
Abstract

The Mechanized Verification of Garbage Collector

Implementations

Andrew Evan McCreight

2008

Languages such as Java, C], Standard ML, and Haskell use automated memory man-

agement to simplify development and improve reliability by eliminating the need for

programmers to manually free unused objects. The cost of this improved program-

mer experience is that the implementation of the language becomes more complex,

requiring a garbage collector. Garbage collectors are becoming increasingly sophis-

ticated to adapt them to high-performance, concurrent and real-time applications,

making internal collector invariants and the interface with user programs (mutators

in garbage collector parlance) subtle and difficult to implement correctly.

My thesis is that treating the garbage collected heap as an abstract data type

allows the specification and verification of flexible and expressive garbage collector-

mutator interfaces, and that the mechanized verification of garbage collector im-

plementations using Hoare-style logic is both practical and effective. The mutator-

garbage collector interface I describe in this paper is expressive enough to be used

with verified mutators, while being abstract enough that a single interface can be

used with both stop-the-world and incremental collectors. It is also powerful enough

to be used with collectors that require read or write barriers.

In this dissertation, I describe my framework for the mechanized verification of

garbage collector implementations. I discuss the formal setting, and my approach to

garbage collector interfaces. I also describe the specification and verification of the

Cheney and Baker copying collectors. The Baker collector is an incremental collector

2

that requires a read barrier. Finally, I discuss some practical tools I developed for

program verification using separation logic in the Coq proof assistant.

The Mechanized Verification of Garbage

Collector Implementations

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Andrew Evan McCreight

Dissertation Director: Zhong Shao

December 2008

Copyright c© 2008 by Andrew Evan McCreight

All rights reserved.

ii

Contents

Acknowledgments xiii

1 Introduction 1

2 Formal Setting 5

2.1 Introduction . 5

2.2 The machine . 6

2.2.1 Syntax . 6

2.2.2 Dynamic semantics . 9

2.3 SCAP . 10

2.3.1 Instruction sequence typing rules 11

2.3.2 Top level typing rules . 14

2.3.3 Soundness . 16

2.4 Weak SCAP . 16

2.5 Separation logic . 20

2.5.1 Predicates . 21

2.5.2 Basic properties . 23

2.5.3 Machine properties . 24

2.6 Implementation . 24

2.7 Specification style . 27

iii

2.8 Example . 30

2.8.1 Verification . 32

2.9 Conclusion . 39

3 Abstract Data Types for Hoare Logic 40

3.1 Introduction . 40

3.2 Basic abstract data types . 42

3.3 Indexed abstract data types . 43

3.3.1 Example . 44

3.3.2 Depth-indexed stack ADT . 46

3.3.3 List-indexed ADT . 47

3.4 Functor-based implementation of ADTs 48

3.5 ADTs for deep embeddings . 52

3.5.1 Example specification . 55

3.6 Related work and conclusion . 55

4 The Garbage Collector Interface 59

4.1 Introduction . 59

4.2 Garbage collection as ADT . 61

4.3 The abstract state . 64

4.3.1 Representation predicate . 65

4.3.2 Minor interface parameters . 66

4.3.3 Properties of the representation predicate 67

4.4 Operation specifications . 71

4.4.1 GC step . 71

4.4.2 Read specification . 74

4.4.3 Write specification . 76

iv

4.4.4 Allocator specification . 77

4.5 Top level components . 79

4.6 Collector coercions . 80

4.7 Conclusion . 81

5 Representation Predicates 83

5.1 Introduction . 83

5.2 Mark-sweep collector . 85

5.3 Copying collector . 88

5.4 Incremental copying collector . 92

5.5 Conclusion . 99

6 Cheney Collector Verification 100

6.1 Introduction . 100

6.2 Generic predicates and definitions . 105

6.3 Field scanning . 110

6.3.1 Implementation . 111

6.3.2 Specification . 114

6.3.3 Verification . 121

6.4 The loop . 123

6.4.1 Implementation . 123

6.4.2 Specification . 124

6.4.3 Verification . 128

6.5 The collector . 130

6.5.1 Implementation . 130

6.5.2 Specification . 132

6.5.3 Verification . 137

v

6.6 The allocator . 143

6.6.1 Implementation . 145

6.6.2 Specification . 145

6.6.3 Verification . 146

6.7 Reading and writing . 150

6.7.1 Implementation . 151

6.7.2 Specification . 152

6.7.3 Verification . 152

6.8 Putting it together . 153

6.9 Conclusion . 154

7 Baker Collector Verification 156

7.1 Introduction . 156

7.2 Field scanning . 160

7.3 The loop . 161

7.3.1 Implementation . 161

7.3.2 Specification . 163

7.3.3 Verification . 168

7.4 Allocator . 175

7.4.1 Implementation . 177

7.4.2 Specification . 177

7.4.3 Allocator verification . 183

7.4.4 Restore root verification . 193

7.4.5 Specification weakening . 193

7.5 Read barrier . 195

7.5.1 Implementation . 195

vi

7.5.2 Specification . 197

7.5.3 Verification . 198

7.6 Write barrier . 202

7.6.1 Verification . 203

7.7 Putting it all together . 203

7.8 Conclusion . 204

8 Tools and Tactics 206

8.1 Introduction . 206

8.2 Machine semantics . 207

8.2.1 Command step simplifications 207

8.2.2 State update simplifications 209

8.3 Finite sets . 210

8.4 Separation logic . 212

8.4.1 Simplification . 212

8.4.2 Matching . 213

8.4.3 Reordering . 214

8.4.4 Reassociation . 215

8.4.5 Reordering and reassociation 217

8.5 Related work . 218

8.6 Conclusion . 220

9 Conclusion 221

9.1 Related work . 222

9.2 Future work . 226

9.2.1 Improved machine model . 226

9.2.2 More realistic collectors . 227

vii

9.2.3 Improved program reasoning 229

9.2.4 Other uses of ADTs for system level interfaces 229

Bibliography 230

viii

List of Figures

2.1 Machine syntax . 7

2.2 Command semantics . 8

2.3 Program step relation . 10

2.4 Well-formed instruction sequences . 12

2.5 Typing rules for SCAP . 15

2.6 Typing rules for WeakSCAP . 17

2.7 Summary of separation logic predicates 21

2.8 Definition of separation logic predicates 25

2.9 Formal foundation implementation line counts 26

2.10 Specification example . 28

2.11 Swap assembly implementation . 30

2.12 Swap specification . 31

2.13 Swap validity lemma . 33

2.14 Reasoning about swap loads . 35

2.15 Reasoning about swap stores . 36

2.16 Initial reasoning about the guarantee 37

2.17 Final reasoning about the guarantee 37

3.1 Abstract data types and clients . 41

3.2 Basic ADT for stacks . 42

ix

3.3 Depth-indexed stack ADT . 46

3.4 List-indexed stack ADT . 47

3.5 Implementing ADTs using a module system 49

3.6 Depth-indexed stack signature . 49

3.7 Stack implementation using lists . 50

3.8 Client implementation . 51

3.9 SCAP ADT for stacks in a deeply embedded language 53

4.1 Abstract heap . 61

4.2 Partially copied concrete heap . 62

4.3 Abstract and concrete machines . 63

4.4 Basic GC step . 72

4.5 Copying GC step . 73

4.6 Read barrier specification . 74

4.7 Write barrier specification . 76

4.8 Allocator specification . 78

5.1 Abstract memory . 84

5.2 Concrete mark-sweep memory . 86

5.3 Mark-sweep collector representation 86

5.4 Concrete copying collector memory 89

5.5 Copying collector representation . 89

5.6 Concrete incremental copying collector memory 94

5.7 Baker collector representation . 94

6.1 Example: Cheney collection (beginning) 101

6.2 Example: Cheney collection (middle) 102

6.3 Example: Cheney collection (end) . 103

x

6.4 Generic specification definitions . 104

6.5 More generic specification definitions 106

6.6 Generic copying and forwarding predicates 107

6.7 State isomorphism . 108

6.8 Reachability predicates . 109

6.9 Field scanning: object already copied 110

6.10 Field scanning: uncopied object . 111

6.11 Cheney utility function pseudocode 112

6.12 Cheney utility functions implementation 112

6.13 Cheney field scanning pseudocode . 113

6.14 Cheney field scanning implementation (assembly) 114

6.15 SCAN NO COPY specification . 115

6.16 Valid field scanning state . 116

6.17 Low level scan field specification . 118

6.18 High level scan field specification . 119

6.19 Cheney loop pseudocode . 123

6.20 Cheney loop implementation . 124

6.21 Cheney loop state formation . 124

6.22 Cheney loop specification . 125

6.23 Miscellaneous Cheney loop specifications 127

6.24 Cheney object scanning guarantee . 129

6.25 Cheney entry pseudocode . 130

6.26 Cheney entry implementation . 131

6.27 Cheney loop header specifications . 132

6.28 Auxiliary Cheney definitions . 133

6.29 Cheney entry specifications . 135

xi

6.30 Cheney allocator pseudocode . 144

6.31 Cheney allocator implementation . 145

6.32 Cheney allocator, miscellaneous specifications 146

6.33 Cheney read and write barrier pseudocode 151

6.34 Cheney read and write barriers . 151

6.35 Cheney formalization line counts . 154

7.1 Incremental collection going awry . 157

7.2 Baker to-space . 159

7.3 Baker field scanning pseudocode . 160

7.4 Baker loop pseudocode . 161

7.5 Baker loop state formation . 162

7.6 Baker loop precondition . 163

7.7 Baker loop guarantee . 164

7.8 Second Baker loop block specification 167

7.9 Baker loop exit specification . 168

7.10 Baker allocator pseudocode . 176

7.11 Basic Baker state well-formedness predicate 178

7.12 Baker state well-formedness predicate variants 180

7.13 Baker allocator specification . 182

7.14 Restore root specification . 183

7.15 Baker commutativity . 187

7.16 Baker read barrier psuedocode . 196

7.17 Baker read barrier assembly implementation 196

7.18 Baker read barrier specification . 197

7.19 Baker read return specification . 198

xii

7.20 Baker write barrier pseudocode . 202

7.21 Baker line counts . 204

8.1 Association tactic . 217

xiii

Acknowledgments

I would like to thank my advisor Zhong Shao for all of his guidance throughout my

graduate career. From my very first year, he was always available to instruct, advise

and challenge me. He was never short of energy or ideas, and my work is much

stronger because of our collaboration.

I would like to thank my thesis readers, Neal Glew, Paul Hudak and Carsten

Schürmann for reading my dissertation and providing thoughtful comments. I am

also grateful to the anonymous reviewers of my submitted papers for their comments

that improved my work.

I would also like to thank Chunxiao Lin and Long Li for helping to test the

garbage collector interface, in part by verifying mark-sweep collectors and example

mutators. Their work helped ensure that the interface could actually be used.

I am indebted to Xinyu Feng, Hai Fang and the other members of the Yale FLINT

group for many interesting and informative discussions over the years.

I thank my parents for their love and support. Finally, I thank Melanie, whose

love and encouragement inspired me to do my best.

0This research is based on work supported in part by the National Science Foundation under
grants CCR-0208618 and CCR-0524545 as well as gifts from Intel and Microsoft Research. Any
opinions, findings, and conclusions contained in this document are those of the author and do not
reflect the views of these agencies.

xiv

Chapter 1

Introduction

Software is becoming larger and more difficult to develop. One particular difficulty of

development is memory management: allocating new objects when they are needed

and freeing them when they are not. One way to simplify the problem of freeing

objects is to use a garbage collector [Jones and Lins 1996]. A garbage collector

(GC) is a procedure, usually part of a programming language’s runtime system,

that examines memory to find and reclaim objects that are unreachable by the user

program (the mutator). This eliminates many sources of errors, such as dangling

pointers (using a pointer after freeing it) and some types of space leaks (not freeing

a pointer before it becomes unreachable).

Functional languages such as Common LISP [Graham 1996], Standard ML [Mil-

ner et al. 1997] and Haskell [Jones 2003] have long used garbage collection, and over

the last decade the combination of convenience and improved reliability has led to the

use of garbage collection in popular languages such as Java [Gosling et al. 2005] and

C] [Hejlsberg et al. 2006]. It is even possible to use specially designed conservative

garbage collectors [Boehm and Weiser 1988] with languages such as C [Kernighan

and Ritchie 1978] and C++ [Stroustrup 2000] that were not originally designed to

1

be garbage collected.

There are also several high-confidence systems that use type systems or logic

to improve the reliability of programs that rely on a garbage collector to simplify

reasoning about the user program. These include proof-carrying code for C and

Java [Necula and Lee 1998, Colby et al. 2000] and typed assembly language [Morrisett

et al. 1999], as well as more recent efforts such as Microsoft Research’s Singularity

project (which is implementing as much of an operating system as possible in C])

and a semantics-preserving compiler from a functional language to assembly [Chli-

pala 2007]. What all of this work has in common, besides a reduced set of trusted

components, is that the safety guarantees of the entire system critically depend on

the correct implementation of a garbage collector that cannot be checked within

the system. A verified garbage collector capable of being combined with a verified

mutator would go a long way towards addressing this “missing link” of safety.

While garbage collection makes it simpler to use a language, it makes it harder

to implement a language, as a GC is now required. Even a basic garbage collector

is difficult to implement correctly, and few implementations use basic GCs. In fact,

garbage collectors are becoming more sophisticated as they are used more widely, in-

creasing performance demands. Garbage collectors are also being applied to entirely

new domains, such as concurrent and real-time environments, which have their own

special requirements [Doligez and Gonthier 1994, Bacon et al. 2003]. All of this con-

spires to create a situation where internal collector invariants, as well as the interface

between the mutator and collector, are subtle and difficult to implement and debug.

For instance, at a very basic level, the mutator and collector must agree on what

constitutes a reachable object. Also, in some collectors, the mutator must access

objects only by special collector-provided functions to maintain the integrity of the

system.

2

How can garbage collector reliability be assured despite these demands? One way

to is to use static verification, whereby properties of a program are established by

examining the program and not by running it. There are a variety of approaches to

the static verification (henceforth referred to simply as verification) of programs, such

as type systems [Pierce 2002], Hoare logic [Hoare 1969] and separation logic [Reynolds

2002] (which can be thought of as a Hoare logic for reasoning about complex memory

invariants). If some property of a program is statically verified, then that property

holds on the program, as long as the verification system is sound. This increases

confidence in the program at the cost of increasing the work of the implementer.

I believe that this trade-off is worthwhile for garbage collectors, as the verification

effort can be amortized across every program that uses the collector. Confidence can

be further increased by mechanizing the verification, which means that the result of

verification can be checked by a machine, in contrast to a proof that exists only on

paper.

My thesis has two parts. The first part of my thesis is that treating the garbage

collected heap as an abstract data type allows the specification and verification of

flexible and expressive garbage collector-mutator interfaces. I will demonstrate this

by first describing how to define a GC interface in terms of an abstract data type

(ADT), in Chapter 4, and show how this interface can be used by a verified mutator.

Then, in Chapter 5 I will show how this interface can be used to describe the heaps

of a variety of collectors. As part of Chapters 6 and 7 I will show how two collectors

can be verified to match my ADT-based interface. The interface I will describe is

expressive enough to be used with verified mutators, general enough to be used with

collectors requiring read or write barriers, and abstract enough that a single interface

can be used for both stop-the-world and incremental collectors. I do not attempt to

support all of the features needed by a production-quality garbage collector such as

3

a realistic root set.

The second part of my thesis is that the mechanized verification of garbage col-

lector implementations using Hoare-like logic is both practical and effective. I will

demonstrate the practicality of mechanized verification of garbage collectors by de-

scribing the specification and verification of implementations of the Cheney [Cheney

1970] and Baker [Baker 1978] copying collectors in Chapters 6 and 7. The Baker

collector is an incremental copying collector. My work is, as far as I am aware, the

first mechanized verification of the Baker collector. I will also discuss the tools I

developed to aid my verification in Chapter 8. I will demonstrate the effectiveness of

my approach by showing how to link these collectors with verified mutator programs,

resulting in a closed, verified and garbage collected program.

In addition to the above chapters, in Chapter 2 I will discuss the formal set-

ting I am working in. This includes the abstract machine I use, the program logic

SCAP [Feng et al. 2006] (which stands for Stack-based Certified Assembly Program-

ming) I use to verify programs (along with a variant of SCAP named WeakSCAP),

and separation logic [Reynolds 2002], which I use to define the complex memory

predicates needed for garbage collectors. In Chapter 3, I will discuss how I use the

module system of Coq to reason about abstract data types in a Hoare logic setting.

In Chapter 9 I will discuss related work, future work, and conclude.

The full Coq proof scripts for my dissertation are available online [McCreight

2008]. The research regarding garbage collector interfaces described in this disser-

tation was first published in McCreight et al. [2007]. The work described in this

dissertation is applied to a typed assembly language combined with a conservative

GC in Lin et al. [2007]. Chunxiao Lin and Long Li proved some of the machine-related

lemmas used in my collector proofs, and verified mutators using the interface, which

lead to the addition of some basic properties of the representation predicate.

4

Chapter 2

Formal Setting

2.1 Introduction

In this chapter, I discuss the formal foundation of my work. To create a machine-

checked verification of a garbage collector, every detail of the machine used to im-

plement the collector and the logics used to reason about the collector must be

formalized. First, I discuss the abstract machine I use, which is a fairly standard

assembly-level machine with a small-step semantics. Then, I discuss SCAP [Feng

et al. 2006] (pronounced “ess-kap”), the Hoare-style program logic I use to verify

programs. Raw SCAP is difficult to work with, because it requires that every pro-

gram point is given an explicit specification. To avoid this problem I define a new

variant of SCAP, called WeakSCAP, that automatically derives a specification for

each program block.

An expressive logic is needed to reason about the complex memory invariants of

garbage collectors. To this end, I use separation logic [Reynolds 2002]. I define the

various predicates of separation logic that I use, and discuss their properties, both

in the abstract and relative to the machine.

5

After that, I discuss the particular idiom I use for program specifications through-

out my verification work. Then I apply what I have discussed in this chapter to

perform an example verification, then conclude.

2.2 The machine

Here I define the syntax and semantics of the underlying formal machine I use to

implement and verify programs. The formal machine is assembly level, and uses

word-aligned addresses. Address alignment is modeled to allow the lowest bit to be

used to distinguish pointers from non-pointers. The word size of the machine is 4, so

addresses are all multiples of 4. The most unrealistic aspect of this machine is that it

does not use fixed precision integer arithmetic. Instead, register and memory values

are all natural numbers, and arithmetic operations are all the normal operations on

the naturals. Overall, this is a fairly standard machine, with a small-step semantics.

This description is part of the trusted computing base of my system. This means

that there is no way of checking, within the system, that this definition is correct. I

will give the syntax and dynamic semantics of the machine.

2.2.1 Syntax

The machine is based on MIPS-like assembly code [Sweetman 2006]. I give the syntax

for the machine in Figure 2.1. A register r is one of 32 different registers from r0 to

r31. r0 always has the value 0. Natural numbers are given by w and f , and are used

to indicate numerical data and function pointers, respectively. Addresses l are used

for data pointers, and are multiples of 4.

A command c is a non-control flow instruction, and is either the addition of two

registers, the addition of a register and a constant, the subtraction of two registers,

6

(Reg) r ::= {rk}k∈{0...31}

(Nat) w, f ::= 0 | 1 | 2 | ...
(Addr) l ::= 0 | 4 | 8 | ...
(Command) c ::= addu rd, rs, rt | addiu rd, rs, w

| subu rd, rs, rt | sltu rd, rs, rt | andi rd, rs, 1
| lw rd, w(rs) | sw rs, w(rd)

(InstrSeq) I ::= c; I | beq rs, rt, f ; I | bne rs, rt, f ; I
| j f | jal f, fret | jr rs

(Memory) M ::= {l w}∗
(RegFile) R ::= {r w}∗
(State) S ::= (M,R)
(CodeMem) C ::= {f I}∗
(Program) P ::= (C,S, I)

Figure 2.1: Machine syntax

the Boolean calculation of whether one register is less than another or not, the bitwise

’and’ of a register with 1, a load or a store. I only allow bitwise ’and’ with 1 because

that is all that is needed to implement the garbage collectors I will verify, and this

specialized case is easier to implement. In the load and store operations, the constant

is an offset from the base pointer.

An instruction sequence I is either a command or a branch followed by an in-

struction sequence, a tail call to a function f , a call to a function f with a return

pointer of fret, or a jump to a function pointer held in a register. The explicit return

pointer for calls is non-standard, but simplifies the semantics. This instruction could

be implemented with a standard call that falls through to the next instruction upon

return, by following it with a direct jump to the return pointer.

A memory M is a finite partial mapping from addresses to natural numbers, while

a register file R is a total mapping from registers to natural numbers. The data state

S is a memory plus a register file. A code memory C is a partial mapping from

natural numbers to instruction sequences. Finally, a program P is a code memory,

a data state and an instruction sequence. The instruction sequence in a program

7

if c = then Nextc(M,R) =

addu rd, rs, rt (M,R{rd R(rs) + R(rt)})
addiu rd, rs, w (M,R{rd R(rs) + w})
subu rd, rs, rt (M,R{rd R(rs)− R(rt)})
sltu rd, rs, rt (M,R{rd 1}) if R(rs) < R(rt)
sltu rd, rs, rt (M,R{rd 0}) if R(rs) ≥ R(rt)
andi rd, rs, 1 (M,R{rd 1}) if R(rs) is odd
andi rd, rs, 1 (M,R{rd 0}) if R(rs) is even
lw rd, w(rs) (M,R{rd M(R(rs) + w)}) if R(rs)+w ∈ dom(M)
sw rs, w(rd) (M{R(rd)+w R(rs)},R) if R(rd)+w ∈ dom(M)

Figure 2.2: Command semantics

is the current instruction sequence being executed, and serves the same function

as a program counter in a more conventional machine. This abstraction does not

affect anything, as the garbage collections I will be reasoning about do not explicitly

manipulate the program counter.

I write X(y) for the binding of y in the map X. This is undefined if y is not in

the domain of X. For register files R, R(r0) is defined to be 0. I write X{y z} for

the map X modified so that y maps to z, replacing an old binding if present.

To simplify the presentation, I use a few notational shorthands. A state S can be

thought of as being a mapping from registers and addresses to natural numbers. In

this vein, I write (M,R)(l) for M(l) and (M,R)(r) for R(r). In other words, when I

write S(r1), I mean the binding of register r1 in the register file of state S. Similarly,

I write (M,R){l w} for (M{l w},R) and (M,R){r w} for (M,R{r w}).

I also write (M,R) for M and (M,R) for R when it is clear from context. When it is

not, I define memOf(M,R) to be M and rfileOf(M,R) to be R.

8

2.2.2 Dynamic semantics

The dynamic semantics of the machine is fairly standard. First I define the dynamic

semantics of commands as a partial function, in Figure 2.2. This function Nextc(S)

has two arguments: the command c being executed and the data state S in which

the command is being executed. This function returns a new data state reflecting

the result of executing the command. The three arithmetic operations look up the

register operands, compute the result, then store the result in register rd. The less-

than instruction evaluates to 1 if the value of rs is less than the value of rt, and

to 0 otherwise. The ’and’ instruction evaluates to 1 if the operand is odd, and 0

otherwise.

The load and store instructions load and store from memory, as expected, but

are only defined when the address being loaded from or stored to is in the domain

of memory. A consequence of this restriction is that the heap cannot be grown by

writing to an unused memory address. This is necessary for local reasoning: if a

block of code is verified assuming the heap has some domain, then the block of code

will not alter memory outside of that domain. This property allows the frame rule

or alternatively heap polymorphism, described in Section 2.7.

The small-step semantics for programs are given by a relation P 7−→ P′, defined in

Figure 2.3. I write P 7−→∗ P′ for the reflexive, transitive closure of P 7−→ P′. The step

taken depends on the current instruction sequence. If this is a command followed by

another sequence, the command is executed, and then execution continues with the

remainder of the instruction sequence. For branches, if the test succeeds, then the

instruction sequence corresponding to the function label f is retrieved from C, then

executed. Otherwise, the remainder of the current instruction block is executed. In

either case, the data state is unchanged. For a direct jump, the instruction sequence

9

Nextc(S) = S′
(C,S, (c; I)) 7−→ (C,S′, I)

S(rs) = S(rt) f ∈ dom(C)
(C, S, (beq rs, rt, f ; I)) 7−→ (C,S,C(f))

S(rs) 6= S(rt)
(C,S, (beq rs, rt, f ; I)) 7−→ (C,S, I)

S(rs) 6= S(rt) f ∈ dom(C)
(C,S, (bne rs, rt, f ; I)) 7−→ (C, S,C(f))

S(rs) = S(rt)
(C, S, (bne rs, rt, f ; I)) 7−→ (C,S, I)

f ∈ dom(C)
(C,S, j f) 7−→ (C,S,C(f))

S(rs) ∈ dom(C)
(C,S, jr rs) 7−→ (C,S,C(S(rs)))

f ∈ dom(C)
(C,S, (jal f, fret)) 7−→ (C,S{r31 fret},C(f))

Figure 2.3: Program step relation

corresponding to f is retrieved from C and becomes the current instruction sequence.

A register jump is similar, except that the function label is retrieved from the register

file of the current data state. Finally, a call is like a direct jump, except that register

r31 is set to the value of the return pointer prior to the jump.

2.3 SCAP

The basic program logic I use is SCAP [Feng et al. 2006], which stands for Stack-

based Certified Assembly Programming. SCAP is designed to reason about assembly

programs that involve program calls. In a conventional Hoare logic [Hoare 1969], a

specification is a precondition, a postcondition, and some auxiliary variables that re-

late the two. The precondition describes what must hold to safely execute a block

of code and the postcondition describes the state after the block of code has been

executed. By contrast, an SCAP specification has two parts, a precondition and

a guarantee. The precondition p is a state predicate that describes what kind of

states are safe to execute the block in, as in conventional Hoare logic. A guarantee

10

g describes the behavior of the current procedure, and is a binary state relation that

relates the state at the current program point to the point at which the current pro-

cedure returns. This is similar to the specifications of Hoare Type Theory [Nanevski

et al. 2007].

Guarantees have a certain elegance because they allow one to easily relate the

initial and final states. For instance, to specify that the values of certain registers

do not change (which is needed to specify callee-saved registers), the guarantee can

require that the values are the same in both states. In conventional Hoare logic an

auxiliary variable would be needed. Generally, what would be an auxiliary variable

in conventional Hoare logic is in SCAP just a universal quantification inside of a

guarantee, so no additional work is required to to represent auxiliary variables.

On the other hand, in my experience this style leads to a lot of redundancy be-

tween the precondition and the guarantee, as I will explain in Section 2.7. While this

can mostly be factored out with a bit of discipline, it is not clear to me that guar-

antees are, in this setting, the best approach. In any event, the difference between

precondition-postcondition specifications and precondition-guarantee specifications

is fairly small in practice.

2.3.1 Instruction sequence typing rules

A precondition p has type State→ Prop, and a guarantee has type State→ State→

Prop. State is the type of states S, and Prop is the type of propositions in whatever

logic is being used. I write σ for code block specifications (p, g), and Ψ for code

memory specifications, which are partial mappings from function labels f to speci-

fications σ. The rules for well-formed instruction sequences are given in Figure 2.4.

The judgment Ψ; (p, g) ` I ok is intended to hold if, assuming a code memory satis-

fying the specifications in Ψ, and assuming a data state S such that p S holds, then

11

Ψ;σ ` I ok

Ψ; (p′, g′) ` I ok ∀S. p S→ ∃S′.Nextc(S) = S′ ∧ p′ S′∧
∀S′′. g′ S′ S′′ → g S S′′

Ψ; (p, g) ` c; I ok

(SeqOk)

Ψ(f) = (p′, g′) ∀S. p S→ p′ S ∧ ∀S′. g′ S S′ → g S S′

Ψ; (p, g) ` j f ok
(J)

Ψ(f) = (p′, g′) Ψ; (p′′, g′′) ` I ok
(iop, op) ∈ {(beq,=), (bne, 6=)}
∀S. p S→

(S(rs) op S(rt)→ p′ S ∧ ∀S′. g′ S S′ → g S S′) ∧
(¬S(rs) op S(rt)→ p′′ S ∧ ∀S′. g′′ S S′ → g S S′)

Ψ; (p, g) ` iop rs, rt, f ; I ok

(BrOk)

Ψ(f) = (p′, g′) Ψ(fret) = (p′′, g′′)
∀S. p S→ p′ S{r31 fret} ∧ ∀S′. g′ S{r31 fret} S′ →

p′′ S′ ∧ ∀S′′. g′′ S′ S′′ → g S S′′
∀S,S′. p′ S→ g′ S S′ → S(r31) = S′(r31)

Ψ; (p, g) ` jal f, fret ok

(Call)

∀S. p S→ g S S
Ψ; (p, g) ` jr ra ok

(Return)

Figure 2.4: Well-formed instruction sequences

12

an execution starting with I starting in state S will either not terminate, or will run

without getting stuck until the current function reaches a return statement, in some

state S′ such that g S S′ holds.

The rules for each instruction sequence are derived fairly directly from the opera-

tional semantics. Weakening is included within each rule (instead of with a separate

weakening rule) to simplify inversion on the sequence formation rules.

A sequence beginning with a command is okay, if whenever a command c is

executed in a state S satisfying the precondition p, some state S′ is always produced.

Additionally, this new state must satisfy the precondition p′ of the remainder of the

current instruction block. Finally, the result of executing the command c followed by

executing the rest of the instruction block (specified by g′) must imply the guarantee

g, where S′′ is the state from which the current procedure will eventually return.

A direct jump is well-formed if the precondition of the jump instruction is stronger

than the precondition of the block being jumped to, and the guarantee of the block

being jumped to is weaker than the current guarantee. A branch is similar to a direct

jump, except that there are two possible next states, and the result of the test is

reflected into the rule. For instance, if a beq instruction is being executed, then if

execution jumps to f the registers the instruction tested must be equal.

The rule for call looks complex, but it is just the composition of two direct jumps,

with the additional twist that the call sets the value of r31, following the operational

semantics of the abstract machine. The state S is the state before the call, while

S′ is the state after the call returns. Finally, S′′ is the state in which the current

procedure eventually returns. This rule requires that it is safe to jump to f , and

that after running f it will be safe to jump to fret.

The last part of the call rule is a kind of a side condition that requires that the

function being called preserves the value of the return pointer. This is a central bit

13

of cleverness of the SCAP system, because it means that the callee does not have

to reason about the fact that r31 contains some unknown function pointer. Instead,

the callee only has to guarantee that it will leave the value of r31 alone (or more

precisely, that it will restore the value before it returns). The difficult business of

reasoning about the fact that the return pointer contains a function is left to the

caller. Fortunately, the caller (in contrast to the callee) knows precisely what value

the return pointer is, so its job is made much easier!

Notice that the only parameters to this side condition are the specifications of

the function being called, so it only needs to be shown once for each function. Con-

ceptually, the functions in Ψ are split into two categories: those that can be invoked

via a call or direct jump, and those that can only be invoked via direct jump.1

Finally, the rule for return holds if the precondition is stronger than the guarantee,

where both of the arguments to the guarantee are the current state. This is because

the second argument to the guarantee is the return state for the current procedure,

which is in fact the same state as the state going into a return instruction.

2.3.2 Top level typing rules

The rules for a well-formed program are given in Figure 2.5.2 The first rule, Ψ `

p WFST, holds if a state satisfying p contains a well-formed call stack assuming a

code memory described by Ψ. p describes the state at the point of a return. The

base case describes the top-level function, so there is no other function to return to.

Here, for all states S, p S must not hold, because it is never safe to return. The next

1It should be possible to syntactically distinguish these two classes in Ψ by giving them different
“types”, and then moving this register preservation side condition into the top-level code memory
rule.

2In the actual Coq implementation these rules are implicitly baked into a more primitive program
logic CAP0 that lacks a built-in notion of function call and return, but this can just be thought of
as a technique for simplifying the soundness proof of SCAP.

