-
mantic model built on top of our operational semantics. It
does not require any domain-theoretical construction [10],
[11]. A key technical challenge, which we solve in this
paper, is to decide how to apply step-indexing tech-
niques [1] to define the semantics of actions. Each action
(or post-condition) specifies two states and it is unclear
how many index arguments it should take. We show that
only one index (for the ending state) is necessary to build
a powerful and sound semantic model.

• We have implemented our ISCAP logic and proved its
soundness in the Coq proof assistant [12]. Following
previous CAP-like logics [13], we use shallow embedding
to define our assertion languages (i.e., both pre- and post-

(World) W ::= (C, S, pc)

(CHeap) C ∈ Label ⇀fin Instr

(Instr) c ::= sc | bc | jmp f | ret
(SInstr) sc ::= add r, r, r | multi r, r, z

| lw r, z(r) | sw z(r), r
| mov r, r | movi r, z
| call f | callr r
| alloc r, n | free r, n

(BInstr) bc ::= bgtz r, f | . . .
(State) S ∈ Res ⇀fin Value

(Res) s ::= r | l
(Reg) r ::= rv | ra | ai | si | ti | rz

(Value) v ::= z(integers)

(Addr) l ::= n(natural numbers)

(Label) f, pc ::= n(natural numbers)

Fig. 1. Syntax of the machine

conditions are just Coq predicates). The soundness of
ISCAP is proven following a pure semantic approach:
all the inference rules for ISCAP are proven as lemmas
based on their semantic definitions so the program logic
is more extensible.

In the rest of this paper, we first present our machine model
and its operational semantics in Sec. II. We define the assertion
language, the inference rules of ISCAP, and the underlying
semantic model in Sec. III. We show how to apply ISCAP
to certify first-class function pointers using an example in
Sec. IV. Finally, we describe related work and conclude.

II. THE MACHINE MODEL

In this section, we first present an assembly-level machine
model and its small-step operational semantics, both of which
are easily adaptable to the MIPS or X86 architecture. We then
extend the semantics with step-indexing and present a direct-
style mixed-step operation semantics that can be used to reason
about the partial correctness of first-class function pointers.

A. The Raw Machine with its Small-Step Semantics

Fig. 1 provides the syntax of our raw machine. A machine
world consists of a code heap, a machine-storage state, and
a program counter. The code heap is a partial mapping from
code pointers to instructions. Since we do not consider self-
modifying code, we abstract the code heap out of the machine
storage. The program counter, which is a code label, always
points to the current execution point. We have sequential
instructions, branch instructions, direct jumps, and function
return instructions. The sequential instructions include move,
arithmetic, memory allocation and free, and (direct and in-
direct) function call instructions. The machine storage is
modeled as a partial mapping from resources to values, while
resources contain registers and memory addresses. We treat
registers as resources, following the variables-as-resources
approach [14]. For simplicity, we name registers based on how
they are used; we will use the following naming conventions
in the rest of this paper:

126

if C(pc) = (C, S, pc) �−→ when

call f (C, S{ra ↪→pc + 1}, f) ra ∈ dom(S)

callr r (C, S{ra ↪→pc + 1}, S(r)) {ra, r} ∈ dom(S)

jmp f (C, S, f)

ret (C, S, S(ra)) ra ∈ dom(S)

bgtz r, f (C, S, f) S(r) > 0
(C, S, pc + 1) S(r) ≤ 0

other sc (C, S′, pc + 1) ReqSsc S and NextSsc S S
′

where

if sc = NextSsc S S
′ where S

′ = ReqSsc S =

multi r, r1, z S{r ↪→S(r1)× z} {r, r1} ∈ dom(S)

add r, r1, r2 S{r ↪→S(r1) + S(r2)} {r, r1, r2} ∈ dom(S)

mov r, r1 S{r ↪→S(r1)} {r, r1} ∈ dom(S)

movi r, z S{r ↪→z} r ∈ dom(S)

sw z(r), r1 S{S(r) + z ↪→S(r1)} {r, r1, S(r) + z} ∈ dom(S)

lw r, z(r1) S{r ↪→S(S(r1) + z)} {r, r1, S(r1) + z} ∈ dom(S)

alloc r, n S{r ↪→ l}
 {l � , . . . , l + n− 1� } r ∈ dom(S)

free r, n S0 when S = S0
 {l � , . . . , l + n− 1� } {r, l, . . . , l + n− 1} ∈ dom(S)

Fig. 2. Small step semantics

rv return value ra return address
a0, a1, . . . arguments s0, s1, . . . callee saved
t0, t1, . . . caller saved rz always zero

In Fig. 2 we define a small-step semantics for our machine.
Here dom(S) is a set of all the domain resources of S. We use
S{s ↪→v} to denote the new state by remapping s of S to v
while keeping others unchanged. A state {s1 � v1, . . . , sn �
vn} has domain {s1, . . . , sn} and it maps si to vi. We use
S1 ⊥ S2 to mean the domain of S1 and S2 are disjoint. We
define that S1 � S2 is the disjoint union of S1 and S2. It is
defined only when the domain of the two states are disjoint.

