
LiDO: Linearizable Byzantine Distributed Objects with

Refinement-Based Liveness Proofs

LONGFEI QIU, Yale University, USA
YOONSEUNG KIM, Yale University, USA
JI-YONG SHIN, Northeastern University, USA

JIEUNG KIM, Inha University, South Korea

WOLF HONORÉ∗, Yale University, USA
ZHONG SHAO, Yale University, USA

Byzantine fault-tolerant state machine replication (SMR) protocols, such as PBFT, HotStuff, and Jolteon, are

essential for modern blockchain technologies. However, they are challenging to implement correctly because

they have to deal with any unexpected message from Byzantine peers and ensure safety and liveness at all

times. Many formal frameworks have been developed to verify the safety of SMR implementations, but there

is still a gap in the verification of their liveness. Existing liveness proofs are either limited to the network level

or do not cover popular partially synchronous protocols.

We introduce LiDO, a consensus model that enables the verification of both safety and liveness of imple-

mentations through refinement. We observe that current consensus models cannot handle liveness because

they do not include a pacemaker state. We show that by adding a pacemaker state to the LiDO model, we

can express the liveness properties of SMR protocols as a few safety properties that can be easily verified by

refinement proofs. Based on our LiDO model, we provide mechanized safety and liveness proofs for both

unpipelined and pipelined Jolteon in Coq. This is the first mechanized liveness proof for a byzantine consensus

protocol with non-trivial optimizations such as pipelining.

CCS Concepts: • Software and its engineering→ Software verification; Distributed programming lan-

guages; Software safety; Formal software verification; Software reliability; • Theory of computation

→ Distributed computing models; Abstraction.

Additional Key Words and Phrases: distributed systems, consensus protocols, byzantine fault-tolerance, safety,

liveness, formal verification, refinement, proof assistants

ACM Reference Format:

Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim,Wolf Honoré, and Zhong Shao. 2024. LiDO: Linearizable

Byzantine Distributed Objects with Refinement-Based Liveness Proofs. Proc. ACM Program. Lang. 8, PLDI,

Article 193 (June 2024), 25 pages. https://doi.org/10.1145/3656423

1 INTRODUCTION

Byzantine State Machine Replication (SMR) protocols [Schneider 1990], such as PBFT [Castro 2001],
HotStuff [Yin et al. 2019], and Jolteon [Gelashvili et al. 2022] form the basis of modern blockchain
applications. They ensure that a linear history of a state machine is correctly replicated to a group

∗Wolf Honoré is now at CertiK.

Authors’ addresses: Longfei Qiu, Yale University, New Haven, USA, longfei.qiu@yale.edu; Yoonseung Kim, Yale University,

New Haven, USA, yoonseung.kim@yale.edu; Ji-Yong Shin, Northeastern University, Boston, USA, j.shin@northeastern.edu;

Jieung Kim, Inha University, Incheon, South Korea, jieungkim@inha.ac.kr; Wolf Honoré, Yale University, New Haven, USA,

wolf.honore@yale.edu; Zhong Shao, Yale University, New Haven, USA, zhong.shao@yale.edu.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART193

https://doi.org/10.1145/3656423

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0009-0008-7811-4231
HTTPS://ORCID.ORG/0000-0001-5294-1046
HTTPS://ORCID.ORG/0000-0002-1595-4849
HTTPS://ORCID.ORG/0000-0001-7581-041X
HTTPS://ORCID.ORG/0000-0001-8524-1978
HTTPS://ORCID.ORG/0000-0001-8184-7649
https://doi.org/10.1145/3656423
https://orcid.org/0009-0008-7811-4231
https://orcid.org/0000-0001-5294-1046
https://orcid.org/0000-0002-1595-4849
https://orcid.org/0000-0001-7581-041X
https://orcid.org/0000-0001-8524-1978
https://orcid.org/0000-0001-8184-7649
https://doi.org/10.1145/3656423

193:2 Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, Wolf Honoré, and Zhong Shao

of nodes and safe from tampering by a minority of malicious nodes. They are also called consensus
protocols because a key part of these protocols is to make the participating nodes agree on a single
history. As the open nature of public blockchains requires executing consensus protocols on a large
number of nodes, in recent years, there has been a significant amount of research proposing new
protocol designs that have better safety and liveness properties [Abspoel et al. 2021; Civit et al.
2022; Lewis-Pye 2022; Naor et al. 2021; Naor and Keidar 2020].
Despite the results that improve various aspects of byzantine SMR, it remains a herculean task

to implement these protocols correctly, so that they enjoy the features claimed on paper. A paper
description of a protocol is almost never sufficient to specify the behavior of a process under all
possible situations. The unspecified aspects are open to interpretation, yet these details can have
very subtle effects on the actual system. This issue is especially prominent under byzantine faults
since the adversary now has more ways to influence the non-faulty nodes.

(a)

 Broadcast timeout msg
+ Enter round r+1 upon 2f+1
 timeouts of round r

(b)

 Broadcast timeout msg
+ Enter round r+1 upon 2f+1
 timeouts of round r
+ Enter round r upon f+1
 timeouts of round r

(c)

 Broadcast timeout msg
+ Enter round r+1 upon 2f+1
 timeouts of round r' ≥ r

(d)

 Broadcast timeout msg
+ Enter round r+1 upon 2f+1
 timeouts of round r' ≥ r
+ Enter round r upon f+1
 timeouts of round r' ≥ r

Liveness: No, unless network
is gossiping

Liveness: Yes, but subject to
flooding by byzantine peers

Liveness: Yes, longer latency Liveness: Yes

Fig. 1. Variants of a timeout-based pacemaker, with different
liveness properties. Red text shows differences from (a). In
variants (c) and (d), timeouts can come from different rounds.

For a concrete example of this issue, we
look at the pacemaker component of SMR
protocols. Most SMR protocols are struc-
tured as an infinite sequence of smaller
protocols called rounds or views, and each
node participates in only one round at a
time. The pacemaker drives the nodes to
a new round when the current round is
not making progress. As such, it plays a
vital role in maintaining liveness.

The pacemaker usually consists of
making each node broadcast a timeout
message for its current round when no
progress is observed within a certain pe-
riod, and enter a new round after receiv-
ing a quorum of timeouts. In Fig. 1, we
show four variants of this simple idea,
with subtly different liveness properties.
Notice that versions (b) and (d) differ only
in allowing mixing timeouts from different rounds. This is significant because it allows non-faulty
nodes to keep only the timeout of the highest round from each peer. Without this optimization,
byzantine nodes can launch denial-of-service attacks by flooding non-faulty peers with timeouts, a
tricky situation that would not occur under benign faults. This shows that paper proofs of protocols
are not enough. We need proofs that can be directly tied to the implementation, which can only be
achieved by machine-checked proofs on a formal model of the implementation.
Today, we have many formal frameworks for verifying the safety properties of distributed

systems [Krogh-Jespersen et al. 2020; O’Hearn 2007; Sergey et al. 2017; Sharma et al. 2023]. In
particular, formal safety proofs of consensus protocols have been studied in Carr et al. [2022];
Cirisci et al. [2023]; Honoré et al. [2021, 2022]; Rahli et al. [2018]; Taube et al. [2018]; Wilcox et al.
[2015]. However, there are very few works that also establish formal liveness results for consensus
protocols. IronFleet [Hawblitzel et al. 2015] and PSync [Drăgoi et al. 2016] establish liveness for
benign-fault protocols such as Multi-Paxos [Lamport 1998], but do not handle byzantine faults.
Padon et al. [2017] proposes a liveness-to-safety reduction approach for proving liveness, which
has been applied to byzantine-fault protocols in Berkovits et al. [2019]; Losa and Dodds [2020], but
their methodology has never been applied to partially synchronous protocols, which is the most
common class of consensus protocols in practice.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

LiDO: Linearizable Byzantine Distributed Objects with Refinement-Based Liveness Proofs 193:3

Finally, none of the existing machine-checked liveness proofs are based on refinement, whereas
safety results are usually stated as a refinement between the network model and the abstract
interface. This situation is unsatisfactory for several reasons. Most importantly, it obscures high-
level reasoning and prevents proof reuse since every definition and every lemma is tied to network-
level details. It also poses a challenge to users of the system since they must understand the
implementation details of the system in order to understand what is proved as “liveness.”

In this work, we aim to simplify the task of constructing liveness proofs of byzantine consensus
protocols. We achieve this by introducing an intermediate model of consensus between the SMR
interface and network details that supports proving both safety and liveness via refinement. Our
key insight is that existing models lack a representation of the pacemaker, which, as we have seen,
is critical to liveness, and this prevents them from handling liveness. We start from the Atomic
Distributed Object (ADO) model, which has been used to verify the safety of several benign-fault
protocols [Honoré et al. 2021, 2022]. We show that by adding the pacemaker state into the model,
the liveness of consensus can be reduced to a few safety properties on timed traces, which can be
easily proved through refinement. We also introduce segmented traces, a variant of timed traces that
enables more effective formalization of liveness properties and proofs. Using our LiDO model, we
obtain safety and liveness proofs for both unpipelined and pipelined Jolteon [Gelashvili et al. 2022].
To summarize, our contributions are:

• LiDO, a model of consensus formalized in Coq, supporting both safety and liveness reasoning
via refinement;
• Segmented traces, an effective formalism for proving liveness properties via refinement;
• Implementations of both unpipelined and pipelined Jolteon in Coq, providing case
studies for our methodology;
• Refinement-based proofs of both safety and liveness of Jolteon using our LiDO model.

All proofs have been mechanized in Coq and are available as artifacts [Qiu et al. 2024a]. We have
also extracted unpipelined Jolteon into an OCaml executable, showing that our network model
is reasonable and realistic. For additional details, see the appendices A, B, C, and D, which are
available in the extended technical report [Qiu et al. 2024b].

2 OVERVIEW

2.1 Background: State Machine Replication Under Partial Synchrony

The Partial Synchrony Assumption. Message-passing distributed systems rely on getting mes-
sages delivered to make progress. Therefore any liveness property of such systems depends on
assumptions about message delivery. Depending on the kind of assumptions they make, the systems
are classified into asynchronous, synchronous, or partially synchronous protocols [Dwork et al. 1988].
This work targets proving the safety and liveness of partially synchronous SMR protocols. Our
theory can be applied to both benign-fault and byzantine-fault tolerant protocols, but in this work,
we mainly consider Byzantine fault-tolerant (BFT) protocols.

There are two versions of partial synchrony [Dwork et al. 1988]. In one version, there is a
fixed upper bound Δ of message delivery latency, but it only holds after a certain timepoint called
global synchronization time (GST). The participating processes know Δ but do not know when GST
commences. In another version, the delivery latency is always bounded, but the processes do not
know the exact bound. In this work, we use the first version, as it is easier to work with formally.

State Machine Replication. The safety definition of SMR is well-known. Clients submit requests
to the system. The system outputs responses to requests, each request is responded to at most once,
and the request-response trace must linearize to an atomic spec of a state machine [Herlihy and

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

193:4 Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, Wolf Honoré, and Zhong Shao

Wing 1990]. Under partial synchrony, the system processes do not know when GST begins, so they
cannot rely on messages being delivered in time. As such, they maintain safety even during periods
of asynchrony.
The liveness definition of SMR is more subtle. There can be two reasonable definitions:

Definition 2.1. An SMR system is live if every client request is eventually responded to.

Definition 2.2. An SMR system is live if it responds to client requests infinitely often.

There is a gap between the two definitions. Under Definition 2.2, the system may selectively
respond to a subset of requests. When there is only a fixed number of clients, we can simply make
the system choose among client requests in a round-robin fashion, so that each client is fairly
serviced. When the SMR clients are unbounded in number, as in public blockchains, maintaining
fairness among clients is a research problem that is beyond the scope of this work [Kelkar et al.
2020; Kursawe 2020]. Therefore, this work aims to establish Definition 2.2.