14

Ψ ` p WFST (Well-formed call stack)

∀S. p S→ False

Ψ ` p WFST
(Base)

Ψ(f) = (p, g) ∀S. p0 S→ S(r31) = f ∧ p S
Ψ ` (λS′. ∃S. p0 S ∧ g S S′) WFST

Ψ ` p0 WFST

(Frame)

Ψ′ ` C : Ψ (Well-formed code memory)
∀f ∈ dom(Ψ). Ψ′; Ψ(f) ` C(f) ok

Ψ′ ` C : Ψ
(CdHp)

` P ok (Well-formed program)
Ψ ` C : Ψ p S Ψ; (p, g) ` I ok Ψ ` (g S) WFST

` (C,S, I) ok
(Prog)

Figure 2.5: Typing rules for SCAP

case corresponds to a function that can be returned from. The precondition p0 must

imply that the return register r31 contains the function pointer f (which is the caller

of the current function), and that the precondition of the function f (according to

Ψ) holds. Next, if the caller of the current function returns it must also be in a state

S′ with a well-formed call stack, where S′ is a state related to the current state S by

the guarantee of f , which is g, and that p0 held on S.

Next is the rule that describes a well-formed code memory. This rule simply

requires that if the code memory specification Ψ maps f to a specification, then the

actual code in C must satisfy that specification. In this judgment, Ψ′ is the code

memory specification assumed from the environment.

The final rule describes well-formed programs. First, the code memory C must

satisfy a specification Ψ, and it must be closed: it can only assume the existence of

code as described by Ψ. Next, the data state S must satisfy some state predicate p.

The current block of code I being executed must be well-formed with respect to Ψ,

p and some guarantee g. Finally, upon return from the current function, the state

15

will be describable by the state predicate g S, and must be a well-formed call stack.

2.3.3 Soundness

The proof of soundness takes advantage of a strengthening lemma:

Lemma 2.3.1 (SCAP sequence strengthening) If Ψ; (p, g) ` I ok and (∀S.

p′ S→ p S ∧ ∀S′. g S S′ → g′ S S′) then Ψ; (p′, g′) ` I ok.

Proof: By induction on the SCAP typing derivation. �

The actual soundness theorem is standard:

Lemma 2.3.2 (SCAP soundness) If ` P ok, then there exists some P′ such that

P 7−→ P′ and ` P′ ok.

Proof: By induction on the SCAP program typing derivation using the SCAP se-

quence strengthening lemma. �

In my experience, the typing rules are so close to the operational semantics that

splitting the soundness proof into the standard preservation and progress proofs does

not shorten the proof.

2.4 Weak SCAP

SCAP [Feng et al. 2006] is very expressive, but from a practical perspective, it is too

expressive because it requires that a specification be given at every program point.

One would like to give explicit specifications in as few places as possible, namely

at points where two control flow paths come together. In the assembly language

described earlier in this chapter, the only join points are function calls and direct

jumps. Therefore, given a code memory type Ψ that defines specifications for all

16

Ψ;σ `W I ok (Well-formed instruction sequence (weak))

Ψ; (p′, g′) `W I ok
p S = ∃S′. Nextc(S) = S′ ∧ p′ S′
g S S′′ = ∃S′. Nextc(S) = S′ ∧ g′ S′ S′′

Ψ; (p, g) `W c; I ok

(Seq)

Ψ(f) = (p′, g′) Ψ; (p′′, g′′) `W I ok
(iop, op) ∈ {(beq,=), (bne, 6=)}
p S = if S(rs) op S(rt) then p′ S else p′′ S
g S S′ = if S(rs) op S(rt) then g′ S S′ else g′′ S S′

Ψ; (p, g) `W iop rs, rt, f ; I ok

(Br)

Ψ(f) = (p, g)

Ψ; (p, g) `W j f ok
(J)

Ψ(f) = (p′, g′) Ψ(fret) = (p′′, g′′)
∀S,S′. p′ S→ g′ S S′ → S(r31) = S′(r31)
p S = p′(S{r31 fret}) ∧ ∀S′. g′ (S{r31 fret}) S′ → p′′ S′
g S S′ = ∃S′. g′ (S{r31 fret}) S′ ∧ g′′ S′ S′′

Ψ; (p, g) `W jal f, fret ok

(Call)

p S = True g S S′ = (S = S′)
Ψ; (p, g) `W jr ra ok

(Return)

Figure 2.6: Typing rules for WeakSCAP

17

code blocks it should be possible require no specifications for individual instructions.

Ideally a verified verification condition generator [Necula 1997] would be able to take

a program block and its desired specification and automatically derive a proposition

that implies that the block matches the given specification.

To fulfill this goal, I define a new variant of SCAP called WeakSCAP (the name is

intended to suggest that it involves the weakest precondition), which is constrained

enough that for a given instruction sequence and code memory type Ψ there is only a

single possible valid specification (assuming Ψ is a function). I show that validity in

WeakSCAP implies validity in SCAP, and show how to use WeakSCAP to automat-

ically produce a VC for an instruction sequence. Individual instruction sequences

will be verified with WeakSCAP, then transformed into instruction sequences veri-

fied with SCAP and combined into verified programs, so no new top-level rules for

WeakSCAP are needed. The intention is that specification checked for a block is

the weakest specification, but I do not attempt to prove this. Empirically speaking,

however, these rules were enough to verify a variety of garbage collectors.

The sequence typing rules for WeakSCAP are given in Figure 2.6. Notice that

the specification of each instruction sequence is given entirely in terms of either the

specification of a subterm or the code memory type Ψ. Thus if the specification of

each program label used in the block is in Ψ the specification of each block can be

automatically derived.

For an instruction sequence that starts with a command, the tail I of the instruc-

tion sequence has some specification (p′, g′). The precondition of the entire sequence

is then that the instruction c can be safely executed to produce some new state

S′ such that S′ satisfies the precondition p′ of the remaining instruction sequence.

The guarantee is similar: the initial state S is related to the final state S′ via some

intermediate state S′ that represents the state after c is executed.

18

For a branch sequence, the precondition is that if the test succeeds the precondi-

tion of the label being jumped to must be satisfied. Otherwise, the precondition of

the remainder of the current instruction sequence must be satisfied. Similarly with

the guarantee.

For a direct jump, the specification of the jump is simply the specification of the

code label being jumped to.

The call rule is once again the most difficult. For the precondition, the precon-

dition of the function being called must be satisfied, after the return register is set,

and after the called function is executed the precondition of the return label must

be satisfied. The guarantee is the composition of two guarantees. This rule also has

the same side condition as regular SCAP: the function call must preserve the value

of the the return register.

Finally, the rule for a return statement says that the precondition is True (the

top-level rule prevents the function from returning if this is the top-level function)

and that the guarantee is simply that the current state and the state being returned

to are equal.

The relationship between WeakSCAP and SCAP can be formalized as the fol-

lowing theorem:

Lemma 2.4.1 (WeakSCAP soundness) If Ψ;σ `W I ok then Ψ;σ ` I ok.

Proof: By induction on the WeakSCAP typing derivation. �

In other words, if an instruction sequence I has the specification σ in WeakSCAP

(assuming Ψ), then it also has the specification σ in SCAP (again, assuming Ψ).

This rule is also used to turn a WeakSCAP-verified instruction sequence into an

SCAP-verified instruction sequence, so a separate soundness lemma for WeakSCAP

is not needed.

19

There is still something missing before WeakSCAP can be used. WeakSCAP is

too restrictive, because it allows selecting the specification at no program points,

whereas it should be possible to select it at one program point: the top of an in-

struction sequence. Fortunately, combining the WeakSCAP soundness lemma with

the SCAP weakening lemma produces the needed lemma:

Lemma 2.4.2 (WeakSCAP strengthened soundness) If Ψ; (p, g) `W I ok and

(for all S and S′, p′ S implies p S and g S S′ implies g S S′), then Ψ; (p′, g′) ` I ok

Proof: Directly, by combining Lemmas 2.3.1 and 2.4.1. �

Using this lemma, proving that Ψ; (p, g) ` I ok (in other words, that the instruc-

tion sequence I satisfies specification (p, g) in SCAP) has the following steps:

1. Automatically derive a specification (p′, g′) such that Ψ; (p′, g′) `W I ok holds.

2. Manually prove that (p, g) is stronger than (p′, g′):

∀S,S′. p S→ p′ S ∧ (g′ S S′ → g S S′)

3. Combine the previous two steps using Lemma 2.4.2, resulting in the desired

proof Ψ; (p, g) ` I ok.

2.5 Separation logic

I have described a formal machine and program logic, but a way to structure the

actual specifications is still needed. I need a logic capable of formally reasoning about

the complex memory invariants of garbage collectors. To this end, I use separation

logic [Reynolds 2002], which has already been shown to be expressive enough to

20

A ∗B memory split into two parts. A holds on one, B holds on other
x 7→ y memory has single cell x which contains value y
!P lift proposition P to a memory predicate: P holds, memory is empty
∃x : P. A there exists some M : P such that memory satisfies A[M/x]
true holds on any memory
emp memory is empty
A ∧B memory satisfies both A and B
∀∗x ∈ S. A memory can be split up into one piece for each element e ∈ S such

that A[e/x] holds on that piece

Figure 2.7: Summary of separation logic predicates

reason about garbage collection algorithms in work such as Yang [2001] for mark-

sweep collectors and Birkedal et al. [2004] for copying collectors. Separation logic is

a logic for reasoning about program memory.

2.5.1 Predicates

I give a summary of the key separation logic predicates I use in Figure 2.7. A

more formal definition is given in Figure 2.8. The key predicate is the separating

conjunction, written ∗. A ∗ B holds on a memory if it can be split into two disjoint

parts such that A holds on one part and B holds on the other part. This connective

is similar in spirit to the tensor operator ⊗ of linear logic [Wadler 1993]. I write

M `̀ A for the proposition that the memory predicate A holds on memory M and

write S `̀ A for memOf(S) `̀ A.

The simplest separation logic predicate is x 7→ y, which holds only on memory

containing exactly a single memory cell at x, which contains the value y. It is useful

to embed propositions that do not involve memory into separation logic predicates,

and to reflect this purity syntactically. To this end, I adopt the ! operator from linear

logic. !P holds on memory if the memory is empty, and the proposition P holds.

Similarly, ∃x : P. A holds if there exists some object M with type P (which cannot

depend on memory) such that A[M/x] (A with M substituted for x) holds on the

21

memory. I omit the type P if it is clear from context. true holds on any memory.

emp holds only on empty memory. A∧B holds if both A and B hold on the memory.

The connectives ∗ and ∧ bind more weakly than 7→ and are right associative. In

other words, a 7→ b ∗ a′ 7→ b′ ∗ a′′ 7→ b′′ means the same thing as (a 7→ b) ∗ ((a′ 7→

b′) ∗ (a′′ 7→ b′′)).

The final important separation logic predicate I will need to describe garbage col-

lector memory is iterated separating conjunction, which was introduced in Birkedal

et al. [2004], and is written ∀∗x ∈ S. A. Informally, this means that the memory can

be split up into one piece for every element k of the finite set S, such that A[k/x]

holds on the piece for that element, and all of the pieces are disjoint. This is very

useful for reasoning about object heaps. If S is a set containing the addresses of

objects, and A is a predicate that specifies that memory contains a well-formed ob-

ject x, then ∀∗x ∈ S. A describes memory containing all of the objects in S. These

objects do not overlap, and are all well-formed. I will define this predicate more

formally in the next section.

There are a few useful standard abbreviations I use. x 7→ − is defined to be

∃v. x 7→ v. In other words, the address x contains some unknown value. x 7→ y, z is

defined as (x 7→ y)∗(x+4 7→ z). In other words, the memory is a pair where the first

element is x and the first and second elements of the pair are y and z. This notion

can be generalized to an arbitrary number of memory cells, so that, for instance,

x 7→ a, b, c is a memory with three adjacent cells containing a, b and c, starting

at address x. I may also combine these two types of abbreviations. For instance,

x 7→ −,− is a pair at address x with some unknown contents.

22

2.5.2 Basic properties

There are many useful properties of these predicates. I will give a few of them

to help guide an intuitive understanding of these operations. I write A ⇒ B for

∀M. M `̀ A→M `̀B and A⇔ B for ∀M. M `̀ A↔M `̀B.

∗ is associative: A ∗ (B ∗ C)⇔ (A ∗B) ∗ C

∗ is commutative: A ∗B ⇔ B ∗ A

emp can be freely added or removed: A ∗ emp⇔ A

true can always be added (but not removed): A⇒ A ∗ true

Memory cannot contain two bindings for a single address x: ¬(M `̀ x 7→ − ∗ x 7→

−)

(To see why this is true, consider the following: assume a memory M such that

M `̀ x 7→ − ∗ x 7→ −. From ∗, there must exist two memories M1 and M2 with

disjoint domains such that M1 `̀ x 7→ − and M2 `̀ x 7→ −. But from x 7→ − the

domains of both M1 and M2 must contain x, so there is a contradiction.)

true can be combined with or split with itself: true ∗ true⇔ true

An implication can be applied to one part of ∗ without disrupting the other part.

For instance, if A⇔ A′, then A ∗B ⇔ A′ ∗B.

∧ can be distributed over ∗: (A ∧B) ∗ C ⇒ (A ∗ C) ∧ (B ∗ C).

The distribution does not hold in the other direction: (A ∗ C) ∧ (B ∗ C) 6⇒

(A∧B)∗C. To see why this is the case, consider a memory M that contains two cells

at addresses x and y (where x 6= y). It must be that (x 7→ −∗true)∧(y 7→ −∗true),

because both x 7→ −∗ true and y 7→ −∗ true hold on the memory. In the first case,

the true represents the part of the memory containing y and in the second case it

represents the part containing x. But it is not true that (x 7→ − ∧ y 7→ −) ∗ true,

because a memory cannot both consist entirely of a cell at x and entirely of a single

23

cell at y, when x 6= y.

2.5.3 Machine properties

To verify programs the behavior of the machine must be related to the various

separation logic predicates. The two memory operations are reading and writing. I

want to use separation logic predicates to describe when these operations are safe,

and to reflect the result of these operations back into a separation logic predicate.

For safety, if M `̀ x 7→ − ∗ A holds, then x is in the domain of M and can be

safely read from or written to in M.

A second type of property shows what happens to a separation logic predicate

when one of these operations is executed on the machine.

For a read operation, if M `̀ x 7→ w ∗ A holds, then M(x) = w, so reading the

address x in memory will produce the value w.

For a write operation, if M `̀ x 7→ − ∗ A then M{x w} `̀ x 7→ w ∗ A. In other

words, if the value w is written to address x, the part of the predicate describing x

is updated to reflect the write, and the rest is left undisturbed. This demonstrates

the utility of the separating conjunction: if an address is updated, the rest of the

memory is unchanged, so any property of the rest of the memory (in this case A)

will remain will still hold after the write.

2.6 Implementation

My implementation uses a combination of shallow and deep embeddings [Wildmoser

and Nipkow 2004]. The abstract machine (including programs) and the program

logic use a deep embedding, by representing each component as a Coq data type.

This allows the abstract machine to have a very different semantics than that of Coq.

24

M `̀ x 7→ y ::= M = {x 7→ y}
M `̀!P ::= P ∧M `̀ emp
M `̀ ∃x :P. A ::= ∃x :P. M `̀ A
M `̀ true ::= True
M `̀ emp ::= M = {}
M1 ∪M2 `̀ A1 ∗ A2 ::= dom(M1) ∩ dom(M2) = ∅ ∧M1 `̀ A1 ∧M2 `̀ A2

M `̀ A ∧B ::= (M `̀ A ∧ M `̀B)

Figure 2.8: Definition of separation logic predicates

I have developed extensive tactic support to make reasoning about this deep embed-

ding as easy as possible. The full Coq implementation is available online [McCreight

2008].

On the other hand, the specifications are represented by a shallow embedding,

as they are represented directly as Coq propositions. This allows me to easily take

advantage of the powerful Coq logic when defining and reasoning about specifications.

If instead my specifications were deeply embedded I would have to define a logic and

show that it is sound from scratch. While in some sense this would be a constant

overhead, as every SCAP program could take advantage of a single logic, it would

still present additional work to be done.

A deep embedding of the predicate logic would be required if I carried out my

work in Twelf [Pfenning and Schürmann 1999], as it is not possible to embed terms

of the meta-logic M+
ω [Schürmann 2000] in the object logic LF [Harper et al. 1993].

This is the cost of Twelf’s powerful ability to use higher-order abstract syntax.

Next I will describe the actual implementation of the separation logic predicates.

I implement separation logic predicates in predicate logic as memory predicates using

a shallow embedding. Once I have defined the predicates in this way, the various

properties of these predicates I have previously described can be proved.

25

component lines
data structures 5859
abstract machine 433
program logics 1821
separation logic 4405

Figure 2.9: Formal foundation implementation line counts

Iterated separation conjunction is inductively defined on the finite set:

M `̀ ∀∗x ∈ {}. A ::= M `̀ emp

M `̀ ∀∗x ∈ S. A ::= M `̀ A[k/x] ∗ ∀∗x ∈ S − {k}. A where k ∈ S

Line counts of various parts of the formal foundation are given in Figure 2.9.

These line counts include white space and comments. The first line, data structures,

covers various data structures that I use throughout the development. The largest

number of lines of this component is my representation of finite sets and finite maps,

and various properties of these structures. The second line covers the abstract ma-

chine, as described in Section 2.2. Once I have defined finite maps, it does not take

that many lines to define the machine. The next section, program logics, includes

SCAP and WeakSCAP, as described in Section 2.4 and 2.3, along with the relevant

properties. It also includes proofs of many properties of the underlying machine.

The last line, separation logic, includes the definition of the separation logic connec-

tives described in Section 2.5, and many properties of these connectives, including

those described already plus many more. Finally, it also includes many tactics I have

written to make reasoning using separation logic in Coq easier. I will describe these

tactics in greater depth in Chapter 8.

The trusted computing base of my development includes parts of the first two

lines. (The statement of soundness of the machine is included in the definition of the

26

machine.) It does not include all of the lines because those line counts also include

proofs of the properties of the components of the machine, which do not need to be

trusted. Of course, this is only a small part of the overall TCB, which also includes

Coq, and the operating system and hardware needed to run Coq.

2.7 Specification style

My specifications tend to follow a certain style. In this section, I will explain the

convention and the reasoning behind certain design decisions. My main deviation

from “traditional” separation logic [Reynolds 2002] is that I do not explicitly support

the frame rule, which is as follows:

{p}c{q}
{p ∗ r}c{q ∗ r}

p is the precondition of the command c, while q is the post condition. r is another

memory predicate that is does not contain any variables modified by c. Basically this

says that if it can be shown that a command is okay using a certain part of memory,

then anything that can be added to memory will not be modified by executing the

program. This allows the specification of a program component to be modular, by

allowing the specification to only describe the part of memory that the program

component directly interacts with, while allowing it to be used by other program

components that might have a larger memory.

There are two problems with an explicit frame rule. First, such a rule must be

proved, and second, it is not entirely clear what a frame rule would look like for

SCAP-style specifications. Instead, I explicitly include the polymorphism provided

by the frame rule into every program specification. This turns out not to cause any

problems, because my specifications are already fairly large, and the modifications

required cause little or no additional difficulty with the proofs, due to my separa-

27

myPre(S) ::= ∃x0, x1, S `̀ A ∗ true ∧ P

myGuar(S,S′) ::=
(∀x0, x1, ..., B.

S `̀ A ∗B ∧ P →
∃y0, y1, S′ `̀ A′ ∗B ∧ P ′) ∧
∀r ∈ {r1, r2, ..., rk}. S(r) = S′(r)

Figure 2.10: Specification example

tion logic infrastructure. I will explain the modifications required in the context of

explaining the format I use for specifications.

The general format of my specifications is given in Figure 2.10. A precondition has

a set of variables x0, x1, ..., xn that are existentially quantified. These variables relate

the pure and impure part of the specification. The impure part of the specification,

S `̀ A ∗ true specifies the memory (and possibly part of the register file). As noted

before, this is an abbreviation for memOf(S) `̀ A∗true. `̀ binds more tightly than the

regular logical ∧. A is a memory predicate describing the part of the memory needed

by this program component, and will contain some of the existentially quantified

variables (and may contain references to the register file of S). The true is the first

part of my explicit support for frame reasoning. This allows memory to contain extra

parts not described by A. Finally, the proposition P describes the register file and

the variables xn.

The second part of my explicit frame rule is in the guarantee. The guarantee is

split into two parts. Generally speaking, the first part describes what happens to

the memory while the second describes what happens to the registers. To describe

what happens to the memory, the specification must first quantify over a number

of variables. This first set of variables, shown as x0 and so on in the figure, serves

the same role as auxiliary variables do in traditional Hoare logic by relating the

28

initial state to the final state. In traditional Hoare logic, auxiliary variables are

handled outside of the specifications proper, requiring the implementation of some

kind of variable binding structure, which in logics such as Coq can be tedious. I

believe that the ability to represent them within the specification itself is the key

advantage of SCAP-style specifications. Of note here is that universal instead of

existential quantification must be used for the auxiliary variables. This is because I

want to support all possible values for these variables, not merely some. The final

auxiliary variable B is a memory predicate. This is the second component of my

explicit support for frame reasoning. This B is a memory predicate that describes

the remainder of the memory, serving the same role as r in the frame rule above.

The next part of the guarantee serves to constrain the auxiliary variables and

is similar to the precondition. For instance, the constraint that B in fact describes

part of the initial memory must be enforced. This enforcement has pure and impure

components, like the precondition. The impure component is S `̀ A ∗ B while the

pure component is P . A and P are often the same as in the precondition of this

procedure (but do not have to be). Finally, the specification describes the final state.

As before, there are three components: an impure component, a pure component,

and existential variables relating them. The impure component S′ `̀ A′ ∗ B requires

that while part of the memory has changed and can now be described by A′, the rest

of the memory has been untouched and can still be described by B.

The second and simpler component of my guarantees is a description of what

happens to the register files. Generally, this simply states that all registers in some

fixed set of registers have not changed, but can include other information about how

one register has been copied to another. It is of course not always possible to describe

what happens to the register files without referring to the memory (for instance, if

the specification will state that a register contains the value of some memory location

29

lw r3,0(r1) // r3 = *r1
lw r4,0(r2) // r4 = *r2
sw r4,0(r1) // *r1 = r4
sw r3,0(r2) // *r2 = *r3
jr ra // return

Figure 2.11: Swap assembly implementation

it must refer to the memory), so some description of what happens to the register

file must happen inside of the part devoted to the memory. Separating register file

specifications from the memory specifications, where possible, makes it easier to use

register file specifications.

2.8 Example

To conclude this chapter, I will present an example procedure along with its specifica-

tion, then informally describe how to verify that the code matches the specification.

The procedure I will be verifying is a simple pointer swap routine, defined in Fig-

ure 2.11. The left column is the actual assembly implementation, while the right

column is the implementation in a C-like language. The procedure has two argu-

ments, registers r1 and r2. Each argument is a pointer to a single word of data. The

procedure swaps the contents of the cells r1 and r2 point to using temporary registers

r3 and r4, then returns.

I will verify an “alias-free” specification for the swap routine that does not allow

the two pointers that are having their contents swapped to be equal. While separation

logic can elegantly describe situations where aliasing is banned entirely, it is not as

clean when it is allowed. This will not cause problems for my GC specifications. The

specification for the swap routine, made up of the precondition and the guarantee,

is given in Figure 2.12. The specification follows the style described in the previous

30

swapPre(S) ::= S `̀ S(r1) 7→ − ∗ S(r2) 7→ − ∗ true

swapGuar(S,S′) ::=
(∀x1, x2, A.

S `̀ S(r1) 7→ x1 ∗ S(r2) 7→ x2 ∗ A→
S′ `̀ S′(r1) 7→ x2 ∗ S′(r2) 7→ x1 ∗ A) ∧
∀r 6∈ {r3, r4}. S(r) = S′(r)

Figure 2.12: Swap specification

section.

The precondition specifies when it is safe to run the swap function. The state S

is the state in which the function is called. Because the locations stored in registers

r1 and r2 are read from and written to, the values of those registers, S(r1) and S(r2),

must be in the domain of the memory of S. S(r1) 7→ − specifies that a chunk of the

memory contains some value at address S(r1), while S(r2) 7→ − does the same for

address S(r2). Because these predicates are separated by ∗, the values of r1 and r2

cannot be aliased (i.e., are not equal). While this is not necessary, it allows me to

demonstrate ∗. Aside from those two addresses that must be valid, anything else is

allowed to be in memory, as indicated by true (which holds on any memory).

For the guarantee, the argument S is the state before the swap function is called,

and S′ is the state after the swap returns. The guarantee has two parts. The first

part, which is the first three lines of the guarantee, describes what happens to the

memory when the swap function is called. The second part, which is the last line,

describes what happens to the registers. The second part simply says that the values

of all the registers (aside from the two temporary registers r3 and r4) stay the same.

The first part is first quantified over x1, x2 and A. x1 and x2 must be the initial

values of the memory locations that registers r1 and r2 point to. A is a memory

predicate that describes the rest of the memory, and is used to encode the fact

31

that the swap function is polymorphic over the rest of the memory. The next line

enforces the vision of the quantified variables: arbitrary values of x1, x2 and A

are not allowed. This line is similar to the precondition, in that it describes the

initial state. Now, though, the exact contents of the memory locations pointed to

by the argument registers are specified. Finally, the third line describes what the

final memory looks like: r1 now points to a location containing x2, r2 now points

to a location containing x1. Everything else has been left alone, so the rest of the

memory can still be described by A, even though the actual value of A is unknown.

2.8.1 Verification

To verify that this block of code matches the specification I have given, I must prove

that for all Ψ, Ψ; (swapPre, swapPost) ` swapImpl ok holds, where swapImpl is the

implementation of the swap function given in Figure 2.11. Any code memory type

Ψ can be used because swap does not call any other functions. This is the SCAP

formation judgment.

Next, I want to apply the three steps for proving an SCAP specification given at

the end of Section 2.4. These steps are to first automatically derive a WeakSCAP

specification, then show that my desired specification (swapPre, swapPost) is stronger

than this WeakSCAP specification, then combine the results of the previous two

steps using a lemma to produce a proof of Ψ; (swapPre, swapPost) ` swapImpl ok.

The result of this is that there is a single theorem that must be manually proved:

that the desired specification is stronger than the automatically derived WeakSCAP

specification.

Before I show the exact specification I will make a couple of definitions to simplify

things. First, in my actual implementation, instead of defining Next as a partial

function, I lift it to a total function Next′ using a standard option type: if with

32

∀S,S′. swapPre(S)→
(do S1 ← Nextlw r3,0(r1)(S)
do S2 ← Nextlw r4,0(r2)(S1)
do S3 ← Nextsw r4,0(r1)(S2)
do S4 ← Nextsw r3,0(r2)(S3)
True) ∧
(do S1 ← Nextlw r3,0(r1)(S)
do S2 ← Nextlw r4,0(r2)(S1)
do S3 ← Nextsw r4,0(r1)(S2)
do S4 ← Nextsw r3,0(r2)(S3)
S4 = S′)→

swapGuar(S,S′)

Figure 2.13: Swap validity lemma

the original Next Nextc(S) = S′, then for the lifted Next′, Next′cS = Some S′. If

instead Nextc(S) is undefined, then for the lifted Next′, Next′cS = None. I can do

this because it is decidable for the original Next whether or not it is defined for a

particular command and state. In the remainder of the paper, when I refer to Next,

I am really referring to the lifted Next′.

Then, I want to define a convenient notation for stringing together a series of

evaluation steps, where each evaluation step might fail (by returning None), as I just

defined. I do this using Haskell-style [Jones 2003] do-notation for what is in essence

a “Maybe” monad. There are two cases:

(do x← Some S; P) ::= P [S/x]

(do x← None; P) ::= False

In other words, if an evaluation succeeds, producing some state S, then S is sub-

stituted for x in the proposition P. If the evaluation fails, then the entire evaluation

will “fail” by turning into False. False cannot be proved, so verification will fail.

Putting all of this together produces the lemma given in Figure 2.13: if I can prove

33

this lemma, I will have shown that the swap procedure matches the specification I

gave. This lemma is the verification condition [Necula 1997] of the swap function,

for the specification I gave.

First, there are some states S and S′, which are the initial and final states of the

swap function. The initial state will satisfy the precondition of the swap function,

swapPre. Given that, I must show two things. First, that the function will return

without getting stuck. Second, that the state in which the function returns (S′) is

related to the initial state S by the guarantee swapGuar. To show that the function

will return without getting stuck, I must show that each instruction can be safely

executed. To show that the guarantee will be satisfied, I must show that if a state S′

is produced by executing the block one instruction at a time, then it will be related

to the initial state by the guarantee.

The alert reader will notice that there is a lot of redundancy between the two

subgoals: in both portions, the safe execution of each individual instruction must be

shown, and the result reasoned about. This is an unfortunate artifact of WeakSCAP.

It might be possible to avoid this by using a different verification condition generator,

but it is not that bad in practice, because both sequences of instructions can be

stepped through in parallel, because they have the same inputs. However, there is

still some redundancy to deal with, due to the structure of the guarantee.

I will informally describe how this lemma is proved. First S, S′ and swapPre(S) are

introduced into the set of hypotheses. Then I reason about the first load instruction.

This instruction loads from register r1 and places the result in register r3. As I

said, the state S being loaded from satisfies swapPre. In other words, S `̀ S(r1) 7→

− ∗ S(r2) 7→ − ∗ true holds.

If the reader recalls, the definition of a 7→ − is an abbreviation for ∃v. a 7→ v.

Thus, eliminating the existentials in the precondition produces some values x1 and

34

S1 = S{r3 x1}
S1 `̀ S1(r1) 7→x1 ∗ S1(r2) 7→x2 ∗ true
(do S2 ← Nextlw r4,0(r2)(S1)
do S3 ← Nextsw r4,0(r1)(S2)
do S4 ← Nextsw r3,0(r2)(S3)
True) ∧
(do S2 ← Nextlw r4,0(r2)(S1)
do S3 ← Nextsw r4,0(r1)(S2)
do S4 ← Nextsw r3,0(r2)(S3)
S4 = S′)→

swapGuar(S,S′)

S2 = S{r3 x1}{r4 x2}
S2 `̀ S2(r1) 7→x1 ∗ S2(r2) 7→x2 ∗ true
(do S3 ← Nextsw r4,0(r1)(S2)
do S4 ← Nextsw r3,0(r2)(S3)
True) ∧
(do S3 ← Nextsw r4,0(r1)(S2)
do S4 ← Nextsw r3,0(r2)(S3)
S4 = S′)→

swapGuar(S, S′)

Figure 2.14: Reasoning about swap loads

x2 such that S `̀ S(r1) 7→ x1 ∗ S(r2) 7→ x2 ∗ true holds.

The next step is to apply the lemmas relating separation logic predicates to the

MIPS-like machine discussed in Section 2.5.3. One of these lemmas, in conjunction

with the precondition, implies that loading from the address stored in r1 and storing

the result in register r3 will update the value of r3 in the state with x1. In other

words, Nextlw r3,0(r1)(S) = Some (S{r3 x1}). I define S1 to be S{r3 x1}. Also,

the memory of S1 is the same as the memory of S, and the values of registers r1 and

r2 have not changed, so I can conclude that: S1 `̀ S1(r1) 7→ x1 ∗ S1(r2) 7→ x2 ∗ true

holds.

Rewriting the proposition in Figure 2.13 using these equalities and simplifying the

do-notation where possible leads to the goal being the left side of Figure 2.14. The

propositions above the horizontal line are the hypotheses. (The additional hypotheses

that S is a state, and that x1 and x2 are natural numbers are omitted for simplicity.)

The same steps are used to reason about the second load instruction. The lemmas

for reasoning about the machine using separation logic require that the part of the

separation logic proposition that describes the address being loaded from is at the

beginning, so the associativity and commutativity properties of ∗ must be used to

35

S2 = S{r3 x1}{r4 x2}
S3 = S2{S(r1) x2}
S3 `̀ S3(r1) 7→x2 ∗ S3(r2) 7→x2 ∗ true
(do S4 ← Nextsw r3,0(r2)(S3)
True) ∧
(do S4 ← Nextsw r3,0(r2)(S3)
S4 = S′)→

swapGuar(S,S′)

S2 = S{r3 x1}{r4 x2}
S4 = S2{S(r1) x2}{S(r2) x1}
S4 `̀ S4(r1) 7→x2 ∗ S4(r2) 7→x1 ∗ true

True ∧
S4 = S′ →

swapGuar(S, S′)

Figure 2.15: Reasoning about swap stores

show S1 `̀ S1(r2) 7→ x2 ∗ S1(r1) 7→ x1 ∗ true, but I will leave the application of

these lemmas implicit to simplify the presentation. The new intermediate state is

S2. This results in the goal on the right side of Figure 2.14.