S1⊥S2 � dom(S1) ∩ dom(S2) = ∅

S1
 S2 =

{
S1 ∪ S2, if S1⊥ S2

undefined, otherwise

For those sequential instructions that are not function calls,
we define NextS and ReqS for each of them. The predicate
ReqSsc describes the state requirement for the safe execution
of the instruction sc; the action NextSsc defines how sc
changes the state.

B. Indexed Machine and Direct-Style Operational Semantics

We borrow the idea of step-indexing [1], [15] and define a
step-indexed assembly machine to approximate the behavior
of programs that may contain infinite loops. In this paper, to
make our semantics clearer, we directly introduce a step index
into the machine world. We use W̄ to denote a machine world
with an index to create an indexed machine world.

(IWorld) W̄ ::= (W, i)

(Index) i, j ::= n(natural numbers)

One way to understand the step index is to view it as the
number of tokens we have available in order to keep the
machine running. Each machine step will cost one token, so
the step index is decremented at each step. Since we do not

C(pc) �∈ {call, callr} (C, S, pc) �−→ (C, S′, pc′)

((C, S, pc), i + 1)↓((C,S′, pc′), i)

C(pc) = call f ((C, S{ra ↪→pc + 1}, f), i)⇓W̄

((C, S, pc), i + 1)↓W̄

C(pc) = callr r ((C, S{ra ↪→pc + 1}, S(r)), i)⇓W̄

((C, S, pc), i + 1)↓W̄

C(pc) �= ret ((C, S, pc), i)↓W̄
′

W̄
′⇓W̄

((C, S, pc), i)⇓W̄

C(pc) = ret ((C, S, pc), i)↓W̄

((C, S, pc), i)⇓W̄

Fig. 3. Direct-style mixed-step operational semantics

ISafe(W, 0) FSafe(W, 0)

C(pc) �∈ {call, callr} ∃W̄. ((C, S, pc), i)↓W̄

ISafe((C, S, pc), i)

C(pc) = call f W̄ = ((C, S{ra ↪→pc + 1}, f), i)

FSafe(W̄) ∀W̄
′. W̄ ⇓ W̄

′ → W̄
′.pc = pc + 1

ISafe((C, S, pc), i + 1)

C(pc) = callr r W̄ = ((C, S{ra ↪→pc + 1}, S(r)), i)

FSafe(W̄) ∀W̄
′. W̄ ⇓ W̄

′ → W̄
′.pc = pc + 1

ISafe((C, S, pc), i + 1)

C(pc) �= ret ISafe((C,S, pc), i)

∀W̄. ((C, S, pc), i)↓W̄ → FSafe(W̄)

FSafe((C,S, pc), i)

C(pc) = ret ISafe((C, S, pc), i)

FSafe((C,S, pc), i)

Fig. 4. Safe indexed worlds for sequential instructions or functions

127

care about how the machine behaves after the index becomes
0, we treat the world with index 0 as a safe world.

Executing a machine-level program is always done on a per-
instruction basis. An assembly program, however, does contain
some structure. We define a code block I as a list of instruc-
tions ending with a direct jump or a return (implemented as
an indirect jump to a specific return address register ra).

I ::= sc; I | bc; I | jmp f | ret
Each assembly program is divided into a number of code

blocks. Each code block can transfer control to other code
blocks by executing a function call, return, branch, or direct
jump instruction. Given an address label in the code heap, we
can extract a code block starting from that label by using the
following definition:

cb(C, f) �
{

C(f) if C(f) ∈ {jmp,ret}
C(f); cb(C, f + 1) otherwise

A function definition in an assembly language often consists
of a set of code blocks. Function pointers are no different from
regular address labels.

To reason about the partial correctness property of
assembly-level functions, we introduce a new direct-style
mixed-step operational semantics in Fig. 3. This new semantics
is built on top of the small-step semantics of our indexed
machine. Here W̄↓ W̄

′ denotes that starting from an indexed
world W̄, executing the current instruction may result in W̄′.
Note, here, executing a function call instruction also includes
the complete execution of the called function.