2.2 The ADO Model of Consensus

Although the safety and liveness definitions of SMR are simple and intuitive, proving that an
implementation satisfies these definitions is not. As one of the early attempts, Verdi [Wilcox et al.
2015; Woos et al. 2016] used 50,000 lines of code to prove the safety of Raft but did not verify liveness.
Proofs of this complexity are difficult to maintain and difficult to port to other implementations.

To better manage the complexity of proofs, a successful strategy is to introduce an intermediate
abstraction between SMR and the network model. The abstraction captures essential information
about the network state but remains simple enough to allow easy reasoning about system behavior.
Most notably, the Atomic Distributed Object (ADO) theory has been proposed to verify the safety
of multiple benign-fault consensus protocols, including Raft with reconfiguration [Honoré et al.
2021, 2022]. Here we give an intuitive introduction to ADO. The formal details are in Section 3.
The ADO theory gives a detailed view of how the consensus log grows during the execution

of a consensus protocol. It models the execution of a protocol as a group of proposer processes
interacting with a concurrent object. The basic idea of ADO is that within each round of consensus,
three events occur in sequence: first, the leader is given an up-to-date branch of the consensus log;
then, it appends one or more requests at the tip of the branch; finally, it attempts to commit its
changes. These steps are called pull, invoke, and push. In each step the leader may collect enough
votes and succeed, or it may fail to collect votes before the pacemaker drives it to the next round.

To model this behavior, the ADO object exposes three operations %D;; (A), �=E>:4 (A,<), and
%DBℎ(A), where A is the round the proposer participates in; < is the request (called method in
ADO theory) the proposer wishes to append. The object responds to each call with either (D224BB
or)8<4>DC . When it responds to a call, a cache node is created to record information about
the response. Successful responses to %D;;, �=E>:4, %DBℎ correspond to ��02ℎ4,"�02ℎ4,��02ℎ4

respectively, where �,",� stand for Election, Method invocation, and Commit. The cache nodes
are chained together by causal relation to form a cache tree.
Fig. 2 shows an example cache tree. Each "�02ℎ4 represents a client method that has been

proposed by a proposer. We say an"�02ℎ4 is committed if there exists a path from that"�02ℎ4

to a ��02ℎ4 . The safety property of an ADO object is an invariant of the cache tree: there exists a
path from '>>C that contains all committed"�02ℎ4 . It follows that we can take the sequence of
all committed"�02ℎ4 on this path as the consensus log, and implement SMR on top of it, as was
done in Honoré et al. [2021, 2022]. The linearization point of each client method is the point where
the corresponding "�02ℎ4 becomes committed. Hence, SMR liveness is equivalent to creating
"�02ℎ4 and ��02ℎ4 infinitely often in the ADO cache tree.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

LiDO: Linearizable Byzantine Distributed Objects with Refinement-Based Liveness Proofs 193:5

ECache
round = 1
parent = 0

MCache
round = 1

method = A

CCache
round = 3

ECache
round = 2
parent = 1

ECache
round = 3
parent = 1

MCache
round = 2

method = B

MCache
round = 3

method = C

Root

Fig. 2. An Example ADO Cache Tree. An "�02ℎ4 is commi�ed if there exists a path from it to a ��02ℎ4 .
Hence"�02ℎ4 of round 1 and 3 are commi�ed, but"�02ℎ4 of round 2 is not.

2.3 The Need for a New Model

The ADO model nicely abstracts out the common logic of safety proofs, but it has not been
useful for verifying liveness. We now look at why proving liveness remains difficult. Intuitively, a
refinement-based liveness proof should involve the following steps:

(1) Among the valid traces of the abstract model, we identify a subset of live traces;
(2) We prove that all live traces of the abstract model satisfy SMR liveness (Definition 2.2);
(3) We identify the live traces of the implementation;
(4) We prove that every live trace of the implementation refines a live trace of the model.

Clearly the key part of this plan is the first step. We need to carefully define the model and its live
traces so that it is both easy to prove that every live trace satisfies SMR liveness, and to prove that
an implementation refines the live traces.

Temporal properties are easiest to work with when they are posed as safety properties. That is,
they concern system dynamics over only a finite period of time. For example, “the system commits
client methods infinitely often” is a liveness property, but “the system will commit one client
method within each period of 10Δ” is a safety property. Ideally, when we define live traces of the
abstract model and the network model, we should always characterize them using safety properties.
We now try to execute the plan on the ADO model. As discussed above we have to create a

��02ℎ4 infinitely often. To reduce this to a safety property, naively, we may try:

Example 2.3. After GST, when a non-faulty proposer calls %DBℎ(A), it receives (D224BB within 2Δ.

If we could prove this, and we arrange non-faulty proposers to call %DBℎ infinitely often, we
could show that a ��02ℎ4 is created infinitely often. At first glance, this seems intuitive. At the
network level, a call from a non-faulty proposer usually corresponds to it broadcasting a request
message. Since the message will be delivered to every non-faulty voter within Δ, and the votes will
come back within Δ, the request will succeed within 2Δ.
However, in making this inference we have neglected an important factor: the pacemaker. By

influencing the round-change process, the adversary may obstruct liveness in a number of ways:

• The non-faulty nodes may never enter round A , so the leader may never make its request;
• The byzantine nodes may initiate a round-change before the request succeeds, so the leader
will not receive a (D224BB response.

Even if byzantine nodes do nothing, the non-faulty nodes will still initiate round-change when
their timers expire. Therefore to prove that a request will succeed, we at least need to assume
that all non-faulty nodes still have sufficient time in their timers. Unfortunately, the ADO model
does not capture information about these local timers, preventing us from formally expressing
this assumption. This clearly shows that we need a new model that incorporates the pacemaker
information we need.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

193:6 Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, Wolf Honoré, and Zhong Shao

ADO Cache Tree

Pull,
Invoke,
Push

Response
round = r

remaining time = t
StartNext

Elapse

TimeoutStartNext

Fig. 3. The LiDO object architecture.

This motivates us to propose the LiDO model.
As shown in Fig. 3, we add two state variables
A>D=3 and remaining time (A4<_C8<4 for short).
These variables represent a logical timer: A>D=3
represents the round the voters currently guar-
antee liveness for, while A4<_C8<4 is the least
amount of time the voters promise not to time-
out. In this work, we will consistently use Δ

as a unit of time, so A4<_C8<4 = 3 intuitively
means none of the non-faulty voters will time-
out within 3Δ.

The timer variables can only be manipulated through a number of calls, shown in Fig. 3. In partic-
ular, �;0?B4 () represents the flow of time: it decreases A4<_C8<4 by 1. The call)8<4>DC(C0AC#4GC ()

increases A>D=3 by 1, but it can only be called when A4<_C8<4 = 0. This says that the adversary
cannot terminate a round until the logical timer has expired. The adversary also cannot make time
flow too fast. We capture this by allowing �;0?B4 () to be called at most once per period of Δ. Hence
if A4<_C8<4 = 3, then the adversary must call �;0?B4 () three times, taking a period of 3Δ, before
it may increase A>D=3 . Our safety rules on �;0?B4 () and)8<4>DC(C0AC#4GC () thus formalize the
notion that the adversary cannot preempt a non-faulty leader too soon. We also allow the leader
of round A to call (C0AC#4GC (A), a request to start round A + 1, after all requests in round A have
succeeded. More formal details are in Section 3.2.
With pacemaker information added to the model, we can weaken Example 2.3 to

Example 2.4. After GST, if A>D=3 = A and A4<_C8<4 ≥ 2, the leader of round A is non-faulty and
calls %DBℎ(A), it receives (D224BB within 2Δ.

This is now intuitively implementable because the pacemaker will not intervene within 2Δ.

2.4 Proving Liveness Under Partial Synchrony

In the previous sections we gave an intuitive explanation of our LiDO model design but did not
give any formal liveness details. We now introduce our liveness formalism.

In synchronous or partially synchronous systems, the most general formalism for characterizing
live traces is timed traces [Lamport 2005].We first assume there exists a C8<4 variable that represents
physical time and increases continuously. When each event 4 occurs, we pair it with the current
reading of C8<4 . The trace thus consists of a sequence of pairs (40, C8<40); (41, C8<41); · · · with
C8<40 ≤ C8<41 ≤ · · · . The problem is that continuous time is difficult to encode in proof checkers.

We can look at timed traces in a different way. In general, we only consider non-Zeno timed
traces, meaning only a finite number of events may occur within a finite period of time. Hence
assume the set of all events occurred before any timepoint C is always finite. Then we can cut
the trace into segments, each representing a period of Δ, and use them to cover the entire trace.
Formally:

Definition 2.5. A segmented trace is an arbitrary-length sequence of finite untimed traces
(g0, g1, · · ·), such that each g8 is a valid trace, and each g8 is a prefix of g8+1.

Definition 2.6. Let) be any timepoint with) ≥ �() . We define the (),Δ)-segmentation of a
non-Zeno timed trace g to be (g0, g1, · · ·) where g8 is the sequence of all events that occurred at
some timepoint C <) + 8Δ. If g is infinite, the segmentation is also infinite; if g is finite and only
covers events up to timepoint) + :Δ, the segmentation also ends at g: .

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

LiDO: Linearizable Byzantine Distributed Objects with Refinement-Based Liveness Proofs 193:7

In Definition 2.6, the requirement that) ≥ �() ensures that all events occurred before GST are
hidden into g0, so we do not need to worry about whether each segment between g8 and g8+1 is
before or after GST.
Segmented traces provide a convenient formalism for stating temporal properties with time

constraints. To see this, we look at formalizing the partial synchrony assumption in a network
model. In this work, the formal definition of partial synchrony under timed traces is:

Assumption 2.7. If process ? sends<B6 to process @ at timepoint C , both ?, @ are non-faulty, then

process @ receives<B6 at least once in the interval [C,max{C,�() } + Δ].

For a valid trace g , let<B6(g) be the set of all messages already sent within g , and let34;8E_<B6(g)

be the set of delivered messages, represented as (83,<B6) pairs. For each message<, let B4=34A (<)
be its sender and A428? (<) its recipient set. Let � be the set of non-faulty processes. Then we have:

Lemma 2.8. In every (),Δ)-segmentation of every live timed trace of a network model, we have

∀8,∀<,∀?,< ∈<B6(g8) ⇒ B4=34A (<) ∈ � ⇒ ? ∈ A428? (<) ⇒ ? ∈ � ⇒ (?,<) ∈ 34;8E_<B6(g8+1) .

Proof : If< was sent before GST then it is delivered at least once before �() + Δ. If it was sent
within the interval [�(),�() + 8Δ) then it is delivered at least once before �() + (8 + 1)Δ.

Thus we can take Lemma 2.8 as the definition of partial synchrony under segmented traces.

Refinement of Segmented Traces. We now observe that segmented traces enjoy a natural notion of
refinement. Let 5 be a refinement mapping between a spec system and an implementation system.
Then 5 maps traces of the implementation to traces of the spec. Furthermore, the definition of a
refinement mapping requires that, if g is a prefix of g ′, then 5 (g) is also a prefix of 5 (g ′).

It follows, if (g0, g1, · · ·) is a valid segmented trace of the implementation, then (5 (g0), 5 (g1), · · ·)
is also a valid segmented trace of the spec. We say that (g0, g1, · · ·) refines (5 (g0), 5 (g1), · · ·).
Thus, segmented traces are a very convenient formalism for analyzing partially synchronous

systems. They are easy to encode in proof checkers, and it is easy to define refinement between
them. Throughout this work, we will use segmented traces as the main formalism for analyzing
liveness. Our plan consists of the following steps:

(1) We specify the LiDO model of consensus as our spec (Section 3);
(2) We specify a set (of segmented traces as the live traces of the LiDO model, and prove that

they satisfy SMR liveness (Section 3.3);
(3) We specify a system model for implementing unpipelined and pipelined Jolteon (Section 4.1);
(4) We define a set (′ of segmented traces as live traces of the implementation, and show that (′

covers all timed traces of the implementation (Definition 4.3);
(5) We establish refinement mapping between the implementations and LiDO, and prove that

every trace in (′ refines a trace in ((Section 4.3).