The same approach can be used to step through the two store instructions. The

only difference is that store instructions update the memory instead of the register

file, so the lemmas described in Section 2.5.3 must be used to reflect the store back

into the separation logic predicate. Stepping through the first and second store

instructions result in the left and right goals given in Figure 2.15. I left S2 in place

instead of simplifying it to keep the line from getting too long. I also did some

simplifications, such as S2(r4) = x2.

The part of the goal corresponding to safety has been reduced to True, and so

can be trivially solved. The value of the final state S′ is now defined in terms of

the initial state S. All that remains is to show that the guarantee actually holds.

Things look promising: it looks like S4 has appropriately swapped the values that

were initially in the state. But there is more work to be done, due to the structure

of the guarantee.

Before proceeding, I perform some simplifications. S4 = S′, so all instances of S4

can be replaced with S′. The definition of the swap guarantee can also be unfolded.

36

S2 = S{r3 x1}{r4 x2}
S′ = S2{S(r1) x2}{S(r2) x1}
S `̀ S(r1) 7→x1 ∗ S(r2) 7→x2 ∗ true
S′ `̀ S(r1) 7→x2 ∗ S(r2) 7→x1 ∗ true

(∀x′1, x′2, A.
S `̀ S(r1) 7→x′1 ∗ S(r2) 7→x′2 ∗ A→
S′ `̀ S(r1) 7→x′2 ∗ S(r2) 7→x′1 ∗ A) ∧
∀r 6∈ {r3, r4}. S(r) = S′(r)

S2 = S{r3 x1}{r4 x2}
S′ = S2{S(r1) x2}{S(r2) x1}
S `̀ S(r1) 7→x1 ∗ S(r2) 7→x2 ∗ true
S `̀ S(r1) 7→x′1 ∗ S(r2) 7→x′2 ∗ A
S′ `̀ S(r1) 7→x′2 ∗ S(r2) 7→x′1 ∗ A

Figure 2.16: Initial reasoning about the guarantee

1

S2 = S{r3 x1}{r4 x2}
S′ = S2{S(r1) x2}{S(r2) x1}
S `̀ S(r1) 7→ x1 ∗ S(r2) 7→ x2 ∗ A
S′ `̀ S(r1) 7→ x2 ∗ S(r2) 7→ x1 ∗ A

2
S′ = S2{S(r1) x2}{S(r2) x1}
S2 `̀ S(r1) 7→ x1 ∗ S(r2) 7→ x2 ∗ A
S′ `̀ S(r1) 7→ x2 ∗ S(r2) 7→ x1 ∗ A

3
S′ = S3{S(r2) x1}
S3 `̀ S(r1) 7→ x2 ∗ S(r2) 7→ x2 ∗ A
S′ `̀ S(r1) 7→ x2 ∗ S(r2) 7→ x1 ∗ A

4 S′ `̀ S(r1) 7→ x2 ∗ S(r2) 7→ x1 ∗ A
S′ `̀ S(r1) 7→ x2 ∗ S(r2) 7→ x1 ∗ A

Figure 2.17: Final reasoning about the guarantee

Finally, for reasons that will soon be clear, I add back what is known about the

initial memory: S `̀ S′(r1) 7→ x1 ∗ S′(r2) 7→ x2 ∗ true. I also replace occurrences

of S′(r1) and S′(r2) with S(r1) and S(r2) to simplify things (these equalities can be

shown by reasoning about S and S′), and drop another hypothesis that is no longer

needed. This results in the situation depicted in Figure 2.16. The second part of

the goal (∀r 6∈ {r3, r4}. S(r) = S′(r)) is straightforward to show, because the register

files of S and S′ are the same, except at r3 and r4. This leaves reasoning about the

memory, which looks like the right side of that figure after the new hypothesis is

introduced.

The first problem I must deal with is that the values I have to show are swapped

(x′1 and x′2) are different than the values I know about (x1 and x2). Fortunately, a

37

single address can only hold a single value, so I can prove a lemma that states that

if S `̀ a 7→ v ∗ A and S `̀ a 7→ v′ ∗ A′, then a = a′. This lemma is widely useful.

With this lemma, and the third and fourth hypotheses, I can show that x1 = x′1 and

x2 = x′2. Once I have dropped a now-useless hypothesis, I am left with goal 1 in

Figure 2.17.

I have to step forward through the instructions once again, this time following

the definition of S′ instead of explicitly tracing the execution of the commands. This

is the redundancy that results from my style of guarantees that I mentioned before.

To do this, I can use the same lemmas I used before. The first two steps set registers,

so they do not do anything to the memory, resulting in goal 2 in Figure 2.17. Finally,

I apply the memory update lemma twice, resulting in goals 3 and 4 in that same

figure. S3 is defined to be S2{S(r1) x2}. In the final goal, a hypothesis exactly

matches the goal, so I have proved the goal.

I have now proved that the verification condition holds, so I have shown that

the swap function correctly implements the specification. The actual Coq proof

corresponding to the informal proof described in this section (in Swap.v) is 26 lines

that are not white space or comments, and the level of abstraction of the mechanized

proof is fairly similar to the informal description given in this section, due to the use

of specialized separation logic tactics. More aggressive tactics could further reduce

the size of the proof, but the sort of basic reasoning about memory described in

this section accounts for only a very small portion of the verification of garbage

collectors (maybe 5% of the total lines of proof), so it did not seem worth improving

for my current work. Instead, most of the difficulty is in reasoning about higher-level

properties, as I will show in upcoming chapters.

38

2.9 Conclusion

In this chapter, I have described the formal setting for my work. I first defined

the standard formal assembly-level machine I will use to implement the garbage

collectors. I then described the existing Hoare-logic style program logic SCAP [Feng

et al. 2006] I use to verify programs, and a variant of this logic WeakSCAP that is

easier to work with. Next, I gave an overview of separation logic [Reynolds 2002],

which I use to describe and reason about the complex memory invariants of standard

GC algorithms. Separation logic is critically important to making my work practical.

After that, I described how I implement everything in Coq, and the standard form

that many of my specifications take. The chapter was concluded with a detailed

example of how the components described in the chapter can be combined to verify

the specification of a swap function written in assembly.

39

Chapter 3

Abstract Data Types for Hoare

Logic

3.1 Introduction

In the previous chapter, I described the formal machine I use to implement garbage

collectors and the logics I will use to reason about those programs. I now spend

the next couple of chapters building a layer of infrastructure on top of this basic

framework for reasoning about mutator-garbage collector interfaces. One of the core

ideas of my approach to GC interfaces is to treat the garbage collected heap as an

abstract data type (ADT). As a step towards describing this idea in detail, in this

chapter I make the notion of an ADT more concrete and discuss how I represent

ADTs in my setting of a deeply embedded Hoare logic.

I first discuss the basic idea of ADTs for GC interfaces to motivate the use of

ADTs. After that, I begin with a simple notion of ADT, then discuss how ADTs

can be adapted to a setting that requires a phase distinction between compile-time

specification and runtime evaluation. Next, I discuss the standard approach to rep-

40

NULL

32 4

Client push 24 Implementation

13

24

13

4

32

24

Figure 3.1: Abstract data types and clients

resenting ADTs using ML-style functors [Milner et al. 1997], then describe how I

adapt this to support ADTs for SCAP programs. I illustrate the development of the

various types of ADTs using a basic stack ADT. Finally, I discuss some related work

and conclude.

An ADT is a data structure where the actual implementation is hidden from the

user of the data type (the client). Figure 3.1 shows the general idea, for the example

of a stack. The client is on the left. The client requests that the implementation

pushes the value 24 onto the stack. The implementation tells the client that it

is pushing 24 onto some abstract stack (represented by the speech bubble on the

left). However, the implementation knows that in reality the stack is a linked list

(represented by the thought bubble on the right). The client does not care how the

stack is actually implemented, as long as the illusion is preserved.

For a garbage collector the entire garbage collected heap, including any auxiliary

structures needed by the GC, can be thought of as an abstract data type. The muta-

tor is the client, interacting with the heap via a fixed set of operations such as reading

from an object, writing to an object, or allocating from an object. Representing the

interface using an ADT enables hiding many implementation-specific details. This

will allow reasoning about the mutator without being concerned with the details of

a particular collector, which both complicates reasoning and limits the collectors the

41

type Stack : Type

val empty : Stack
val push : Stack→ elt→ Stack
val pop : Stack→ Stack× elt

proof pushPopOk : ∀s, x. pop(push s x) = (s, x)

Figure 3.2: Basic ADT for stacks

mutator can be combined with. I found this was a very natural way to represent

the GC interface, even with the complex incremental copying Baker collector [Baker

1978] that requires a read barrier.

3.2 Basic abstract data types

Now I will discuss abstract data types a little more formally. An ADT has three

types of components:

1. A data type

2. Operations on the data type

3. High-level rules that describe the effect of the operations

The definitions of the first two are hidden from the client, allowing the client and

implementer of the ADT to be defined and verified separately. The implementer of

the ADT ensures that the actual implementation satisfies these rules.

For example, I give a basic ADT for stacks containing elements of some type elt in

some unspecified functional language in Figure 3.2. Following Standard ML [Milner

et al. 1997], type-level declarations are prefaced with type, while term-level decla-

rations are prefaced with val. I also use proof for proof declarations, to distinguish

42

them from type declarations. First, there is a data type Stack. Next, there are three

operations on Stack, the empty stack empty (which can be thought of as an operation

that takes no arguments), push (which takes a stack and a new element, and returns

a stack with the new element pushed onto the stack) and pop, which takes a stack

and returns the top element of the stack, along with the remainder of the stack. The

final component of the ADT is the behavioral rule pushPopOk, which specifies that

if a value v is pushed onto a stack s to get a stack s′ performing a pop on s′ will

return the pair (s, v). I do not specify what happens when a push is performed on an

empty stack, allowing the implementer to do anything in that case. This component

is a proof.

The client can then use any stack that matches the interface, and the imple-

mentation is free to use an array or a linked list or anything else, as long as it can

show that the ADT is satisfied. This allows the client and the implementation to be

separately checked, then later combined to form a whole well-formed program.

3.3 Indexed abstract data types

The previous description of ADTs has a problem: the high-level rules shown for

stacks (part 3 of my definition of ADTs) contain functions. This might be fine if

push and pop are implemented in a purely functional language, but what if they are

implemented in a language with side effects, such as assembly? In that case, a phase

distinction [Shao et al. 2002] should be maintained between static verification and

dynamic evaluation. This can be done by specifying each operation by enriching its

type, instead of with a separate rule that explicitly mentions the operation. However,

as it stands, the abstract data type itself is not capable of retaining any information.

This desire to maintain phase distinction also arises in dependently typed lan-

43

guages with side effects such as DML [Xi and Pfenning 1999], LTT [Crary and Van-

derwaart 2001], and TSCB [Shao et al. 2002], and I can adopt their solution, which is

to add an index to the abstract type. Instead of the abstract data structures having

some type T , they have a type T M , where M is some specification-level construct

that contains all of the information about the data structure that the client cares

about during static checking. In other words, instead of T having type Type, it will

have type A→ Type, where A is the type of the index.

Once this is done, specifications for each operation can be given in terms of these

indexed types, using standard universal and existential quantifiers, again following

the example of the dependently typed languages I just mentioned.

An indexed abstract data type then has three components:

1. a data type, with an index type A

2. operations on the data type

3. a high-level specification for each operation and basic rules for the data type

3.3.1 Example

Consider the stack example. I will give two stack ADTs in some unspecified depen-

dently typed functional language. In the first ADT, the index will be the depth of

the stack. In the second ADT, the index will be a more precise listing of the contents

of the stack. For clarity, I follow convention and use ∀ and Π for universal quantifi-

cation over types in propositions and types, respectively. Each ADT has an indexed

type for the data structure, and implementations of the three operations, along with

a specification for each operation, in the form of a type. Finally, in each interface I

include a weakening rule for stacks, to give an example of additional basic rules for

the data type I mentioned. I assume the language has some way to explicitly reason

44

about types. These weakening rules are kind of a subtyping rule that allow the client

to forget about elements at the bottom of the stack.

For instance, this rule can be used to give a stack with 5 elements the type of a

stack with 3 elements. This is safe to do because there are no special rules in the

interface about stacks with specific numbers of elements. If the ADT included an

operation isEmpty that tests whether a stack is empty or not, with a specification

that it returns true when the stack is empty and false when the stack is non-empty,

then the weakening rule would not be sound, because then a non-empty stack would

also be an empty stack, from the perspective of the types, and there would be no

possible implementation of isEmpty that matches the specification. On the other

hand, if the specification of isEmpty does not specify what happens when the stack

is empty, the weakening rule is again perfectly fine! As this demonstrates, a variety

of factors must be carefully considered when designing an interface, depending on

the needs of the client.

For stacks, this weakening rule is rather contrived, but for garbage collectors

weakening rules can be quite useful. For instance, it may be useful to forget that a

particular register is a root to allow it to be used for values that are not managed

by the GC. Weakening rules allow this.

This demonstrates another advantage of indexed-based ADTs relative to the basic

ADTs: there is finer-grained control over the information exposed by the interface,

which by definition makes abstraction easier. It is not clear how to define a weak-

ening rule like this with the equational style of reasoning about operations given in

Section 3.2.

45

type Stack : Nat→ Type

val empty : Stack 0
val push : Πk : Nat. Stack k → elt→ Stack (k + 1)
val pop : Πk : Nat. Stack (k + 1)→ Stack k × elt

proof stackWeaken : ∀k, k′ : Nat. Stack (k + k′)→ Stack k

Figure 3.3: Depth-indexed stack ADT

3.3.2 Depth-indexed stack ADT

If the client is only interested in being able to verify that each pop operation is

safe (without any additional dynamic checking), the stack ADT given in Figure 3.3

can be used, where the index is a natural number (with type Nat) giving the depth

of the stack. The empty stack has a depth 0, while the push operation takes a

stack with depth k and an element, and returns a stack with depth k + 1. The pop

operation takes a stack with a depth of at least 1 and returns a stack with one less

element, along with an element.1 Finally, the lemma stackWeaken says that the last

k′ elements of a stack of depth (k + k′) can be forgotten.

Notice that this ADT gives less information than the basic ADT given in Fig-

ure 3.2: nothing is known about the element returned by the pop operation. From

the perspective of the interface, it is perfectly fine if the value of type elt returned

by the pop operation is not actually from the stack. As I said, this is okay if the

client only cares about basic “stack safety”, where it is statically verified that no

pop operation fails. A more complex interface would only complicate things for the

client without adding anything. Of course, as the reader will see in the next section,

a stack ADT that does give as much information as the basic ADT can be defined.

1k is a natural number, so it must be at least 0, and thus k + 1 must be at least 1.

46

type Stack : List Elt→ Type

val empty : Stack nil
val push : Πl : List Elt. Πx : Elt. Stack l→ elt x→ Stack (x :: l)
val pop : Πx : Elt. Πl : List Elt. Stack (x :: l)→ Stack l × elt x

proof stackWeaken : ∀l, l′ : List Elt. Stack(l ++l′)→ Stack l

Figure 3.4: List-indexed stack ADT

3.3.3 List-indexed ADT

The indexed approach can also be used to give a rich interface for stacks, as shown in

Figure 3.4. Here the assumption is that the type of elements elt is indexed by some

type Elt. For instance, if stack elements are natural numbers, the type elt could be

Snat : Nat→ Type, where Elt is thus Nat. This kind of type is known as a singleton

type [Xi and Pfenning 1999] because every instance of every type Snat(k) has exactly

one element.2

In this interface, the index type for stacks is List Elt, which is the type of (type-

level) lists of Elt. This list index gives a complete picture of the contents of the stack

(to the extent permitted by Elt). Lists l have two constructors, the empty list nil

and a list x :: l with head element x and tail list l. I write l ++l′ for the type-level

append operation that adds list l′ to the end of the list l.

The contents of an empty stack is the empty list nil. The push operation takes a

stack indexed by the list l and an element indexed by x and returns a stack indexed

by l with x added to the front (x :: l). The pop operation takes a stack indexed by

any non-empty list, and returns a stack containing the tail of the list, along with

2While this richer stack interface allows singleton-type-like reasoning, the weakening rule means
that multiple stacks can have the same type. Furthermore, a particular implementation might have
multiple concrete representations of a single abstract stack. Thus the stack type is not a singleton
type.

47

an element with the same index as the head of the list. Finally, there is again a

weakening lemma: if a stack contains the elements in l followed by the elements in

l′, the elements in l′ can be forgotten.

This interface gives as much information to the client as the basic ADT given in

Figure 3.2, if Elt is a singleton type. An implementation of the pop operation must

return the head and tail of the stack instead of arbitrary values. This enables a client

to have a very precise specification. For instance, it might be possible to statically

verify that a depth-first search that uses this stack correctly finds some element in a

graph, if it is present, which would be impossible with the previous stack ADT.

3.4 Functor-based implementation of ADTs

I have discussed the interfaces I use for ADTs, but not how this abstraction will

actually be represented. A standard way to represent an ADT client, implementation

and interface makes use of an ML-style module system [Paulson 1996], which is

available in languages such as Standard ML [Milner et al. 1997], OCaml [Leroy

2000], and, conveniently, the Coq proof assistant [Coq Development Team 2007b].

In this approach, there are three parts of a module system that are relevant to

the implementation of ADTs. First, a module is an aggregation of types, definitions

and theorems. Next, a module signature is the type of a module, giving the type

of each component. A module signature can be used to hide some or all of the

definitions in a module. Finally, a functor is kind of a function that takes a module

as an argument and returns another module. The argument to the functor must be

a module with a particular module signature. The module system ensures that any

implementation that matches the signature can be used to instantiate the functor to

create a well-formed structure.

48

ADT component module system component

interface module type
implementation module
client functor

Figure 3.5: Implementing ADTs using a module system

Module Type StackSig.
type Stack : Nat→ Type

val empty : Stack 0
val push : Πk : Nat. Stack k → elt→ Stack (k + 1)
val pop : Πk : Nat. Stack (k + 1)→ Stack k × elt

proof stackWeaken : ∀k, k′ : Nat. Stack (k + k′)→ Stack k

End StackSig.

Figure 3.6: Depth-indexed stack signature

Figure 3.5 shows how each component of an ADT is represented using a module

system. Interfaces are module types, while implementations are modules that match

the signature of the interface signature. Finally, clients are functors that take as

arguments modules matching the interface signature.

The signature that represents the ADT interface describes the entire verified

implementation of the ADT, including the abstraction type and the verified imple-

mentations of the operations, but not their definitions. For example, Figure 3.6

shows what the signature for the depth-indexed stack ADT might look like in a

dependently-typed language with a module system along the lines of Coq. To sim-

plify the presentation, I do not use Coq’s concrete syntax, but something equivalent

to this signature can be defined in Coq. Notice that I have just wrapped up the

interface defined in Figure 3.3 with a little bit of syntax to give it a name, StackSig.

In Figure 3.7, I define a module that implements the ADT defined by the module

49

Module ListStack : StackSig.
type Stack [k : Nat] : Type ::=
| emptyStack : Stack 0
| pushStack : Πk : Nat, k′ ≤ k + 1. Elt→ Stack k → Stack k′

val empty := emptyStack
val push [k : Nat] (s : Stack k, e : Elt) := pushStack [k] [k + 1] e s
val pop [k : Nat] (s : Stack (k + 1)) :=

match s with
| pushStack e s′ ⇒ (s′, e)
| emptyStack⇒ fail()

end

proof stackWeaken : ∀k, k′ : Nat. Stack (k + k′)→ Stack k := ...

End ListStack.

Figure 3.7: Stack implementation using lists

signature StackSig using made-up syntax for a dependently typed functional lan-

guage. The particular definition is not that important, and is just intended to give

a bit of a sense of what it might look like. It is based on an inductively defined

list type that has as an index the length of the list. The various operations are

implemented as one might expect. I omit the proof of stackWeaken for simplicity.

The main point of this diagram is that, like the signature, I am simply wrapping up

the implementation in something to give it a name. For the implementation, I also

have declared what the type of the module should be (in the first line), ensuring it

correctly implements the stack ADT.

The signature ascription (giving a module a type) may or may not hide the

definition of Stack, but for my purposes the difference is minor. If the definition is

exposed, then a client can be specialized to this particular implementation. In this

case, the client is not really using an ADT any more, but this does not compromise

the safety of the system, which is still ensured by the underlying module system.

50

Functor CalcFn(S : StackSig).
type rpn : Nat→ Type ::=
| endOp : rpn 0
| plusOp : Πk : Nat. rpn k → rpn (k + 1)
| numOp : Πk : Nat. rpn (k + 1)→ rpn k

val interp [k : Nat] (r : rpn k, s : S.stack (k + 1)) ::=
match s with
| endOp⇒ S.pop [1] (s)
| plusOp r′ ⇒

let (s′, x) := S.pop [k + 1] (s) in
let (s′′, y) := S.pop [k] (s′) in

interp [k − 1] (r′, S.push [k − 1] (s′′, x+ y))
| numOp r′ x⇒ interp [k + 1] (r′, S.push[k + 1](s, x))

end
End CalcFn.

Figure 3.8: Client implementation

Instead, it only limits the implementations that can be used by the client.

An example of a client using the depth-based stack ADT I have defined is given

in Figure 3.8. The client is a functor CalcFn taking a stack implementation S (e.g.,

any module satisfying the module type StackSig) as its argument. This contrived

example is a reverse Polish notation calculator where dependent types are used to

ensure that the stack will not be exhausted. I assume a clever language that can do

some kind of constraint solving, along the lines of DML [Xi and Pfenning 1999]. The

main point here is that the stack type, along with the push and pop operations, are

taken from the functor argument S. The client does not know what S is. S might

not even exist yet.

Finally, I give an example of linking a client with an implementation. This

only requires checking that the signature of the client matches the signature of the

implementation, and is actually done by instantiating a functor with an appropriate

module. A calculator ListCalc can be created by instantiating the client CalcFn with

51

the stacks defined in ListStack:

Module ListCalc := CalcFn(ListStack).

3.5 ADTs for deep embeddings

So far in this chapter I have reviewed standard approaches to representing abstract

data types in the context of functional languages. These would suffice if I were imple-

menting garbage collectors in a language with explicit-proof-based reasoning about

memory such as Hoare Type Theory [Nanevski et al. 2007] or GTAL [Hawblitzel

et al. 2007]. However, as described in Chapter 2, I use a deep embedding [Wildmoser

and Nipkow 2004].

In a deep embedding, a “program” is a data structure manipulated by the un-

derlying programming language (in my case, Coq) instead of being written directly

in the language, and reasoning is not done about a function written in the language

are actually being used (e.g., Coq). Instead, reasoning is carried out on a program

written in some other language (e.g., MIPS assembly) that has been given an explicit

representation and operational semantics. The state involved with the ADT is no

longer implicitly maintained, but is instead passed around explicitly.

Constructing an ADT for a deep embedding requires some adjustments. At a

basic level, ADTs are represented in the same way, using the module system: the

actual ADT is represented using an indexed type, the interface is a module type, the

implementation is a module, and the client is a functor. For simplicity, I implement

each operation as an SCAP procedure and separate the definition and verification of

the operations, but that is not necessary for my approach.

A deeply embedded ADT has the following components:

52

Module Type StackAsmSig.
type Stack : Nat→ State→ Prop

val stackCode : CodeMem
type stackCodeTy : CodeHeapSpec
proof codeMemOk : (stackCodeTy ` stackCode : stackCodeTy)

proof emptySpecEq : stackCodeTy(emptyLabel) = emptySpec
proof pushSpecEq : stackCodeTy(pushLabel) = pushSpec
proof popSpecEq : stackCodeTy(popLabel) = popSpec

proof stackCodeTyDomOk : dom(stackCodeTy) ⊆ {k | 0 ≤ k < 100}

proof stackWeaken : ∀k, k′ : Nat. ∀s : State. Stack (k + k′) s→ Stack k s

End StackAsmSig.

Figure 3.9: SCAP ADT for stacks in a deeply embedded language

1. A representation predicate (instead of an abstract type) which holds on a ma-

chine state that contains an implementation of the ADT

2. A code memory that contains the complete implementation of all of the oper-

ations

3. A code memory specification that gives specifications for every block in the

code memory

4. A proof that the code memory has the given code memory specification

5. For each operation f , a proof that f ’s code label is mapped to f ’s specification

6. An upper bound on the domain of the code memory specification, to allow

linking

7. Any auxiliary proofs about the representation predicate

53

The stack ADT I have been using as a running example is translated to the deeply

embedded setting in Figure 3.9. The representation predicate takes two arguments.

The natural number argument is the depth of the stack, while the state argument is

the fragment of the machine state that contains the ADT. If Stack n S holds, then

the state S contains (in its entirety) a stack of depth n. This is similar to the abstract

type I used before, except that the data structure is represented in the machine state

instead of in the underlying language.

The next component is stackCode which is all of the code blocks required for

the implementation, and stackCodeTy which is the specifications for all of the code

blocks of the implementation. Specifications are used instead of types to describe

the behavior of operations. In conventional Hoare logic, a specification would be a

precondition and a postcondition, where both are predicates on State.

Next, I specify the public operations of stackCode, by defining some components

of stackCodeTy. In this example, pushSpecEq is a proof that the specification at code

label pushLabel is pushSpec. These proofs will allow the client to call the operations.

The exact definitions of the code labels (emptyLabel, pushLabel and popLabel) and

specifications (emptySpec, pushSpec and popSpec) must be known to both the client

and implementer of the ADT. I do not give their definitions as the focus of this

chapter is how the components are assembled into larger structures rather than the

components themselves. Generally speaking, the specifications will look like those of

the swap example defined in Section 2.8 and will be defined in terms of Stack.

After this, I specify an upper bound on the domain of stackCodeTy. Two blocks

of code can be linked only if they do not overlap. (Any block of code that is in the

domain of stackCode but not stackCodeTy is dead code, and can be dropped from

stackCode at link time.)

Finally, any properties of the underlying ADT are given, as before. stackWeaken

54

is the same stack weakening lemma from before, translated to the deeply embedded

setting: if a state contains a stack of depth k + k′, then it also contains a stack of

depth k.

3.5.1 Example specification

In SCAP, the specification of a function has two parts: a precondition describing

states in which it is safe to call the function and a guarantee relating the states

before and after the call. If the state is just memory, the precondition of the pop

operation is

λS. ∃k. S `̀ stackRepr(k + 1) ∗ true

In other words, the state must contain the representation of a stack with a depth of

at least one. It can also contain anything else. The guarantee of the pop operation

is

λS,S′. ∀k,A.

S `̀ stackRepr(k + 1) ∗ A→

S′ `̀ stackRepr(k) ∗ A

In other words, the final state contains a stack with a depth one less than the stack

in the initial state, and the rest of the state is not changed.

3.6 Related work and conclusion

There has been other work on extending separation-logic-based program logics to

support reasoning about abstraction, such as O’Hearn et al. [2004] and Parkinson

and Bierman [2005]. These papers use memory management as an example of a case

where abstraction is useful, by showing how to use their respective approaches to

reason about implementations of malloc and free. These approaches both require

55

extending the program logic with additional rules for reasoning about abstraction,

complicating the proof of soundness of the program logic. In contrast, my approach

allows the program logic to be left unmodified by taking advantage of the expres-

siveness of the meta-logic to apply a standard technique for the representation of

ADTs. This is a perhaps rare instance where having a mechanized implementation

of a program logic makes things easier. Another (likely minor) difference is that my

work is at the assembly level, whereas theirs is at a more C-like level.

O’Hearn et al. [2004] add abstraction to separation logic with a hypothetical frame

rule that allows a collection of components (corresponding to the ADT operations)

to be verified with a resource invariant r that is a separation logic predicate in their

pre- and post-conditions. When the client is verified, this r is removed from the

specification of the operations. The standard frame property of separation logic

ensures that the client is unable to alter the state in such a way that r no longer

holds.

One drawback of their system is that r must be a precise predicate, which means

it distributes with ∗ (and any other predicate) over ∧. In addition, their hiding is

“all-or-nothing”: either a cell is totally exposed to the client or it is totally hidden.

I believe that my approach is more flexible, and allows more fine-grained abstrac-

tion. Also, as pointed out by Parkinson and Bierman [2005], this approach cannot

handle more than one instance of the abstraction they have created, while mine can.

For instance, a program could only contain a single stack. This is not a severe re-

striction for garbage collection, as a single program is usually only going to have a

single garbage collected heap. More seriously, their example malloc does not sup-

port variable sized blocks, and Parkinson and Bierman [2005] claim that the logic

of O’Hearn et al. [2004] is such that it cannot support variable sized blocks while

still maintaining abstraction. This would seem to be because they cannot maintain

56

per-allocated-block auxiliary information, which is critical to proper abstraction for

a garbage collector as well as malloc.

Parkinson and Bierman [2005] add abstraction by extending separation logic with

the notion of an abstract predicate, which is the same as my representation predicate.

The difference lies in how the predicate is added to the system. Instead of using a

module system to enforce the abstraction, as I do, they build it into their program

logic: the definition of an abstract predicate is exposed within a particular program

scope. Within that scope, a rule in the program logic allows the definition to be

unfolded, allowing the verification to take advantage of the implementation. Outside

of the scope, the definition is opaque. Their system is powerful enough to reason

about a malloc with auxiliary information.

However, their system is more coarse-grained than mine, because at a particular

point in the program the abstract predicate is either completely concrete or com-

pletely abstract. Their system does not allow the implementation to export properties

of the abstract predicate (such as stackWeaken in the stack example I presented) to

the client. I do not see any reason their system could not be extended to support

exporting properties of abstract predicates in this way, but this does demonstrate

another advantage I get by making use of a standard technique instead of developing

a custom extension of the program logic. They also demonstrate an extension of

their approach to reason about Java-like inheritance, which I have not investigated.

In this chapter, I have described my approach to implementing abstract data

types in a deeply embedded setting using a module system. This is critical to my

garbage collector verification work, as I will use abstract data types to represent and

reason about garbage collected heaps. This allows hiding implementation details of

the collectors from the mutator, which in turn allows for verifying a mutator once

and then combining it with different collectors to produce a verified garbage collected

57

program. My approach is similar to existing work, but I believe it is simpler (at least

in practical terms) and more general, because I am applying an existing powerful

approach (using a module system to represent abstract data types).

58

Chapter 4

The Garbage Collector Interface

4.1 Introduction

In this chapter, I describe a general approach to the formal specification of the

interface between garbage collectors and mutators (where a mutator is simply a

program that uses a garbage collector). The core idea is to treat the garbage collected

heap as an abstract data type (ADT). Operations that interact with objects, such as

reading and writing, become part of the interface of the ADT. My approach allows

modular verification and abstraction, while remaining highly expressive.

Formalizing an interface enables the modular verification of garbage collectors and

mutators: a collector can be verified once to match the interface, then later combined

with different mutators, without verifying the collector again. Similarly, a mutator

can be verified to be compatible with a particular garbage collector interface, then

combined with any collector that satisfies that interface to form an entire verified

program, without any additional verification work required. This matches up with

the way in which garbage collectors and mutators are commonly used in an unverified

setting, where a garbage collector is implemented as part of a language runtime

59

system, or in a library.

My interface allows the abstraction of implementation details, which simplifies

the verification of the mutator and allows more collectors to be used with a given

mutator. For instance, in a mark-sweep collector the existence of mark bits can

be hidden, and in a Cheney copying collector the fact that all allocated objects are

contiguous can be hidden. These are details that are critical to the proper functioning

of the garbage collector, but that should neither affect nor be affected by the mutator.

My interface is also expressive, along a couple of dimensions. First, it can be

tuned to verify anything from type safety to partial correctness of the mutator.1

Secondly, it is expressive enough to verify a wide variety of collectors, including

those requiring read or write barriers, such as incremental collectors.

This chapter focuses on describing the interface, which has been implemented in

Coq as a module signature following the technique described in the previous chapter.

I first give an overview of how I use the ADT framework described in the previous

chapter to create an interface for garbage collection. Next, I describe what the ab-

stract state looks like, and how it is related to the concrete state via a representation

predicate. I then discuss some standard properties of the representation predicate.

Then I give the abstract specifications of the three core garbage collector operations:

reading, writing and allocation. After that, I discuss the parts of the interface that

prove that the operations match those specifications. Finally, I show how coercions

can be used to change the interface of a collector and conclude. In Chapter 5, I will

discuss how various collectors implement the interface.