The judgment W̄⇓W̄′ denotes that starting from an indexed
world W̄, finishing the execution of the rest of the current
function may lead to W̄′. Other than the return instruction,
everything else (including the branch and direct jump instruc-
tions) follows the big-step semantics; a function body finishes
its execution until it returns.

We define ISafe(W̄) to mean that W̄ is safe to execute the
current instruction and FSafe(W̄) to mean that W̄ is safe to
execute the rest of the current function. The formal definition
is in Fig. 4. The definitions are defined inductively based
on the step index. As assumed, any world with a 0 index
is safe. Note that an indexed world is safe to execute a call
instruction if it is safe to execute the instruction together with
the function that it calls, and furthermore, the called function,
if terminates, should return correctly to the program point
immediately following the call instruction.

III. THE ISCAP PROGRAM LOGIC AND ITS MODEL

In this section, we introduce our new ISCAP program logic
and its underlying semantic model. The soundness of ISCAP
has been proven in the Coq proof assistant [16]. For this paper,
we will directly use the calculus of inductive constructions
(CiC) [16] as our meta logic. We will use the following syntax
to denote terms and predicates in the meta logic :

(Term) A, B � Set | Prop | Type
| x | λx : A. B | A B | A → B | . . .

(Prop) P, Q � True | False | ¬P | P ∧Q | P ∨Q
| P → Q | ∀x : A. P | ∃ x : A. P | . . .

p

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r > 0 � λC, S, i. S(r) > 0

s �→v � λC, S, i. dom(S) = {s} ∧ S(s) = v

�ReqSsc� � λC, S, i. ReqSsc S

p1 ∧ p2 � λC, S, i. p1 C S i ∧ p2 C S i

p1 ∨ p2 � λC, S, i. p1 C S i ∨ p2 C S i

p � g � λC, S, i. ∃S0. p C S0 i ∧ g C S0 S i

p1 ∗ p2 � λC, S, i. ∃S1, S2.
S = S1
 S2 ∧ p1 C S1 i ∧ p2 C S2 i

g

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�NextSsc� � λC, S,S′, i. NextSsc S S
′

[p] � λC, S,S′, i. S = S
′ ∧ p C S i

p1 �� p2 � λC, S,S′, i. p1 C S i ∧ p2 C S
′ i

g1 ∧ g2 � λC, S,S′, i. g1 C S S
′ i ∧ g2 C S S

′ i

g1 ∨ g2 � λC, S,S′, i. g1 C S S
′ i ∨ g2 C S S

′ i

g1 ◦ g2 � λC, S,S′, i. ∃ S0. g1 C S S0 i ∧ g2 C S0 S
′ i

g1 ∗ g2 � λC, S,S′, i. ∃ S1, S2, S
′
1, S

′
2.

S = S1
 S2 ∧ S
′ = S

′
1
 S

′
2

∧g1 C S1 S
′
1 i ∧ g2 C S2 S

′
2 i

P

{
p1 ⇒ p2 � ∀C, S, i. p1 C S i→ p2 C S i

g1 ⇒ g2 � ∀C, S,S′, i. g1 C S S
′ i→ g2 C S S

′ i

Fig. 5. Assertions, operators and relations

A. Assertions

We first define the two types of assertions used in our
logic: predicates and actions. A predicate is used to specify a
machine state and an action is used to specify the relationship
between two machine states. Both kinds of assertions are
dependent on the code heap and the step index, which are
important for specifying first-class code pointers.

(Pred) p, q ∈ CHeap → State → Index → Prop

(Act) g ∈ CHeap → State → State → Index → Prop

The first state argument of an action denotes the starting
state; the second one its ending state. Note that in each action,
we specify two states but only one index. This choice is critical
to our semantic model. Intuitively, each such action specifies
a postcondition, so it does not require any step index for its
starting state.

In Fig. 5, we define some special assertions, assertion
operators, and assertion relations. The first set of definitions
are predicates. The following set of definitions are all actions.
The last two are assertion relations. For ease of presentation,
we often use r to refer to the value stored in register r in many
assertion definitions; for example, r > 0 means that the state
stores a positive value in register r. We can similarly define
other boolean expression predicates. We lift ∧ and ∨ from
meta logic to assertions. p � g specifies the ending states of
action g starting from states satisfying p, with the same code
heap and index. We also define the separation conjunction
for predicates and actions. [p] shows an action with the same
starting and ending states, which satisfy p. The action g 1 ◦ g2

composes two actions into one. The last two relations are
implication of assertions.