Layered Refinement Proof. Fig. 4 shows a schematic diagram of our refinement proof between
LiDO and Jolteon. In between LiDO and the network model, we used two additional layers called the
Server and Voting layer. These layers implement the LiDO model in a shared-memory manner. This
allows us to focus on the important invariants maintained by the protocol while ignoring details
such as message delivery and bookkeeping, which only appear in the network model. Introducing
these intermediate layers simplifies overall engineering effort. See Section 4 for details.

3 THE LIDO MODEL OF CONSENSUS

In this section, we formally define the LiDO model and its live traces. We first define the ADO
model as a concurrent object, and then define the LiDO model as an extension of ADO.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

193:8 Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, Wolf Honoré, and Zhong Shao

Proposer
Voter TimerNetwork Model Proposer

Voter Timer
Proposer

Voter Timer
Proposer

Voter Timermsg msg msg

Refines

Voting View
Proposer 1
Proposer 3

Proposer 2
Proposer 4

Voter 1 Voter 2
Voter 3 Voter 4

Timer 1 Timer 2 Timer 3 Timer 4

Refines

Proposer 1 Proposer 2
Proposer 3 Proposer 4

Abstract
Pacemaker

Refines

LiDO Model

Client View

LiDO Model

Fig. 4. Jolteon safety refinement proof architecture.

3.1 The ADO Model

Algorithm 1 The Method Pool Object

1: initialize: & ← ∅
2: upon '468BC4A"4Cℎ>3 (<):
3: & ← & ∪ {<}

4: upon �ℎ42:"4Cℎ>3 (<):
5: return< ∈ &

In byzantine consensus, although byzantine proposers
can send any message, the system is required to main-
tain external validity, meaning all requests committed
in the log must come from external clients, not fabri-
cated by byzantine proposers. Therefore, we first as-
sume there exists an object called the method pool (Al-
gorithm 1). The object state is a set & of client-signed
methods. Initially, & = ∅. The object exposes two opera-
tions '468BC4A"4Cℎ>3 (<) and �ℎ42:"4Cℎ>3 (<). SMR clients may call '468BC4A"4Cℎ>3 (<) to add
a method < into & . The ADO object may call �ℎ42:"4Cℎ>3 (<) to check whether < has been
registered or not. Both calls are atomic. In an implementation, they correspond to the client signing
a request, and the voters checking the signature.
The ADO object proper is a concurrent object, formalized as a transition system consisting of

two kinds of events: an agent making a call on the object, and the object responding to a call. The
object does not need to respond to each call immediately; it may respond to it at some arbitrary
later time, but no changes to the object state occur before the response. We assume each agent
is sequential: it only waits upon one call at a time. Thus in a valid trace, each agent alternates
between making a call and receiving its response, and these events can be interleaved.
The agents interacting with the ADO object are the proposers of a consensus protocol. In the

standard setting, there are 35 + 1 proposers, of which 25 + 1 are non-faulty proposers and 5 are
byzantine. We assume that in the consensus protocol, rounds are numbered from 1, and in each
round, one of the proposers is predetermined as the leader. We use ;4034A_0C (A) to represent that
leader. Assume that each proposer becomes a leader infinitely often.
The object state of ADO is a set Σ of cache nodes that form a cache tree. Therefore, we first

formally define cache nodes and the cache tree, then define the ADO object. The cache node
structure is defined in Fig. 5 (a). Each cache node except '>>C contains a A>D=3 field, along with
other data. Let Σ be a set of cache nodes with at most one ��02ℎ4 , one"�02ℎ4 , and one��02ℎ4 per
round. We use Σ[A] .4202ℎ4, Σ[A] .<202ℎ4, Σ[A] .2202ℎ4 to represent that unique cache node of round
A . We write Σ[A] .4202ℎ4 = ⊥ if round A does not have an ��02ℎ4 , similarly for other notations.

For each ��02ℎ4,"�02ℎ4,��02ℎ4 in Σ, we define its parent as in Fig. 5 (b). The cache tree of Σ
is a graph with all cache nodes except)�02ℎ4 as its vertices, and directed edges from each node
to its direct children as its edges. The cache tree is well-defined when the parent of each node is

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

LiDO: Linearizable Byzantine Distributed Objects with Refinement-Based Liveness Proofs 193:9

�02ℎ4#>34 ≜'>>C

| ��02ℎ4 (NA>D=3 ∗ N?0A4=C_A>D=3)

| "�02ℎ4 (NA>D=3 ∗"4Cℎ>3)

| ��02ℎ4 (NA>D=3)

|)�02ℎ4 (NA>D=3)

(a) Cache Nodes

?0A4=C (��02ℎ4 (A, ?)) ≡

{

'>>C (? = 0)

Σ[?] .<202ℎ4 (? > 0)

?0A4=C ("�02ℎ4 (A,<)) ≡ Σ[A] .4202ℎ4

?0A4=C (��02ℎ4 (A)) ≡ Σ[A] .<202ℎ4

(b) Cache Node Parent Relation

Fig. 5. Definition of ADO Cache Nodes and Node Parents.

%D;;%A4 (Σ, A , ?) ≡ ? < A ∧ (? = 0 ∨ Σ[?] .<202ℎ4 ≠ ⊥) ∧ Σ[A] .4202ℎ4 = ⊥

∧ (∀A ′, A ′ < A ⇒ (? ≥ A ′ ∨ Σ[A ′] .2202ℎ4 = ⊥))

�=E>:4%A4 (Σ, A) ≡ Σ[A] .4202ℎ4 ≠ ⊥ ∧ Σ[A] .<202ℎ4 = ⊥

%DBℎ%A4 (Σ, A) ≡ Σ[A] .<202ℎ4 ≠ ⊥ ∧ (∀A ′, A ′ > A ⇒ (Σ[A ′] .4202ℎ4 = ⊥ ∨ Σ[A ′] .4202ℎ4.?0A4=C_A>D=3 ≥ A))

Fig. 6. Preconditions for (D224BB response of ADO object. For explanations, see Appendix A.

well-defined, and the graph forms a rooted tree with '>>C as its root. See Fig. 2 for an example cache
tree. We say an "�02ℎ4 is committed, if there exists a path in the cache tree from that "�02ℎ4

to a ��02ℎ4 . Hence in Fig. 2, Σ[1] .<202ℎ4 is committed, as there is a path to Σ[3] .2202ℎ4 , but
Σ[2] .<202ℎ4 is not.
When the cache tree is well-defined, there is a unique path from '>>C to each cache node 2 . The

sequence of all"�02ℎ4 on that path forms the consensus log up to node 2 . We denote it by ;>6(2).
We now define the ADO object. The object state is a set Σ of cache nodes. Initially, Σ = {'>>C}.

The object exposes three operations, which are %D;; (A), �=E>:4 (A,<), and %DBℎ(A) with A > 0.
Only ;4034A_0C (A) may call %D;; (A), �=E>:4 (A,<), or %DBℎ(A). Also, �=E>:4 (A,<) can only be called
when< has been registered in the method pool. Otherwise, it is considered an invalid call and fails
immediately with no change in object state.
The object may respond to each call with either (D224BB or)8<4>DC . If the caller is byzantine,

it may voluntarily stop waiting for its current call and we represent this with a special response
�A>??43 , with no change in object state.

The object may always respond to a call with)8<4>DC , adding a)�02ℎ4 to Σ. When it decides to
respond to %D;; (A) with (D224BB , it must non-deterministically choose a ? such that %D;;%A4 (Σ, A , ?)
is currently satisfied. Similarly, when it responds to �=E>:4 (A,<) or %DBℎ(A) with (D224BB , the con-
ditions �=E>:4%A4 (Σ, A) or %DBℎ%A4 (Σ, A) must be currently satisfied, respectively. The definitions
of these conditions are shown in Fig. 6. The changes to the object state upon each response are
defined in Algorithm 2.

Linearizability of ADO. In Honoré et al. [2021, 2022], the ADO object was described as an atomic
object. The refinement proof works by reordering network events to their linearization points.
However, for liveness refinement, we have to define a refinement mapping between ADO and the
network model, and events cannot be reordered, which forces us to switch to a concurrent spec.

Nevertheless, we can define an atomic version of ADO as follows. The object exposes exactly the
same interface as concurrent ADO. However, when any proposer makes a call, the object atomically
chooses a response ((D224BB or)8<4>DC) and returns it immediately. The preconditions and effects
of each response are exactly the same as defined in Fig. 6 and Algorithm 2.

Lemma 3.1. The concurrent ADO object is linearizable to the atomic ADO object.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

193:10 Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, Wolf Honoré, and Zhong Shao

Algorithm 2 ADO Object State Changes

1: initialize: Σ← {'>>C}
2: upon return (D224BB to call %D;; (A):
3: Choose ? such that %D;;%A4 (Σ, A , ?) is satisfied, if no such ? exists return)8<4>DC instead.
4: Σ← Σ ∪ {��02ℎ4 (A, ?)}

5: upon return (D224BB to call �=E>:4 (A,<):
6: Check �=E>:4%A4 (Σ, A) is satisfied, if not return)8<4>DC instead.
7: Σ← Σ ∪ {"�02ℎ4 (A,<)}

8: upon return (D224BB to call %DBℎ(A):
9: Check %DBℎ%A4 (Σ, A) is satisfied, if not return)8<4>DC instead.
10: Σ← Σ ∪ {��02ℎ4 (A)}

11: upon return)8<4>DC to call %D;; (A), �=E>:4 (A,<), or %DBℎ(A):
12: Σ← Σ ∪ {)�02ℎ4 (A)}

Proof : We simply choose the point where the object generates a response as the linearization
point of a call. The call does not have any effect on the object state before the response is generated.
The preconditions of generating a response depend only on the object state at the response point.
Therefore, moving every call event to the response point results in a valid atomic trace with the
same final object state.

Safety of ADO. In Appendix A, we give a presentation of the safety theory of ADO. Here we
simply understand that, the ADO cache tree is always well-defined, and there is always a path
starting from '>>C that contains all committed"�02ℎ4 . Let 2 be the committed"�02ℎ4 with the
highest round number, then we can take ;>6(2) to be the current committed consensus log.

Implementing ADO. We also define what it means that a network systemwith byzantine processes
implements the ADO object. Let " be the message space of the system, the set of all possible
messages that may be created within the system. For every reachable system state I, let<B6(I) ⊆ "

denote the set of all messages that have been actually created at state I. Then we define:

Definition 3.2. A refinement between the ADO object and a network system consists of the
following data:

(1) A refinement mapping 5 that maps valid finite network traces to valid finite traces of ADO
object, which defines correspondence between network state I and ADO cache tree Σ;

(2) For each possible cache node 2 , a certificate set 24AC (2) ⊆ " , such that in every corresponding
pair of network state I and ADO cache tree Σ, we have 2 ∈ Σ iff at least one member of
24AC (2) is in<B6(I).

Although byzantine processes can send any message, they still have to follow cryptographic
restrictions, which is why they cannot fabricate messages in 24AC (2) to claim the existence of a
cache node. Thus whatever byzantine processes do in the network system, the net effect is still as if
they are following the ADO interface. Hence external processes such as SMR clients and executors
can use ��02ℎ4 certificate messages as evidence that a method is committed, and act accordingly.

3.2 The LiDO Model

We now define the LiDO model, which is the ADO model extended with state variables and
operations that represent an abstract pacemaker.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

LiDO: Linearizable Byzantine Distributed Objects with Refinement-Based Liveness Proofs 193:11

Algorithm 3 Abstract Pacemaker State
Changes

1: A4B4C_E0; : Implementation-defined
constant for A4<_C8<4 reset value.