1I cannot verify total correctness only because the program logic I am using cannot reason about
termination.

60

1 3

57

root

Figure 4.1: Abstract heap

4.2 Garbage collection as ADT

Now I will give a brief overview of how I use abstract data types (ADTs) (as described

in Chapter 3) to reason about the mutator-garbage collector interface. At a basic

level, the client of the ADT is the mutator, and the implementation of the ADT is the

entire verified collector. The actual abstract data type is the entire garbage collected

heap along with the root set. The operations of the ADT are all of the operations

that interact with the garbage collected heap, such as reading to and writing from

fields of garbage collected objects, and allocation.

As I described in Section 3.5, an ADT can be given an index that contains the

public information about the state of the ADT. To allow very expressive reasoning

about the garbage collected heap, the index I will use for my GC ADT is a high-level

abstract state that describes the contents of every object in the heap and the values

of all of the roots. This abstract state is in contrast to the low-level concrete state of

the implementation. The use of an ADT allows hiding things such as auxiliary data

structures, heap constraints maintained by the collector, and even more complex im-

plementation details, such as whether the collector is stop-the-world or incremental.

In an assembly-level machine, the state used by the garbage collector includes some

of the registers and part of the memory.

I give an example abstract state in Figure 4.1. This state has a single root root

61

1 3

57

root

Figure 4.2: Partially copied concrete heap

and four objects. The first three objects form a cycle, while the fourth object points

into the cycle, and is unreachable from the root. I will use this as a running example.

To get an idea of what sort of complexity this abstract view might be hiding,

consider Figure 4.2. This is a possible concrete implementation of the abstract state

in Figure 4.1, if the GC is an incremental copying collector. In this concrete state,

objects 1 and 3 have been copied, while objects 5 and 7 have not. The old copies of

objects 1 and 3 are in the second row, and point to the new copies, to allow the GC

to later forward pointers. Notice that object 5 still points to the old copy of object

1. The collector must be implemented in a way that will prevent the mutator from

discovering what is really going on.

The operations of the ADT are the various collector operations, such as reading

from a field of an object, writing to the field an object, and allocating a new object.

Besides its basic action, each operation may result in some collection activity, result-

ing in unreachable objects disappearing from the abstract state. The precise set of

operations will depend on the nature of the garbage collector and the particular needs

of the client. As seen in Section 3.5.1, the specification of each of these operations

will be given in terms of the representation predicate. The abstract state contains

only allocated objects, so allocation causes the abstract state to grow, while collec-

tion may cause the abstract state to shrink. Calcagno et al. [2003] show that it is

62

read write allocate read

[read] [write] [allocate] [read]

abstract state

concrete state

collector

mutator

mutator

Figure 4.3: Abstract and concrete machines

possible to define a more sophisticated logic that disallows reasoning about unreach-

able objects, but that should be fairly orthogonal to the concerns I am examining

here.

Figure 4.3 gives an overview of the entire system. The mutator sees a series of

abstract states as evaluation proceeds, signified by the top line. When the collector,

for instance, reads from an object, the mutator sees the high level behavior read,

which is a binary state predicate. On the other hand, the collector sees a series of

concrete states as evaluation proceeds. Each concrete state is related to a corre-

sponding abstract state by the representation predicate, indicated on the diagram

by the curved lines connecting states above and below the line dividing the abstract

and concrete world. To preserve the illusion for the mutator, the concrete behavior

of the collector must be some lowered version of the high-level behavior. I write

[read] for the lowered version of read. A function [g] that lowers a guarantee g can

be defined as follows, if repr is the representation predicate for the collector:

[g](S,S′) ::= ∀A. repr(A,S)→ ∃A′. repr(A′, S′) ∧ g(A,A′)

In other words, if the initial concrete state S contains the representation of some

abstract state A, then the final concrete state S′ will contain the representation of

some abstract state A′ such that A and A′ are related by g.

63

4.3 The abstract state

As I just discussed, the GC interface to the garbage collected heap is described in

terms of an abstract state. Abstract states have two components: memory containing

objects (the object heap) and a set of values that the mutator can immediately access

and which may point into the object heap (the root set).

To make the following discussion clearer, I will now define the concrete and ab-

stract states, as defined by my assembly implementation. Concrete states are the

states S defined in Section 2.2: a pair consisting of a memory M and a register file R.

As a reminder, a memory is a partial function from addresses to natural numbers,

while a register file is a function from registers to natural numbers. An address is a

natural number divisible by four.

An abstract state A is a concrete state S plus a set of registers R. This set

of registers is the root set for the collector. Only the registers in the root set are

managed by the collector, allowing the mutator to manipulate some values without

dealing with the mutator-collector interface. Having an explicit root allows different

registers to be roots at different points in the program. For instance, after reading

from an object the result is placed into register v0, which then becomes a root.

I define the abstract state as a variant of the concrete state for two reasons. First,

this allows me to reuse my tools for reasoning about concrete states to reason about

abstract states. Second, making the abstract and concrete states as close as possible

shows precisely what is being abstracted by the interface. But this is not necessary

and the abstract state could be made higher level. For instance, the object heap

could be defined as a partial mapping from addresses to objects, instead of as a flat

address space.

64

4.3.1 Representation predicate

As described in Section 3.5, the representation predicate relates the abstract state

to the concrete state, and describes how the ADT is implemented. Each garbage

collector has its own representation predicate. For simplicity, assume some particular

representation predicate repr. The representation predicate defines how the objects

and internal data structures of the collector are laid out. For instance, in a mark-

sweep collector, this predicate will specify that each object has a mark bit somewhere,

and that all of the objects are contiguous, to enable the sweep phase. All of this

can be hidden from the mutator. In a simple copying collector, this predicate will

specify that there are two semi-spaces of the same size, where all of the objects

are located within a single semi space. In more complex incremental collectors, the

objects themselves are abstracted.

Conceptually, repr can be thought of as having the type astate→ cstate→ Prop,

where astate is the type of abstract states, cstate is the type of concrete states

and Prop is the type of propositions. However, in my implementation, the type

of repr is more complex. More specifically, I split the memory and register file

of the concrete state, so that repr may be used more naturally within separation

logic predicates. I also separate the root set from the rest of the abstract state.

The consequence of all of this is that the type of repr in my implementation is

State → RegFile → RegSet → Memory → Prop. The State is the memory and

register file of the abstract state, while the Memory and RegFile are the memory

and register file of the concrete state. Finally, the RegSet is the register set from the

abstract state, giving the current set of root variables.

Here is a separation logic predicate that specifies that the concrete state (M,R)

contains the representation of the abstract state (S, R) and, in a different part of the

65

memory, a pair at address x:

M `̀ repr(S,R, R) ∗ x 7→ −,−

4.3.2 Minor interface parameters

There are a number of minor parameters to the collector interface that can be tweaked

as needed. For simplicity, I fix these for the remainder of my development. Unlike

repr, the definition of these parameters must be known by both client and imple-

menter. For instance, the register root is the main root register. This register contains

the object that will be read from or written to, and contains the only object that will

survive garbage collection. It is defined to be r8. Another special register is gcInfo.

This register contains a pointer to data needed by the garbage collector, and thus

must be preserved by the mutator (which is reflected in the properties of repr given

in the next section). I define this to be r16.

presReg is a register predicate that holds on registers that are preserved by the

barriers. This is defined as presReg(r) ::= r ∈ calleeSaved, where calleeSaved is the

set of callee saved registers with the standard MIPS calling conventions, which is

defined as

calleeSaved ::= {r31, r16, r17, r18, r19, r20, r21, r22, r23}.

Another parameter is NULL, the initial field value used by the allocator. I define

NULL to be 1 instead of the more traditional 0, as 0 is a valid address in my memory

model.

The notion of an atomic value must also be defined. An atomic value is a value

that is not an object pointer. A value v is atomic (e.g., is not an object pointer) if

the predicate atomic(v) holds. In my work, I define atomic values to be odd values.

In other words, the lowest bit of a value is 1 for atomic values, and 0 for other values.

Finally, there are a few minor interface parameters relating to the code memory

66

that are analogous to those described in Section 3.5, which describes my approach

to ADTs in a deeply embedded setting. gcPhiDom is an upper bound on the domain

of the code memory type of the GC, to allow other code to be safely linked in. The

addresses of each of the operations in the GC must be known so the mutator can call

them. These addresses are allocLbl, writeLbl1, writeLbl2, readLbl1, readLbl2. The

first is the address of the allocator, while the second and third are the addresses of

the write operations for the first and second field. Finally, there are the labels of

operations to read from the first and second fields of an object. I could have a single

operation for reading, and a single operation for writing, but that makes things a

little more complicated.

4.3.3 Properties of the representation predicate

To make the representation predicate useful to the mutator, some of its basic prop-

erties must be given. The mutator needs to know how abstract values that are not

object pointers are represented in order to be able to operate on them. For instance,

if a root register contains an abstract atomic value, how does the mutator determine

if that value is equal to 1? The branch instruction is defined in terms of concrete,

rather than abstract, values. These properties are the analogue of stackWeaken de-

scribed in Chapter 3. The properties described in this section are not meant to be

exhaustive, but are just a set of properties that allow verifying a few examples. A

collector must prove that it satisfies all of these properties in order to implement the

interface.

The first property, atomRegEq, states that the concrete and abstract representa-

tions of atomic values in registers are identical. For instance, if the mutator knows

that a concrete value v stored in a register is atomic (perhaps by performing a run-

time test), then it knows that the abstract representation of this value is also v. This

67

allows the mutator to transfer data to and from the abstract world of the garbage

collector.

More formally, this property is written:

∀M,A,R, R. ∀r ∈ R.

M `̀ repr(A,R, R)→ atomic(R(r)) ∨ atomic(A(r))→

R(r) = A(r)

To break this down a bit, this first requires that the concrete state (M,R) is the

representation of some abstract state (A, R). It also requires that either the concrete

(R(r)) or abstract (A(r)) value of r is atomic. If all of that holds, then the concrete

and abstract values of r are equal.

The next basic property setNonRootOk says that registers that are neither roots

nor gcInfo can be changed without affecting the representation. This allows the

mutator to maintain its own unmanaged data, and captures the informal notion that

the only registers overseen by the GC are the roots and gcInfo.

More formally, this is written as:

∀M,A,R, R, r, v.

M `̀ repr(A,R, R)→ r 6∈ R→ r 6= gcInfo→

M `̀ repr(A,R{r v}, R)

In other words, if the concrete state (M,R) is the representation of an abstract

state (A, R), and r is a register that is neither in the root set nor equal to gcInfo,

then the concrete state (M,R{r v}), which is produced by setting r to some value

v, is still a representation of the abstract state (A, R).

The next useful property is rootCopyOk, which states that root registers can be

68

copied, and that the register the value is copied to will become a root. This is safe

to do because the collectors I verify do not maintain per-root information. If they

did, root copying would have to be an operation provided by the collector instead

of a property of the representation. This property is useful when the mutator needs

to move values into or from particular registers, such as those used for function

arguments or return values.

More formally, this is:

∀M,A,R, R, rs, rd.

M `̀ repr(A,R, R)→ rs ∈ R→ rd 6= gcInfo→ rd 6= rzero→

M `̀ repr(A{rd A(rs)},R{rd R(rs)}, {rd} ∪R)

First, the concrete state (M,R) must contain the representation of some abstract

state (A, R). Next, there must be a source register rs that is currently a root, and a

destination register rd that is not gcInfo (as writing to rd would overwrite important

GC information) or rzero (because the value of this register is always 0, so writing

to it does not do anything). If all of the preceding facts hold, then setting the value

of the register rd in the original concrete state to the value of register rs results in

a concrete state (M,R{rd R(rs)}) that is a representation of the abstract state

(A{rd A(rs)}, {rd} ∪ R). This new abstract state is the original abstract state

with the value of register rd set to the abstract value of register rs, and with register

rd added as a root (note that it may have been a root before).

Another property that takes advantage of the fact that the collector does not

maintain per-root information is rootWeaken. This property allows the mutator to

reuse root registers for unmanaged values. This property is written more formally in

69

the following way:

∀M,A,R, R,R′.

M `̀ repr(A,R, R)→ R′ ⊆ R→

M `̀ repr(A,R, R′)

In other words, if a concrete state (M,R) contains the representation of an ab-

stract state (A, R) then that concrete state also contains the representation of (A, R′),

for any root set R′ that is a subset of R.

The last property of repr that is required is addAtomRoot, which again takes

advantage of the fact that per-root GC information is not needed, to allow the

mutator to convert a non-root register containing an atomic value into a root register.

This is written more formally in the following way:

∀M,A,R, R, r.

M `̀ repr(A,R, R)→ r 6= gcInfo→ r 6= rzero→ atomic(R(r))→

M `̀ repr(A{r R(r)},R, {r} ∪R)

As usual, this property requires that the concrete state (M,R) contains a repre-

sentation of an abstract state (A, R). Next, the register r that the mutator is going

to promote to a root must not be gcInfo or rzero, and must contain, in the concrete

state, an atomic value. r is restricted because roots can be overwritten, and gcInfo

and rzero are “read only” registers, from the perspective of the mutator. The con-

crete value of r must be atomic because the property will write the concrete value of

r into the abstract state, and the concrete and abstract representations of values are

guaranteed to be equal only for atomic values. Once all of these conditions have been

satisfied, then the property says that the original concrete state (M,R) contains a

representation of the abstract state (A{r R(r)}, {r} ∪R).

As a side note, the value of rzero is always zero. This means that with my

70

definition of atomic (odd values), rzero will never be atomic, so addAtomRoot is a

little redundant. But it would be reasonable to change the definition of atomic to

allow 0 to be atomic (if 0 is not allowed to be a valid memory address), so I leave

things as they are.

4.4 Operation specifications

The three basic operations of a garbage collector are reading from an object, writing

to an object, and allocating a new object. In a standard tracing collector, most of

the GC work will be done during allocation. Depending on the collector and the

needs of the mutator, other operations may be needed. For instance, in a Brooks

incremental copying collector [Brooks 1984], object pointer equality is different than

physical equality, and thus must be implemented by the collector. As described in

Section 2.3, the specification of an instruction block has two parts: a precondition

(which must hold to safely execute the block) and a guarantee (which specifies the

relation between the current state and the state in which the current procedure

returns).

4.4.1 GC step

My specifications of the three basic operations allow garbage collection to occur. I do

this to make the interface as flexible as possible. For instance, in a tracing collector

such as a mark-sweep collector, collection may happen during allocation, if there is

no more space. In a reference counting collector, collection may happen during a

write, if the write causes the number of references to an object to drop to zero. In

an incremental collector (such as the Baker GC) or a generational collector, some

collection work will occur during a read or write.

71

gcStep(A,A′, R) ::=
(∀objs,M.

A `̀ (minObjHp({A(r) | r ∈ R}, objs) ∧ eq M) ∗ true→
A′ `̀ eq M ∗ true) ∧

(∀r ∈ R. A(r) = A′(r))

Figure 4.4: Basic GC step

In the specification, the abstract behavior of garbage collection is embodied by a

binary state predicate gcStep. As with the minor parameters described in the previ-

ous section, the definition of gcStep must be known to both collector and mutator.

Giving it a particular name succinctly defines how the interface can be changed.

This predicate is written gcStep(A,A′, R) where (A, R) and (A′, R) are the abstract

states before and after collection. This embodies the requirement that the collector

preserve the set of roots.

The gcStep can depend somewhat on the collector. For a non-moving collector,

gcStep states that all objects reachable from the root are preserved. This GC step

is defined in Figure 4.4. The first part holds for any set of objects objs and memory

M. This predicate also requires that objs is the set of objects in the initial state A

that are reachable from the values in the root set R and that M is the actual part

of the abstract memory that contains these reachable objects. Given all of that,

the collector guarantees that after it runs (resulting in state A′) that the abstract

memory will contain everything in M. It also guarantees (in the last line) that none

of the registers in R will be changed.

The memory predicate minObjHp(V, objs) will be defined precisely in Chapter 6,

but informally it holds if the memory contains the objects objs reachable from the

set of root values V and nothing else. This predicate thus describes exactly the part

of the memory that the collector must preserve. The set of values {A(r) | r ∈ R} is

72

gcStep(A,A′, R) ::=
∀objs,M.

A `̀ (minObjHp({A(r) | r ∈ R}, objs) ∧ eq M) ∗ true→
∃M′. A′ `̀ eq M′ ∗ true ∧ isoStateR((M, rfileOf(A)), (M′, rfileOf(A′)))

Figure 4.5: Copying GC step

the set of values that the registers in R have in state A.

For a moving collector, gcStep is similar, except that instead of guaranteeing that

the reachable portions of the initial and final states are identical, it guarantees that

they are isomorphic. The GC step I use for copying collectors is given in Figure 4.5.

As I said, it does not guarantee that the final state contains an exact copy of the

original reachable objects, or that the root registers are identical. Instead, they are

isomorphic. Again, I defer a precise definition of isomorphic states until Chapter 6

(in Figure 6.7), but the basic idea is that isoStateR(S,S′) holds if there exists an

isomorphism φ from the objects in S to the objects in S′ such that all of the roots

of S′ are the roots of S forwarded according to φ, and such that the objects in

S′ are those of S, copied and forwarded according to φ. I believe that a moving

collector could have the same gcStep as a non-moving collector, because the interface

does not expose the relative ordering of abstract object pointers, but I have not yet

demonstrated this with a verified collector.

More exotic notions of garbage collector behavior are also possible. In a lazy

language such as Haskell [Jones 2003], the heap may contain thunks in addition to

values. A thunk is a computation that has been delayed. While running, a user

program may evaluate a thunk and replace it with the computed value. The garbage

collector, because it must traverse the memory, may find opportunities to reduce

some of these thunks. I could allow this in the interface by changing the gcStep

so that the collector will guarantee that field values will be equivalent instead of

73

readPrek(S) ::=
∃A. S `̀ repr(A,S, {root}) ∗ true ∧

A `̀ A(root) + k 7→ − ∗ true

readGuark(S,S′) ::=
(∀A, A,R.

S `̀ repr(A,S, R) ∗ A→
root ∈ R ∧ R ⊆ {root} ∪ calleeSaved→
∃A′. gcStep(A,A′, R) ∧

S′ `̀ repr(A′,S′, {v0} ∪R) ∗ A ∧
A′ `̀ A′(root) + k 7→ A′(v0) ∗ true) ∧

∀r.presReg(r) ∧ r 6= v0→ S(r) = S′(r)

Figure 4.6: Read barrier specification

equal, which is to say that a thunk may be replaced by the evaluated value of that

thunk. This may require a more expressive program logic capable of reasoning about

embedded code pointers, such as XCAP [Ni and Shao 2006].

4.4.2 Read specification

Now that I can begin to give actual specifications of GC operations. Perhaps the

most basic operation one might wish to perform on an object is to read the value

of a field. At the abstract level, this operation takes a pointer to an object, and an

offset indicating which field the mutator wants to read, and returns the value of that

field.

The specification only allows reading from an object in the register root. There

may be other registers in the root set but the exact root set is not fixed. The mutator

can use any root set that is root plus some subset of the callee saved registers. This

will only allow the barrier to do GC work that does not require knowing the entire

root set. This is not a harsh restriction as no practical read barrier will examine the

entire root set, which in general may be arbitrarily large.

74

The specification for the read barrier is given in Figure 4.6. The precondition

and guarantee are parameterized by k, the offset of the field being read from. As

objects are limited to pairs and memory is word-aligned, k will be either 0 or 4. The

precondition says that it is safe to perform a read operation on the root register if

the state contains the representation of some abstract state A, where root is a root of

the abstract state, and the abstract memory contains a value at an offset of k from

the value stored in the abstract root. Because A(root) + k is a pointer and k = 0 or

k = 4, A(root) is a pointer, and thus not atomic. Therefore, because root is a valid

root, A(root) must be a pointer to the start of an object.

The guarantee is a bit more complex. Following my standard approach, described

in Section 2.7, the guarantee has two parts, one describing what happens to the

memory and the other describing what happens to the register file. For the latter,

the guarantee simply specifies the registers that are preserved by the call.

For the memory, the specification first describes the initial state. There are three

auxiliary variables, A, A, and R, used to relate the initial and final states. A is the

initial abstract state, A is a memory predicate describing the part of the memory

that does not contain the garbage collected heap, and R is the initial root set. The

next line requires that the initial concrete memory be divided into two parts. The

first part of the memory must contain a representation of the abstract state (A, R).

The rest of the memory is described by A.

The third line of the guarantee gives requirements for the root set. First, the

register root must be in the root set, as this is the register that will be read from.

Next, all registers in R must either be root or callee-saved.

Finally, the specification describes the result of performing a read. There is some

new abstract state A′ that is related to the initial abstract state by the GC guarantee,

because a collector, such as the Baker collector [Baker 1978], may perform some work

75

writePrek(S) ::=
∃A. S `̀ repr(A,S, {root, a0}) ∗ true ∧

A `̀ A(root) + k 7→ − ∗ true

writeGuark(S,S′) ::=
(∀A, A,R.

S `̀ repr(A,S, R) ∗ A→
{root, a0} ⊆ R→
∃A′. gcStep(A{A(root) + k A(a0)},A′, R) ∧

S′ `̀ repr(A′,S′, R) ∗ A) ∧
∀r.presReg(r)→ S(r) = S′(r)

Figure 4.7: Write barrier specification

during a read. Next, the specification describes the final concrete state S′. The final

concrete state contains the implementation of the final abstract state A′. Notice

that the return register of the read operation (v0) is now a member of the root set

(whether or not it was before). Finally, the guarantee specifies that the rest of the

memory is not touched, which is reflected in the final A.

After this, the guarantee describes what the read does at the abstract level, which

is to place the value of the field at offset k into register v0. All of this is done in

terms of the abstract state A′, not the concrete state. The predicate specifies that

the abstract memory contains, at address A′(root) + 4, the value being returned

in register v0. The gcStep relation ensures that this is the same object (for some

definition of “same”) as was passed in to read the operation.

4.4.3 Write specification

The write operation writes a value into a field of an object pointed to by the register

root. The specification of the write operation, given in Figure 4.7, is fairly similar to

that of the read operation. The only difference in the precondition is that register a0

76

must be a root in addition to root, because the mutator must only write GC-managed

values into the memory to ensure that the object heap is still well-formed.

The guarantee is also similar, with the same three auxiliary variables, and the

initial concrete state must again contain the abstract state A. The requirement for

the register set R is looser, only requiring the presence of the two registers of interest,

root and a0. This demonstrates what the register set requirement looks like if all

write implementations of interest preserve all of the registers. To verify a collector

that requiring a write barrier this would look more like the read barrier guarantee.

The line for the GC guarantee is more complex, because it specifies that the

write occurs before collection, by updating the initial state with the abstract effect

of the write barrier, which updates the memory at A(root) + k with the value A(v0).

I do this because the write may cause objects to become garbage after the write,

and I want to give the collector the freedom to collect all objects that are garbage

upon return from the write. As before, the guarantee specifies that the final abstract

state A is implemented in the final concrete state S. No additional line is needed

to specify the abstract behavior of the write operation, as was needed for the read

operation, as this is already done in the line describing the GC guarantee. The last

line specifies the effect on the concrete register file, as before. A write does not

change any registers, so no extra registers are excluded.

4.4.4 Allocator specification

The final specification I will describe is for the allocator. In most collectors, this

operation will be much more complicated than a read or a write, but the interface

is actually simpler, because most of the work that the collector will do is hidden

from the mutator by the representation predicate. In contrast to the read and write

barrier, the GC will need to examine the entire root set, so the root set must be

77

allocPre(S) ::=
∃A. S `̀ repr(A,S, {root}) ∗ true

allocGuar(S,S′) ::=
(∀A, A.

S `̀ repr(A,S, {root}) ∗ A→
∃A′,A′′, x. gcStep(A,A′, {root}) ∧

A′′ = A′{x NULL}{x+ 4 NULL}{v0 x} ∧
S′ `̀ repr(A′′,S′, {root, v0}) ∗ A ∧
(∀B. A′ `̀B → A′′ `̀B ∗ x 7→ NULL,NULL)) ∧

∀r.presReg(r)→ S(r) = S′(r)

Figure 4.8: Allocator specification

given exactly. The root set is the singleton set {root}. The structure of both parts of

the specification are similar to those of the previous specifications. The precondition

requires that there is some abstract state represented in the concrete state.

Aside from the usual specification of the preservation of the concrete registers,

the guarantee takes any representation of an abstract state (A, {root}). There are

three existentially quantified variables in the part of the specification describing the

return state. There are two abstract states A′ and A′′ as well as an address x. The

address x is the abstract location of the new object that has been allocated. For

simplicity, the allocator only returns in the case of success, so there is no need to

indicate failure. The first abstract state A′ is the abstract state after the collection,

as described by gcStep. As I said before, the root set for this collection is simply

root. The second abstract state A′′ is the result of allocating an object at x in the

abstract state A′′. At the abstract level, allocation is done by initializing the two

fields of the object to NULL and setting the return register v0 to x.

After this, the guarantee indicates that the final concrete state S′ contains the

representation of the final abstract state (A′′, {root, v0}). The root set is the old root,

plus the object that has just been allocated. As before, the rest of the memory is

78

untouched, and is thus still described by A.

Finally, the guarantee specifies that all of the addresses of the newly allocated

object are fresh (i.e., were not present before the allocation occurred). While it would

be possible to state this explicitly, it can be stated more cleanly using separation

logic: any memory predicate B that holds on the abstract state A′ also holds on the

final abstract state A′′, which also contains separately a freshly allocated object at

x. This contains the same information as explicitly specifying that the object x is

disjoint from the domain of A′, but is easier to use.

4.5 Top level components

As in Section 3.5, due to the deeply embedded setting, additional components are

needed in the interface to allow the mutator to call the GC operations. The defini-

tions of all of these components are, like repr, hidden from the mutator. All required

properties of these components will be explicitly exported.

The first such component is Cgc which is the code memory that contains the

entire implementation of all of the operations, including any subroutines they may

invoke. The next component is φgc, which is the code memory type for Cgc. The

third component is a proof that φgc ` Cgc : φgc holds. In other words, the code

memory Cgc correctly implements the specifications in φgc, and does not call on any

external routines to do so.

The final set of components specify parts of φgc so that it can be used. The first

requirement is that the domain of φGC is a subset of gcPhiDom, to allow linking with

the mutator. Next, each operation’s code label is mapped to the correct specification

79

in φgc, to allow the mutator to verify calls to the operations:

φgc(allocLbl) = (allocPre, allocGuar)

φgc(readLbl1) = (readPre0, readGuar0)

φgc(readLbl2) = (readPre4, readGuar4)

φgc(writeLbl1) = (writePre0,writeGuar0)

φgc(writeLbl2) = (writePre4,writeGuar4)

4.6 Collector coercions

While the primary users of the garbage collector interface are the mutator and the

collector proper, this interface can also be used to define garbage collector coercions.

A coercion is a functor that takes a collector C verified to satisfy some GC interface

I, along with a proof that I is stronger than some other GC interface I ′, and returns

C, except now verified to satisfy the interface I ′. This improves reuse because it

allows mutators to be verified with a high level interface and GCs to be verified with

a low level interface. To combine the two components with incompatible interfaces

only requires showing that the GC’s interface is stronger.

For instance, if a mutator is verified using a type system embedded in Hoare

logic [Lin et al. 2007], it can be verified with respect to a type-preserving GC. This

mutator can of course be directly combined with a collector that has been verified to

be type-preserving. But using a coercion, it can be combined with a collector that

has been shown to be fully heap preserving (as I have discussed in this chapter) by

proving that a fully heap preserving compiler is also type preserving, for whatever

type system the mutator is using.

A variety of coercions is possible, but I use a fairly direct notion of compatibility

here. I only allow the interfaces to vary in terms of a few of the specific components

80

described in this chapter. Assume a GC that implements I and another interface I ′,

as described in this chapter. Most of the components of I and I ′ must be the same.

The interesting component that is allowed to vary is gcStep. In order to be able to

show that the GC at hand implements I ′, the following relation must hold between

the GC step components of the two interfaces:

∀A,A′, R. I.gcStep(A,A′, R)→ I ′.gcStep(A,A′, R)

In other words, if the machine takes a GC step following I, then it also takes a

GC step following I ′. Again, this is nothing too radical, but this can be done very

easily and naturally by taking advantage of the existing module system of Coq.

4.7 Conclusion

In this chapter, I have described all of the components of the garbage collector in-

terface. One component is a representation predicate that relates an abstract object

heap to a concrete state, allowing many implementation details to be hidden from the

mutator. Another component of the interface is a set of properties of the represen-

tation predicate that allows some basic reasoning about the abstracted heap. I then

showed how to use the representation predicate to define specifications of the three

most basic garbage collector operations: reading, writing, and allocation. Finally,

I specified some components of the interface relating to the actual implementation

and verification of each of the operations that will allow the mutator to use the

operations.

With this interface, combined with the approach to ADTs described in Chap-

ter 3, a mutator can be verified while being parameterized over a garbage collector

implementation. Each block of the mutator can assume that the specifications of φgc

are available, and thanks to the set of equalities relating to φgc in the interface, verify

81

that the calls have the specifications I have described in the previous section of this

chapter. Then the mutator is able to reason about linking its own implementation to

the implementation of the collector. Later, once a GC that implements the interface

is verified, the mutator and GC can be combined to produce a fully verified garbage

collected program. The interface in this chapter has been formally defined in Coq as

a signature.

82

Chapter 5

Representation Predicates

5.1 Introduction

In the previous chapter, I discussed the garbage collector interface from the perspec-

tive of the mutator. In this chapter, I examine how the collector will implement one

critical part of that interface, the representation predicate. The representation pred-

icate relates the abstract state seen by the mutator to the actual concrete state. The

representation predicate for a collector must enforce all of the constraints needed

by that collector to properly function, such as reserving space for auxiliary data

structures, making sure that those data structures contain the correct values, and

ensuring that the data stored in objects is well-formed, so the GC can examine it.

The collector must verify that the implementation of each operation will preserve the

representation, as defined by the specifications of operations defined in Section 4.4.1.

I discuss the representation predicates in detail for three different GC algorithms:

a mark-sweep collector, the Cheney copying collector, and the Baker incremental

copying collector. These collectors have all been mechanically verified to match the

interface described in the previous chapter [McCreight et al. 2007]. I discuss the

83

1 3

57

root

Figure 5.1: Abstract memory

actual verification of the two copying collectors later in Chapters 6 and 7.

The algorithms I discuss in this chapter are all tracing collectors. A tracing

collector determines the set of live objects by tracing the objects that are reachable

from the roots. This is in contrast to, for instance, a reference counting collector,

which tracks the number of references to each object and collects an object when

the number of references drops to 0. All of the collectors in this chapter use a fairly

simple object layout: every object is a pair. For field values, object pointers are

distinguished from other values by the lowest bit: if a field value is odd it is atomic

(e.g., not an object pointer). Otherwise, it is an object pointer. More complex

objects, such as those with an arbitrary number of fields, or with another means of

distinguishing atomic fields (such as headers), are certainly possible, but are left for

future work. As I discussed in the previous chapter, all of the collectors I describe

in this chapter store the information they need for collection in a record pointed to

by the register gcInfo. As such, this register cannot be a root.

Figure 5.1 is an example of an abstract memory. I will show possible concrete

representations of this abstract memory throughout the rest of the chapter.

84

5.2 Mark-sweep collector

The first collector invariant I will discuss is for the mark-sweep collector [Jones and

Lins 1996]. I will begin by giving an overview of the mark-sweep algorithm, which

has two phases. In the mark phase, the collector traces the set of live objects starting

from the roots using a depth-first traversal. Each object has a mark associated with

it. If an object is visited, and the mark has been set, then nothing is done. Otherwise,

the mark is set, then all of the objects that the current object points to are added to a

stack. When the stack is empty, the collection is complete, and all reachable objects

have been marked. The simplest representation of a mark is to place the mark for

an object in a header word of that object. I will be using this representation.

The sweep phase occurs after the mark phase has finished. In this phase, the

collector examines every object in the order they appear in the object heap. If the

object’s mark is not set, the object is unreachable, and so it is added to a linked

list containing all of the unallocated objects (the free list). At some point before the

next mark phase, the marks of each object must be unset.