128

Ψ |={p} sc {g} (Well-Specified Sequential Instructions)

〈p〉 � p ∗ (ra �→) 〈g〉 � g ∗ (ra �→ �� ra �→) 〈(p, g)〉 � (p ∗ (ra �→), g ∗ [ra �→])

Ψ(f) = 〈(p, g)〉
Ψ |={〈p〉} call f {〈g〉} (CALL)

Ψ |={〈p〉 ∧ fptr(r, 〈(p, g)〉)} callr r {〈g〉} (CALLR)
sc �∈ {call, callr}

Ψ |={�ReqSsc�} sc {�NextSsc�} (SC)

Ψ |={p1} sc {g1} p ⇒ p1 g1 ⇒ g

Ψ |={p} sc {g} (WEAK-I)
Ψ |={p} sc {g}

Ψ |={p ∗ q} sc {g ∗ [q]} (FRAME-I)
Ψ |={fptr(f, Ψ(f)) ∧ p} sc {g}

Ψ |={p} sc {g} (FP-I)

Ψ |={p} I {g} (Well-Specified Functions)

Ψ |={p} sc {g} Ψ |={p1} I {g1} p � g ⇒ p1

Ψ |={p} sc; I {g ◦ g1}
(SEQ)

Ψ |={p1} I {g1} p ⇒ p1 g1 ⇒ g

Ψ |={p} I {g} (WEAK-F)

Ψ |={p} I {g} Ψ(f) = (p1, g1)

Ψ |={(r ≤ 0 ∧ p) ∨ (r > 0 ∧ p1)} bgtz r, f ; I {g ∨ g1}
(BGTZ)

Ψ |={ra �→ } ret {[ra �→]} (RET)

Ψ(f) = (p, g)

Ψ |={p} jmp f {g} (JMP)
Ψ |={fptr(f, Ψ(f)) ∧ p} I {g}

Ψ |={p} I {g} (FP-F)
Ψ |={p} I {g}

Ψ |={p ∗ q} I {g ∗ [q]} (FRAME-F)

Ψ |=C : Ψ1 (Well-Specified Code Heaps)

Ψ |={p} cb(C, f) {g}
Ψ |=C : {f � (p, g)} (SGLTON)

Ψ1 |=C1 : Ψ3 Ψ2 |=C2 : Ψ4

Ψ1 ⊕Ψ2 |=C1 ⊕ C2 : Ψ3 ⊕Ψ4
(LINK)

|={p} (C, f) {g} (Well-Specified Program)

Ψ |=C : Ψ Ψ |={p} cb(C, f) {g}
|={p} (C, f) {g} (PROG)

Fig. 6. ISCAP Inference rules

B. Assertion Pairs as Specifications

We use a predicate as the pre-condition of a program point
and an action to specify how a program will behave. If p
can guarantee the safety of a sequential instruction sc and the
behavior of sc satisfies g, we say (p, g) covers the sequential
instruction sc.

Definition 1 The formal definition of (p, g) covers sc under
the code heap C for i steps ((p, g) ∝(C,i) sc):

∀j < i. ∀S, pc. p C S j ∧ C(pc) = sc→ ISafe((C, S, j), pc)

∧(∀S
′, j′, pc′. ((C, S, j), pc)↓((C, S′, j′), pc′)→ g C S S

′ j′)

For example, (�ReqSsc�, �NextSsc�) covers the instruction
sc if it is not a function call.

We want to define that an assertion pair covers a function
call in the same way. However, we cannot define structurally
a function from the unstructured assembly programs, so we
use structure I to denote the function body from block I

to the end(s) of the current function. This is different from
traditional systems, which use code blocks I to stand for the
whole continuation starting from block I. From now on, when
we say an assertion pair covers a code block, we really mean
it covers its underlying function.

Definition 2 The formal definition of (p, g) covers I under the
code heap C for i steps ((p, g) ∝(C,i) I):

∀j < i. ∀S, pc. p C S j ∧ cb(C, pc) = I → FSafe((C, S, j), pc)

∧(∀S
′, j′, pc′. ((C, S, j), pc)⇓ ((C,S′, j′), pc′) → g C S S

′ j′)

C. Function Pointer Assertions and Well-Formed Assertions
In our machine model, function pointers may be stored in

any part of a state. We use the following assertion to specify
a first-class function pointer:

fptr(f, (p, g)) � λC, S, i. (p, g) ∝(C,i) cb(C, f)

fptr(r, (p, g)) � λC, S, i. (p, g) ∝(C,i) cb(C, S(r))

It means that (p, g) can cover the function pointed by f (or
r of state S) for i steps under code heap C. Only well-formed
assertions (defined below) are allowed in our program logic.