2: initialize:
3: A>D=3 ← 1

4: A4<_C8<4 ← A4B4C_E0;

5: upon respond to (C0AC#4GC (A):
6: if A>D=3 = A then

7: A>D=3 ← A + 1

8: A4<_C8<4 ← A4B4C_E0;

9: upon �;0?B4 ():
10: if A4<_C8<4 > 0 then

11: A4<_C8<4 ← A4<_C8<4 − 1

12: upon)8<4>DC(C0AC#4GC ():
13: if A4<_C8<4 = 0 then

14: A>D=3 ← A>D=3 + 1

15: A4<_C8<4 ← A4B4C_E0;

As shown in Fig. 3, the LiDO object state consists
of an ADO cache tree Σ, and two integers A>D=3

and A4<_C8<4 . The object exposes six operations. The
%D;; (A), �=E>:4 (A,<), and %DBℎ(A) operations affect
the cache tree, and their semantics are exactly the
same as the ADO object (Algorithm 2). There are
three new operations (C0AC#4GC (A), �;0?B4 (), and
)8<4>DC(C0AC#4GC () which affect the pacemaker state
and are described below.
We introduce a new agent called the adversary A,

which represents the effect of time flowing. A may
call �;0?B4 (), which decreases A4<_C8<4 by 1. When
A4<_C8<4 = 0, A may call)8<4>DC(C0AC#4GC () to in-
crease A>D=3 by 1 and reset A4<_C8<4 to a preconfig-
ured value A4B4C_E0; . This models a logical timer that
is simulated by the local timers of each voter. It allo-
cates a fixed duration for each round, and when the
timer expires, the pacemaker may intervene to start the
next round. Both �;0?B4 () and)8<4>DC(C0AC#4GC ()

are atomic calls: the object responds to the call imme-
diately.
We allow ;4034A_0C (A) to call (C0AC#4GC (A). This call sends a signal to the pacemaker that it

may start round A + 1 without waiting for the timer of round A to expire. This is a concurrent call:
the object does not need to respond to the signal immediately.
The formal effects of these calls are shown in Algorithm 3.

3.3 The Live Traces of LiDO

We now define the live traces of LiDO. In general, we define live traces by liveness requirements.
A valid segmented trace (g0, g1, · · ·) is a live trace whenever it satisfies these requirements. Our
requirements only concern events over a fixed-length duration. This makes them safety properties
which are easy to handle using refinement.

The liveness requirements on LiDO are divided into protocol-independent ones and protocol-
dependent ones. The reason is that pipelined protocols provide a weaker liveness guarantee, as it
needs the cooperation of two (or more) leaders to commit a method, so certain liveness properties
of unpipelined protocols are not enjoyed by pipelined ones. Here we focus on unpipelined protocols.
The liveness of pipelined protocols will be discussed in Section 5.

Definition 3.3. The protocol-independent liveness requirements are:

(1) Between g8 and g8+1, �;0?B4 () is called at most once;
(2) If A4<_C8<4 (g8) > 0, between g8 and g8+1 if �;0?B4 () is not called then A>D=3 is increased at

least once;
(3) There exists constant � , such that if A4<_C8<4 (g8) = 0, then A>D=3 (g8+�) > A>D=3 (g8);

By “between g8 and g8+1,” we mean the trace g8+1 with prefix g8 removed. Together, these require-
ments ensure that the round number will increase unboundedly in an infinite trace, while still
giving sufficient time to each round.
Many protocols allow two consecutive non-faulty leaders to cooperate to start a new round,

without waiting for the timer to expire. This feature can be formulated as an additional liveness
requirement:

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

193:12 Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, Wolf Honoré, and Zhong Shao

Definition 3.4. If A>D=3 (g8) = A , both ;4034A_0C (A), ;4034A_0C (A + 1) are non-faulty, ;4034A_0C (A)
has called (C0AC#4GC (A) in g8 , then A>D=3 (g8+1) ≥ A + 1.

Definition 3.5. The protocol-dependent liveness requirements for unpipelined protocols are:

(1) A non-faulty leader calls (C0AC#4GC (A) only after a ��02ℎ4 in round A is created;
(2) There exists constant# < A4B4C_E0; , such that if A>D=3 (g8) = A>D=3 (g8+#) = A , A4<_C8<4 (g8) ≥

, ;4034A_0C (A) is non-faulty, then a ��02ℎ4 of round A is created by the end of g8+# .

The second requirement simply says that, given round change does not occur, each non-faulty
leader will always commit a method by itself. Recall that there are only two ways to increase A>D=3 :
either the leader calls (C0AC#4GC (A) or the adversary calls)8<4>DC(C0AC#4GC (). When a new round
A starts, A4<_C8<4 is reset to A4B4C_E0; > # . The adversary cannot call)8<4>DC(C0AC#4GC () within
#Δ. Hence if A>D=3 is increased within #Δ, then ;4034A_0C (A) must have called (C0AC#4GC (A),
which implies a ��02ℎ4 of round A has been created, by the first rule. If A>D=3 is not increased,
then a ��02ℎ4 must have been created as well, by the second rule. Therefore these rules guarantee
that as soon as A>D=3 reaches A , the leader of round A will commit a method within #Δ.
We observe that the liveness proofs of many byzantine consensus protocols, including PBFT

[Castro 2001], HotStuff [Yin et al. 2019], and Jolteon [Gelashvili et al. 2022] follow the same
reasoning pattern as outlined above. Their differences mainly lie in (1) the round-change mechanism
implementation and (2) how each leader utilizes its allocated time.

As a simple example, we may assume that after A>D=3 is increased to A , the leader of round A will
learn this fact within Δ. Upon learning this fact, it immediately makes %D;; , �=E>:4 , and %DBℎ calls
in sequence, and each call takes at most 2Δ to succeed. In Section 4, we will see that unpipelined
Jolteon follows exactly this pattern, except that it performs %D;; and �=E>:4 simultaneously in one
phase. We can formalize the above assumptions as follows:

(1) If A>D=3 (g8) = A , A4<_C8<4 ≥ 1, ;4034A_0C (A) is non-faulty, but no ��02ℎ4 of round A has
been created, then either ;4034A_0C (A) is currently waiting upon %D;; (A), or it will call %D;; (A)
between g8 and g8+1;

(2) If A>D=3 (g8) = A , ;4034A_0C (A) is non-faulty, A4<_C8<4 ≥ 2, and the leader is waiting upon a
call %D;; (A), �=E>:4 (A,<), %DBℎ(A), then that call will succeed before the end of g8+2;

(3) When a non-faulty leader receives (D224BB for %D;; (A), it immediately chooses< and calls
�=E>:4 (A,<); similarly it immediately calls %DBℎ(A) after �=E>:4 (A,<) succeeds.

By “immediately,” we mean between g8 and g8+1, if the first event has occurred, then the second
must have also occurred. Since the leader takes Δ to enter round A , and each phase takes 2Δ, the
leader will commit a method within 7Δ. Hence take A4B4C_E0; = 8 and Definition 3.5 is satisfied.

Liveness of LiDO. We now formally state and prove LiDO’s liveness property (for unpipelined
protocols), which implies SMR liveness.

Theorem 3.6. In every infinite live trace (g0, g1, · · ·) of LiDO, let A = A>D=3 (g0), then for every

A ′ > A with ;4034A_0C (A ′) non-faulty, there exists 8 such that a ��02ℎ4 of round A ′ is created by the

end of g8 .

Proof : Let (g0, g1, · · ·) be an infinite live trace.We first show that A>D=3 (g8) increases unboundedly.
Let A = A>D=3 (g8), C = A4<_C8<4 (g8). If A>D=3 (g8) = A>D=3 (g8+1) but C > 0 then �;0?B4 () is called
once between g8 and g8+1, which decreases A4<_C8<4 by 1. Hence if A>D=3 (g8) = A>D=3 (g8+C), then
A4<_C8<4 (g8+C) = 0. By assumption, there exists constant � such that A>D=3 (g8+C+�) > A>D=3 (g8).

Since A>D=3 increases unboundedly, for each A > A>D=3 (g0), we can find 8 such that A>D=3 (g8) < A

but A>D=3 (g8+1) ≥ A . By assumption, there exists constant # such that if g8+1 = g8+1+# = A , then

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

LiDO: Linearizable Byzantine Distributed Objects with Refinement-Based Liveness Proofs 193:13

there is��02ℎ4 of round A by the end of g8+1+# . On the other hand, if g8+1+# > A , then ;4034A_0C (A)
must have called (C0AC#4GC (A), so there exists a ��02ℎ4 of round A by the end of g8+1+# as well.

Given that each non-faulty proposer becomes a leader infinitely often, this implies that ��02ℎ4
is created infinitely often during execution. Since each ��02ℎ4 represents a new method being
committed, we see that new methods are committed infinitely often.

4 PROVING SAFETY AND LIVENESS OF UNPIPELINED JOLTEON

In Section 3 we fully defined the LiDO object and its live traces. In this section we use unpipelined
Jolteon as an example to show how to prove a network model refines LiDO. We study Jolteon
because its design maps nicely onto the ADO’s three-step view of consensus.

4.1 System Model

Main
Process

Timer

External Request

Deliver Msg

Reset

Timeout

Elapse
Request Response

Fig. 7. Architecture of each non-faulty process.

We consider a system consisting of a fixed
finite set of non-faulty and byzantine pro-
cesses. The only way of communication
between these processes is through send-
ing and delivering messages. The set" of
all messages that may potentially be cre-
ated within the system is called itsmessage

space. The set / of all internal states each
non-faulty process may potentially reach
during execution is called its state space.
Within set / , a special state I0 is designated as the initial state of each non-faulty process. We do
not model the internal state of byzantine processes.

The system state consists of three parts: 1) A finite map ?A>2_BC0C4 from process IDs to the current
state of that process; 2) A finite set<B6 of all messages that have been created within the system;
3) A finite set 34;8E_<B6 of process-message pairs, indicating which messages have been delivered
to which processes. Initially, ?A>2_BC0C4 (?83) = I0 for each process, and<B6 = 34;8E_<B6 = ∅.

Fig. 7 shows the architecture of each non-faulty process. It is specified as a main process with a
timer object attached. The main process has three operations: it can receive requests from external
clients, receive messages from the network, and receive timeout signals. Only the timer can send
timeout signals to the main process. The timer object has two operations called reset and elapse,
where reset can only be called by the main process while elapse is an external signal. The formal
details of the timer are explained later.
Each event that may occur within the system belongs to one of the following kinds:

(1) Deliver an external client request to a non-faulty process;
(2) Deliver a message to a non-faulty process, provided it has been sent previously;
(3) Deliver a time-elapse signal to a timer object;
(4) A byzantine process sends an arbitrary message, subject to constraints (explained later).

The action of a non-faulty process upon each delivery event is specified by a handler function. The
action may involve state changes and sending messages and is atomic with the event.

The Timer Object. We now study the timer object more closely. Normally, a timer is considered a
continuous object that exposes a single operation reset and sends out timeout signals. After GST,
the timer sends out a timeout signal when and only when a predetermined duration X has elapsed
from the most recent reset call. This model is intuitive and is implicitly adopted in paper proofs
of liveness such as Bravo et al. [2022]. However, continuous objects are difficult to formalize in
proof checkers. Therefore, in this work, we replace it with a discrete model that approximates

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

193:14 Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, Wolf Honoré, and Zhong Shao

the continuous behavior. We explain how this model is derived. Without loss of generality, let us
assume that the timeout duration X is 2Δ where 2 is a positive integer.
Let G be the time duration elapsed since the most recent reset call and ~ = 2Δ − G . Then ~ is a

continuous variable that decreases linearly as time flows. When ~ reaches 0, the timer sends out a
timeout signal. Now instead of focusing on ~, we consider its approximate value C = ⌊~/Δ⌋.