Figure 5.2 shows one possible concrete representation of the abstract state in

Figure 5.1 with a mark-sweep collector. The two registers root and gcInfo point to

the root of the heap and the GC information record. The first row is the object

heap. The darker lines indicate object boundaries. There are a few key features of

the object heap to notice. First, all of the objects are allocated contiguously, in the

first row of the figure. They are contiguous so that the sweep phase can examine all

of the objects. Each object has a single word header that is 0. When the collector is

running, this is where it will set the mark for the object. The second-to-last object

is a free object (the only free object), and thus did not show up in the abstract

memory. Other than that, the actual fields of these objects look basically the same

85

10 30 7 0 5 0 NULL 0

gcinfo
root

hpSt hpEndfree

stBot stTop

Figure 5.2: Concrete mark-sweep memory

freeList(x, ∅) ::= !(x = NULL)
freeList(x, x ∪ freeObjs) ::= ∃x′. x 7→ −, x′ ∗ freeList(x′, freeObjs− x)

objHdrs(S, v) ::= ∀∗x ∈ S. x− 4 7→ v

markSweepRepr(A,R, R) ::=
∃hpSt, hpEnd, free, stBot, stTop, objs, freeObjs.

!(gcInfo 6∈ R ∧
objs ∪ freeObjs = rangeMSObjs(hpSt, hpEnd) ∧
(∀r ∈ R. A(r) = R(r) ∧ okFieldVal(objs,A(r)))) ∗

(objHp(objs, objs) ∧ eq (memOf(A))) ∗ objHdrs(objs, 0) ∗
freeList(free, freeObjs) ∗ objHdrs(freeObjs, 0) ∗
buffer(stBot, stTop)∗
R(gcInfo) 7→ hpSt, hpEnd, free, stBot, stTop

Figure 5.3: Mark-sweep collector representation

as they did in the abstract state.

The second row of the diagram is the GC information record, which has 5 compo-

nents. The first and second elements of this record point to the start and end of the

object heap, to allow the scan to know where to start and stop. The third element

is a pointer to the free list, which, as I said, has only a single element here. The last

two elements of the GC information record are pointers to the start and end of the

mark stack, which is the third row of the diagram. The representation describes the

memory when the collector is not running, so the mark stack is unused.

86

Figure 5.3 shows the actual definition of the type of representation I illustrated

in Figure 5.2. This is a simple representation that does not obscure a lot about the

concrete state: the abstract state is a subset of the concrete state. This will work

for many of the collectors I will consider.

There are two new auxiliary memory predicates I define for the mark-sweep collec-

tor. The first, freeList(x, S), asserts that the memory contains a linked list containing

pairs located at all of the addresses in S. x is the head of the list. The free list pred-

icate is inductively defined on S. The second predicate, objHdrs(S, v), asserts that

the memory contains headers for all of the objects in S, and furthermore that those

headers all have the value v.

In addition, the memory predicate objHp(objs, objs′) indicates that this portion

of memory contains all of the objects in the set objs′, and that these objects are

non-overlapping. All of the object pointers in these objects are in the set objs. I

define this predicate more formally in Section 6.2.

Objects are located contiguously in a range from hpSt to hpEnd. Each object is a

pair, and has a single word header, so there is an object every 12 bytes in the object

heap. The pointer free points to the head of a linked list containing the free objects,

given by freeObjs. The rest of the objects, designated by objs, are considered to be

allocated. The pointers stBot and stTop point to the bottom and top of the an array

that will be used as a stack during the mark phase.

There are a number of pure constraints that do not involve the memory. These are

enclosed by the ! operator, adopted from linear logic. First, gcInfo cannot be a root

register, because it is needed to store auxiliary GC data. Second, the combination

of the allocated and unallocated objects must be equal to the set of all objects in

the range from hpSt to hpEnd, given by the set rangeMSObjs(hpSt, hpEnd), which is

essentially every twelfth address from hpSt to hpEnd (one header word, plus a word

87

for each of two fields). It may also be necessary to require that hpSt and hpEnd are

pointers, depending on the definition of this set. Next the predicate requires that

every register in the root set has the same value in both the concrete and abstract

states. Furthermore, each register value in the root set must either be atomic or an

allocated object.

The rest of the representation predicate describes the memory. The first part

of the memory is made up entirely of allocated objects. The fields of these objects

must either be atomic or allocated objects. This ensures that during the mark phase

that every pointer encountered is an allocated object. This part of the memory is

also the same as the memory of the abstract state A, because the allocated state is

the only part of the concrete state manipulated by the GC that the mutator cares

about. The predicate eq M M′ is defined to be M = M′.

The next part of the memory contains the free list, which starts at free and

contains the objects in freeObjs, as described earlier in this section. Then, again as

described earlier, the next part of the memory contains the headers for all of the

objects, which must all be 0, which is the value indicating they are unmarked. To

maintain this invariant, the sweep phase must set the header of each object to 0.

Next, there is the portion of the memory containing the mark stack. The memory

predicate buffer(x, y), defined in Section 6.2, holds on a memory if it contains all of

the addresses from x to y, excluding y. Finally, gcInfo points to a record containing

the various information the collector needs.

5.3 Copying collector

A copying collector also traces through reachable objects starting from the root, but

instead of marking objects it has reached, it copies them to a separate region of

88

1 3 7 5

root

gcInfo

nextSt nextEnd

currSt currEndfree

Figure 5.4: Concrete copying collector memory

copyRepr(A,R, R) ::=
∃currSt, currEnd, nextSt, nextEnd, free, objs.

!(gcInfo 6∈ R ∧
aligned8(currSt, free) ∧ aligned8(free, currEnd) ∧
objs = rangeObjs(currSt, free) ∧
(∀r ∈ R. A(r) = R(r) ∧ okFieldVal(objs,A(r))) ∧
nextEnd− nextSt = currEnd− currSt ∧
nextSt ≤ nextEnd) ∗

(objHp(objs, objs) ∧ eq (memOf(A))) ∗
buffer(free, currEnd) ∗ buffer(nextSt, nextEnd) ∗
R(gcInfo) 7→ nextSt, nextEnd, currSt, currEnd, free

Figure 5.5: Copying collector representation

memory. Once all of the reachable objects have been copied, and all of their fields

have been forwarded, the old region containing objects can be freed. The Cheney

collector [Cheney 1970] is able to do this without any auxiliary data structures beyond

the extra space being copied into. One advantage of a copying collector is that it

is compacting: after a collection, all of the allocated objects are contiguous, which

means that the free objects are also contiguous, making allocation very inexpensive.

Figure 5.4 shows what the concrete representation of the example abstract mem-

ory might look like. This is for a two-space copying collector. One semi-space

contains allocated objects and the other will be used to copy reachable objects when

89

the garbage collector is run next. As before, root points to the root object and gcInfo

points to a record of GC information. All of the allocated objects are contiguous,

and look the same as they do in the abstract memory. As before, heavy lines indicate

object boundaries. The last four blocks in that row represent the free space. The

middle row of blocks is the GC information record. The first two elements of the

record point to the bounds of the space being copied into. The second two elements

point to the bounds of the space being copied from. The bounds of the semi-spaces

are needed to do allocation, and to tell which semi-space a pointer points to, during

collection. The last element of the information record points to the first available

free block. The last row is the fallow semi-space, which must be the same size as the

active semi-space.

In Figure 5.5 I give a representation predicate for a stop-the-world copying col-

lector such as the Cheney collector. This is the representation predicate used by the

Cheney collector described in Chapter 6, and also can be used to describe the con-

crete memory in Figure 5.4. The first semi-space is bounded by currSt and currEnd

and contains the allocated objects. The other, bounded by nextSt and nextEnd, is

where the reachable objects will be copied to when the next collection occurs. All

allocated objects are contiguous, beginning at the start of the semi-space (currSt)

and ending at the free pointer free. The rest of the current semi-space (from free to

currEnd) is the free space, where new objects will be allocated.

There are a number of constraints that are pure (i.e., do not involve the memory).

First, the predicate requires that gcInfo is not a root. Next, it requires that the

beginning and end of the region containing allocated objects (from currSt to free)

are double-word aligned. It also requires that the beginning and end of the region

containing the free space are double-word aligned (from free to currEnd). Because

all objects are pairs, this ensures neither region contains fractional objects, which

90

simplifies reasoning. Next, objs is the set of currently allocated objects. The purpose

of this definition is to make the representation predicate clearer and shorter. Next,

the register files of the concrete and abstract state must agree, for every register in

the root set. Additionally, all root registers must contain values that are well-formed

with respect to the set of allocated objects. In other words, each register value must

either be atomic or a member of objs.

The final two pure constraints ensure that collection can be done without any

bounds checking. Both semi-spaces must be the same size. Additionally, the end

of the destination semi-space must be greater than or equal to the start of the

destination semi-space. This requirement is needed to ensure alignment after the

semi-spaces are swapped, because if nextEnd − nextSt = 0, nextSt could be larger

than nextEnd, because the machine uses arithmetic on natural numbers.

The rest of the representation predicate describes parts of the memory. First,

there is the part of the memory that contains the allocated objects. This part of

the memory simultaneously satisfies two constraints. First, this part of the memory

contains exactly the objects in objs, and all of the fields that are object pointers are

in the set objs. This enables the collector to trace the object heap without needing

to verify the validity of each pointer it comes across. The second constraint that this

part of the memory satisfies is that it is equal to the memory of the abstract state

A. In other words, the memory of the abstract state is the part of the concrete state

containing the allocated objects, whether or not they are reachable.

The next part of the memory is a buffer containing the free objects. There is also

a part of the memory that contains a buffer containing the other semi-space. Finally,

the register gcInfo in the concrete state points to a record containing the values of

the bounds of the semi-spaces, and a pointer to the next free object. This reduces

the number of registers the collector requires. When an object is allocated, or the

91

semi-spaces are swapped, this record must be updated.

5.4 Incremental copying collector

An incremental collector is, as the name suggests, a garbage collector that does

collection incrementally. Each time an object is allocated, a little bit of collection

is done. While making a collector incremental reduces the maximum length of time

the garbage collector will ever run, it also makes the representation predicate much

more complex, because when the mutator is running the collection may only be

partially done. In effect, the state invariant while the mutator is running is the same

as the loop invariant in a stop-the-world collector. In addition, the read or write

operations of the collector, which in the stop-the-world case can be implemented

with a load or store operation, must be augmented to do some collection work to

prevent the mutator from getting ahead of the collector. All of this has the potential

to greatly complicate the mutator-collector interface, but fortunately my approach

to mutator-collector interfaces described in Chapter 4 allows this complexity to be

hidden behind the representation invariant. As a consequence, I am able to give the

Baker collector, an incremental copying collector, the same interface as the Cheney

collector, a stop-the-world copying collector.

Before I describe the representation predicate for the Baker collector, I must

describe the algorithm. To a first approximation, the Baker algorithm [Baker 1978]

is an incremental version of the Cheney algorithm [Cheney 1970]. The collector

examines all objects that are reachable from the root, breadth-first. The first time

an object is seen during this tracing, the collector copies the object to a fresh area

called the to-space. The address of the new copy of the object is placed in the first

field of the old copy of the object. This allows the collector to distinguish objects

92

that have been copied from those that have not, and allows the collector to find the

new copy of objects. As mentioned, the main difference between the two collectors is

that while the Cheney collector does not return until all reachable objects have been

copied, the Baker collector may return before that happens, so there are still from-

space or “stale” pointers in the heap. The collector, through the barriers, maintains

the invariants that the roots will never contain stale pointers, keeping them hidden

from the mutator.

Figure 5.6 gives a possible concrete representation of the same abstract memory

I have been using as a running example. The top row of objects is the from-space,

where the collector is copying objects from, and the bottom row of objects is the

to-space, where the collector is copying objects to. As before, the heavy lines indicate

objects boundaries. The middle row of blocks is the record of GC information.

The collector has started a collection, beginning at the root root. Object 1 has

been copied and scanned. Scanning an object x forwards all of the fields of x,

copying any objects that have not been copied yet. Objects that have been copied

and scanned are known as black objects. The collector will not visit black objects

again. In the Baker collector, all of the black objects are contiguous. Object 3 was

copied when object 1 was scanned, but it has yet to be scanned itself. This is why

it still points to object 5 in the from-space. Objects such as this that the collector

has determined are reachable, but has yet to visit, are known as gray objects. Like

the black objects, gray objects are contiguous in the Baker collector. After object 3

is the free space, where new objects are allocated. Objects allocated by the GC are

allocated from the front, as they will be added to the set of gray objects. Objects

allocated by the mutator are allocated from the back, because the mutator can only

write to-space pointers into objects it allocates, so any objects it allocates will be

black.

93

5 7

1 3

root
gcInfo

frStart frEnd

toStart toEnd, allocscan free

Figure 5.6: Concrete incremental copying collector memory

bakerConcObjHp(W,M,G,B) ::=
objHp(W ∪M,W) ∗ objHp(B ∪G,B) ∗ objHp(W ∪M ∪B ∪G,G)

bakerRepr(A,R, R) ::=
∃frSt, frEnd, toSt, toEnd, scan, free, alloc, φ,W,M,M,
!(gcInfo 6∈ R ∧

aligned8 [toSt, scan, free, alloc, toEnd] ∧ aligned8(frSt, frEnd) ∧
W ∪M = rangeObjs(frSt, frEnd) ∧
M ∼=φ B ∪G ∧
(∀r ∈ R. A(r) = R(r) ∧ okFieldVal(toObjs,R(r))) ∧
memOf(A) = (φ∗ ∪ idW∪B∪G∪B′) ◦M) ∗

(bakerConcObjHp(W,M,G,B ∪B′) ∧ eq M) ∗
mapHp(M,φ) ∗ buffer(free, alloc) ∗
R(gcInfo) 7→ frSt, frEnd, toSt, toEnd, scan, free, alloc

where B = rangeObjs(toSt, scan), B′ = rangeObjs(alloc, toEnd),
G = rangeObjs(scan, free), and toObjs = B ∪G ∪B′

Figure 5.7: Baker collector representation

94

The forwarding pointers of objects 1 and 3 are stored in the old copies of 1 and

3, which are the second and third objects in the from-space. The first field of a

copied object points to the new location. Thus, given a pointer to an old object,

the collector can easily tell what the new location of the object is. Besides the old

copies, the from-space also includes objects 5 and 7. Notice that object 5 still points

to the old copy of object 1. These objects, which the GC has yet to determine if

they are reachable or not, are known as white objects. Eventually, the GC will realize

that object 5 must be copied, but object 7 is not reachable, and will eventually be

freed. There is no space left in the from-space, because the collector is not invoked

until there is no more space. The classification of objects into black, gray and white

is known as the tricolor invariant, and is due to Dijkstra et al. [1978].

Finally, I will discuss the GC information record. The first two elements are

pointers to the beginning and end of the from-space, while the third and fourth

elements point to the beginning and end of the to-space. The fifth element, known

as the scan pointer points to the first gray object. The sixth element is the free

pointer, and points to the first free object. The final element is the alloc pointer,

and points to the last free object. The free pointer is used to allocate new objects

for the GC, while the alloc pointer is used to allocate new objects for the mutator,

for reasons described above.

Now I will formalize these and other constraints, by giving the representation

invariant for the Baker collector. This representation invariant, defined in Figure 5.7,

will be used in the verification of an implementation of a Baker collector I will describe

in Chapter 7.

The predicate bakerConcObjHp enforces the basic color constraints for the con-

crete object heap. If these invariants are violated, the collector will not function

properly. The set of white from-space objects W have not been examined, while

95

the mapped from-space objects M have already been examined and copied. The set

of gray to-space objects G have been copied from M , but have not had their fields

updated. Finally, the set of to-space black objects B have been copied and had their

fields updated. White objects can only point to from-space objects (W ∪M), while

black objects can only point to to-space objects (B ∪G). This latter constraint en-

sures that when the set of gray objects G is empty that the entire from-space can be

collected without creating any dangling pointers. And last, gray objects can point to

any valid object in either space. Gray objects may point to from-space objects as a

result of their initial copying and to the to-space as a result of mutator writes occur-

ring after copying. Objects in M are not part of the concrete object heap because

they have already been copied to G.

That done, I can describe the representation predicate itself. First I will describe

the existentially quantified variables. frSt and frEnd are the beginning and end of

the from-space, containing the old copies of the objects. The to-space is bounded

by toSt and toEnd. The scan pointer is scan, while the free pointer is free. When

scan = free, the collection is finished. The alloc pointer is alloc. φ is the map from

the old locations of objects to their new locations. The sets of objects W and M are

as I described in the previous paragraph. Finally, M is the portion of the concrete

memory that corresponds to the abstract memory. Unlike the previous collectors

described in this chapter, the abstract memory is not simply a subset of the concrete

memory.

There are four more sets of objects, with definitions given at the bottom of the fig-

ure. These sets have the same basic meaning as in my description of bakerConcObjHp,

but there is more information now. Each object set in fact covers a specific range,

and the set of black objects is broken into B, which contains objects that used to

be gray, and B′, which contains objects that have been newly allocated during the

96

current collector cycle. Separating the sets B and B′ is needed to enable reasoning

about the copying that has been done during the collection cycle. The set B ranges

from the start of the to-space to the scan pointer, while the set G ranges from the

scan pointer to the free pointer. The set B′ ranges from the allocation pointer to the

end of the to-space. Collectively, B, B′ and G form the allocated to-space objects

toObjs. The rest of the to-space is the free space where new objects will be allocated.

For the pure constraints of the representation predicate, the predicate first re-

quires that gcInfo is not a root, as before. Next, it requires that the various pointers

of interest are double-word-aligned, to prevent fractional objects, and ensure the ex-

pected relative ordering of pointers (as x− y = 0 does not imply x = y with natural

arithmetic). We write aligned8 [x0, x1, ..., xk] for aligned8(x0, x1)∧ aligned8(x1, x2)∧

... ∧ aligned8(xk−1, xk). Next, the two sets of from-space objects, W and M , must

together cover the entire from-space. φ must be an isomorphism from M to B ∪G,

to ensure that, for instance, two from-space objects are not forwarding to a single

to-space object. Notice that B′ is not in the range of φ, as objects in B′ are not

copies of from-space objects. This is why the predicate must distinguish B and

B′. Next, the predicate requires that the value of every root register is the same in

the abstract and concrete state, and that these roots are either atomic or to-space

objects. Note that from-space objects are not allowed in the root set. This is an

important invariant that prevents black objects from being contaminated with stale

pointers, and ensures that the root set only needs to be examined once per collection

cycle.

The final “pure” constraint is the most complex and the most interesting. The

heap of the abstract state memOf(A) must be equal to (φ∗ ∪ idW∪B∪G∪B′) ◦M. This

relates the portion of the concrete memory containing allocated objects M to the

abstract memory memOf(A). The abstract memory is the same as the concrete

97

memory, except that any references to objects that have been copied are replaced

with their new locations. The basic idea is to construct a map that forwards stale

values (those in M) while leaving all other field values alone, then apply this map to

the range of the concrete memory by composing it with the concrete memory.

Following Birkedal et al. [2004], I write φ∗ for the extension of the map φ with

the identity function on odd values. I write idS for the identity function on the set

S. Therefore, φ∗ ∪ idW∪B∪G∪B′ is a partial map that is the identity function for

all atomic values as well as object pointers that have either already been forwarded

(those in B ∪G∪B′) or those that have not been copied (those in W). At the same

time, every value in M is forwarded using the isomorphism φ.

It might seem to make more sense to forward the objects in W to their final des-

tination, because this would ensure that the entire abstract state only had forwarded

objects. Unfortunately, the interleaving of mutator and collector activity means that

it is impossible to determine which objects in W will eventually be copied, let alone

the order in which they will be copied. A white object reachable in one state might

become unreachable due to a later store performed by the mutator, meaning that

the object will never be copied.

Now I will describe the specifications that deal more directly with the memory.

As I have done for the other collectors, I first specify the object heap. The basic

color constraints are specified by bakerConcObjHp, described earlier. In addition to

these color constraints, the predicate specifies that the portion of memory containing

these allocated objects is equal to M, which is used above to specify the abstract

memory.

The next portion of the memory contains the objects that have already been

copied, which must implement the isomorphism φ: the first field of each object

x ∈ M is φ(x). The predicate mapHp used to specify this is defined in Section 6.2.

98

The next component of the memory is the free space. This begins at the free pointer

and ends at the allocation pointer. Finally, as before, the various boundary pointers

are stored in a record that the register gcInfo points to.

Notice that there is no relationship specified between the sizes of the from- and

to-spaces, in contrast to the Cheney collector. As a consequence, it is possible that

the Baker collector will run out of space during a collection, so a dynamic check will

be needed. This is done for simplicity.

5.5 Conclusion

In this chapter, I have described in detail the representation predicates for three dif-

ferent types of garbage collectors: a stop-the-world mark-sweep collector, a stop-the-

world copying collector, and an incremental copying collector. These representation

predicates allow many implementation details to be hidden from the mutator, by

using them as part of the GC interface I described in the previous chapter. I believe

that representation predicates can be constructed for many other types of collectors,

such as reference counting collectors, other incremental copying collectors, incremen-

tal mark-sweep collectors, and generational collectors, as these collectors do not seem

to require more complex memory invariants than the Baker collector. In the next

two chapters, I will show how these invariants are used, as part of my verification of

the Cheney and Baker copying collectors.

99

Chapter 6

Cheney Collector Verification

6.1 Introduction

In this chapter, I discuss the Cheney copying garbage collection algorithm and im-

plementation and then some issues involved with its verification. To recap, a garbage

collector [Jones and Lins 1996] is a procedure that automatically frees objects that

are no longer being used by a user program (the mutator). In a tracing collector, the

set of unused objects is conservatively estimated as the set of objects reachable from

a certain root set, which is, loosely speaking, the set of values or locations the muta-

tor can access in a single instruction. Finally, a copying collector is a type of tracing

collector that performs collection by copying all reachable objects, while updating

all object pointers in the copies to point to the new version of each object. Once this

is done, all of the old objects can be freed. The Cheney collector is a stop-the-world

collector, which means that when collection begins the mutator does not execute

again until the collection is finished. In a single threaded setting this means that

when the collector is invoked it does not return until it has finished collecting. In

a multithreaded setting this means that all mutator threads are paused while the

100

1 2 3 4 5root 10 2 3 4 5

root 1

scan free

1) initial state 2) scan root

Figure 6.1: Example: Cheney collection (beginning)

collector is running.

In a scanning collector, the objects in various states of collection can be described

using the tricolor abstraction [Dijkstra et al. 1978]. In this, each object has (concep-

tually) a color, either black, gray or white. Black and gray objects are not garbage.

Black objects will not be examined again by the collector in the current collection

cycle, while gray objects will be. Once a gray object has been visited, it becomes a

black object. If the collector has not yet determined if an object is garbage or not,

it is white. For a copying collector, it is also useful to talk about mapped objects.

These are the old copies of the black and gray objects. In this chapter, I generally

omit discussion of some of the fine details of the specifications regarding alignment.

One difficulty in designing a copying collector is figuring out how to store for-

warding pointers that give the new location of a copied object. Another difficulty

is avoiding copying objects that have already been copied. A Cheney collector [Ch-

eney 1970] is a copying collector that avoids both of these problems by storing the

forwarding pointer in the first field of the old copy of the object. In this way, the

GC can examine the first field of a from-space object to determine if it is mapped or

white: if the first field is a to-space pointer, it must be mapped, otherwise it must

be white.

Now I will go through an example of what a Cheney collection looks like, at a

101

10 2 30 40 5

root 1 3 4

scan free

10 2 30 40 5

root 1 3 4

scan free

3) scan object 1 4) scan object 3

Figure 6.2: Example: Cheney collection (middle)

high level. Figure 6.1 shows the initial state and the first step. There are two semi-

spaces, and the GC is going to copy objects from the top space to the bottom space.

The root contains a pointer to object 1, which in turn points to objects 3 and 4, and

object 3 points to object 1. Objects 2 and 5 are garbage.

To start the collection, the GC scans the root, looking for object pointers. The

result of scanning the root is 2, which is the right side of Figure 6.1. The GC found

that the root contained a pointer to object 1 and determined that 1 has not been

copied yet. In response, it copied object 1, left a pointer to the new object 1 in the

old object 1, and updated the root to the new object 1. There are two new pointers

to the to-space. The scan pointer points to the first object the GC needs to scan, and

the free pointer points to the next available free space. These both start pointing

at the start of the to-space, but copying object 1 has caused the free pointer to be

allocated. Objects between the scan pointer and free pointer are all gray objects.

The next two steps of the collector are shown in Figure 6.2. There is an object to

scan, because the scan pointer is not equal to the free pointer. The GC scans object

1, looking for object pointers. It finds two, object 3 and 4. Again, the GC determines

that neither has been copied yet, so it copies them to the to-space (starting at the

free pointer), updating the old objects to point at the new, as before. After the GC

has finished scanning object 1 it can advance the scan pointer. All objects from the

102

10 2 30 40 5

root 1 3 4

scan= free

5) scan object 4

root 1 3 4

free

6) final state

Figure 6.3: Example: Cheney collection (end)

start of the to-space to the scan pointer are black objects. The result of scanning

object 1 is shown as step 3.

Again, the GC scans the object that the scan pointer points to, which is in this

case 3. Scanning looks through object 3 for object pointers. It finds a pointer to

object 10, the old copy of object 1. The collector examines object 10 and sees that

it contains a pointer to object 1. Because object 1 is in the to-space and not the

from-space, the GC can tell that object 10 has been copied to the location of object

1. The GC then replaces the pointer to 10 with a pointer to 1 and continues. The

GC advances the scan pointer, but not the free pointer, because it has not copied

any more objects. The result of scanning object 3 is shown as step 4.

Figure 6.3 shows the conclusion of the collection. First, the GC sees that there

is still an object to be scanned, object 4, so it scans it. Object 4 does not contain

any object pointers, so the GC does not have to change any values. As usual, the

GC advances the scan pointer. The result of scanning object 4 is shown as step 5.

Objects 1, 3 and 4 are all black now, and contain no pointers to from-space

objects. The scan pointer is equal to the free pointer, so there are no more gray

objects. This means that the collector is done. New objects can be allocated starting

at the same free pointer used during the collection. Removing the information from

step 5 that is only needed for collection produces the picture in step 6. The GC is

103

rangeNat(x, y) ::= {k | x ≤ k < y}
rangeAddr(x, y) ::= {x+ 4k | 0 ≤ k < (y − x)/4}
rangeObjs(x, y) ::= {x+ 8k | 0 ≤ k < (y − x)/8}

mapHp(S, φ) ::=!(∀x, y. φ(x) = y → x ∈ S)∗
∀∗x ∈ S. ∃a. !(φ(x) = a) ∗ x 7→ a,−

atomic(x) ::= odd(x)
notSpacePtr(x, y, z) ::= atomic(x) ∨ x 6∈ rangeNat(y, z)
okFieldVal(S, x) ::= atomic(x) ∨ x ∈ S
okField(S, x) ::= ∃y. !(okFieldVal(S, y)) ∗ x 7→ y
okObj(S, x) ::= okField(S, x) ∗ okField(S, x+ 4)
objHp(S0, S) ::= ∀∗x ∈ S. okObj(S0, x)

Figure 6.4: Generic specification definitions

now ready to return to the mutator.

In the remainder of the chapter, I discuss my mechanized verification of an im-

plementation of the Cheney GC. I first describe some basic predicates that I use. I

then break down the collector component by component, working my way outwards

from the most basic building block: the scanning of a single field, the loop that

scans all of the objects, then the whole collector (which is the loop plus some ini-

tialization code). After that, I discuss the three operations: allocation (which may

invoke the collector), reading and writing. For each of these components, I give both

pseudocode and assembly implementations, then the specification of interesting code

blocks in that component. Finally, I give an overview of the verification that the

assembly code matches the specification. All of the code, specifications and proofs

described in this chapter have been mechanically checked in the Coq proof assistant.

104

6.2 Generic predicates and definitions

There are a number of generic definitions that I will need for the GC specifica-

tions. These are given in Figure 6.4. First are three finite sets of natural numbers.

rangeNat(x, y) is the set of all natural numbers from x up to, but not including, y.

rangeAddr(x, y) is the set of all word-aligned addresses in the range x to y, assuming

that x is a word-aligned address. rangeObjs(x, y) is the set of pointers to all objects

in the range x to y, assuming that all of the objects are pairs.

Next is a memory predicate to describe the part of the memory containing copied

objects. mapHp(S, φ) holds on a memory if S is the domain of the finite map φ, and

the memory contains a pair for every element of S, where the first element of the

pair located at x is φ(x). In this way, the memory is a representation of φ: the GC

can get the value of φ(x) by loading the value stored in the memory at x, if x is in

S. This is the basic “typing” judgment for field values, when S is the set of valid

objects.

Finally, there are predicates to describe valid objects. First I define predicates

on values that may occur in an object field or a root. A value x is atomic (written

atomic(x)) if x is odd. The oddness predicate is mutually inductively defined in the

usual way in terms of an evenness predicate. A value x is not a pointer to the space

from y to z, written notSpacePtr(x, y, z), if x is atomic or is not in the range from

y to z. Somewhat similarly, a value x is a valid field value with respect to a set of

objects S, written okFieldVal(S, x), if x is atomic or x is a member of S.

Now I can define some memory predicates to describe valid objects using separa-

tion logic. A memory is a valid field located at x, with respect to a set of objects S

(written okField(S, x)), if the memory contains only a value y at location x, and y is

a valid field value with respect to S. A memory is a valid object at location x with

105

aligned8(x, y) ::= ∃k. y = x+ 8k

buffer(x, y) ::= ∀∗z ∈ rangeAddr(x, y). z 7→ −

calleeSavedOk(S,S′) ::= ∀r ∈ calleeSaved. S(r) = S′(r)

Figure 6.5: More generic specification definitions

respect to a set of objects S (written okObj(S, x)), if the memory is a valid field at

x and x+ 4, again with respect to S.

A valid object heap contains the objects in S, which point to objects in S0, written

objHp(S0, S), if the memory can be split into disjoint pieces such that every x in S

has a valid object at x with respect to S0. An object heap is closed if objHp(S, S)

holds: every field is either atomic or points to another object in the heap.

I define some other miscellaneous predicates in Figure 6.5. aligned8(x, y) holds

if the address y occurs 0 or more pairs after x. This predicate is used in various

places to ensure that a slice of memory from x to y (excluding y) will not contain

any fractional pairs. buffer(x, y) is a memory predicate that holds on a memory that

contains all of the addresses from x to y, not including y. calleeSavedOk(S,S′) holds

if the values of all of the registers in calleeSaved (which is simply the set of standard

callee saved registers for the MIPS machine) are the same in S and S′.

In Figure 6.6, I give some general memory predicates for describing the copying

and forwarding of objects. fieldRespMap(φ,M0, x) holds on a memory if the mem-

ory is a single cell at x that contains the forwarded version of the value at x in

memory M0. The value is mapped using the function φ∗, which is the map φ ex-

tended with the identity function at atomic values, following Birkedal et al. [2004].

objRespMap(φ,M0, x) is similar, except that it holds on an entire object instead of

a single field. These two predicates describe what happens to an object when it is

106

fieldRespMap(φ,M0, x) ::= ∃v. !(∃v0. M0 `̀ x 7→ v0 ∗ true ∧ φ∗(v0) = v) ∗ x 7→ v
objRespMap(φ,M0, x) ::= fieldRespMap(φ,M0, x) ∗ fieldRespMap(φ,M0, x+ 4)

fieldCopied(x,M0, y) ::= ∃v. !(M0 `̀ x 7→ v ∗ true) ∗ y 7→ v
objCopied(x,M0, y) ::= fieldCopied(x,M0, y) ∗ fieldCopied(x+ 4,M0, y + 4)
objCopiedMap(φ,M0, x) ::= ∃x0. !(φ(x0) = x) ∗ objCopied(x0,M0, x)

fieldIsFwded(x0, φ,M, x) ::= ∃v. !(∃v0. M `̀ x0 7→ v0 ∗ true ∧ φ∗(v0) = v) ∗ x 7→ v
objIsFwded(φ, φ′,M, x) ::=
∃x0. !(φ′(x0) = x) ∗

fieldIsFwded(x0, φ ∪ φ′,M, x) ∗ fieldIsFwded(x0 + 4, φ ∪ φ′,M, x+ 4)
objIsFwded1(φ,M, x) ::= objIsFwded(∅, φ,M, x)

Figure 6.6: Generic copying and forwarding predicates

scanned, when M0 is the memory before the scan: the fields of the object are for-

warded using some map φ. Alternatively, they can be thought of as describing what

happens to an object when it goes from being gray to being black.

fieldCopied(x,M0, y) holds on a memory if it consists entirely of the value v at

address y, where v is the value of the memory M0 at address x, and similarly for

entire objects with the objCopied predicate. This describes what happens when an

object that was located at address x in memory M0 is copied to address y in the

current memory, or, in other words, what happens when an object goes from being

white to being gray. The predicate objCopiedMap(φ,M0, x) is a specialized version

of objCopied holds if the memory contains an object at x that has been copied from

M0 at location x0, where φ(x0) = x. This predicate describes what happens when an

object is copied from the from-space to the to-space, when φ is the forwarding map.

fieldIsFwded is a combination of fieldRespMap and fieldCopied. The predicate

fieldIsFwded(x0, φ,M, x) holds on a memory if that memory contains a field at x that

is a forwarded version of the field at x0 in memory M. This describes what happens

to the field of an object as it goes from being white to being black. objIsFwded is

107

isoStateR(A,A′) ::=
∃objs, objs′, φ.