Definition 3 Well-formed assertions are monotonic on the
index:

wf(p) � ∀C, S, i ≤ j. p C S j → p C S i

wf(g) � ∀C, S,S′, i ≤ j. g C S S
′ j → g C S S

′ i

Ill-formed assertions like λC, S, i. i > 3, are meaningless for
reasoning about the safety properties of programs.

Lemma 1 About well-formed assertions:
• those special assertions defined in Fig. 5 are well-formed;
• function pointer assertions are well-formed;
• well-formedness is preserved by the operators defined in

Fig. 5.

129

D. ISCAP Inference Rules

Fig. 6 shows the inference rules of our new program logic
ISCAP. We have four sets of rules for four kinds of rule
judgments. Ψ is the specification for code heap. It is a partial
mapping from code pointers to assertion pairs.

(CHSpec) Ψ ∈ Label ⇀fin Pred × Act

We use code heap specifications to cover code heaps. A code
heap specification Ψ covers a code heap C for i steps under
another code heap C0 (denoted as Ψ ∝(C0,i) C) if and only if
for any code pointer f in domain of Ψ, Ψ(f) covers cb(C, f)
for i steps under the code heap C0.

The first set contains rules for sequential instructions. Judge-
ment Ψ |={p} sc {g} means that if for any code heap C and
index i, Ψ covers C for i steps under C, then (p, g) covers sc
for i + 1 steps under C.

∀C, i. Ψ ∝(C,i) C → (p, g) ∝(C,i+1) sc

Rule CALL is for direct function calls and Rule CALLR is
for indirect function calls. Rule SC is for other sequential in-
structions. We also have weakening rule WEAK-I and ordinary
frame rule FRAME-I for well-specified sequential instructions.
FP-I is used to introduce function pointer assertions when we
know the exact values of the function pointers.

The following set contains rules for well-specified functions.
Judgement Ψ |={p} I {g} means that if for any code heap C

and index i, Ψ covers C for i steps under C, then (p, g) covers
I for i + 1 steps under C.

∀C, i. Ψ ∝(C,i) C → (p, g) ∝(C,i+1) I

Rules SEQ, BGTZ, JMP and RET follow the syntax of the
code blocks. Because an assertion only covers a program to
the return point (of the current function), the pre-condition for
the return instruction only need to guarantee that the return
address register is in domain of the state, ignoring the future
execution after the function return. We also have weakening
rule WEAK-F, ordinary frame rule FRAME-F and introduction
rule of function pointer assertion FP-F.

The third set contains rules for well-specified code heaps.
Judgment Ψ |=C : Ψ0 means that for any global code heap
C0 and index i, if Ψ covers C0 for i steps under C0, then Ψ0

covers the local code heap C for i+1 steps under C0. Global
code heap contains all the function code which the local code
heap may call.

∀C0, i. Ψ ∝(C0,i) C0 → Ψ ∝(C0,i+1) C

Rule SGLTON is used for generating the specification for the
singleton local code heap. Rule LINK is for linking two local
code heaps. ⊕ is the harmonious merge operator for partial
mappings. The result partial mapping is only defined when the
two small mappings do not conflict with each other. C1 ⊕C2

is formally defined as:

λf.

⎧⎪⎨
⎪⎩

c, if C1(f) = C2(f) = c
C1(f), if f ∈ dom(C1) ∧ f �∈ dom(C2)
C2(f), if f �∈ dom(C1) ∧ f ∈ dom(C2)
undefined, otherwise.

Ψ1 ⊕ Ψ2 is defined similarly.
We can show that when the local code heap specification is

equal to the global code heap specification, we get a global
code heap specification which can cover the global code heap
for any steps. This is the key lemma of the whole system.
It shows how the indexed semantics works and how the code
pointer circularity is broken. The proof is omitted here but can
be found in our Coq implementation [12].

Lemma 2 If Ψ |=C : Ψ, then ∀i. Ψ ∝(C,i) C. (With the
implicit assumption that all assertions in Ψ are well-formed)

The last rule is the top rule. Judgement |={p} (C, f) {g} is
the final goal we want to prove. It means that (p, g) can cover
function pointed by f for any steps under code heap C.

∀i. (p, g) ∝(C,i) cb(C, f)

Theorem 1 (Soundness) All rules in Fig. 6 are valid based
on their semantic definitions.

Now let’s show what we get by the top rule with a corollary.