We observe that C only changes discretely. If reset is called at timepoint) , then before timepoint
) + Δ we have C = 2 − 1, and it decreases by 1 at timepoints) + Δ,) + 2Δ, · · · . The timer sends out
its timeout signal at timepoint) + 2Δ.

Algorithm 4 The Discrete Timer Model

1: Assume timeout duration X = 2Δ.
2: initialize:
3: C8<4A_4=01;43 ← CAD4

4: ;>20;_A4<_C8<4 ← 2 − 1

5: upon '4B4C ():
6: C8<4A_4=01;43 ← CAD4

7: ;>20;_A4<_C8<4 ← 2 − 1

8: upon �;0?B4 ():
9: if C8<4A_4=01;43 then

10: if ;>20;_A4<_C8<4 > 0 then

11: ;>20;_A4<_C8<4 ← ;>20;_A4<_C8<4 − 1

12: else

13: C8<4A_4=01;43 ← 5 0;B4

14:)8<4>DC ()

We can picture the discrete changes
of C as being triggered by an exter-
nal elapse signal. Formally, we make
the timer maintain an internal vari-
able ;>20;_A4<_C8<4 . When reset is
called, it sets ;>20;_A4<_C8<4 = 2 − 1.
When it receives an elapse signal, it
decreases ;>20;_A4<_C8<4 by 1. After
;>20;_A4<_C8<4 reaches 0 and the elapse
signal is received again, it delivers a
timeout. Algorithm 4 shows the formal
pseudocode.
To use this model in liveness proofs,

we also have to specify its live traces. We
first formally characterize live traces of
a timer using timed traces:

Definition 4.1. A non-Zeno timed trace of a discrete timer is live if:

(1) Before GST, '4B4C () and �;0?B4 () can be called arbitrarily;
(2) Within the time interval [�(),�() + Δ), either '4B4C () or �;0?B4 () is called at least once;
(3) After the first '4B4C () or �;0?B4 () event after GST, if an �;0?B4 () event 4 exists at timepoint

C , then there exists a '4B4C () or �;0?B4 () event 4′ at timepoint C − Δ, and between 4, 4′ there
is no other event in the trace;

(4) If a '4B4C () or �;0?B4 () event occurs at timepoint C ≥ �() , and no event occurs within the
interval (C, C + Δ), then there exists a '4B4C () or �;0?B4 () event at timepoint C + Δ.

To model the timer in our segmented trace formalism, we notice the following patterns:

Lemma 4.2. In a live timed trace of a timer, within each interval [),) +Δ) with) ≥ �() , we have:

(1) �;0?B4 () is called at most once;

(2) After '4B4C () is called �;0?B4 () is not called;

(3) Either �;0?B4 () or '4B4C () is called at least once.

Proof : See Appendix B.
We thus combine Lemma 4.2 with Lemma 2.8 to define the live traces of a network system.

Definition 4.3. A segmented trace (g0, g1, · · ·) of a network system is live if:

(1) g0 can be any valid finite trace;
(2) Each segment between g8 and g8+1 satisfies the patterns in Lemma 4.2 for each individual

timer object;
(3) Messages already sent in g8 are delivered at least once in g8+1, provided both the sender and

the recipient are non-faulty.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

LiDO: Linearizable Byzantine Distributed Objects with Refinement-Based Liveness Proofs 193:15

+>C4 ≜�"+>C4 (N83 ∗ NA>D=3 ∗ N?0A4=C_A>D=3 ∗"4Cℎ>3)

| �+>C4 (N83 ∗ NA>D=3)

�02ℎ4�4AC ≜�"�4AC (N83 ∗ NA>D=3 ∗ N?0A4=C_A>D=3 ∗"4Cℎ>3 ∗ !8BC (�"+>C4))

| ��4AC (N83 ∗ NA>D=3 ∗ !8BC (�+>C4))

'4@D4BC ≜�"'4@(N83 ∗ NA>D=3 ∗ N?0A4=C_A>D=3 ∗"4Cℎ>3 ∗)8<4>DC�4AC)

| �"'4@(N83 ∗ NA>D=3 ∗ N?0A4=C_A>D=3 ∗"4Cℎ>3 ∗��4AC)

| �'4@(N83 ∗ NA>D=3 ∗ �"�4AC)

)8<4>DC ≜)8<4>DC (N83 ∗ NA>D=3 ∗$?C8>=(�"�4AC))

)8<4>DC�4AC ≜)8<4>DC�4AC (NA>D=3 ∗ !8BC ()8<4>DC))

Fig. 8. Message space of Jolteon.

4.2 Unpipelined Jolteon

In Gelashvili et al. [2022], the Jolteon consensus protocol was described in its pipelined form. Here
we consider an unpipelined form. The pipelined form is considered in Section 5 and Appendix D.

Message Space. As shown in Fig. 8, the message space of Jolteon consists of five kinds of messages,
which we call +>C4 , �02ℎ4�4AC , '4@D4BC ,)8<4>DC , and)8<4>DC�4AC . Requests, votes, and cache
certificates are subdivided into �" type and � type. This naming shows the correlation between
Jolteon and the ADO model. In Jolteon, ��02ℎ4 and "�02ℎ4 are created simultaneously in a
single phase, and �"�4AC serves as the certificate for these caches; ��02ℎ4 is created in a second
phase, using ��4AC as its certificate. In the original description [Gelashvili et al. 2022], ��4AC and
)8<4>DC�4AC are called &� and)� respectively.

Constraints on Byzantine Processes. In theory, byzantine processes are allowed to send “any
message.” However, it is common practice to use cryptographic primitives such as digital signatures
to constrain their behaviors.We impose two constraints on byzantine processes, called cryptographic
constraint and semantic constraint.

1 Record node_state := {

2 node_local_round : nat;

3 node_local_rem_time : nat;

4 node_leader_phase : (* Enum type *);

5 node_voter_phase : (* Enum type *);

6 node_commit_round : nat;

7 node_recv_votes : list Vote;

8 node_recv_emcache : list EMCert;

9 node_recv_timeouts : list TimeoutMsg;

10 }

Fig. 9. State variables of non-faulty process.

As shown in Fig. 8, eachmessage except)8<4>DC�4AC

contains a sender ID field (83). Also, some messages
may embed other messages, like)8<4>DC�4AC embed-
ding)8<4>DC messages. Our cryptographic constraint
takes a Dolev-Yao-like approach [Dolev and Yao 1983]:
byzantine participants may only fill their own IDs in
the sender field, and they may only embed already
existing messages; however, we give them access to
every existing message in the network, regardless of
whether they are intended recipients or not.

In addition to cryptographic validity, we enforce a
semantic validity rule. For each kind of message, we
define a decidable property on its content that must be satisfied. For example, a cache certificate
must embed a quorum of votes supporting that cache. Since these properties are decidable, the
non-faulty processes simply call the decision procedure and discard the message if the test fails.
This allows us to ignore messages that are not semantically valid, and simplify the proof. See
Appendix C for details.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

193:16 Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, Wolf Honoré, and Zhong Shao

State Space. Fig. 9 shows a simplified view of the internal state of non-faulty processes. Although
proposers and voters are logically separate, they are implemented in the same process. The fieldmost
relevant to liveness is ;>20;_A>D=3 , which dictates which round the process currently participates
in. The 2><<8C_A>D=3 field records the highest round in which the process has cast a commit vote
(�+>C4). It corresponds to the @2ℎ86ℎ .A variable in the original description. The ;>20;_A4<_C8<4 field
is the remaining time of the timer object, as discussed previously. The other fields are progress
indicators for leaders and voters, and buffers for received messages. Although the buffers are shown
as lists here, they are implemented as finite maps from process IDs to messages, and we keep only
one message per ID.

Algorithm 5 Unpipelined Jolteon Protocol

1: Assume ;>20;_A>D=3 = A

2: ⊲ Invoke phase
3: as leader:
4: 24AC ← ��4AC or)8<4>DC�4AC of round A − 1
5: if 24AC is ��4AC then
6: ?0A4=C_A>D=3 ← A − 1

7: else

8: ?0A4=C_A>D=3 ← maxC8<4>DC ∈24AC C8<4>DC .4<24AC .A>D=3 (0 if C8<4>DC .4<24AC = ⊥)

9: Choose<4Cℎ>3 from client requests
10: Broadcast �"'4@(83, A, ?0A4=C_A>D=3,<4Cℎ>3, 24AC)

11: Collect �"+>C4 (_, A , ?0A4=C_A>D=3,<4Cℎ>3) from a quorum of voters
12: 4<24AC ← �"�4AC (83, A, ?0A4=C_A>D=3,<4Cℎ>3, E>C4B)

13: as voter:
14: Wait for �"'4@(_, A , ?,<, 24AC)

15: Send �"+>C4 (83, A, ?,<)

16: ⊲ Commit phase
17: as leader:
18: Broadcast �'4@(83, A, 4<24AC)

19: Collect �+>C4 (_, A) from a quorum of voters
20: 224AC ← ��4AC (83, A, E>C4B)

21: Send 4<24AC, 224AC to external client and executors

22: as voter:
23: Wait for �'4@(_, A , 4<24AC)

24: Store 4<24AC , set 2><<8C_A>D=3 to A
25: Send �+>C4 (83, A)

26: ⊲ Pacemaker
27: upon timeout:
28: 24AC ← �"�4AC of round 2><<8C_A>D=3,⊥ if never sent any �+>C4
29: Broadcast)8<4>DC (;>20;_A>D=3, 24AC)

30: upon receive a quorum of)8<4>DC with A>D=3 ≥ ;>20;_A>D=3 :
31: Send)8<4>DC�4AC (;>20;_A>D=3, C8<4>DCB) to oneself and ;4034A_0C (;>20;_A>D=3 + 1)

Operation of Jolteon. Algorithm 5 is a summary of our implementation of Jolteon. Each round
has two phases, which we call Invoke and Commit. During the Invoke phase, the leader broadcasts
a request that contains a ��4AC or)8<4>DC�4AC of the previous round, along with a client method

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

LiDO: Linearizable Byzantine Distributed Objects with Refinement-Based Liveness Proofs 193:17

of its own choice. This corresponds to a simultaneous pull and invoke in ADO. In the second phase
the leader rebroadcasts the votes received, and the voters store the method. This corresponds to a
push in ADO.
When a process receives a timeout signal from the timer, it broadcasts a)8<4>DC message

and no longer produces votes for the current round. The)8<4>DC message contains the current
;>20;_A>D=3 . A quorum of)8<4>DC , each of round at least ;>20;_A>D=3 (they do not need to be of
the same round), is used to build a)8<4>DC�4AC . Any non-faulty process that receives a ��4AC or
)8<4>DC�4AC should forward it to the next leader. This ensures the leader will also enter the new
round within Δ. The pacemaker described in Algorithm 5 corresponds to part (c) of Fig. 1, which is
sufficient for our refinement proof. We also implemented a version with pacemaker improved to
part (d) of Fig. 1. See Appendix C for details.

The timer is reset when and only when the process increases its ;>20;_A>D=3 . The process enters
round A > ;>20;_A>D=3 in one of the following situations:

(1) A)8<4>DC�4AC or ��4AC of round A − 1 is received;
(2) A valid '4@D4BC of round A is received;
(3) A)8<4>DC message that embeds an �"�4AC with 4<24AC .A>D=3 = A is received.

4.3 Proving Safety and Liveness of Jolteon

We proved both the safety and liveness of Jolteon by constructing a refinement between Jolteon
and LiDO. The proof was done in three steps:

(1) We construct a refinement between Jolteon and ADO (Definition 3.2), which derives the
safety of Jolteon from the safety of ADO;

(2) For each network state I, we define its abstract pacemaker state, which consists of A>D=3 and
A4<_C8<4 , and prove that each network step either does not change these values or changes
them in accordance with one action of the abstract pacemaker; this proves that Jolteon refines
LiDO;

(3) We prove that all live traces of Jolteon (Definition 4.3) refine live traces of LiDO.