A `̀ objHp(objs, objs) ∧ A′ `̀ objHp(objs′, objs′) ∧
objs ∼=φ objs′∧
(∀r ∈ R. φ∗(S(r)) = S′(r)) ∧
A′ `̀ ∀∗x ∈ objs′. objIsFwded1(φ,A, x)

Figure 6.7: State isomorphism

similarly a combination of objRespMap and objCopiedMap, with a twist: instead of

using a single map to forward both the object location and the field values, the second

argument φ′ alone is used to forward the object location, while the combination

φ ∪ φ′ is used to forward the values of the fields. This allows me to reason about

the movement of such forwarded objects using only φ′. objIsFwded1 is a special case

of objIsFwded where the first argument is fixed to the empty map ∅, which is useful

when the fields of an object are forwarded using the same map as the object itself.

S ∼=φ S
′ holds if the finite map φ is an isomorphism from set S to set S ′. For this

to hold, the following must hold:

1. The domain of φ must be S, and the range of φ must be S ′

2. φ must be injective: for all x, x′ and y, if φ(x) = y and φ(x′) = y, then x = x′

3. φ must be surjective: for all y ∈ S, there must exist some x such that φ(x) = y

I can now define what a state isomorphism is, in Figure 6.7. For a state A

to be isomorphic to a state A′ with respect to a set of root registers R, written

isoStateR(A,A′), a number of things must hold. First, A must contain some set of

objects objs and A′ must contain some set of objects objs′. Next, there must be some

some finite map φ that is an isomorphism from objs to objs′. φ is the isomorphism

between the states. The final two lines of the definition check that the two parts

108

M ` y −→∗ y (Rch Refl)

M(x) = x′ M ` x′ −→∗ y
M ` x −→∗ y

(Rch Step1)

M(x+ 4) = x′ M ` x′ −→∗ y
M ` x −→∗ y

(Rch Step2)

x ∈ R M ` x −→∗ y
M ` R −→∗ y (RootRch)

Figure 6.8: Reachability predicates

of the state, register file and memory, respect the isomorphism. Mapping the value

of each register in R in the initial state A using φ∗ (which, as I have said, is equal

to the identity map for odd values and φ for even values) should produce the value

of that register in the final state A′. Finally, the memory of the state A′ should be

such that all of the objects are objects from A, copied and mapped according to φ.

This ensures that all of the objects have been moved according to φ and had their

fields updated. Thanks to the use of ∗, it also ensures that none of the objects are

overlapping.

My definition of state isomorphism is similar to that of Birkedal et al. [2004], but

their version of φ is an isomorphism between memory addresses instead of objects,

and does not appear to be correct. An extended version of their paper changes

their notion of state isomorphism [Torp-Smith et al. 2006], and my notion of state

isomorphism looks similar to theirs, though mine is defined using separation logic

predicates, which may make it easier to use.

Other predicates deals with reachability in the memory and are given in Fig-

ure 6.8. Reachability is an important notion for a tracing collector such as the

Cheney collector. M ` x −→∗ y is intended to hold if a value y is reachable from a

value x in memory M. This only makes sense on values x that are valid field values

109

from
space

to
space

from
space

to
space

before after

Figure 6.9: Field scanning: object already copied

for a valid object heap: the rules do not check, for instance, that x points to the

beginning of an object. A value y is reachable from itself, or from a value x if the

first or second field of x is some x′ such that y is reachable from x′. Root reachability,

written M ` R −→∗ x, holds if x is reachable from some element of the set of values

R in the memory M.

6.3 Field scanning

The heart of the Cheney collector is field scanning. Field scanning updates the value

of the field of an object which has previously been copied by the collector. If the

field value is atomic, nothing needs to be done. Otherwise, the field contains an

object pointer, which must be forwarded. How this pointer is forwarded depends on

whether the object the pointer points to has already been copied.

If the first field of the object the field points to is a to-space pointer, then the

object has already been copied, and that first field is the forwarding pointer for the

object. This situation is illustrated in Figure 6.9. The lone square in the to-space is

the field the GC is scanning.

If the first field of the object the field is pointing to is not a to-space pointer, then

the object must be copied to the location of the free pointer. The new location of

110

from
space

to
space

from
space

to
space

before after

Figure 6.10: Field scanning: uncopied object

the object is stored in two places: the first field of the copied object and in the field

being scanned. An example of this case is illustrated in Figure 6.10. As before, the

single square is the field being scanned. The values are copied over to the new object

without being updated, and thus the first field of the new to-space object points to

a from-space object. When the new object is eventually scanned this pointer will be

updated.

6.3.1 Implementation

Field scanning requires a few utility functions. Figure 6.11 has C-like pseudocode for

these functions. This pseudocode uses three global variables that are object pointers:

free (a pointer to the next available free object), and toStart and toEnd, which

point to the beginning and end of to-space. The first utility function, fwdObj, copies

the fields of src to the next available free object, and replaces the first field of src

with the location of the new object, which is also returned. There is no bounds check,

so this procedure cannot be called unless there is a free object available. isAtom

returns true if and only if x is atomic (i.e., is an odd value). isNotToSpacePtr

returns true if and only if the argument x is not a to-space pointer.1 A value is an

1This function is not the more sensible isToSpacePtr in a possibly misguided attempt to simplify
the program’s control flow.

111

void* fwdObj (void* src) {

void* newObj = free; // store value of free pointer

newObj[0] = src[0]; // copy first field

newObj[1] = src[1]; // copy second field

*src = newObj; // store forwarding pointer in old obj

free += 2;

return newObj;

}

bool isAtom (void* x) {

return x & 1;

}

bool isNotToSpacePtr (void* x) {

return isAtom(x) || (x < toStart) || (x >= toEnd);

}

Figure 6.11: Cheney utility function pseudocode

object pointer only if it is non-atomic and contained within the to-space.

The assembly implementation of these functions is given in Figure 6.12. Now I

will explain the register naming scheme, and give machine registers corresponding to

each name. Some register usage follows standard MIPS convention: register a0 is r4

and contains the argument to a procedure, v0 is r2 and holds the return value,2 and

2In isNotToSpacePtr, it is also used as a temporary register.

FWDOBJ:

lw rtemp,0(a0)
sw rtemp,0(rfree)
lw rtemp,4(a0)
sw rtemp,4(rfree)
sw rfree,0(a0)
addiu v0,rfree,0
addiu rfree,rfree,8
jr ra

ISNOTTOSPACEPTR:

andi v0,a0,1
bne v0, rzero, RETURN
sltu v0,a0,rtoStart
bne v0, rzero, RETURN
addiu v0,a0,1
sltu v0,rtoEnd,v0
bne v0, rzero, RETURN
addiu v0,rzero,0
jr ra

RETURN:

jr ra

Figure 6.12: Cheney utility functions implementation

112

scanField (void* field) {

fieldVal = *field;

if (isAtom(fieldVal))

return;

fieldValField = *fieldVal;

if (notToSpacePtr(fieldValField)) {

*field = fwdObj(fieldVal);

} else {

*field = fieldValField;

}

}

Figure 6.13: Cheney field scanning pseudocode

ra is r31 and holds the return pointer. rzero is r0, and is thus always has the value 0.

However, I generally use an unconventional register allocation scheme to avoid the

need for stack allocation. Register rtemp is r6 and is used to hold temporary values.

The register rfree is r7 and points to the first available free object, while rtoStart

and rtoEnd (corresponding to r13 and r14) contain pointers to the start and end of

to-space. Note that I do not actually implement isAtom as a separate function in

assembly. Instead, I inline the single instruction needed to implement this procedure,

a bitwise-and, where needed. Otherwise this is a straightforward translation of the

pseudocode to assembly.

Now that I have defined the helper functions, I can define the actual field scanning

operation. Pseudocode for scanField is given in Figure 6.13. scanField first loads

the value of the field into fieldVal. If the field value is atomic, scanning is done.

Otherwise, fieldVal must be an object pointer, so the procedure can load the value

of the first field of that object into fieldValField. If the first field of the object

is not a to-space pointer, then the object fieldVal has not yet been forwarded,

so scanField forwards it using fwdObj, which, as described above, also stores a

forwarding pointer. Otherwise the object must already have been been forwarded,

113

SCANFIELD:

lw rtemp1,0(a0)
andi rtemp,rtemp1,1
bne rtemp, rzero, RETURN
addiu rtemp0,a0,0
lw t2,0(rtemp1)
addiu t7,ra,0
addiu t4,rfree,0
addiu a0,t2,0
jal NOTTOSPACEPTR, SCANPOINTER

SCANPOINTER:

addiu rfree,t4,0
beq v0, rzero, SCANNOCOPY
addiu a0,rtemp1,0
jal FWDOBJ, SCANCOPIED

SCANCOPIED:

sw v0,0(rtemp0)
addiu ra,t7,0
jr ra

SCAN NO COPY:

sw t2,0(rtemp0)
addiu ra,t7,0
jr ra

Figure 6.14: Cheney field scanning implementation (assembly)

and furthermore the value of the first field (fieldValField) must be the forwarding

pointer. In either case, scanField updates the original field once it have determined

the new location of the object.

The assembly implementation of scanField is given in Figure 6.14. The un-

conventional call instruction the assembly machine uses necessitates breaking the

procedure into a number of basic blocks. Registers rtemp0 (which is r24) and rtemp1

(which is r9) are additional temporary registers. The other registers either use the

standard MIPS naming convention or the naming convention used by the field scan-

ning utility functions.

6.3.2 Specification

The implementation of scanField is made up of a number of blocks of assembly

code. For all of the blocks except SCANFIELD, I assign low-level specifications that

are almost directly derived from the dynamic semantics of the assembly code: if a

block loads from a register, that register must contain a pointer, and so on. This

allows me to do all of the high-level reasoning in a single place.

For instance, see the specification for SCAN NO COPY in Figure 6.15. This code

block, defined in Figure 6.14, stores the value of register t2 into the memory location

114

scanNoCopyPre(S) ::= ∃v. S `̀ S(rtemp0) 7→ v ∗ true

scanNoCopyGuar(S, S′) ::=
(∀v,A. S `̀ S(rtemp0) 7→ v ∗ A→

S′ `̀ S(rtemp0) 7→ S(t2) ∗ A) ∧
∀r. S′(r) = S{ra S(t7)}(r)

Figure 6.15: SCAN NO COPY specification

pointed to by register rtemp0, then copies t7 to ra and returns. The precondition

simply states that memory must contain some value at the address contained in

rtemp0, whereas the guarantee states that that location is overwritten with the value

in t2 (while leaving the rest of memory alone), and that the register file is untouched,

except for changing the value of ra to have the initial value of t7. This structure

follows the specification style of Section 2.7. The specifications for SCANPOINTER and

SCANCOPIED are similar.

I give the actual field scanning method SCANFIELD two specifications, one high-

level and one low-level. The low-level specification is easier to verify with respect to

the code, while the high-level specification is easier for code that calls SCANFIELD to

use. I show that the high-level specification is weaker than the low-level specification,

then verify the implementation of scanField against the low-level specification, im-

plying that the implementation also matches the high-level specification. Separating

these concerns simplifies the verification effort.

Valid field scanning state

The high and low level specifications are given in terms of a predicate scanFieldStOk

that specifies certain basic relationships between the state and the various sets of

colored objects. This predicate is defined in Figure 6.16. There are six arguments to

this predicate. φ is the forwarding function that maps the old locations of objects to

115

scanFieldStOk(φ,W,M,F,A,S) :=
|W | ≤ |F | ∧
(W ∪M) ∩ (rangeNat(S(rtoStart),S(rtoEnd))) = ∅ ∧
F = rangeObjs(S(rfree),S(rtoEnd)) ∧
(∀x, y. φ(x) = y → ¬notSpacePtr(y,S(rtoStart),S(rtoEnd))) ∧
S(rtoStart) ≤ S(rfree) ≤ S(rtoEnd) ∧
S `̀mapHp(M,φ) ∗ objHp(W ∪M,W) ∗ (∀∗x ∈ F. x 7→ −,−) ∗ A

Figure 6.16: Valid field scanning state

their new locations. φ is fairly unconstrained from the perspective of field scanning.

The finite sets W , M and F are, respectively, the white objects, mapped objects and

free objects. The memory predicate A describes the rest of memory, and S is the

state on which the predicate must hold. Field scanning does not care about black or

gray objects because it does not examine them.

Now I will break down the specification, line by line. The specification makes

use of definitions given in Section 6.2. The first requirement is that the set of white

objects, which have not been scanned yet, is smaller than the set of free objects left.

This ensures that the GC can copy every white object without running out of space,

allowing a call fwdObj without a bounds check. Next, the specification requires that

the from-space objects (given by W ∪M) do not fall within the bounds of the to-

space, which are stored in the registers rtoStart and rtoEnd. Again, this is not a very

precise specification, but is enough to verify field scanning. Third, the specification

requires that the set of free objects F is exactly the set of objects from S(rfree) to

S(rtoEnd). In other words, the free objects make up the end of the to-space, starting

at the value in rfree. This allows field scanning to safely allocate a new object at

S(rfree), if F is not empty. Next, the specification requires that every value in the

range of φ is non-atomic and falls within the bounds of the to-space. This is necessary

to allow the GC to distinguish objects in W (which have a first field that is either

116

atomic or within the from-space) from objects in M (which have a first field that is

within the to-space). Next, the specification enforces a basic ordering by requiring

that the beginning of the to-space does not occur before the beginning of the free

objects, which in turn does not occur before the end of the to-space.

Finally, the specification describes the shape of the memory of S. Memory is

divided into four disjoint parts. The first contains the finite map φ, which has a

domain M . The second part contains the objects in W . Each of these objects points

only to objects in M and W . The third part of memory contains the free objects in

F , while the last part of memory satisfies the memory predicate A.

Precondition

The high and low level specifications share the same precondition, which is an in-

stantiation of the scanFieldStOk predicate I just described, where the parameter A

describing the remainder of memory specifies that register a0 must contain a pointer

to a field that is valid with respect to W ∪M . In other words, it must contain a

pointer to a location in memory that is either atomic or a from-space pointer. The

precondition is formally defined as follows:

scanFieldPre(S) := ∃φ,W,M,F.

scanFieldStOk(φ,W,M,F, (okField(W ∪M,S(a0)) ∗ true),S)

Low level

The low-level guarantee has two cases: one for when an object is not copied, and

one for when it is, corresponding to Figures 6.9 and 6.10, respectively. The formal

specification is given in Figure 6.17. There are two different guarantees that de-

scribe the result, one for each possibility. The low-level field scanning guarantee,

117

objNotCopiedGuar(φ,W,M,F,A,S,S′) ::=
S(rfree) = S′(rfree) ∧ (∀x ∈ W. S′ `̀ objCopied(x,S, x) ∗ true) ∧
scanFieldStOk(φ,W,M,F, (fieldRespMap(φ,S,S(a0)) ∗ A), S′)

objCopiedGuar(φ,W,M,F,A,S, S′) ::=
S(rfree) + 8 = S′(rfree) ∧
∃v ∈ W. S `̀ S(a0) 7→ v ∗ true ∧

(∀x ∈ W − {v}. S′ `̀ objCopied(x,S, x) ∗ true) ∧
scanFieldStOk(φ ∪ {v S(rfree)},W − {v},M ∪ {v}, F − {S(rfree)},

(S(a0) 7→ S(rfree) ∗ objCopied(v,S,S(rfree)) ∗ A),S′)

scanFieldGuar0(S,S′) :=
(∀φ,W,M,F,A. scanFieldStOk(φ,W,M,F, (okField(W ∪M, S(a0)) ∗ A),S)→

objNotCopiedGuar(φ,W,M,F,A,S, S′) ∨
objCopiedGuar(φ,W,M,F,A,S,S′)) ∧
∀r 6∈ {rtemp, rtemp0, rtemp1, t2, t4, t7, a0, rfree, v0}. S(r) = S′(r)

Figure 6.17: Low level scan field specification

scanFieldGuar0, allows any well-formed scan field state, where a0 points to a field

that is valid with respect to the from-space objects. The final state is a disjunction

of the two possible outcomes of the field scanning, plus a specification of the registers

that have their values preserved.

In the first case, objNotCopiedGuar, no object has been copied. Instead, the field

was just forwarded. The guarantee specifies that the value of the free pointer has

not changed, indicating that no object has been newly allocated. Next it specifies

that all of the white objects have the same values as they had before. This is crude,

but it works. Finally, the specification shows that this is a well-formed scan field

state. The map and the sets of white, map and free objects have not changed. The

only change here is that the value in the field that a0 points to has been forwarded

according to φ.

In the second case, objCopiedGuar, the field a0 points to contains an unforwarded

object, so more work must be done than in the other case. First of all, the free pointer

118

scanFieldGuar(S,S′) ::=
(∀φ,W,M,F,A.

scanFieldStOk(φ,W,M,F, (okField(W ∪M,S(a0)) ∗ A),S)→
∃φ′,W ′,M ′, F ′, G′.
W = M ′ ∪W ′ ∧ F = G′ ∪ F ′ ∧ M ′ ∼=φ′ G′ ∧
(∀x ∈ G′. S′(S(a0)) = x) ∧
(∀x ∈ W ′. S′ `̀ objCopied(x,S, x) ∗ true) ∧
aligned8(S(rfree),S′(rfree)) ∧
scanFieldStOk(φ ∪ φ′,W ′,M ∪M ′, F ′,

(fieldRespMap(φ ∪ φ′,S,S(a0))∗
(∀∗x ∈ G′. objCopiedMap(φ′,S, x)) ∗ A),S′)) ∧

∀r 6∈ {rtemp, rtemp0, rtemp1, t2, t4, t7, a0, rfree, v0}. S(r) = S′(r)

Figure 6.18: High level scan field specification

has been incremented by 8, because scanField has allocated a new object. Next,

there is some value v, which is a white space object, that has been copied. This is

the original value of the field being scanned, as indicated by the second line of the

definition. The line after indicates, as in objNotCopiedGuar, that all white space

objects, aside from v, have been copied. Next, the final state must be a well-formed

scan field state. This time, however, many things have changed. First of all, the

mapping from old objects to new objects has been extended by a map from v to

S(rfree), because a new object has been allocated at the free pointer. Next, v is no

longer a white space object, so it is removed from the set of white space objects and

added to the set of mapped objects. S(rfree) must also be removed from the set of

free objects. Finally, the field being forwarded now contains a pointer to the newly

allocated copy and the newly allocated copy contains a copy of the object v.

High level

The high-level guarantee, given in Figure 6.18, takes the two cases of the low-level

guarantee and combines them, by describing the behavior of the field scanning op-

119

eration at a more abstract level. As with the low-level guarantee, the high-level

guarantee requires that the initial state is a well-formed scanning state, for some φ

and sets of objects. In the final state, the initial set of white objects W is split into

a new set of white objects W ′ and a new set of mapped objects M ′. M ′ is made up

of the objects that have been copied during this call to field scan (which will have

either zero or one elements). Similarly, the set of free objects F is split into a new

set of free objects F ′ and a set of gray objects G′ that have been copied but not

forwarded. Finally, there is a new map φ′ that is an isomorphism from the newly

mapped objects M ′ to the set of new gray objects G′.

The fourth line of the guarantee specifies that all components of G′ are contained

in the updated field. In other words, G is either empty or it contains the forwarded

location of the initial field value. This will later allow me to show that all copied

objects are reachable from the new root. Next, all of the objects in W ′ are unchanged

from S to S′, in the same way as in the low-level specification.

Finally, the state is again a valid scan field state. The arguments are similar

to objCopiedGuar, although some of the details are hidden. The map in the new

state is a combination of the old map φ and the new map φ′. The new set of white

objects is W ′, while the new set of mapped objects is the union of the new and old

mapped objects M and M ′. The new set of free objects is F ′. Finally, the initial

function argument points to a forwarded version of the initial field value (having

been forwarded with respect to φ ∪ φ′), all of the objects in G have been copied to

new locations that follow the map φ′, and the extra part of memory, described by A,

has not been altered.

120

6.3.3 Verification

Basic verification

Verifying RETURN, SCAN NO COPY and SCANCOPIED is fairly trivial, requiring only the

most basic reasoning along the lines of the example presented in Chapter 2. FWDOBJ

and SCANPOINTER are more difficult to verify, but only require manipulating sepa-

ration logic predicates. Verifying ISNOTTOSPACEPTR is mainly a matter of checking

every control path.

Verifying that scanFieldGuar0 is stronger than scanFieldGuar requires consider-

ing the two cases of the former, then instantiating the various sets of objects in the

latter. In the case of objNotCopiedGuar, no objects have been copied, so most of

the sets of objects stay the same. More specifically, M ′ = ∅, W ′ = W , F ′ = F ,

G = ∅ and φ = {}. In the case of objCopiedGuar, an object v has been copied, so

v must be moved from the set of white objects to the set of mapped objects, and

the location of the copy of v (which is S(rfree)) must be added to the map and the

set of two-space objects. Concretely, M ′ = {v}, W ′ = W − {v}, F ′ = F − S(rfree),

G = {S(rfree)} and φ = {v S(rfree)}. Once the existential variables have been

instantiated the existential in each case, verifying the strength of scanFieldGuar0 is

simply a matter of going through and proving that all of the various sets match up

appropriately with each other and with memory.

Verifying scanfield

To verify that SCANFIELD implements the low-level specification, the two code paths

through the block must be considered. I will call the value of the field being scanned

x.

121

Case. x is odd. SCANFIELD exits immediately. This case is fairly straightforward,

and uses the objNotCopiedGuar case of scanFieldGuar0.

Case. x is even. x must either be a white or mapped object.

Subcase. x is a white object (e.g., is a member of W). This is the case cor-

responding to Figure 6.10. Therefore, the first field of that object will not be a

to-space pointer, so NOTTOSPACEPTR will return 1. For the call to SCANPOINTER to be

safe, the value being scanned must point to a pair and rfree must point to an object.

The former is easy to show, because it is a white object. The latter will follow from

showing that F is not empty. W is not empty, because x is a member of W . This,

combined with the fact that |W | ≤ |F |, implies that F is not empty.

For the guarantee, this subcase will use the objCopiedGuar case of scanFieldGuar0.

Verifying that this case holds involves a lot of manipulation to relate the initial and

final states. Because the structure of the guarantee requires that it hold for any set

of white objects, it must be shown that because x is part of some set of white objects

in a well-formed field scanning state, it is part of any set of white objects that can

be contained in a well-formed field scanning state. x must either be atomic or part

of the set of white or mapped objects. It cannot be atomic, because it is even. It

cannot be part of a set of mapped objects, because its first field is not a to-space

pointer. The definition of a to-space pointer is based on the values of registers, and

thus does not depend on W or M . Note that it cannot be shown that any two sets

of white objects will be the same for a given state, because the set of white objects

is only loosely specified. To reason about memory, the object x is split out from W ,

updated, then added to M , and the copy of x is shown to be properly copied. This

requires using a lot of standard lemmas about the iterated separating conjunction

operator.

122

void cheneyLoop () {

while (scan != free) {

scanField(scan);

scanField(scan + 1);

scan += 2;

}

}

Figure 6.19: Cheney loop pseudocode

Subcase. x is a mapped object, and thus a member of M . This is the case corre-

sponding to Figure 6.9. In this case, the object has already been copied, so all the

method must do is use the forwarding pointer to update the field. It can be shown

that NOTTOSPACEPTR must return 0, implying that SCANPOINTER will take the correct

branch. As in the case where x is atomic, this case uses the objNotCopiedGuar case of

scanFieldGuar0. Similarly to the previous case, it must be shown that x is a member

of any set of mapped objects. x can never be a white object, because its first field

is a to-space pointer, and the from-space and to-space are disjoint. Otherwise, the

proof is mainly a matter of manipulating various separation logic predicates.

6.4 The loop

The loop of the Cheney collector scans gray objects using scanField until no gray

objects remain. The gray objects start at the scan pointer and end at the free pointer,

so there are no gray objects when these two pointers are equal.

6.4.1 Implementation

A pseudocode implementation of the Cheney collector loop is given in Figure 6.19.

scan points to the first gray object, while free points to the first free object, which

is also the next object past the last gray object. Thus when scan is equal to free

123

CHENEYLOOP:
beq rscan, rfree, CHENEYRETURN
addiu a0,rscan,0
jal SCANFIELD, CHENEYLOOP2

CHENEYLOOP2:
addiu a0,rscan,4
addiu rscan,rscan,8
jal SCANFIELD, CHENEYLOOP

CHENEYRETURN:
addiu ra,raSave,0
jr ra

Figure 6.20: Cheney loop implementation

cheneyLoopStOk(φ,G,W,M,F,A, S) ::=
G = rangeObjs(S(rscan),S(rfree)) ∧
S(rtoStart) ≤ S(rscan) ∧ aligned8(S(rscan),S(rfree)) ∧
scanFieldStOk(φ,W,M,F,A,S)

Figure 6.21: Cheney loop state formation

there are no more gray objects, and collection is finished. The loop body scans the

two fields of the first gray object, then moves to the next object and repeats. Each

invocation of scanField may cause additional objects to be copied, incrementing

free.

The actual assembly implementation for the loop for the Cheney collector is given

in Figure 6.20. This is a direct translation of the pseudocode, with the addition of

some register wrangling and code block splitting to accommodate the machine’s

unusual jal instruction. The register rscan (which is r11) holds the value of scan,

while raSave (which is r3) is used to hold the value of the return pointer, and is saved

before the loop.

6.4.2 Specification

The first part of defining the specification for the Cheney collector loop is to define

what it means for a state to be well-formed. This predicate, defined in Figure 6.21,

builds on the definition of scanFieldStOk by adding additional constraints. The

design principle here is that each block of code should only know enough about the

124

cheneyLoopPre(S) ::=
∃φ,G,W,M,F. cheneyLoopStOk(φ,G,W,M,F, (objHp(W ∪M,G) ∗ true),S)

cheneyLoopGuar(S, S′) ::=
(∀φ,G,W,M,F,A.

cheneyLoopStOk(φ,G,W,M,F, (objHp(W ∪M,G) ∗ A),S)→
∃φ′,W ′,M ′, F ′, G′.
W = M ′ ∪W ′ ∧ F = G′ ∪ F ′ ∧ M ′ ∼=φ′ G′ ∧
(∀x′ ∈ G′. ∃x ∈ G. S′ ` x −→∗ x′) ∧
aligned8(S(rfree),S′(rfree)) ∧
cheneyLoopStOk(φ ∪ φ′, ∅,W ′,M ∪M ′, F ′,

((∀∗x ∈ G. objRespMap(φ ∪ φ′, S, x)) ∗
(∀∗x ∈ G′. objIsFwded(φ, φ′,S, x)) ∗ A),S′))

land
(∀r 6∈ {ra, rscan, rtemp, rtemp0, rtemp1, t2, t4, t7, a0, rfree, v0}. S(r) = S′(r)) ∧
S′(ra) = S(raSave)

Figure 6.22: Cheney loop specification

state to verify that block of code, to simplify verification. There will be further

constraints for the entire collector. This predicate has three parts. First, the set

of gray objects must span the part of memory from the scan pointer to the free

pointer, which matches up with the definition of the gray objects I discussed above.

This specifies where the gray objects are and allows me to show that the set of gray

objects is empty when S(rscan) = S(rfree). Next the scan pointer must occur after

the start of to-space. This, in combination with the fact that S(rfree) ≤ S(rtoEnd)

(which is implied by scanFieldStOk) ensures that every gray object is in the to-space.

Finally, scanFieldStOk holds on the current state. As a reminder, the A argument

to scanFieldStOk is the specification for the rest of memory.

Now I can define the precondition and the guarantee of the Cheney collector loop,

given in Figure 6.22. The precondition starts off simply enough, only requiring that

the state is a well-formed Cheney loop state. For the additional memory specification,

memory must contain all of the gray objects G, which must only refer to white and

125

mapped objects, reflecting the fact that gray objects are copies of white objects. The

∗true is there because other things are allowed to be present in memory.

The loop guarantee is not a loop invariant. Instead, it describes what will happen

during all of the rest of the iterations of the loop. Thus the final state it describes

will be fully garbage collected. There are two parts to the loop guarantee. The first

part describes what happens to memory, while the second describes what happens

to the registers. The second part is the last two lines of the guarantee. The very last

line specifies that the loop restores ra before it returns, and the second to last line

specifies the registers that are unchanged by the loop.

For memory, the guarantee applies to any well-formed Cheney loop state. The

part to the left of the implication is the same as the precondition of the loop, except

that the rest of memory is described by some A instead of by true. This will allow

the “post-condition” to show that the rest of memory is unchanged. Similarly to

scanfieldGuar, there are a number of new sets of objects after the loop is executed.

φ′ is an isomorphism from the set of objects copied during the loop (M ′) to the new

location of these objects (given by G′). In addition, there is the set W ′ of white

objects that are unreachable from the initial set of gray objects G. There is also the

final set of free objects F ′. The guarantee also formally specifies the intuition that

the set of white objects W is made up of the white objects copied in the loop M ′

and the unreachable white objects W ′, and likewise for the free objects F . Next,

every object copied during the loop (as I said, those objects in G′) must be reachable

from the initial set of gray objects G. This will eventually imply that only objects

reachable from the root are copied by the collector, which means that the GC collects

all garbage (for a trace-based notion of garbage).

Finally, the resulting state S′ must be a well-formed Cheney loop state. The

isomorphism for the final state is a combination of the old and new mappings (φ and

126

cheneyReturnPre(S) ::= True

cheneyReturnGuar(S,S′) ::= S′ = S{ra S(raSave)}

ch2Step(S) ::= S{a0 S(rscan) + 4}{rscan S(rscan) + 8}{ra CHENEYLOOP}

cheneyLoop2Pre(S) ::=
scanFieldPre(ch2Step(S)) ∧
∀S′. scanFieldGuar(ch2Step(S),S′)→ cheneyLoopPre(S′)

cheneyLoop2Guar(S, S′′) ::=
∃S′. scanFieldGuar(ch2Step(S),S′) ∧ cheneyLoopGuar(S′, S′′)

Figure 6.23: Miscellaneous Cheney loop specifications

φ′). The set of gray objects in the final state is the empty set ∅, because the collector

does not exit the loop until the set of gray objects is empty. The set of white objects

in the final state is just W ′, while the set of mapped objects is a combination of the

domains of the old and new set of mapped objects (M and M ′). The new set of free

objects is F ′. The remainder of memory can be described in three parts. First, there

is the part of memory containing the objects in G. These objects have had all of

their fields forwarded using the final mapping (φ∪ φ′). This corresponds to the part

of the object heap containing G in the precondition. Next is the portion of memory

containing the newly copied objects in G′. In the initial state S, this was part of the

free space, but now it contains forwarded copies of the objects in M ′. The predicates

for these two parts of memory are defined in Section 6.2. Finally, the initial excess

portion of memory described by A is unchanged.

The rest of the specifications for the loop, given in Figure 6.23, are relatively

simple. The specifications for CHENEYRETURN and CHENEYLOOP2 are, like the bulk of

the blocks in the field scanner, low level and defined fairly directly in terms of the

dynamic semantics. CHENEYRETURN just restores ra. For CHENEYLOOP2, I define a

127

function ch2Step that describes the behavior of the body of the block. The precon-

dition simply requires that the function SCANFIELD can be called after running the

loop, and can call CHENEYLOOP after returning from SCANFIELD. The guarantee is the

juxtaposition of the guarantees of these two specifications.