Corollary 1 (Partial Correctness) If |={p} (C, f) {g}, then
for any state S satisfying ∀i. p C S i, it is safe to execute
the function pointed by f and when the function returns, the
ending state S′ should satisfy ∀i. g C S S′ i.

It is easy to see that this property is the traditional partial
correctness based on functions. It is stronger than the simple
safety properties proven in the existing logic systems for
certification of assembly programs [1]–[5].

IV. AN EXAMPLE

Fig. 7 shows a function testing whether virtual functions in
C++ are called correctly. Its assembly implementation is in
Fig. 8. We use identifiers to denote different code labels for
clarity. Each object of a class contains a series of memory
cells. The first cell contains the starting address of its virtual
function list. The rest of the memory cells contain its member
variables. All member functions of an object have an implicit
argument which points to the object itself (which is the starting
address of its series of memory cells). The function pcirc is
the virtual function circ of the class Polygon and scirc
of the class Square. The constructor for class Polygon is
pcons which stores the virtual function pointer pcirc in the
first memory cell of the new object. The constructor for class
Square is scons which first calls the constructor of its parent
class. Then scons stores the virtual function pointer scirc
in the first memory cell of the new object and initializes the
variable member e which is stored in the second memory cell.
In the test function, it creates an object of class Square and
initializes its edge by its argument. Then it calls the circ
function of that object by first finding the virtual list and then
getting the corresponding function pointer from the virtual list.
Since the constructor function and the circ function for class
Triangle is not used here, we do not list them in the figure.

130

class Polygon{
public:
virtual int circ() {return 0;}

};

class Triangle : public Polygon {
int e1,e2,e3;

public:
Triangle(int a1, int a2, int a3)

{e1 = a1; e2 = a2; e3 = a3;}
int circ() {return (e1 + e2 + e3);}

};

class Square : public Polygon {
int e;

public:
Square(int a) {e = a;}
int circ() {return (4 * e);}

};

int test(int x){
Polygon *p = new Square(x);
return (p->circ());

}

Fig. 7. Virtual functions in C++

The specifications are given in Fig. 9. Note that in order
to show how the function pointer is used, we also show the
assertion pair (p4, g4) at the point where the circ function is
called in the function test. (p4, g4) covers the function body
with three instructions: an indirect call to the “circ”, the move
instruction and the return instruction, which can be proven
easily following the rules given in Fig. 6. The predicate p4

contains a function pointer assertion since the actual value
of register t0 is unknown. The pre-condition p for the whole
test function does not contain any function pointer assertion,
since the exact pointer value scirc is known from the post
condition of function scons. From p to p4, the function pointer
assertion is introduced using the rule FP-F.

We can prove the following theorem.

Theorem 2 The function test is well-specified by (p, g):

|={p} (C, test) {g}
in which p, g and C are shown in Fig. 8 and Fig. 9.

Note that the code heap and the index are not referred in p or
g, which means the traditional partial correctness of function
test is proven here using our program logic.

V. RELATED WORK AND CONCLUSIONS

The original SCAP program logic [8] was designed to
support modular verification of assembly programs with stack-
based control abstractions. Unlike the CPS-based XCAP
logic [5], SCAP does not treat return address as first-class
continuation pointers. Instead, it maintains an implicit stack
invariant, ensuring that each enclosing function has a safe re-
turn point. SCAP does not support first-class function pointers.
Combining SCAP and XCAP would lead to a program logic
that supports embedded code pointers [17], but it is unclear

pcirc : −{(p0, g0)} ; circ() of class Polygon
ret

pcons : −{(p1, g1)} ; constructor of Polygon
movi t0, pvlist ; virtual list of Polygon
sw 0(a0), t0
ret

scirc : −{(p2, g2)} ; circ() of class Square
lw rv, 1(a0) ; load length of edge e
multi rv, rv, 4 ; 4× e
ret

scons : −{(p3, g3)} ; constructor of Square
mov s1, ra ; save return address
call pcons ; call pcons first
movi t0, svlist ; virtual list of Square
sw 0(a0), t0
sw 1(a0), a1 ; assign length of edge e
mov ra, s1 ;resume return address
ret

test : −{(p, g)}
mov s0, ra ; save return address
movi a1, a0 ; initial edge length
alloc a0, 2 ; memory for new object
call scons ; create Square object
lw t0, 0(a0) ; load the address of vlist
lw t0, 0(t0) ; dynamically address circ()
−{(p4, g4)}
callr t0 ; call circ()
mov ra, s0 ; resume return address
ret

pvlist : pcirc ; vlist of Polygon
svlist : scirc ; vlist of Square

Fig. 8. Assembly implementation for the example

p0 � ra �→
g0 � [ra �→]