In Appendix C, we present the full details of the proof. Here we present the overall structure and
discuss some of its interesting details.

Layered Safety Refinement. The refinement mapping itself is straightforward to define. We map a
proposer broadcasting �"'4@ to calling %D;; at ADO level. Since ��02ℎ4 and"�02ℎ4 are created
in a single phase, we map building �"�4AC to an atomic sequence of creating ��02ℎ4 , calling
�=E>:4 , and creating"�02ℎ4 . Broadcasting �'4@ and building ��4AC are mapped to calling %DBℎ
and building ��02ℎ4 . If a proposer enters the next round without collecting enough votes for its
request, we map it to creating)�02ℎ4 .
The hard part is to show that the image of every valid network trace is a valid ADO trace. It is

possible to prove this theorem in a single shot. However, the proof would be quite complex and
involve dozens of mutually dependent invariants. Instead, we introduced two intermediate layers
called Server and Voting (Fig. 4), which allowed us to reduce proof complexity by proving some
invariants on a simpler, more abstract layer. Each lower layer is a transition system that captures
more information about the network state but is also more deeply tied to implementation details.
The informal idea of safety proof is as follows. Each �02ℎ4�4AC and)8<4>DC�4AC is backed by

a quorum of votes or timeouts. For every pair of a ��4AC of round A and a)8<4>DC�4AC of round
A ′ ≥ A , at least one non-faulty voter has voted for both. The �+>C4 must have been produced
before the)8<4>DC . Hence, the highest �"�4AC embedded in the)8<4>DC�4AC must be of round
at least A . Since the ?0A4=C_A>D=3 of any �"'4@ of round A ′ + 1 must come from either a ��4AC or

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

193:18 Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, Wolf Honoré, and Zhong Shao

a)8<4>DC�4AC of round A ′, we see that the new leader must observe all committed methods. We
now decompose the above argument, so that we only deal with one key invariant at a layer.

At Server layer, the events we capture are proposers building '4@D4BC and �02ℎ4�4AC messages,
and the pacemaker building)8<4>DC�4AC messages. The proposers, as well as the pacemaker, are
modeled as threads running on a shared-memory system. Each thread can observe all existing
messages, and may atomically create a single new message. The invariant we enforce at this layer
is that for every pair of a ��4AC of round A and a)8<4>DC�4AC of round A ′ ≥ A , the)8<4>DC�4AC

must embed an �"�4AC of round at least A .
At Voting layer, we additionally capture voters sending +>C4 and)8<4>DC messages. Again,

the voters are threads on a shared-memory system and can observe all existing messages. We
enforce that non-faulty voters cannot make conflicting votes. This means they cannot make two
different �"+>C4 in a single round, they cannot make �+>C4 of round A after sending)8<4>DC of
round A ′ ≥ A , etc. It is then easy to prove that the Voting layer refines the Server layer, through the
quorum-overlap argument.
The Network layer implements the proposer, voter, and timer threads in our message-passing

model. The messages must now be explicitly delivered to each process. Each voter maintains its
own bookkeeping and decides whether to produce a vote upon receiving a request. To show that
the Network layer refines the Voting layer, we prove that whenever a voter decides to produce a
vote, the relevant safety invariant is respected.

A Subtle Safety Issue. Although the proof outlined above seems intuitive, there are many subtle
details. Here we present one example. Suppose that ;4034A_0C (A) enters round A by receiving a
quorum of timeouts of round A − 1. According to Algorithm 5, it should find the highest �"�4AC

embedded within the timeouts. It is possible that an �"�4AC of round A +1 has already been created.
If so, a byzantine process could include it in a timeout of round A . In this case, when the request
succeeds, the leader would have to set ?0A4=C_A>D=3 = A + 1, which violates ADO safety rules.
The above situation would not actually happen. The reason is that if an �"�4AC of round A + 1

exists, then a quorum of voters have already entered round A+1, and so will not vote on the request of
round A . However, this argument is not easy to formalize using invariants. Instead, we adopt a much
simpler solution: we make non-faulty processes reject)8<4>DC with C8<4>DC .4<24AC .A > C8<4>DC .A .
This ensures that in every valid)8<4>DC�4AC of round A , the highest embedded �"�4AC can be of
round at most A , which eliminates the difficult case described above.

5Δ allocated by pacemaker

Enter
Round

Pull,
Invoke Push

Broadcast
Request

Broadcast
Request

Receive
Votes

Receive
Votes

LiDO

Server Layer

Voting Layer

Fig. 10. Liveness of Jolteon

Liveness Refinement. Fig. 10 presents an overview
of our layered liveness proof. We first proved that
the pacemaker mechanism satisfies the protocol-
independent assumptions (Definition 3.3). Then we
decomposed the time allocated to each round into
3 steps. In the first step, the leader receives a ��4AC
or)8<4>DC�4AC from the previous round and enters
the new round. Then the leader completes the two
phases of a round. Each phase is further decomposed
into two stages: the voters receive the request, and
the leader receives the votes.

More specifically, we first define for each network state I the corresponding abstract pacemaker
states A>D=3 (I) and A4<_C8<4 (I).

Definition 4.4. Let � be the set of non-faulty processes. For each valid network state I, define:

(1) A>D=3 (I) = max?∈� ?.;>20;_A>D=3 ;

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

LiDO: Linearizable Byzantine Distributed Objects with Refinement-Based Liveness Proofs 193:19

Table 1. Proof effort of unpipelined Jolteon, in lines of Coq.

Part Lines Purpose

LiDO Interface 321 Define LiDO object

Safety proof 272 Prove safety of LiDO

Server layer Add QCs/TCs into view

Spec 185

Invariants 56

Refinement 115

Voting layer Add votes/timeouts into view

Spec 353

Invariants 194

Refinement 275

Network layer Model the network system

Spec 939

Invariants 604

Refinement 693

Liveness proof Prove liveness refinement

Liveness of LiDO 357

Voting layer to LiDO layer 523

Network model to Voting layer 953

(2) A4<_C8<4 (I) = min?∈�,?.;>20;_A>D=3=A>D=3 (I) ?.;>20;_A4<_C8<4 .

That is, we take A>D=3 (I) to be the maximum round ever entered by any non-faulty process.
Among the processes currently participating in A>D=3 (I), we take the minimum value of the timers’
remaining time as A4<_C8<4 (I). It is easy to see that under this definition, the pacemaker simulates
a logical clock. We leave the details in Appendix C.

We then proved that the leader can commit a method within the allocated time. We present one
example of proving progress within a single round.

Lemma 4.5. Let I, I′ be the system states at timepoints),) + Δ. If A>D=3 (I) = A , ;4034A_0C (A) is

non-faulty and waits upon %D;; (A), A4<_C8<4 (I) ≥ 1, then in state I′ either there exists an �"�4AC

of round A , or all non-faulty voters have voted for the same ?0A4=C_A>D=3 and<4Cℎ>3 in round A .

Proof : Since “there exists an �"�4AC of round A in state I′” is a decidable property (by deciding
over every existing message in the state), we do a case analysis on it. If such an �"�4AC exists,
then we are done. If not, then the leader must still be waiting upon %D;; (A). By the GST assumption,
the request message must have been delivered to all non-faulty voters.

We then look at the progress indicator of each non-faulty voter. Since A4<_C8<4 (I) ≥ 1, none of
the non-faulty voters will timeout within Δ. Hence, when each voter receives the request, it will
send a vote, unless it has already received another �"'4@ or �'4@. The latter case is impossible
since the non-faulty leaders do not send conflicting requests.

Proof Effort. Table 1 shows the proof effort for Jolteon. Defining the models and proving the
safety property of Jolteon took around 4,000 lines. Proving its liveness took around 1,800 lines.

5 PIPELINED JOLTEON

Pipelining is an optimization technique in consensus protocol design that reduces one phase from
each round. It was introduced in HotStuff [Yin et al. 2019] and adopted in several following works,
including Jolteon. It is, in fact, how Jolteon was originally presented.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

193:20 Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, Wolf Honoré, and Zhong Shao

Pipelining works by merging the Commit phase of each round with the Invoke phase of the
next round. While pipelining improves latency when there are no byzantine faults [Yin et al.
2019], the fact that committing a method requires the cooperation of two consecutive leaders
weakens the liveness guarantee of the protocol. This issue has been studied in Giridharan et al.
[2023]. Nevertheless, in the 35 + 1 rotating-leader setting, one can show there must be at least two
consecutive non-faulty leaders by a counting argument. If every non-faulty leader is sandwiched
by byzantine leaders then the proportion of byzantine processes must be at least 1/2 instead of 1/3.

Verifying pipelined protocols is more challenging than unpipelined protocols. This is because the
liveness of pipelining is tied to the round change mechanism. Proving the liveness of each single
round is not enough. We also have to analyze the cooperation of consecutive leaders and potential
byzantine interference.
We have completed a safety and liveness proof of pipelined Jolteon. This shows our approach

can be applied to systems with non-trivial optimizations. The details of our implementation and
proof are in Appendix D. Here we present the modifications to the liveness proof.

We observe that the liveness of pipelined Jolteon essentially consists of two parts. First, each non-
faulty leader can create an"�02ℎ4 on its own. Second, under suitable conditions, two consecutive
non-faulty leaders can cooperate to commit the"�02ℎ4 .

The “suitable conditions” of the second part are a bit tricky. The first leader initiates pipelining by
sending its �"�4AC message to the second leader. On the other hand, the pacemaker may also send
a)8<4>DC�4AC to the second leader. To make pipelining successful, the second leader must receive
the �"�4AC before any)8<4>DC�4AC messages. We implement this by requiring that the first leader
must send its �"�4AC soon enough: when it sends out �"�4AC we must have A4<_C8<4 ≥ 1. This
implies that no)8<4>DC�4AC will be created within Δ, so the next leader must build its own request
using the received �"�4AC .
Our liveness theorem is as follows:

Theorem 5.1. In every infinite segmented trace of pipelined Jolteon, let A = A>D=3 (g0), then for

every A ′ > A such that both ;4034A_0C (A ′), ;4034A_0C (A ′ + 1) are non-faulty, eventually an "�02ℎ4

and a ��02ℎ4 of A ′ are created.

Proof Effort. The safety proof effort remains almost the same. The liveness proof grew slightly
more complex and required around 2,000 lines.

6 EXPERIMENTAL EVALUATION

 0
 2
 4
 6
 8

 10
 12
 14

 0 20 40 60 80 100

L
a
te

n
c
y
 (

m
s
)

Round

no failure 1 failure

Fig. 11. Latency measurements.

To show that our Coq specification is realistic and faithful
to runnable code, we extracted the network layer specifica-
tion of unpipelined Jolteon into executable OCaml code. The
code specifies messages to be exchanged among different
nodes and abstractions for sending and receiving messages
but lacks implementations of the network primitives and
the timer. We manually glued the network abstraction to
OCaml’s libraries that realize TCP/UDP-based communica-
tions through a shim layer and added a timer that triggers
timeout events when the round does not advance within a threshold. Still, the main logic comes
from the unmodified extracted code.
We evaluate the code on a research cloud with a four-node setting. Fig. 11 shows a series of

latency measurements to increment the round either by committing a method or by timing out.
Without any failed or Byzantine nodes, the system exhibits an average latency of 2.56 ms to commit
a request. With a single failed or Byzantine node that hinders making progress, it takes an average of

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

LiDO: Linearizable Byzantine Distributed Objects with Refinement-Based Liveness Proofs 193:21

4.45 ms to advance the round (timeout is set to 10 ms). The system is not optimized for performance
and does not include pipelining, but the experiment shows that our specification is realistic, the
code maintains liveness under failure, and the execution exhibits comparable performance (i.e., 1 ms
overhead under steady state) to other verified PBFT Rahli et al. [2018] and non-verified BFT-SmaRt
implementations [Bessani et al. 2014].