6.4.3 Verification

The verification of CHENEYLOOP2 and CHENEYRETURN are simple, due to the low-level

nature of their specifications. The verification of CHENEYLOOP, on the other hand, is

fairly complex, taking a little more than 700 lines of Coq proofs.

As a reminder, the loop is made up of these 3 steps:

1. Leave the loop if all gray objects have been scanned.

2. Scan the first gray object.

(a) Scan the first field.

(b) Scan the second field.

3. Return to the top of the loop.

While I have given a guarantee for scanning a single field, I have not yet given a

guarantee that describes the scanning of an entire object, which is step two. I now

rectify this by defining a new guarantee cheneyScanObjGuar, given in Figure 6.24,

that describes the behavior of scanning an entire object. This guarantee is very sim-

ilar to the field scanning guarantee, as one might expect. Instead of requiring a valid

field and guaranteeing that that field is properly scanned, this guarantee requires a

valid object and guarantees that the object is properly scanned. In addition, it uses

the higher-level cheneyLoopStOk instead of scanFieldStOk.

128

cheneyScanObjGuar(S,S′) ::=
(∀φ,G,W,M,F,A.

cheneyLoopStOk(φ,G,W,M,F, (okObj(W ∪M, S(rscan)) ∗ A),S)→
∃M ′,W ′, F ′, G′, φ′.
W = M ′ ∪W ′ ∧ F = G′ ∪ F ′ ∧ M ′ ∼=φ′ G′ ∧
(∀x ∈ G′. S′(S(rscan)) = x ∨ S′(S(rscan) + 4) = x) ∧
aligned8(S(rfree),S′(rfree)) ∧
(∀x ∈ W ′. S′ `̀ objCopied(x, S, x) ∗ true) ∧
cheneyLoopStOk(φ ∪ φ′, G− S(rscan) ∪G′,W ′,M ∪M ′, F ′,

(objRespMap(φ ∪ φ′,S,S(rscan)) ∗
(∀∗x ∈ G′. objCopiedMap(φ′,S, x)) ∗ A), S′)) ∧

(∀r 6∈ {rscan, ra, rtemp, rtemp0, rtemp1, t2, t4, t7, a0, rfree, v0}. S(r) = S(r′)) ∧
S′(rscan) = S(rscan) + 8 ∧ S′(ra) = CHENEYLOOP

Figure 6.24: Cheney object scanning guarantee

With this new guarantee defined, the verification of the loop can be broken into

into a number of lemmas:

1. If the GC exited the loop, executing CHENEYRETURN will satisfy the loop guar-

antee.

2. If the GC did not exit the loop and the loop precondition holds, then it is safe

to scan the first field of the current gray object.

3. If the GC did not exit the loop, and the loop precondition holds, and the GC

scanned the first field of the current object, then it is safe to scan the second

field of the current gray object.

4. If the GC did not exit the loop, then after scanning the first and second fields

of the current gray object the GC will have scanned the current gray object.

5. If the GC did not exit the loop, and the loop precondition holds, and the GC

scanned the current object, then it is safe to reenter the loop.

129

void cheneyEnter(void* root) {

swap(toStart, fromStart);

swap(toEnd, fromEnd);

free = toStart;

scan = toStart;

scanField(root);

cheneyLoop();

}

Figure 6.25: Cheney entry pseudocode

6. Finally, there is what can be thought of as the inductive case: if the GC did

not exit the loop, and it scanned the current gray object then satisfied the loop

guarantee, then the entire execution satisfies the loop guarantee. More formally,

if S(rscan) 6= S(rfree), cheneyScanObjGuar(S,S′) and cheneyLoopGuar(S′,S′′),

then cheneyLoopGuar(S,S′′).

After proving these lemmas, the Cheney loop can be easily verified.

6.5 The collector

Finally, I combine the loop together with some initialization code to form the Cheney

collector. The initialization code loads some values into registers, swaps the semi-

spaces, then scans the root.

6.5.1 Implementation

The pseudocode for the Cheney entry point is given in Figure 6.25. First the proce-

dure swaps the from- and to-spaces, then initializes the free and scan pointers. No

objects have been copied, allocated or scanned, so both pointers are set to the start

of the to-space. Next the procedure scans the root using the standard scanField

method. If the root is an object pointer, scanning it will cause an object to be

130

CHENEYENTER:
// swap spaces, init rtoStart and rtoEnd
lw rtoStart,0(gcInfo)
lw rtemp,8(gcInfo)
sw rtemp,0(gcInfo)
sw rtoStart,8(gcInfo)
lw rtoEnd,4(gcInfo)
lw rtemp,12(gcInfo)
sw rtemp,4(gcInfo)
// init rfree and rscan
addiu rfree,rtoStart,0
addiu rscan,rtoStart,0
// scan the root, then enter the loop
addiu raSave,ra,0
sw root,12(gcInfo)
addiu a0,gcInfo,12
jal SCANFIELD, CHENEYLOOPHEADER

CHENEYLOOPHEADER:
lw root,12(gcInfo)
sw rtoEnd,12(gcInfo)
j CHENEYLOOP

Figure 6.26: Cheney entry implementation

copied, incrementing free. After this, the procedure calls the Cheney loop, where

all reachable objects will be scanned.

The assembly implementation, given in Figure 6.26, is more complex. The first

complication is that in order to minimize the register overhead while the mutator is

running the ends of each semi-space are stored in memory, at an address contained

in register gcInfo, which is r23. This array contains, in order, the beginning and end

of the from-space, then the beginning and end of the to-space. The initial sequence

of loads and stores initializes rtoStart and rtoEnd and swaps all of the various bounds

in the GC information record, except for the end of the to-space. The record element

that contains the end of the to-space is left uninitialized to allow it to be used to

scan the root. After the loads and stores, the free and scan pointers are initialized,

as in the pseudocode. Next, the value of ra is saved and copy the root from register

root (r8) to memory (where the end of the to-space is normally stored), then scan

the root and go to the loop header. The loop header cleans up after the initialization

131

cheneyLoopHeaderPre(S) ::=
S `̀ S(gcInfo) + 12 7→ − ∗ (λM. cheneyLoopPre((M,S)))

cheneyLoopHeaderGuar(S,S′′) ::=
(∀x,A. S `̀ S(gcInfo) + 12 7→ x ∗ A→
∃S′. S′ `̀ S(gcInfo) + 12 7→ S(rtoEnd) ∗ A ∧

(∀r. S′(r) = (S{root x})(r))∧
cheneyLoopGuar(S′,S′′))∧

(∀r 6∈ {root, ra, rscan, rtemp, rtemp0, rtemp1, t2, t4, t7, a0, rfree, v0}.
S(r) = S′′(r)) ∧

S′′(ra) = S(raSave)

Figure 6.27: Cheney loop header specifications

code by loading the root back into the root register and saving the new end of the

to-space to memory. After that, it enters the loop, which is described in Section 6.4.

6.5.2 Specification

The specification for CHENEYLOOPHEADER is given in Figure 6.27. This is yet another

spec derived fairly directly from the implementation. For the loop header block to

be safely called, memory must contain a value at an offset of 12 from gcInfo, and the

remainder of memory must satisfy the loop precondition. As far as the behavior of

this block goes, it loads the value at offset 12 from gcInfo into root, stores the value

of rtoEnd, then goes into the loop. The state right before the loop is some S′.

The specification of the Cheney collector entry is defined in terms of a predicate

cheneyStOk that describes a well-formed Cheney collector state. This predicate is

given in Figure 6.28. This is simpler than the state specifications I have shown so far

(used inside of the collector loop) because it does not have to deal with a partially

copied heap. This is beginning to look more like the representation predicate for the

Cheney collector described in Section 5.3.

132

cheneyStOk(frSt, frEnd, toSt, toEnd, free, root, gcInfo,M) ::=
!(aligned8(toSt, free) ∧ aligned8(free, toEnd)∧

okFieldVal(objs, root)∧
frEnd− frSt = toEnd− toSt ∧ frSt ≤ frEnd) ∗

(objHp(objs, objs) ∧ eq M) ∗ buffer(free, toEnd) ∗
buffer(frSt, frEnd) ∗ gcInfo 7→ frSt, frEnd, toSt, toEnd

where objs = rangeObjs(toSt, free)

okObjHp(V, objs) ::= !(∀v ∈ V. okFieldVal(objs, v)) ∗ objHp(objs, objs)

minObjHp(V, objs) ::= (λM. ∀x ∈ objs. M ` V −→∗ x) ∧ okObjHp(V, objs)

φ∗(x) = x if x is odd
φ∗(x) = φ(x) otherwise

Figure 6.28: Auxiliary Cheney definitions

The first four arguments are the bounds of the semi-spaces. The names are given

with respect to the end of the previous collection: the from-space is empty and the

to-space contains the allocated objects. free is the value of the free pointer, while

root is the value of the root. gcInfo is a pointer to the location in memory that the

auxiliary GC data is stored. Finally, the argument M is the object heap containing

the allocated objects. This will be useful for reasoning about the behavior of the

collector. The set objs (defined to be rangeObjs(toSt, free)) is the set of allocated

objects, which starts at the beginning of the to-space and ends at the free pointer.

First I will describe the “pure” parts of this predicate that do not involve memory.

In order to safely perform a Cheney collection on a state, the start of the to-space

must be object-aligned with the start of the free space, and the free space with the

end of the to-space. These requirements prevent fractional objects. The root must be

a valid field value, either atomic or an allocated object. Additionally, the from-space

and the to-space must be the same size, and the end of the from space must be after

133

the beginning. These two requirements ensure there will be enough space to copy

every object.

Now I will describe the memory part of this predicate. The first part of memory

contains the objects. This must be a valid object heap, and all object pointers must

point to objects in this object heap. This part of memory must also be equal to M.

(The ∧ in this portion of the specification is a separation logic conjunction, not a

conventional one: A ∧ B holds on a memory if that memory satisfies both A and

B.) After that, the memory must contain the unallocated portion of the to-space,

ranging from the free pointer to the end of the to-space. Next, memory must contain

the fallow semi-space and gcInfo must point to a list of the various bounds.

There are also a few simpler definitions defined in Figure 6.28. Memory is closed

with respect to a set of values V and contains objects objs, written okObjHp(V, objs),

if all of the object pointers in the object heap point to objects in the heap, and

all of the values in V are valid object pointers with respect to objs. In other words,

starting from the set of values V and tracing object pointers will not escape the heap.

minObjHp(V, objs) holds if memory contains exactly the set of objects reachable from

V . For this to be true, all objects in objs must be reachable from the set of root

values V and the object heap must be closed with respect to V and objs. Finally, the

map φ∗, taken from Birkedal et al. [2004], maps old heap values to new heap values

when φ is the map from the old locations of objects to their new locations. This is

the identity mapping for odd (i.e., atomic) values and the same as φ for all other

values.

I can now define the top level specification of the Cheney collector, given in

Figure 6.29. For the precondition, the state must be a well-formed Cheney state.

The space bounds are stored in memory (as cheneyStOk requires), while the free

pointer, root and GC information pointer must be in their respective registers. As

134

cheneyEnterPre(S) ::= ∃frSt, frEnd, toSt, toEnd,M.
S `̀ cheneyStOk(frSt, frEnd, toSt, toEnd,S(rfree),S(root),S(gcInfo),M) ∗ true

cheneyEnterGuar(S,S′) ::=
(∀toSt, toEnd, frSt, frEnd,M, A.

S `̀ cheneyStOk(toSt, toEnd, frSt, frEnd,S(rfree),S(root),S(gcInfo),M) ∗
A→

∃φ, objs,M′.
S′ `̀ cheneyStOk(frSt, frEnd, toSt, toEnd,S′(rfree),S′(root),S′(gcInfo),M′) ∗

A ∧
M `̀minObjHp({S(root)}, objs) ∗ true ∧
objs ∼=φ rangeObjs(toSt, S′(rfree)) ∧
φ∗(S(root)) = S′(root) ∧
M′ `̀ (∀∗x ∈ rangeObjs(toSt,S′(rfree)). objIsFwded1(φ,M, x))) ∧

calleeSavedOk(S,S′) ∧
S(raSave2) = S′(raSave2)

Figure 6.29: Cheney entry specifications

usual, any additional data is allowed in memory.

The guarantee has six auxiliary variables. The first four are the bounds of the

semi-spaces. Notice that unlike the precondition, these are ordered from the per-

spective of the upcoming collection: allocated objects are in the from-space, and will

be copied to the to-space. M is the portion of memory containing the initial set of

allocated objects, and as usual A describes the portion of memory that the collector

does not know or care about. As in the precondition, the state must initially be a

well-formed Cheney collector state, with the free pointer, root and GC information

pointers stored in registers.

After the collection has finished, three existential variables are needed to describe

the final state. φ is the isomorphism from the initial set of reachable objects to

the final set of reachable objects. objs is the set of reachable objects in the initial

state. Notice that this is not part of the precondition. This is because the collector

calculates this set, so the caller of the collector does not need to. Finally, M′ is the

135

part of the final state that contains allocated objects.

Now I will describe the specification of the final state. First, the collector ensures

that the final state is a well-formed Cheney collector state. This is important, because

it allows the mutator to call the collector again later. Birkedal et al. [2004] do not

establish this in their Cheney verification. Notice that the bounds of the from-space

are now those of the to-space and vice versa, precisely as one would expect. Other

than that, this establishes that the new values of the free, root and GC information

pointers are still stored in the appropriate register, and that the new object heap is

represented by M′. This line also shows that the collector has not touched the rest

of memory, which can still be described by A.

The next line specifies that objs is actually the set of reachable objects in the

initial state, using the minimum object heap predicate defined in Figure 6.28. The

line after that establishes that φ is an isomorphism from the initial set of reachable

objects to the final set of allocated objects. While this is primarily used to establish

that the collector is safe, it also demonstrates that the garbage collector does not

copy any unreachable objects.

The next two lines establish that the collection respected the isomorphism φ,

using some of the definitions from Figure 6.28. First, the root must be forwarded via

the mapping φ∗. Next, all of the allocated objects in the to-space must be forwarded

versions of objects in M, the initial allocated block of memory, using the object

forwarding predicate defined in Figure 6.6.

The final two lines of the specification establish that the collector preserves all of

the callee saved registers, along with register raSave2, which is register r25.

136

6.5.3 Verification

Verification of the collector begins simply enough, by stepping through the various

loads, stores and additions that comprise the initialization portion of the alloca-

tor. As these memory operations involve constant offsets from the GC information

pointer, they are easily shown to be safe.

Valid scanField state

After the initialization, it must be safe to call scanField. For this to hold, memory

must be a valid scanField state. This field scanning state has an empty mapping

from old objects to new objects, because no objects have been copied.

First, it must be shown that the number of allocated objects in the from-space is

less than or equal to the number of objects that can be stored in the to-space, which

follows from the fact that the two semi-spaces are the same size.

Next, it must be established that the set of allocated objects (which lie in the

range from frSt to the initial free pointer) is disjoint from the set of natural numbers

starting from toSt and ending just before toEnd. To do this, I first establish that

memory contains two disjoint buffers (one from frSt to the initial free pointer, and

one for the to-space) and call this proof H0. This is easy to establish using separation

logic. Now I break into a number of subcases. First, either toSt is a pointer or the to-

space is empty. In the latter case, the current subgoal holds immediately. Similarly,

either frSt is a pointer or the set of allocated objects is empty. As before, in the

latter case, disjointedness holds immediately. Both toSt and frSt must then be valid

pointers. Using this fact and H0, it can be established that the set of allocated

objects is disjoint from the set of addresses in the to-space. Finally, I use a lemma

that shows that if two sets of valid contiguous addresses are disjoint, then one of the

sets of valid addresses is disjoint with the entire range of the other set, thus showing

137

this subgoal.

The last part of establishing a valid scanField state is showing that memory

is well-formed. This is pretty direct. The trickiest part is showing that memory

contains a well-formed object map (see Figure 6.4), but the mapping is currently

empty, so the empty memory satisfies this.

Into the loop

Given the well-formed scanField state, it is trivial to show that it is safe to call

scanField. The next task is to reason about the state after the GC has returned

from scanField, when it calls cheneyLoopHeader. The specification of that state

is derived by combining the scanFieldOk already established and the guarantee for

the scanField procedure, then applying the standard suite of state simplification

tactics. After doing that, there must be some (possibly empty) initial set of gray

objects, and a mapping φ from the initial copy of these gray objects to their current

location.

Before I can establish that the loop precondition is satisfied, I need to show some

lemmas. First, memory contains all of the initial objects and, separately, the various

garbage collector information pointers. This implies a lemma infoNotInObjs, which

states that none of the addresses the GC writes to during the initialization section

are part of any of the objects in memory. Also, the addresses the GC writes to during

initialization must be valid pointers.

Now it can be shown that it is safe to enter the loop. To do this, the various sets

and maps must be selected. The gray (G), white (W), mapped (M) and free objects

(F) are those returned by the call to scanField. The initial set of black objects is

empty, as no object have been scanned yet. Again some register simplifying is done.

It must be shown that G is the set of contiguous objects ranging from the scan

138

pointer to the new free pointer. This is true because the to-space is G ∪ F , F is

the set of objects from the free pointer to the end of the to-space, and G and F

are disjoint, and a few minor requirements for the relevant pointers. The rest of the

side conditions are trivially true, leaving only the need to show that memory is well-

formed. The only difficulty there is showing that the gray objects G are well-formed

with respect to the from-space objects W ∪ M . Each object in G is a copy of a

from-space object in the state before the call to scanField. Using infoNotInObjs it

can shown that the objects in G are also copies of from-space objects in the initial

state, which are well-formed with respect to W ∪M , so this part of the precondition

holds.

Through the loop

I have now shown that it is safe to enter the loop. The next goal is to show that

composing the behavior seen so far with the guarantee of the loop implies that the

entire function satisfies the loop entry guarantee.

The first task is to establish that the four semi-space bounds of the already-shown

precondition are the same as those of any well-formed Cheney state, because they

are stored at specific offsets in memory from gcInfo. Once this is done, it can be

established that the state before the loop entry is in fact a well-formed Cheney state.

This proof is actually almost the same as the proof that it was safe to enter the loop.

The main difference is that the remainder of memory is described by A instead of by

true. This essentially requires reasoning from the beginning of the procedure and

showing what happens when the initialization code and scanField are executed. A

better program logic might avoid this duplication.

After this is done, there is a predicate describing the state after the rest of the

program, including the loop, has executed. As usual, simplification must be per-

139

formed on these predicates. For instance, if a register r has not changed from the

initial state S0 to the final state S, any instances of the value of register r in the final

state, written S(r), need to be replaced by S0(r), to simplify reasoning.

At this point, after the completion of the loop, there are several different sets of

objects: M (from-space objects copied during the scanning of the root), W (the rest

of the from-space objects), M ′ (from-space objects copied during the loop, and a

subset of W), G (to-space objects copied during root scanning), G′ (to-space objects

copied during root scanning and W ′ (from-space objects that have not been copied).

G and G′ must be handled separately because objects G are scanned in the loop,

while objects on G′ are both copied and scanned in the loop. Two additional sets

of objects are F (free to-space objects after the root scanning) and F ′ (free to-space

objects after the loop). There are also two finite maps, φ and φ′, which describe the

forwarding of objects during root scanning and the loop, respectively.

It must be shown that in the final state all objects copied during collection are

reachable from the root in zero or more steps. There are two types of these objects.

The first is the set of gray objects G created by scanning the root. The guarantee of

field scanning, shown in Figure 6.18, ensures that all of these objects are reachable

in a single step from the root. The second set of objects are those that were copied

during the loop. The guarantee of the loop itself, shown in Figure 6.22, ensures that

these objects are reachable from the root in one or more steps.

There are several sets of objects that are disjoint: W and M , M and M ′, G and

G′, G′ and F ′, G and F , and M ′ and W ′. Disjointedness of these sets must be proved

before I do any further manipulation of the memory predicate, because disjointedness

information is stored implicitly using separation logic predicates. A lemma that states

that if M `̀ (∀∗a ∈ A. a 7→ − ∗ true) ∗ (∀∗b ∈ B. b 7→ − ∗ true), then A and B are

disjoint. This lemma is shown by contradiction. If there was an x such that x ∈ A

140

and x ∈ B, then it would be possible to shown that M `̀ x 7→ − ∗ x 7→ − ∗ true,

which, as I argued in Section 2.5.2, is impossible.

That done, I extract the portion of memory containing the reachable to-space

objects (G ∪G′) in order to show that the final state is a well-formed Cheney state.

I use an extraction lemma, which states that if M `̀ A ∗ B, then there exists an M′

such that M `̀ eq M′ ∗B and M′ `̀ A. This follows from the definition of ∗.

Once the portion of memory containing the new objects has been extracted, I

can show that these objects have been copied from objects in the initial state, then

had their fields forwarded, respecting the map φ ∪ φ′. The objects in G have had

their fields updated respecting the map by the actions of the loop. To do this, I use

a sort of transitivity lemma stating that objects copied from a state S to a state S′

then scanned from state S′ to a state S′′ have also been copied then scanned from

state S to S′′. The objects in G′ have been copied and scanned from the state at the

start of the loop, so I use a lemma that states that if an object is unchanged from

state S to S′, and copied and scanned to S′′, then it is also copied and scanned from

S to S′′.

Next, I want to show the precise values of G and G′. G is the set of objects

starting from the start of the to-space to the value of the free pointer before the

program enters the loop. G′ is the set of objects starting from the value of the free

space pointer before the loop and ending at the value of the free space pointer at

the end of the current procedure. From this, I can conclude that G∪G′ is the set of

objects starting from the beginning of to-space to the final value of the free pointer.

With these preliminaries out of the way, I can show the conclusion of the Cheney

entry guarantee of Figure 6.29. There are three existentials that must be instantiated.

The first is the mapping from old objects to new objects, which is φ∪φ′. The second

is the set of reachable objects in the from-space, which have been calculated by

141

running the collector. This set is M ∪M ′. Finally, there is the memory that contains

the reachable objects in the final state, which is the memory I extracted earlier that

contains the objects in G ∪G′.

When showing that the final memory is well-formed, there are three subgoals.

First, it must be shown that the final object heap is well-formed. These objects

(G ∪ G′) have been copied and forwarded using a valid isomorphism, so I can use

a lemma to show that these objects must also be well-formed. Second, I need to

show that there is a buffer starting at the free pointer and going to the end of the

to-space. This follows from the fact that F ′ is the set of objects in that range, which

contains a whole number of objects. Third, I must show that there is a buffer for

the from-space. This is a matter of showing that the combination of the free space

from the from-space along with the from-space objects, both copied and uncopied,

cover the entire from-space.

The rest of the goals relate to showing that the collection is correct: that the set

of objects copied from the from-space is precisely the set of reachable objects, that

the old and new objects are related by an isomorphism, and that the root and the

copied objects respect that isomorphism. With this in hand, only the first subgoal

presents real difficulty.

For this, I must first show that the initial heap contains the objects in M ∪M ′,

and that these objects only contain pointers to other objects in M ∪M ′. Showing

this relies on a lemma that states that if a memory M contains a set of well-formed

objects S (that contain pointers to any other set of objects), and there is another

memory M′ that contains a set of objects S ′ and is a forwarded version some memory

that is a superset of M using an isomorphism φ from S to S ′, then the objects in M

must only point to objects in S. This is the case because all pointers in the fields of

M′ have been forwarded using φ (so they must be in the range of φ), and the domain

142

of φ is S. For similar reasons, any object pointers in the root must be members of

M ∪M ′.

Next I must show that all objects m ∈ M ∪ M ′ are reachable from the root.

Because there is an isomorphism from M ∪M ′ to G ∪ G′, for each such object m

there must exist an object g ∈ G ∪ G′. As I have previously shown, g must be

reachable from the final root. By induction on the path from the final root to g,

there must be a path from the initial root to m, because all of the gray objects are

forwarded versions of the objects M ∪M ′. I initially show that m must be reachable

in the entire memory, then show that it must also be reachable in the part of the

heap containing only the objects of M ∪M ′.

After showing that the appropriate registers have been preserved, I have verified

that the Cheney entry block matches its specification.

Loop header

The last remaining piece of the collector proper that must be verified is the loop

header. The specification of the loop header is fairly low level, so this does not present

any difficulties. First I show that the state still satisfies the loop precondition after

the loop is run. The block does not do much so this is easy to do. Then I show that

running the loop header then running the loop satisfies the loop header guarantee.

Of course, the loop header guarantee pretty much says that the loop header is run,

then the loop is run, so the verification is easily finished.

6.6 The allocator

The allocator is the first component of the full Cheney collector implementation that

the mutator directly interacts with. The allocator tries to allocate an object in the

143

void* alloc (void* root) {

if (free == toEnd) {

cheneyEnter(root);

if (free == toEnd) {

while (1) {}

}

}

free[0] = NULL;

free[1] = NULL;

newObj = free;

free += 2;

return newObj;

}

Figure 6.30: Cheney allocator pseudocode

free space. A pseudocode implementation is given in Figure 6.30. If the free space is

empty, the allocator calls the collector. If even after performing a collection there is

still no free space, the allocator goes into an infinite loop. A more realistic collector

would request more space from the operating system in this case. Once the free space

is known to be non-empty, the allocator performs allocation by incrementing the free

pointer and initializing the fields of the new object, then returning the address of

the new object.

Instead of having an explicit infinite loop in the case where there is no more

memory, even after a collection, it would also be possible to remove the second if

statement, and change the first if statement to a while loop. This would also produce

an infinite loop but it would be harder to verify than the code I use because it would

require proving that cheneyEnter can be safely called repeatedly.

144

CHENEYALLOC:
addiu raSave2,ra,0
lw rfree,16(gcInfo)
lw rtemp,12(gcInfo)
bne rfree, rtemp, CHENEYDOALLOC
jal CHENEYENTER, CHENEYPOSTGC

CHENEYPOSTGC:
lw rtemp,12(gcInfo)
bne rfree, rtemp, CHENEYDOALLOC
j INFLOOP

CHENEYDOALLOC:
addiu v0,rzero,1
sw v0,0(rfree)
sw v0,4(rfree)
addiu v0,rfree,0
addiu rfree,rfree,8
sw rfree,16(gcInfo)
addiu ra,raSave2,0
jr ra

INFLOOP:
j INFLOOP

Figure 6.31: Cheney allocator implementation

6.6.1 Implementation

The assembly implementation of the allocator is given in Figure 6.31. This is a fairly

direct translation of the pseudocode. The main differences are that the control flow

is somewhat contorted, and that instead of storing the free pointer and end of the

to-space pointer in a global variable, they are stored in memory.

6.6.2 Specification

The specification for CHENEYALLOC is the allocator specification from the collector

interface given in Chapter 4. The specifications for the other blocks are given in

Figure 6.32 CHENEYDOALLOC can be called whenever rfree points to a pair, and there

is a place to store the new value of the free pointer. When it is called, it initializes

the fields of the new object to NULL, stores the new value of the free pointer, while

leaving the rest of memory alone. It also stores the location of the new object in v0,

updates the free pointer, and restores the return pointer.

CHENEYPOSTGC is safe to call when there is a value toEnd stored at an offset of 12

from the GC information pointer. If toEnd is not equal to the free pointer, it must

be safe to call the allocator. The guarantee ensures that if the block returns then

145

cheneyDoAllocPre(S) ::= S `̀ S(rfree) 7→ −,− ∗ S(gcInfo) + 16 7→ − ∗ true

cheneyDoAllocGuar(S,S′) ::=
(∀A. S `̀ S(rfree) 7→ −,− ∗ S(gcInfo) + 16 7→ − ∗ A→

S′ `̀ S′(v0) 7→ NULL,NULL ∗ S(gcInfo) + 16 7→ S(rfree) + 8 ∗ A) ∧
∀r. S′(r) = (S{v0 S(rfree)}{rfree S(rfree) + 8}{ra S(raSave2)})(r))

cheneyPostGCPre(S) ::=
∃toEnd. S `̀ S(gcInfo) + 12 7→ toEnd ∗ true ∧

(S(rfree) 6= toEnd→ cheneyDoAllocPre(S))

cheneyPostGCGuar(S, S′) ::=
∀toEnd. S `̀ S(gcInfo) + 12 7→ toEnd ∗ true→

S(rfree) 6= toEnd ∧ cheneyDoAllocGuar(S{rtemp toEnd},S′)

infLoopPre(S) ::= True

infLoopGuar(S, S′) ::= False

Figure 6.32: Cheney allocator, miscellaneous specifications

the free pointer and toEnd are not equal, and that CHENEYDOALLOC has successfully

run, from a state where the value of rtemp has changed.

INFLOOP is always safe to call, and anything can be assumed after a call to it,

because it never returns.

6.6.3 Verification

Verification of the allocator requires verifying the 5 blocks of assembly. As before,

the verifications of blocks besides CHENEYALLOC are straightforward, because I use

low-level specifications that closely map their behavior. INFLOOP just calls itself, so

it is trivial to verify. For CHENEYPOSTGC, there are two cases, one for each branch. If

the free pointer is not equal to the end of to-space, the precondition guarantees that

the allocator can safely call CHENEYDOALLOC. The guarantee for this case is trivially

146

established, as it only requires that the free pointer and the end of the to-space

are not equal, and that CHENEYDOALLOC has been run. In the other case, where the

collector has failed to free any space, the allocator simply calls the infinite loop, and

thus this case is trivial to establish. The safety of CHENEYDOALLOC is easy to establish,

as the precondition explicitly requires the presence of the memory locations accessed

during the block. Showing the guarantee only requires stepping through the block

in a similar way.

Now it only remains to verify the initial allocator block. This is the first block I

have described that must deal with the high level garbage collector interface. While

all previous blocks only had to deal with the concrete state, the allocator must also

reason about the abstract state.

Once past the initial set of loads, which are readily verified, there are two cases

to consider. In the first case, there is enough space to allocate a new object. In the

second case, there is not.

Case: enough space to allocate

In the first case, the free space pointer is not equal to the end of the to-space. From

this, it can be inferred that the free pointer is an element of the set of free space

objects. This lets me show that there is a pair starting at the free pointer, which is

the hard part of showing that it is safe to call CHENEYDOALLOC.

For the guarantee, the first step is to relate the precondition to the antecedent

of the guarantee. For instance, that the free pointers are the same in both. This is

established using the memory.

In the consequent, I first have to select what the abstract state after collection is,

and what the concrete value of the object being allocated is. Because the allocator

is not performing a collection, the abstract state after the “collection” is the same

147

as initial abstract state, which is some A. The object being allocated is located at

the current value of the free pointer.

After that, I show that the GC guarantee is respected. To do this, I use a lemma

that states that for all A and R, gcStep(A,A, R) holds, which in turn depends on a

lemma that a well-formed object state is isomorphic to itself.

Now I must show that the final state is well-formed. This requires applying the

guarantee of CHENEYDOALLOC, which in turn requires splitting out the free object

from the memory of the initial state. This can be done because I have already shown

that the free pointer is an element of the free block. Now there are more existentials

to instantiate: the ends of the semi-spaces and the value of the free pointer. As the

allocator has not done a collection, the semi-spaces stay the same, but the free space

pointer has increased by 8. After this is done, there are a number of side conditions

that must be checked, regarding alignment of the various pointers and the validity

of the roots. These are all straightforward.

Finally for this case, I must show that memory is well-formed. The difficulty

here is showing that adding the newly allocated object to the memory results in

a well-formed memory equal to the extension of the abstract memory with a new

object.

To show that the new memory is well-formed, I apply the object heap introduction

lemma, which states that one can add a well-formed object to a well-formed object

heap, assuming that both have the same set of assumptions. I must also use an

object heap weakening lemma, because the initial object heap does not contain any

pointers to the newly allocated object. The new object is well-formed because the

allocator has initialized its fields to NULL.

To show that the new abstract memory is equal to the initial abstract memory

extended with a new object, I use a lemma (proved by Chunxiao Lin [McCreight

148

et al. 2007]) that states that if M `̀ x 7→ v ∗ eq M′ then M `̀ eq (M′{x v}).

Applying that lemma twice solves this subgoal.

The last major part of this case is to show that the allocated object is fresh.

To do this, I use a lemma (also proved by Chunxiao Lin [McCreight et al. 2007])

that states that if M `̀ A and x is a valid pointer not in the domain of M, then

M{x v} `̀ x 7→ v ∗ A. Applying this lemma twice solves the subgoal. It can be

shown that neither field of the new object is already in the abstract heap because

the abstract heap is part of the concrete memory, which contains (separately) both

fields.