p1 � ∃ l. ra �→ ∗ t0 �→ ∗ (a0 �→ l) ∗ (l �→)

g1 � ∃ l. [(a0 �→ l) ∗ (ra �→)]
∗((l �→ ∗ t0 �→) �� (l �→pvlist ∗ t0 �→))

p2 � ∃ l. ra �→ ∗ rv �→ ∗ a0 �→ l ∗ (l + 1 �→)

g2 � ∃ l, v. [ra �→ ∗ a0 �→ l ∗ (l + 1 �→v)]
∗(rv �→ �� (rv �→4 × v))

p3 � ∃ l. a1 �→ ∗ ra �→ ∗ t0 �→ ∗ s1 �→ ∗ a0 �→ l
∗l �→ ∗ (l + 1 �→)

g3 � ∃ l, v. [ra �→ ∗ a0 �→ l ∗ a1 �→v]
∗(l �→ ∗ (l + 1 �→) �� l �→svlist ∗ (l + 1 �→v))
∗(t0 �→ ∗ s1 �→ �� t0 �→ ∗ s1 �→)

p4 � ∃ l. rv �→ ∗ ra �→ ∗ t0 �→ ∗ a0 �→ l
∗(l + 1 �→) ∧ fptr(t0, (p2, g2))

g4 � ∃ l, v, f. [a0 �→ l ∗ s0 �→f ∗ (l + 1 �→v)]
∗(ra �→ ∗ rv �→ �� ra �→f ∗ (rv �→4 × v))

p � ra �→ ∗ t0 �→ ∗ a0 �→ ∗ a1 �→ ∗ rv �→ ∗ s0 �→
∗s1 �→ ∗ pvlist �→pcirc ∗ svlist �→scirc

g � ∃ v. [ra �→ ∗ pvlist �→pcirc ∗ svlist �→scirc]
∗(t0 �→ ∗ a1 �→ �� t0 �→ ∗ a1 �→)
∗(s0 �→ ∗ s1 �→ �� s0 �→ ∗ s1 �→)
∗(a0 �→v ∗ rv �→ �� a0 �→ ∗ (rv �→4 × v))

Ψ : {pcirc� (p0, g0), pcons� (p1, g1),
scirc� (p2, g2), scons� (p3, g3)}

Fig. 9. The specifications for the example

131

whether it can prove the same partial correctness properties as
we have done using ISCAP.

Appel et al. [1], [3], [15] pioneered the step-indexing
technique and have shown how to use it to build semantic
models for a rich type system with ML-style polymorphism,
high-order functions, recursive types, and references. They use
the index not just to count execution steps, but also to construct
a dependently typed global heap type (for references). Our
use of step-indexing is similar to theirs, except that their
work is for building semantic models for types, while we
use indices to modify the original definition of Hoare triples
to prove the partial correctness property for programs with
higher-order features. Appel et al. also built a Separation Logic
for CMinor [18] using an index-based semantic model; it can
support nested Hoare triples like our fptr assertion language
construct. However, their model is based on a higher-level
language and their soundness theorem only guarantees the
safety property, not the same partial correctness property we
are proving in this paper.

Reus et al. [11], [19], [20] presented an extension of
separation logic with support for high-order store and nested
Hoare triples. They can also prove the similar partial correct-
ness properties as we do but the soundness of their program
logics requires a more complicated semantic model based on
solving recursive domain equations. Our semantic model, in
contrast, requires elementary construction only and it is based
on an intuitive operational semantics which we believe is more
suitable for low-level assembly languages.

Honda et al. proposed a compositional logic for a high-
level functional language [21]. They used auxiliary variables
called anchors in judgments to represent the eventual values
of specified terms and showed some non-trivial examples.
However, anchors are special for functional languages and can
not be applied to assembly languages.

Previous program logics for assembly code verification
follow CPS-based reasoning and cannot be used to certify
the same partial correctness property as done in Hoare-style
logics. In this paper, we have proposed a new program logic
named ISCAP for certifying the partial correctness properties
of assembly programs with first-class function pointers. We
have proved the soundness of ISCAP by building a simple
semantic model based on a direct-style, mixed-step operational
semantics for the assembly language. In the future, we plan
to extend our semantic model to support other stack-based
control structures [8], concurrency, recursive data structures,
references, and higher-order frame rules.