7 RELATED WORK

Theoretical Solutions to Byzantine Consensus Liveness. Maintaining the liveness of byzantine
consensus protocols has been traditionally considered a difficult problem. The original PBFT thesis
[Castro 2001] did not give a formal liveness proof, although they had a semi-formal safety proof.
The problem is that byzantine participants may attempt to force an early round-change, and honest
participants need to correctly deal with the messages they send.
HotStuff [Yin et al. 2019] first proposed to use an independent component called pacemaker to

control round-change so that each round gets allocated sufficient time to commit methods. However,
the pacemaker of HotStuff is relatively unusual. The participants may enter new rounds without
observing QC or TC of previous rounds. Therefore, HotStuff had to use exponential backup to
ensure that, eventually, the participants would enter the same round. Its liveness dynamics are
difficult to analyze. Jolteon [Gelashvili et al. 2022] was then proposed as a variant of HotStuff that
reverts to a pacemaker with the all-to-all broadcast of timeout messages. The Cogsworth pacemaker
[Naor et al. 2021] was proposed as a way to avoid all-to-all broadcast needed in Jolteon. It has been
incorporated into a new version of HotStuff [Malkhi and Nayak 2023]. While our work has only
inspected the pacemaker of Jolteon, we expect that most of the pacemaker designs in the literature
can be captured and analyzed by our approach.

Bravo et al. [2022] proposed a theory of synchronizers, which are objects that control the round-
change of each process but are completely independent of other parts of the protocol. They showed
that it can applied to a number of different protocol designs. However, synchronizers are not
band-aids that magically repair broken protocols. To apply the synchronizer to a protocol requires
changes to the protocol itself, and indeed a large part of Bravo et al. [2022] is showing that the
modified protocol still satisfies safety and liveness. This shows that synchronizers do not replace
the need for a formal framework for safety and liveness proofs. We also observe that it is unclear
how to apply synchronizers to pipelined protocols, as pipelining relies on a fast path for round
change, which synchronizers currently do not provide.

Verifying Safety and Liveness of Consensus Protocols. A large number of frameworks for verifying
the correctness of consensus protocols have been proposed in the literature. Figure 2 gives a
comparison between our work and existing approaches. The figure shows a clear pattern: verifying
safety is relatively easy, but verifying liveness is a lot harder. Especially for byzantine consensus
protocols, all existing liveness results only work for fully asynchronous or synchronous protocols.
A number of projects have aimed at verifying the safety properties of byzantine consensus

protocols similar to HotStuff [Yin et al. 2019]. These include Velisarios [Rahli et al. 2018], Carr
et al. [2022], and QTree [Cirisci et al. 2023]. In particular, the Velisarios proof uses a logic-of-events
approach, which constructs a causal ordering of events and proves safety by induction on this
ordering, with which our safety refinement proof bears similarity. However, recording only causal
ordering does not provide enough information to establish liveness. For partially synchronous
protocols, one also needs temporal ordering, which our segmented-trace formalism addresses.
Carr et al. [2022] suggests that one proves a weak version of liveness called plausible liveness,

which essentially means that one can always extend any valid execution to commit some data.
This notion is inadequate in an adversarial environment: the byzantine adversary may actively

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

193:22 Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, Wolf Honoré, and Zhong Shao

Table 2. Comparison between consensus verification projects.
*: The liveness proof does not cover partially-synchronous protocols.

Byzantine Safety Liveness Executable Refinement

IronFleet [Hawblitzel et al. 2015] × ✓ ✓ ✓ ✓

Verdi [Wilcox et al. 2015] × ✓ × ✓ ✓

PSync [Drăgoi et al. 2016] × ✓ ✓ ✓ ✓

Taube et al. [2018] × ✓ × ✓ ×

Velisarios [Rahli et al. 2018] ✓ ✓ × ✓ ✓

Adore [Honoré et al. 2022] × ✓ × ✓ ✓

Carr et al. [2022] ✓ ✓ × × ×

QTree [Cirisci et al. 2023] ✓ ✓ × × ✓

Padon et al. [2017] × ✓ ✓
* × ×

Berkovits et al. [2019] ✓ ✓ ✓
* × ×

Losa and Dodds [2020] ✓ ✓ ✓
* × ×

Bertrand et al. [2022] ✓ ✓ ✓
* × ×

LiDO (this work) ✓ ✓ ✓ ✓ ✓

delay successful commit. Another issue is the protocol may selectively ignore certain requests. Our
notion of liveness guarantees every proposer may always commit some method of its own choice.

IronFleet [Hawblitzel et al. 2015] and PSync [Drăgoi et al. 2016] are the only results we are aware
of that cover liveness and can be connected to executable code. Both works only cover benign
consensus. PSync uses the Heard-Of model, and the verified code is coupled to a pacemaker. The
pacemaker component is not mechanically verified. IronFleet explicitly models timers, heartbeats,
and other factors. The model is very comprehensive, but the accompanying proofs are equally
verbose. Our methodology results in proofs with a more transparent structure and better reusability.

Padon et al. [2017] proposed a liveness-to-safety reduction approach that allows verifying the
liveness of protocols in first-order logic. It has been extended to byzantine protocols in Berkovits et al.
[2019]; Losa and Dodds [2020], but has so far not been applied to partially synchronous protocols.
Our work has shown that it is easy to both capture network dynamics using safety properties,
and decompose SMR liveness into safety requirements on the network. However, automating our
proofs in model checkers is future work.

AdoB [Honoré et al. 2024] is a recent variant of ADO that supports reasoning about benign and
byzantine faults in a unified way. The main difference between AdoB and LiDO is that AdoB is
an atomic model, whereas LiDO defines a concurrent but linearizable object. This has significant
implications for liveness reasoning. Refinement proofs for AdoB linearize each valid network trace
into a valid atomic trace of AdoB. In doing so, it reorders network events and eliminates important
temporal information. For example, even if the trace g1 is a prefix of g2, there is no general relation
between their linearized traces g ′

1
and g ′

2
. Consequently, although AdoB claims to have a liveness

proof, it does not support liveness refinement like our LiDO model does: live traces of the network
model cannot be directly correlated to live traces of AdoB.

Consensus Beyond Partial Synchrony. In this work, we have only considered mechanizing live-
ness proof of partially synchronous protocols with a fixed set of participants. In practice, public
blockchains often demand byzantine consensus algorithms supporting dynamic or open member-
ship. There are a number of works proposing protocol designs that work under this new setting
[Buterin et al. 2020; D’Amato et al. 2023]. Also, Thomsen and Spitters [2021] have mechanized a
liveness proof for Nakamoto-style Proof-of-Stake (PoS) consensus under a synchronous setting. In
the future, we plan to extend our theory to cover open-membership protocols.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

LiDO: Linearizable Byzantine Distributed Objects with Refinement-Based Liveness Proofs 193:23

ACKNOWLEDGMENTS

We would like to thank our anonymous reviewers for their helpful feedback. This material is
based upon work supported in part by NSF grants 2019285, 1763399, 2313433, and 2118851, and
by the Defense Advanced Research Projects Agency (DARPA) and Naval Information Warfare
Center Pacific (NIWC Pacific) under Contract No. N66001-21-C-4018. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the funding agencies.

ARTIFACT-AVAILABILITY STATEMENT

The artifact accompanying this paper is available on Zenodo [Qiu et al. 2024a].

REFERENCES

Mark Abspoel, Thomas Attema, and Matthieu Rambaud. 2021. Brief Announcement: Malicious Security Comes for Free

in Consensus with Leaders. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing (Virtual

Event, Italy) (PODC’21). Association for Computing Machinery, New York, NY, USA, 195–198. https://doi.org/10.1145/

3465084.3467953

Idan Berkovits, Marijana Lazić, Giuliano Losa, Oded Padon, and Sharon Shoham. 2019. Verification of Threshold-Based

Distributed Algorithms by Decomposition to Decidable Logics. In Computer Aided Verification, Isil Dillig and Serdar

Tasiran (Eds.). Springer International Publishing, Cham, 245–266. https://doi.org/10.1007/978-3-030-25543-5_15

Nathalie Bertrand, Vincent Gramoli, Igor Konnov, Marijana Lazić, Pierre Tholoniat, and Josef Widder. 2022. Holistic

Verification of Blockchain Consensus. In 36th International Symposium on Distributed Computing (DISC 2022) (Leibniz

International Proceedings in Informatics (LIPIcs), Vol. 246), Christian Scheideler (Ed.). Schloss Dagstuhl – Leibniz-Zentrum

für Informatik, Dagstuhl, Germany, 10:1–10:24. https://doi.org/10.4230/LIPIcs.DISC.2022.10

Alysson Bessani, João Sousa, and Eduardo E. P. Alchieri. 2014. State Machine Replication for the Masses with BFT-SMaRt.

In Proceedings of the IEEE/IFIP International Conference on Dependable Systems and Networks (DSN ’14). IEEE Computer

Society, Washington, DC, USA, 355–362. https://doi.org/10.1109/DSN.2014.43

Manuel Bravo, Gregory V. Chockler, and Alexey Gotsman. 2022. Liveness and Latency of Byzantine State-Machine

Replication. In 36th International Symposium on Distributed Computing, DISC 2022, October 25-27, 2022, Augusta, Georgia,

USA (LIPIcs, Vol. 246), Christian Scheideler (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 12:1–12:19. https:

//doi.org/10.4230/LIPIcs.DISC.2022.12

Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao, Danny Ryan, Juhyeok Sin, Ying Wang, and

Yan X Zhang. 2020. Combining GHOST and Casper. arXiv:2003.03052 [cs.CR]

Harold Carr, Christa Jenkins, Mark Moir, Victor Cacciari Miraldo, and Lisandra Silva. 2022. Towards Formal Verification

of HotStuff-Based Byzantine Fault Tolerant Consensus in Agda. In NASA Formal Methods, Jyotirmoy V. Deshmukh, Klaus

Havelund, and Ivan Perez (Eds.). Springer International Publishing, Cham, 616–635. https://doi.org/10.1007/978-3-031-

06773-0_33

Miguel Castro. 2001. Practical Byzantine Fault Tolerance. Ph. D. Dissertation. Massachusetts Institute of Technology.

https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/thesis-mcastro.pdf

Berk Cirisci, Constantin Enea, and Suha Orhun Mutluergil. 2023. Quorum Tree Abstractions of Consensus Protocols.

In Programming Languages and Systems, Thomas Wies (Ed.). Springer Nature Switzerland, Cham, 337–362. https:

//doi.org/10.1007/978-3-031-30044-8_13

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, Jovan Komatovic, and Manuel

Vidigueira. 2022. Byzantine Consensus Is Θ(=2) : The Dolev-Reischuk Bound Is Tight Even in Partial Synchrony!. In 36th

International Symposium on Distributed Computing (DISC 2022) (Leibniz International Proceedings in Informatics (LIPIcs),

Vol. 246), Christian Scheideler (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 14:1–14:21.

https://doi.org/10.4230/LIPIcs.DISC.2022.14

Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse. 2023. Goldfish: No More Attacks on Ethereum?!

arXiv:2209.03255 [cs.CR]

D. Dolev and A. Yao. 1983. On the security of public key protocols. IEEE Transactions on Information Theory 29, 2 (1983),

198–208. https://doi.org/10.1109/TIT.1983.1056650

Cezara Drăgoi, Thomas A. Henzinger, and Damien Zufferey. 2016. PSync: A Partially Synchronous Language for Fault-

Tolerant Distributed Algorithms. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (St. Petersburg, FL, USA) (POPL ’16). Association for Computing Machinery, New York, NY,

USA, 400–415. https://doi.org/10.1145/2837614.2837650

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

https://doi.org/10.1145/3465084.3467953
https://doi.org/10.1145/3465084.3467953
https://doi.org/10.1007/978-3-030-25543-5_15
https://doi.org/10.4230/LIPIcs.DISC.2022.10
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.4230/LIPIcs.DISC.2022.12
https://doi.org/10.4230/LIPIcs.DISC.2022.12
https://arxiv.org/abs/2003.03052
https://doi.org/10.1007/978-3-031-06773-0_33
https://doi.org/10.1007/978-3-031-06773-0_33
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/thesis-mcastro.pdf
https://doi.org/10.1007/978-3-031-30044-8_13
https://doi.org/10.1007/978-3-031-30044-8_13
https://doi.org/10.4230/LIPIcs.DISC.2022.14
https://arxiv.org/abs/2209.03255
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1145/2837614.2837650

193:24 Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, Wolf Honoré, and Zhong Shao

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the Presence of Partial Synchrony. Journal of the

ACM 35, 2 (April 1988), 288–323. https://doi.org/10.1145/42282.42283

Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman, and Zhuolun Xiang. 2022. Jolteon and Ditto:

Network-Adaptive Efficient Consensus with Asynchronous Fallback. In Financial Cryptography and Data Security, Ittay

Eyal and Juan Garay (Eds.). Springer International Publishing, Cham, 296–315. https://doi.org/10.1007/978-3-031-18283-

9_14

Neil Giridharan, Florian Suri-Payer, MatthewDing, Heidi Howard, Ittai Abraham, and Natacha Crooks. 2023. BeeGees: Stayin’

Alive in Chained BFT. In Proceedings of the 2023 ACM Symposium on Principles of Distributed Computing (Orlando, FL, USA)

(PODC ’23). Association for ComputingMachinery, New York, NY, USA, 233–243. https://doi.org/10.1145/3583668.3594572

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath Setty, and Brian

Zill. 2015. IronFleet: Proving Practical Distributed Systems Correct. In Proceedings of the 25th Symposium on Operating

Systems Principles (Monterey, California) (SOSP ’15). Association for Computing Machinery, New York, NY, USA, 1–17.

https://doi.org/10.1145/2815400.2815428

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM

Trans. Program. Lang. Syst. 12, 3 (jul 1990), 463–492. https://doi.org/10.1145/78969.78972

Wolf Honoré, Jieung Kim, Ji-Yong Shin, and Zhong Shao. 2021. Much ADO about Failures: A Fault-Aware Model for

Compositional Verification of Strongly Consistent Distributed Systems. Proc. ACM Program. Lang. 5, OOPSLA, Article 97

(oct 2021), 31 pages. https://doi.org/10.1145/3485474

Wolf Honoré, Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, and Zhong Shao. 2024. AdoB: Bridging Benign and

Byzantine Consensus with Atomic Distributed Objects. Proc. ACM Program. Lang. 8, OOPSLA1, Article 109 (apr 2024),

30 pages. https://doi.org/10.1145/3649826

Wolf Honoré, Ji-Yong Shin, Jieung Kim, and Zhong Shao. 2022. Adore: Atomic Distributed Objects with Certified Recon-

figuration. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and

Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY, USA, 379–394.

https://doi.org/10.1145/3519939.3523444

Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. 2020. Order-Fairness for Byzantine Consensus. In Advances in

Cryptology – CRYPTO 2020, Daniele Micciancio and Thomas Ristenpart (Eds.). Springer International Publishing, Cham,

451–480. https://doi.org/10.1007/978-3-030-56877-1_16

Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede Gregersen, and Lars Birkedal. 2020.

Aneris: A Mechanised Logic for Modular Reasoning about Distributed Systems. In Programming Languages and Systems,

Peter Müller (Ed.). Springer International Publishing, Cham, 336–365. https://doi.org/10.1007/978-3-030-44914-8_13

Klaus Kursawe. 2020. Wendy, the Good Little Fairness Widget: Achieving Order Fairness for Blockchains. In Proceedings of

the 2nd ACM Conference on Advances in Financial Technologies (New York, NY, USA) (AFT ’20). Association for Computing

Machinery, New York, NY, USA, 25–36. https://doi.org/10.1145/3419614.3423263

Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput. Syst. 16, 2 (may 1998), 133–169. https://doi.org/10.

1145/279227.279229

Leslie Lamport. 2005. Real Time is Really Simple. Technical ReportMSR-TR-2005-30. 72 pages. https://www.microsoft.com/en-

us/research/publication/real-time-is-really-simple/

Andrew Lewis-Pye. 2022. Quadratic worst-case message complexity for State Machine Replication in the partial synchrony

model. CoRR abs/2201.01107 (2022). arXiv:2201.01107

Giuliano Losa and Mike Dodds. 2020. On the Formal Verification of the Stellar Consensus Protocol. In 2nd Workshop

on Formal Methods for Blockchains (FMBC 2020) (OpenAccess Series in Informatics (OASIcs), Vol. 84), Bruno Bernardo

and Diego Marmsoler (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 9:1–9:9. https:

//doi.org/10.4230/OASIcs.FMBC.2020.9

Dahlia Malkhi and Kartik Nayak. 2023. Extended Abstract: HotStuff-2: Optimal Two-Phase Responsive BFT. Cryptology

ePrint Archive, Paper 2023/397. https://eprint.iacr.org/2023/397

Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman. 2021. Cogsworth: Byzantine View Synchronization.

Cryptoeconomic Systems 1, 2 (oct 22 2021). https://doi.org/10.21428/58320208.08912a03

Oded Naor and Idit Keidar. 2020. Expected Linear Round Synchronization: The Missing Link for Linear Byzantine SMR.

In 34th International Symposium on Distributed Computing (DISC 2020) (Leibniz International Proceedings in Informatics

(LIPIcs), Vol. 179), Hagit Attiya (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 26:1–26:17.

https://doi.org/10.4230/LIPIcs.DISC.2020.26

Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning. Theoretical Computer Science 375, 1 (2007), 271–307.

https://doi.org/10.1016/j.tcs.2006.12.035 Festschrift for John C. Reynolds’s 70th birthday.

Oded Padon, Jochen Hoenicke, Giuliano Losa, Andreas Podelski, Mooly Sagiv, and Sharon Shoham. 2017. Reducing

Liveness to Safety in First-Order Logic. Proc. ACM Program. Lang. 2, POPL, Article 26 (dec 2017), 33 pages. https:

//doi.org/10.1145/3158114

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

https://doi.org/10.1145/42282.42283
https://doi.org/10.1007/978-3-031-18283-9_14
https://doi.org/10.1007/978-3-031-18283-9_14
https://doi.org/10.1145/3583668.3594572
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3485474
https://doi.org/10.1145/3649826
https://doi.org/10.1145/3519939.3523444
https://doi.org/10.1007/978-3-030-56877-1_16
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1145/3419614.3423263
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://www.microsoft.com/en-us/research/publication/real-time-is-really-simple/
https://www.microsoft.com/en-us/research/publication/real-time-is-really-simple/
https://arxiv.org/abs/2201.01107
https://doi.org/10.4230/OASIcs.FMBC.2020.9
https://doi.org/10.4230/OASIcs.FMBC.2020.9
https://eprint.iacr.org/2023/397
https://doi.org/10.21428/58320208.08912a03
https://doi.org/10.4230/LIPIcs.DISC.2020.26
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1145/3158114
https://doi.org/10.1145/3158114

LiDO: Linearizable Byzantine Distributed Objects with Refinement-Based Liveness Proofs 193:25

Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, Wolf Honoré, and Zhong Shao. 2024a. Artifact for PLDI 2024 paper #

290: LiDO: Linearizable Byzantine Distributed Objects with Refinement-Based Liveness Proofs. Yale University, New Haven,

USA. https://doi.org/10.5281/zenodo.10909272

Longfei Qiu, Yoonseung Kim, Ji-Yong Shin, Jieung Kim, Wolf Honoré, and Zhong Shao. 2024b. LiDO: Linearizable Byzantine

Distributed Objects with Refinement-Based Liveness Proofs. Technical Report YALEU/DCS/TR-1569. Yale Univ. https:

//flint.cs.yale.edu/publications/lido.html

Vincent Rahli, Ivana Vukotic, Marcus Völp, and Paulo Esteves-Verissimo. 2018. Velisarios: Byzantine Fault-Tolerant Protocols

Powered by Coq. In Programming Languages and Systems, Amal Ahmed (Ed.). Springer International Publishing, Cham,

619–650. https://doi.org/10.1007/978-3-319-89884-1_22

Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial. ACM Comput.

Surv. 22, 4 (dec 1990), 299–319. https://doi.org/10.1145/98163.98167

Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2017. Programming and Proving with Distributed Protocols. Proc. ACM

Program. Lang. 2, POPL, Article 28 (dec 2017), 30 pages. https://doi.org/10.1145/3158116

Upamanyu Sharma, Ralf Jung, Joseph Tassarotti, Frans Kaashoek, and Nickolai Zeldovich. 2023. Grove: A Separation-Logic

Library for Verifying Distributed Systems. In Proceedings of the 29th Symposium on Operating Systems Principles (Koblenz,

Germany) (SOSP ’23). Association for Computing Machinery, New York, NY, USA, 113–129. https://doi.org/10.1145/

3600006.3613172

Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon, Mooly Sagiv, Sharon Shoham, James R. Wilcox, and Doug

Woos. 2018. Modularity for Decidability of Deductive Verification with Applications to Distributed Systems. SIGPLAN

Not. 53, 4 (jun 2018), 662–677. https://doi.org/10.1145/3296979.3192414

Søren Eller Thomsen and Bas Spitters. 2021. Formalizing Nakamoto-Style Proof of Stake. In 2021 IEEE 34th Computer Security

Foundations Symposium (CSF). 1–15. https://doi.org/10.1109/CSF51468.2021.00042

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas Anderson. 2015.

Verdi: A Framework for Implementing and Formally Verifying Distributed Systems. SIGPLAN Not. 50, 6 (jun 2015),

357–368. https://doi.org/10.1145/2813885.2737958

Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst, and Thomas Anderson. 2016. Planning for

Change in a Formal Verification of the Raft Consensus Protocol. In Proceedings of the 5th ACM SIGPLAN Conference on

Certified Programs and Proofs (St. Petersburg, FL, USA) (CPP 2016). Association for Computing Machinery, New York, NY,

USA, 154–165. https://doi.org/10.1145/2854065.2854081

Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham. 2019. HotStuff: BFT Consensus

with Linearity and Responsiveness. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing

(Toronto ON, Canada) (PODC ’19). Association for Computing Machinery, New York, NY, USA, 347–356. https:

//doi.org/10.1145/3293611.3331591

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 193. Publication date: June 2024.

https://doi.org/10.5281/zenodo.10909272
https://flint.cs.yale.edu/publications/lido.html
https://flint.cs.yale.edu/publications/lido.html
https://doi.org/10.1007/978-3-319-89884-1_22
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/3158116
https://doi.org/10.1145/3600006.3613172
https://doi.org/10.1145/3600006.3613172
https://doi.org/10.1145/3296979.3192414
https://doi.org/10.1109/CSF51468.2021.00042
https://doi.org/10.1145/2813885.2737958
https://doi.org/10.1145/2854065.2854081
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591

	Abstract
	1 Introduction
	2 Overview
	2.1 Background: State Machine Replication Under Partial Synchrony
	2.2 The ADO Model of Consensus
	2.3 The Need for a New Model
	2.4 Proving Liveness Under Partial Synchrony

	3 The LiDO Model of Consensus
	3.1 The ADO Model
	3.2 The LiDO Model
	3.3 The Live Traces of LiDO

	4 Proving Safety and Liveness of Unpipelined Jolteon
	4.1 System Model
	4.2 Unpipelined Jolteon
	4.3 Proving Safety and Liveness of Jolteon

	5 Pipelined Jolteon
	6 Experimental Evaluation
	7 Related Work
	Acknowledgments
	References