ACKNOWLEDGMENT

We thank Alex Vaynberg, Xinyu Feng, and anonymous
referees for their suggestions and comments on an earlier
version of this paper. This research is based on work supported
in part by the National Natural Science Foundation of China
under Grants No. 60928004, 61073040, and 61003043 and
Natural Science Foundation of Jiangsu Province, China (No.
BK2008181). Part of Wei Wang’s work is done during his
visit to Yale University in 2008-2010 and is also supported in

part by China Scholarship Council and by National Science
Foundation (of USA) under Grant CCR-0915888. Zhong Shao
is supported in part by DARPA CRASH grant FA8750-10-2-
0254 and NSF grants CNS-0915888, CNS-0910670, and CCF-
0811665. Any opinions, findings, and conclusions contained
in this document are those of the authors and do not reflect
the views of these agencies.

REFERENCES

[1] A. W. Appel and D. McAllester, “An indexed model of recursive
types for foundational proof-carrying code,” ACM Transactions on
Programming Languages and Systems, pp. 657–683, Sep. 2001.

[2] G. Tan, A. W. Appel, K. N. Swadi, and D. Wu, “Construction of
a semantic model for a typed assembly language,” in International
Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI), 2004.

[3] A. W. Appel, P. Mellies, C. D. Richards, and J. Vouillon, “A very modal
model of a modern, major, general type system,” in Proc. 34th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL07), Jan. 2007, pp. 109–122.

[4] G. Morrisett, D. Walker, K. Crary, and N. Glew, “From system F to
typed assembly language,” ACM Trans. on Programming Languages and
Systems, 1999.

[5] Z. Ni and Z. Shao, “Certified assembly programming with embedded
code pointers,” in Proc. 33rd ACM Symp. on Principles of Prog. Lang.,
Jan. 2006, pp. 320–333.

[6] A. W. Appel, “Compiling with continuations,” Cambridge University
Press, 1992.

[7] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, pp. 576–580, Oct. 1969.

[8] X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni, “Modular
verification of assembly code with stack-based control abstractions,”
in Proc. 2006 ACM SIGPLAN Conference on Programming Language
Design and Implementation(PLDI’06), Ottawa Canada, Jun. 2006, pp.
401–414.

[9] J. C. Reynolds, “Separation logic: A logic for shared mutable data
structures,” in Proc. 17th IEEE Symposium on Logic in Computer
Science. IEEE Computer Society, 2002, pp. 55–74.

[10] P. America and J. Rutten, “Solving reflexive domain equations in a
category of complete metric spaces,” in J. Comput. Syst. Sci., 1989,
pp. 343–375.

[11] J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang, “Nested Hoare
triples and frame rules for higher-order store,” in Conference on Com-
puter Science Logic, 2009, pp. 440–454.

[12] W. Wang, “Coq implementation and soundness proof.” [Online].
Available: http://kyhcs.ustcsz.edu.cn/˜wwang/pgiscap soundness.tar

[13] D. Yu, N. A. Hamid, and Z. Shao, “Building certified libraries for PCC:
Dynamic storage allocation,” in Proc. 2003 European Symposium on
Programming (ESOP’03), Warsaw Poland, Apr. 2003, pp. 402–416.

[14] M. J. Parkinson, R. Bornat, and C. Calcagno, “Variables as resource
in Hoare logics,” in Proc. 21st Annual IEEE Symposium on Logic in
Computer Science (LICS’06), Aug. 2006, pp. 137–146.

[15] A. J. Ahmed, “Semantics of types for mutable state,” Ph.D. dissertation,
Princeton University, 2004.

[16] The Coq Development Team, The Coq Proof Assistant Reference Man-
ual, Oct. 2004-2006.

[17] X. Feng, Z. Ni, Z. Shao, and Y. Guo, “An open framework for founda-
tional proof-carrying code,” in Proc. 2007 ACM SIGPLAN International
Workshop on Types in Language Design and Implementation, Jan. 2007,
pp. 67–78.

[18] A. W. Appel and S. Blazy, “Separation logic for small-step Cminor,” in
Theorem Proving in Higher Order Logics, 20TH INT. CONF. TPHOLS
2007, vol. 4732 of LNCS. Springer, 2007, pp. 5–21.

[19] B. Reus and J. Schwinghammer, “Separation logic for higher-order
store,” in CSL, 2006, pp. 575–590.

[20] L. Birkedal, B. Reus, J. Schwinghammer, and H. Yang, “A simple model
of separation logic for higher-order store,” in ICALP (2), 2008, pp. 348–
360.

[21] K. Honda, N. Yoshida, and M. Berger, “An observationally complete
program logic for imperative higher-order frame rules,” in Proc. 20st
Annual IEEE Symposium on Logic in Computer Science, 2005, pp. 270–
279.

132