Case: not enough space to allocate

First I verify that it is safe to call the collector. This is not difficult, as I only have

to show that the few register operations the allocator has performed do not interfere

with the well-formedness of the state. Next I have to show that it is safe to call

CHENEYPOSTGC after the collector has been run. To do this, I only need to show that

memory contains the free pointer at the correct address, and that if the free pointer

is not at the end of the to-space it points to an object, which is similar to reasoning

I have already done.

Finally, I must show that the combination of the GC followed by CHENEYPOSTGC

implies the entire allocator guarantee. To do this, I first have to step through the

guarantees for the two functions that are called to get to a description of the final

state.

After this, I instantiate the existentials for the abstract state and the address of

the newly allocated object. The memory of the abstract state is the object heap

that was the result of performing a garbage collection, while the register file of the

abstract state is the register file of the final concrete state. The object being allocated

149

is the object at the free pointer in the final state.

The first major task in this case of the proof is to show that the garbage collector

respects the GC step guarantee. First I show that the minimum set of reachable

objects assumed in the GC step guarantee must be the same as the minimum set of

reachable objects computed by the GC, using a lemma: every object reachable in one

set must be reachable in the other, so they must be equivalent. The heap containing

the reachable objects in the final state is going to be the heap containing all of the

objects in the final state, because the final state contains only reachable objects.

After that, the major remaining difficulty is showing that if objects in a heap M′′

are forwarded versions of objects from M, and there exists an M′ that is a subheap

of M containing all of the objects in the domain of the isomorphism used to forward

the objects, then M′′ contains forwarded copies of objects from M′. In other words,

if M′′ contains some objects that were forwarded from M using an isomorphism φ,

and a heap M′ ⊆M contains all of the objects in the domain of φ, then M′′ contains

objects that were forwarded from M′ using φ, because every object in M must have

a corresponding object in M′.

The rest of the tasks in the proof involve showing that the final state is well-

formed, and that the objects are fresh. The proof of this is similar or identical to

the case of the proof where the collector is not invoked, described in Section 6.6.3.

6.7 Reading and writing

The final parts of the Cheney collector implementation are the read and write bar-

riers. The Cheney collector does not require any additional work to be done when

reading or writing, so the main task is to verify that these operations preserve the

high-level interface.

150

void* read (void* root, int k) {

return root[k];

}

void write (void* root, int k, void* x) {

root[k] = x;

}

Figure 6.33: Cheney read and write barrier pseudocode

CHENEYREADk:
lw v0,k(root)
jr ra

CHENEYWRITEk:
sw a0,k(root)
jr ra

Figure 6.34: Cheney read and write barriers

6.7.1 Implementation

The pseudocode implementations for the read and write barriers are given in Fig-

ure 6.33. A read loads the designated field of the root, while a write stores a value to

the field. In order for these operations to succeed, root must be an object pointer,

and k must be either 0 or 1, as each object is a pair. Additionally, in the write barrier

x must be a valid field value, or the collector may crash when it is next invoked.

The assembly implementations, given in Figure 6.34, are similar. Each barrier

is implemented as a function call for simplicity. It would also be possible to de-

velop a framework for reasoning about assembly macros, then implement and verify

each barrier as an assembly macro. To simplify the implementation, there is one

read and one write operation for each field. Thus each assembly implementation is

parameterized by an offset k, which will be either 0 or 4.

151

6.7.2 Specification

As with the allocator, the specifications for the read and write operations are given

in Chapter 4. Informally, the read requires that the initial state contains the repre-

sentation of an abstract state (A, R) where root is a root (root ∈ R) and A(root) is a

valid pointer, and guarantees that the final state contains the representation of the

initial abstract state transformed by the GC step guarantee, except that v0 will now

be a root, containing the value of the appropriate field of root. The write requires

the same thing, and that a0 is a root, so that it may be safely stored. It guarantees

that the initial abstract state, transformed by the GC step guarantee and with the

appropriate field of root replaced with the abstract value of a0, is represented in the

final concrete state.

6.7.3 Verification

Showing the safety of both the read and the write is not hard because the abstract

state is a subset of the concrete state, and the precondition implies that the register

being read from or written to is a pointer. The difficulty is in showing that the

abstraction has been preserved.

Read

First I have to show that the GC step relation holds. This is straightforward, as

no part of the original abstract state is changed by a read. Next, I must show that

the implementation of a read preserves the abstraction. The main difficulty is to

show that the value that has been loaded is a valid root. This is true because the

loaded value came from a field of a valid object. Finally it must be shown that the

barrier has loaded the correct abstract value, which is easy to do because there is a

152

one-to-one correspondence between abstract and concrete values.

Write

The abstract state does not change across the GC step, because no collection work

is done in the write barrier, so I use a standard lemma that proves that the GC

step relation is reflexive. To show that memory is well-formed, I first prove that the

root is non-atomic, by contradiction. After this is done, I can pull out the object

being written to from the abstract memory, which in turn lets me show that the field

being written to is in the domain of the abstract memory, which is a portion of the

concrete memory. Then I relate the write to the abstract memory to the write to

the concrete memory by applying a lemma which states that if M `̀ eq M′ ∗ A and

x ∈ dom(M′), then M{x y} `̀ eq (M′{x y}) ∗ A. In other words, if a memory

M contains a sub-memory M′ separate from the rest of memory (described by some

A), then writing to M will write to M′ without disturbing the rest of memory.

Finally, I have to show that the object heap is still well-typed. This is true because

the old heap was well-typed, and the value being written to the field is well-typed.

6.8 Putting it together

Once all of the operations have been verified, I must construct a module containing an

entire verified Cheney collector. As part of this, I must verify the various properties

described in Section 4.3.3. For the Cheney collector, these are not difficult to show.

Most of the proof involves breaking down the representation predicate and splitting

cases based on whether various registers are equal or not. Aside from that, I must

show all the minor facts about the code memory type and the code memory, but

these are not tricky given that I have already verified all of the code blocks of the

153

component lines
generic GC infrastructure 1712
properties of copying predicates 1560
field scanning 1398
loop 970
enter and loop header 1222
allocator 720
read and write barriers 320
top level 456
total Cheney specific 5086

Figure 6.35: Cheney formalization line counts

collector.

6.9 Conclusion

I give the line counts for the Coq implementation of my Cheney collector verification

in Figure 6.35. These line counts include white space and comments, but the bulk

of the lines are proofs, which tend to be very dense and not include a lot of either

white space or comments. The first two lines correspond to various lemmas about

either collectors in general or copying collectors in particular and are shared in part

with my other GC verifications. In each of these two categories, there are probably

things that are not used except by the Cheney collector, and things that are not

used by the Cheney collector. Below that, I break down the number of lines by

component described in this chapter. The line counts for a component include the

assembly implementation, the specification and the verification. I have included the

full implementation and specification of these components in this chapter, showing

that the size of each category is dominated by the proofs. The line counts could

probably be reduced with improved tool support and better factoring out of lemmas.

The bottom line totals up the number of lines for the Cheney collector components,

154

but does not include the libraries in the first two lines.

In this chapter, I have stepped through an entire assembly-level implementation

of a Cheney copying collector and described the specification and verification of every

basic block. I have also given an overview of how I verified that the collector satisfies

the high-level interface described in Chapter 4.

155

Chapter 7

Baker Collector Verification

7.1 Introduction

The Baker garbage collector [Baker 1978] is an incremental variant of the Cheney

collector [Cheney 1970]. An incremental collector does not perform a complete col-

lection when it runs out of space. Instead, the collector does a little bit of work each

time it allocates an object. This reduces the maximum time that will be spent in the

garbage collector, which can be useful for an interactive program. In some sense, an

incremental collector is one step closer to a concurrent collector, where the mutator

and collector run at the same time.

While the basic mechanism of the Baker collector is the same as the Cheney

collector, the invariants of the collector are more complex, because invoking the col-

lector (usually) results in a heap that is only partially collected. The representation

predicate of the Cheney collector, given in Figure 5.5, is much less complex than the

representation predicate of the Baker collector, given in Figure 5.7.

In addition, ensuring that all reachable objects are copied (the basic soundness

property of a garbage collector) becomes more difficult. Recall that black objects are

156

Initial state Store white pointer Set root

Figure 7.1: Incremental collection going awry

never visited again by the collector. Figure 7.1 shows how problems can arise in an

incremental collector. In this example, there are two roots, one pointing to a black

object and one pointing to a white object. The mutator executes a store instruction,

storing a pointer to the white object into the black object. After that, the mutator

sets both roots to point at the black object. In the final state, the white object is

reachable from the roots, so it should not be collected. Unfortunately, the only path

is through a black object, so the collector will never realize this and will collect it.

The white object has become invisible to the collector.

Two conditions must hold for an object x to become invisible [Jones and Lins

1996]:

1. A black object contains a pointer to a white object x.

2. There is no path from a gray object to x that contains only white objects.

A sound incremental garbage collection algorithm must prevent one of these two

conditions. In fact, a copying algorithm must prevent the two conditions above

from holding on from-space objects that have already been copied, even though they

are not considered to be white objects: when a collection is complete, a pointer

to the old copy of an object is just as invalid as a pointer to an uncopied object.

Those algorithms that prevent the first condition are known as incremental update

algorithms, while those that prevent the second condition are known as snap-shot-

157

at-the-beginning algorithms.

The Baker collector is an incremental update algorithm, because it prevents black

objects from containing pointers to white objects. Fortunately this type of invariant

is easier to describe because it is very local. This invariant can be thought of as a

standard heap typing judgment one might see in a language such as TAL [Morrisett

et al. 1999], if a color is thought of as a type. A black object is well-typed if it

contains no pointers that have a from-space “type”. The Baker collector maintains

this invariant by requiring that roots never contain from-space pointers. Because the

operands of a write operation are always roots, a from-space pointer can never be

written into any object, so the GC will never violate the first condition above.

That is all well and good for writes, but what about reads? When the GC reads

the field of an object, it places the result into a root. The root set is allowed to

contain gray objects, which may contain pointers to white objects. These two facts

imply that a read operation may cause the root set to contain a from-space object,

violating the invariant, which in turn can cause objects to become invisible to the

GC.

To solve this problem, the Baker collector requires that some extra work is done

whenever a read occurs. This is known as a read barrier. Before the field of an object

is loaded, it must be scanned and forwarded (using the Baker GC’s scanField pro-

cedure) to ensure that if the field contains a pointer to a from-space object it will be

forwarded appropriately. Fortunately, my approach to garbage collector abstraction

allows me to hide this complexity from the mutator and allows the Cheney and Baker

collectors to have the exact same interface.

The memory of the Baker collector looks similar to that of the Cheney collector.

Objects in the from-space are being copied to the to-space. The from-space is a mix

of copied objects and uncopied white objects. Each copied object contains, in its

158

black gray free black

to start scan free alloc to end

Figure 7.2: Baker to-space

first field, a pointer to its copy. The to-space looks like Figure 7.2, which is similar

to what it looks like in the Cheney collector, but not quite the same. There are two

blocks of contiguous black objects (objects that have been copied and scanned): one

starting from the beginning of the to-space and going to the scan pointer, and one

starting from the alloc pointer and going to the end of the to-space. The latter block

is objects that have been allocated by the mutator during the current collection cycle.

Black objects do not contain pointers to from-space objects. Gray objects range from

the scan pointer to the free pointer, while free objects range from the free point to

the alloc pointer. Gray objects can contain pointers to any valid from- or to-space

object. Objects copied by the GC are allocated from the front of the free space, at

the free pointer.

The general structure of this chapter is the same as the previous chapter, which

discussed the verification of the Cheney collector. I step through the various com-

ponents of the collector, starting from the innermost loop and working my way

outwards, discussing the implementation, specification and verification of each com-

ponent.

As in the previous chapter, everything discussed in this chapter has a machine

checkable proof implemented in the Coq proof assistant. As far as I am aware, this

is the first machine checkable proof of the soundness of the Baker algorithm.

159

scanField (void* field) {

fieldVal = *field;

if (notFromSpacePtr(fieldVal))

return;

fieldValField = *fieldVal;

if (notToSpacePtr(fieldValField)) {

*field = fwdObj(fieldValField);

} else {

*field = fieldValField;

}

}

Figure 7.3: Baker field scanning pseudocode

7.2 Field scanning

Field scanning in the Baker collector is mostly the same as it is in the Cheney col-

lector. Field scanning for the Cheney collector is described in Chapter 6.3. The

implementation of field scanning differs from the Cheney collector in two respects.

First, I do not maintain an invariant in the Baker collector strong enough to ensure

that there is always enough space to copy an object. This requires the addition of a

space check every time the GC copies an object. Secondly, in the Baker collector mu-

tator writes during a collection can lead to gray objects containing to-space pointers

in addition to atomic values and from-space pointers. To handle this, field scanning

is modified to return immediately if any non-from-space value is encountered, in-

stead of returning an atomic value. The pseudocode for field scanning in the Baker

collector is given in Figure 7.3. notFromSpacePtr is analogous to notToSpacePtr:

it returns true if the argument is atomic or does not fall within the bounds of the

from-space.

The specifications are also mostly the same. A well-formed scan field state now

requires that there are disjoint from- and to-spaces, but does not require that the

set of white objects is smaller than the set of free objects. Also, the free space now

160

void bakerLoop () {

// scan some objects

i = 0;

while (scan != free && i < scan_per_gc) {

scanField(scan);

scanField(scan + 1);

scan += 2;

i += 1;

}

// allocate an object

if (free == alloc)

while (1) {};

alloc = alloc - 8;

alloc[0] = NULL;

alloc[1] = NULL;

return alloc;

}

Figure 7.4: Baker loop pseudocode

ends at the register ralloc instead of at the end of the to-space. In the specification

of the actual field scanning method, the field can now be in the to-space, in addition

to being atomic or in the from-space. If the field is a to-space pointer, the field is

not changed. The actual verification of the Baker scanField method is also largely

the same as it was in the Cheney collector.

7.3 The loop

7.3.1 Implementation

The implementation of the main garbage collection loop (pseudocode given in Fig-

ure 7.4) is almost the same as it is in the Cheney collector. While the scan pointer

and the free pointer are not equal, each object is scanned, in order. The difference

161

bakerLoopStOk(φ,W,M,F,A,S) ::=
S(rtoStart) ≤ S(rscan) ∧ aligned8(S(rscan),S(rfree)) ∧
scanFieldStOk(φ,W,M,F,A,S)

Figure 7.5: Baker loop state formation

is that there is an upper bound on the number of times the loop will execute, given

by the constant scan per gc.

Another difference is that garbage collection is always performed when an object is

allocated. As a consequence, after the loop an object is allocated and initialized. The

code for this is similar to the Cheney collector. The difference here is that objects are

allocated from the end of the to-space, to allow the collector to distinguish objects

allocated during the current collection cycle from objects copied by the collector.

The variable alloc points to the end of the free space, while free points to the

beginning. If these pointers are equal, there is no more space, and the collector goes

into an infinite loop.

I omit the assembly implementation here because it can be readily extrapolated

from the Cheney collector assembly implementation given previously and the pseu-

docode given above. One thing to note is that the collector stores the new values of

the various pointers into the GC info record before returning from allocation. There

are three blocks in the assembly implementation of the loop. bakerLoop performs

the loop test and the first call to scanField. bakerLoop2 increments the variables in

the loop, performs the second call to scanField, and returns to the top of the loop.

bakerExit performs the allocation and initialization of the new object, stores the

new values into the GC information record, and returns.

162

toSpace(S) ::= {k | S(rtoStart) ≤ k < S(rtoEnd)}

bakerLoopPre(S) ::=
∃φ,W,M,F.

bakerLoopStOk(φ,W,M,F,
(objHp(W ∪M ∪ toSpace(S), G) ∗ S(gcInfo) + 16 7→ −,−,− ∗ true),S)

where G = rangeObjs(S(rscan),S(rfree))

Figure 7.6: Baker loop precondition

7.3.2 Specification

While the implementation of the Baker loop looks very similar to the Cheney collec-

tor, the specification is fairly different. In the Cheney collector, the loop processes

every remaining reachable object so the “post-condition” of the loop guarantee de-

scribes a fully-collected heap. In the Baker collector, only some of the remain-

ing objects are examined, so the post-condition of the loop guarantee describes a

partially-collected heap.

The Baker loop state predicate, given in Figure 7.5, extends the Baker scan field

state predicate by requiring that the scan pointer is not before the beginning of the

to-space, and that the scan and free pointers are object aligned. In the Cheney

collector’s equivalent of this predicate, I fixed the set of gray objects. I do not do

this for the Baker collector because more flexibility is needed.

The Baker loop precondition, given in Figure 7.6, is almost the same as the

loop precondition of the Cheney collector. The two differences are that the gray

objects being scanned may now contain values in the to-space, and there is now

some description of the GC info record, because it must be updated before the loop

returns, to reflect the result of scanning and allocation.

The Baker loop guarantee, given in Figure 7.7, is where the real differences with

the Cheney collector show up. Remember that this guarantee describes the behavior

163

objRespToMap(φ,S, x) ::= objRespMap(φ ∪ idtoSpace(S)
,S, x)

objIsToFwded(φ, φ′,S, x) ::= objIsFwded(φ ∪ idtoSpace(S)
, φ′, S, x)

bakerLoopGuar(S,S′) ::=
(∀φ,G,W,M,F,A.
G = rangeObjs(S(rscan),S(rfree))→
bakerLoopStOk(φ,W,M,F,

(objHp(W ∪M ∪ toSpace(S), G) ∗ S(gcInfo) + 16 7→ −,−,− ∗ A),S)→
∃φ′, B,B′, G0, G

′,W ′,M ′, F ′.
W = M ′ ∪W ′ ∧ F = B′ ∪G′ ∪ F ′ ∪ {S′(ralloc)} ∧ M ′ ∼=φ′ B′ ∪G′ ∧
G = B ∪G0 ∧ B ∪B′ = rangeObjs(S(rscan),S′(rscan)) ∧
S(rscan) ≤ S′(rscan) ∧ aligned8(S(rfree),S′(rfree)) ∧
(∀x ∈ W ′. S′ `̀ objCopied(x,S, x) ∗ true) ∧
bakerLoopStOk(φ ∪ φ′,W ′,M ∪M ′, F ′,

(∀∗x ∈ B. objRespToMap(φ ∪ φ′,S, x)) ∗ (∀∗x ∈ G0. objCopied(x,S, x))∗
(∀∗x ∈ B′. objIsToFwded(φ, φ′,S, x)) ∗ (∀∗x ∈ G′. objCopiedMap(φ′,S, x))∗
S′(v0) 7→ NULL,NULL ∗ S(gcInfo)+16 7→ S′(rscan),S′(rfree),S′(ralloc) ∗ A,
S′)) ∧

(∀r 6∈ {ralloc, rscan, rfree, rcount, a0, v0, ra, ast, rtemp0, rtemp1, rtemp2, raSave0}.
S(r) = S′(r)) ∧

S′(ra) = S(raSave) ∧ S′(ralloc) + 8 = S(ralloc) ∧ S′(v0) = S′(ralloc)

Figure 7.7: Baker loop guarantee

164

of the remaining iterations of the loop, and thus does not concern itself with objects

that have already been copied and scanned in previous iterations of the loop, or in

previous invocations of the collector. The initial condition is similar (and almost the

same as the precondition of the Baker loop), but the “post-condition” is different. In

the Cheney collector loop, all gray objects (those that have been copied but have not

had their fields updated) have their fields updated, and all white objects reachable

from the gray objects are copied and have their fields updated. In the Baker collector,

there are a variety of things that can happen.

As in the Cheney collector, the initial set of objects that the collector is concerned

with are G (the set of objects that have previously been copied that the collector

needs to scan), M (the set of from-space objects that have already been copied, and

are mapped according to the partial function φ), W (the set of from-space objects

that have not yet been copied) and F (the set of unallocated objects in the to-space).

What happens to these objects? Each object in G is either scanned (in which

case it will be part of B) or not scanned (in which case it will be part of G0). Each

object in W is either determined to be reachable (in which case it will be copied

and become part of M ′) or remains unexamined (in which case it will be part of

W ′). The copies of the objects in M ′ are either scanned (those in B′) or remain

unscanned (those in G′). The new and old copies of these objects are related by the

isomorphism φ′. The initial set of objects F is split into B′ ∪ G′ (objects that are

newly copied), F ′ (remaining free objects) and S′(ralloc) (the object allocated after

the loop finishes).

There are some relationships between these sets that are not explicitly reflected

in the guarantee. For instance, if G0 is not empty, then B′ must be empty, because

the collector will scan all existing gray objects before it scans new ones.

There are some relationships between the various scan and allocation pointers

165

that are explicitly represented in the guarantee. The newly scanned objects make up

the set B∪B′, which must be the set of objects between the initial location of the scan

pointer S(rscan) and the final location of the scan pointer S′(rscan). Furthermore,

the new scan pointer is not smaller than the initial scan pointer. Also, the new

free pointer is object-aligned with the old one, meaning that some whole number of

objects has been allocated.

Another constraint is that all of the objects in W ′ (those that have not been

examined by the collector) remain unchanged.

Finally, the state after the collector loop is run is still a well-formed loop state.

The new mapping of from-space objects that have been copied to to-space objects

is φ ∪ φ′, the new set of unexamined from-space objects is W ′, the set of copied

from-space objects is M ∪M ′, and the new set of free objects is F ′.

Now for the complicated part of the memory specification, which describes the

part of the to-space that has been altered by the collector (along with the GC in-

formation record updates). To describe what happens here, I define two variations

of predicates used in the verification of the Cheney collector. objRespToMap(φ,S, x)

holds on a memory if the memory is a pair located at x, where the values of the fields

are the same as in S updated as follows: values that are atomic or in the to-space are

unchanged, while other object pointers are updated according to φ. This describes

objects in B that were copied before the loop and were scanned during the loop. The

second predicate, objIsToFwded(φ, φ′,S, x) is similar, except that the object at x was

copied from some location y such that φ′(y) = x, in addition to being scanned. This

describes objects in B′. Aside from that, objects in G0 are unchanged from the loop

entry, and all objects x ∈ G′ were copied unchanged from some location y such that

φ′(y) = x. Aside from these objects that were copied and/or scanned, an object has

been initialized at S′(v0) and the scan, free and allocation pointers have been stored

166

baker2Step(S) ::=
S{a0 S(rscan) + 4}{rscan S(rscan) + 8}
{rcount S(rcount) + 1}{ra BAKERLOOP}

bakerLoop2Pre(S) ::=
scanFieldPre(baker2Step(S)) ∧
∀S′. scanFieldGuar(baker2Step(S),S′)→ bakerLoopPre(S′)

bakerLoop2Guar(S,S′′) ::=
∃S′. scanFieldGuar(baker2Step(S),S′) ∧ bakerLoopGuar(S′,S′′)

Figure 7.8: Second Baker loop block specification

into the GC information record. Otherwise, memory is unchanged, as reflected by

A.

In addition to these changes to memory, the guarantee describes how various

registers are, or are not, changed. Of particular note, the specification states that

the allocation pointer is moved exactly enough to allocate a pair, and that the value

being returned is the new value of the allocation pointer. This means that the loop

does not actually need to use v0 to return a value, but I use it anyway to maintain

some semblance of a standard calling convention.

The specifications for the other two blocks in the loop are simpler. As is my

custom, I have designed the specifications to push most of the hard work into a

single proof.

For the specification of bakerLoop2, given in Figure 7.8, I first define a function

baker2Step that describes the behavior of that block, up to the call to scanField,

which is that various registers are incremented. The precondition is then that after

those register updates happen, it is safe to call the field scanning method, and that,

furthermore, after the return from scanning the field (which will be some state S′),

it will be safe to go to the start of the loop. The guarantee simply states that

167

bakerExitPre(S) ::=
aligned8(S(rfree),S(ralloc)) ∧
S `̀ S(gcInfo) + 16 7→ −,−,− ∗

(∀∗x ∈ rangeObjs(S(rfree),S(ralloc)). x 7→ −,−) ∗ true

bakerExitGuar(S,S′) ::=
(∀A. S `̀ S(gcInfo) + 16 7→ −,−,− ∗

(∀∗x ∈ rangeObjs(S(rfree),S(ralloc)). x 7→ −,−) ∗ A→
S′ `̀ S(gcInfo) + 16 7→ S(rscan),S(rfree),S′(ralloc) ∗

S′(ralloc) 7→ NULL,NULL ∗
(∀∗x ∈ rangeObjs(S(rfree),S′(ralloc)). x 7→ −,−) ∗ A) ∧

(∀r 6∈ {ralloc, v0, ra}. S(r) = S′(r))∧
S′(ralloc) + 8 = S(ralloc) ∧ S′(v0) = S′(ralloc) ∧ S′(ra) = S(raSave) ∧
aligned8(S(rfree),S′(ralloc))

Figure 7.9: Baker loop exit specification

bakerLoop2 updates some registers, scans a field, then enters the loop again.

The loop exit specification is given in Figure 7.9. The precondition requires that

three fields of the GC info record are present, and that there are objects in the range

from the free pointer to the allocation pointer. The exit block checks to ensure that

there is free space before allocating, so the precondition does not have to require it.

The guarantee says that the GC info record has been updated properly, and that

one object has been removed from the free space and initialized.

7.3.3 Verification

The verification of bakerLoop2 is very brief, as the specification is a description of

exactly what happens in the block. To verify bakerExit, the main task is to show

that if the free and allocation pointers are unequal, then there is at least one object

in the free space.

For the main block, bakerLoop, there are two main cases, depending on whether

the loop is exited or not. I will discuss each separately.

168

Case: loop exit

There are two ways the loop can exit: either the collection is complete, or the current

slice of collection is complete. To verify both of these cases, I first prove a lemma

that says that for all states S, if bakerLoopPre(S) then bakerExitPre(S) and for all

states S′ such that bakerExitGuar(S,S′), then bakerLoopGuar(S,S′). In other words,

if the loop precondition holds, it is safe to call bakerExit, and if bakerExit is then

executed, the entire loop will satisfy its specification. This lemma can be directly

applied to the case where the collector is finished, and with only a small amount of

additional work (to show that setting a temp register does not break anything) to

the case when the collector is only finished with the current increment.

Showing that it is safe to jump to bakerExit is only a matter of unfolding the

definition of bakerLoopStOk and matching up the memory predicates.

The loop precondition does not need to hold for the guarantee portion to hold.

First I must instantiate the various existential variables in the “post-condition” of

the guarantee. These are trivial, as there has been no additional collection. The map

φ′ that relates objects copied during the rest of this procedure to their new copies is

the empty map, as the loop is not copying anything, and the sets B and B′ of objects

that are newly scanned (or copied and scanned) are also empty, again because the

GC is not doing any more work before exiting the loop. The set of gray objects that

were left unscanned is the initial set of gray objects G. The set of new gray objects

is empty. The set of from-space objects still unexamined is W , and the set M ′ of

objects that are copied during the remainder of this call is empty. Finally, the set of

free objects is the initial set of free objects F minus the object that bakerExit will

allocate and initialize, S′(ralloc).

With these existentials selected, the various constraints on the sets can be verified.

169

Most of the sets are empty, so these constraints are easy to show. A lemma is needed

to prove that an empty map is an isomorphism from the empty set to the empty set.

To show that objects in G and W are not changed by bakerExit, I extract the

portion of memory that contains them before applying its guarantee. Otherwise,

showing that memory is well-formed is mostly a matter of showing that various

empty sets can be ignored. For part of this, I use a lemma that shows that the

set of objects in a range is non-empty if the ends are object-aligned and not equal.

It not entirely straightforward to show that the gray objects were copied properly,

requiring reasoning about sub-memories. The rest of the proof is straightforward.

Case: back into the loop (safety)

In this case, the GC has neither finished the collection nor the current increment, so

it will execute the body of the loop again. The loop invariant bakerLoopPre holds

on the initial state, the scan and free pointers are not equal, and the count is less

than the number of scans for a single invocation of the collector. I must show that

it is safe to scan the first field, and that after the GC has scanned the first field it

can call bakerLoop2 and that after it has executed bakerLoop2, the entire call has

satisfied the loop guarantee.

First I show that the scan pointer is in the set of gray objects G. This requires

knowing that the scan pointer and the free pointer are not equal.

First call to scan field To show that the first call to scan field is okay, I must first

select the various sets (the set of white objects, mapped objects and free objects),

along with the map that relates the mapped objects to to-space objects, but these

are all unchanged from the entry into the loop, as no more work has been done yet.

I must also show that the field being scanned is well-formed and contains either an

170

atomic value, a to-space value, or a from-space pointer. The field being scanned is

part of an object that is in G and all fields of objects in G are well-formed in this

way, so showing this only requires the application of standard object heap lemmas.

Call to bakerLoop2 Next, I must verify that it is safe to jump to bakerLoop2

after scanning the first field. This requires showing that it is safe to scan the second

field and that after scanning the second field it is safe to jump back to the start of

the loop. Before I do this, I apply the field scanning guarantee, to get a predicate

describing the state after the first field has been scanned.

At the second call to scanField, the sets of objects have changed. The white and

free sets of objects are the white and free sets of objects resulting from the first call to

scanField, while the set of copied objects is the initial set of copied objects plus the

set of objects that were copied by the call to scanField. Finally, the isomorphism

is the initial one plus the one created by the first call. The remainder of the safety

proof for the second call to scanField is straightforward.

To show that it is safe to return to the start of the loop, I apply the guarantee

of the second call to scanField to a description of the state before the call. This

produces a description of the state after the second call, which is also the state in

which the GC returns to the loop entry.

To show it is safe to reenter the loop, values must again be selected for the various

sets of objects. As before, the sets of white objects and free space objects are the

same as those “returned” by the second call to scanField. The set of gray objects

is the set of gray objects starting at the scan pointer and ending at the free pointer.

The set of mapped objects is a combination of the initial set of mapped objects

and the sets of objects mapped by the two calls to scanField. The isomorphism

relating mapped objects to to-space objects is a similar combination of the three

171

corresponding isomorphisms.

The new scan pointer is object-aligned with the new free pointer because the

initial scan and free pointers are not equal (so there must be at least one gray

object), the new scan pointer is 8 more than the initial scan pointer, and because

the old and new free pointers are object aligned.

Finally, I must show that the gray objects created by the first and the second calls

to scanfield are well-formed, containing only the appropriate sorts of pointers. To

do this, I first establish that the two sets of gray objects created by the two calls are

the sets of objects allocated during each call. In other words, each gray set begins at

the value of the free pointer before the call and ends at the value of the free pointer

after the call. As it happens, each is either empty or contains a single element, but

specifying them in this way avoids creating too many cases. In any event, I must

reason about the various sets of gray and free objects along with their disjointedness

(which is implied by scanFieldStOk). For instance, the start and end points of the

initial free set are known, and this set is split into the gray and free sets produced

by the first call to scanField.

Once these sets are established, the gray object heap can be split into one part for

each of these three gray sets (the two created by the calls, plus the initial set minus

the object the GC just scanned). It must be shown that each part is well-formed

(contain only atomic values, to-space values, or from-space pointers). The newly

reduced initial set of gray objects is well-formed because it was well-formed at the

beginning and has not subsequently changed. For the other two, I use a lemma that

states that a copy of a well-formed object is a well-formed object.

172

Case: back into the loop (guarantee)

The last part of verifying bakerLoop is to verify that it has the proper behavior.

It must be shown that if rscan 6= rfree and the loop scans both fields of the first

gray object then executes the loop k more times, then the loop guarantee for k + 1

executions of the loop has been satisfied. A large chunk of this proof looks like the

safety proof: a description of the initial state is combined with the various guarantees

of the calls the loop makes to produce a description of the final state.

Once I have finally stepped through that largely duplicated portion of the proof,

I must describe the final state. First I must instantiate all of the existential variables.

The isomorphism from old objects to new objects is simply the union of the isomor-

phisms created by the scanning of each field, plus the isomorphism from the rest of

the iterations of the loop. The set of from-space objects that have been copied in

the final state is similarly a union of the three sets of from-space objects that were

copied. The sets of remaining unscanned from-space objects and free objects are the

same as they were after the execution of the loop.

For the rest of the sets, things become more complicated. The problem is that

the rest of the iterations of the loop will scan some or all of the gray objects, but it

cannot be determined which of these two cases actually holds.

There are many overlapping sets of gray objects created by the guarantees of the

components I am trying to combine:

G initial set of gray objects

G1 copied by the first field scan

G2 copied by the second field scan

G3 copied before restarting the loop, still unscanned at end of loop

G4 copied after restarting the loop, still unscanned at end of loop

Also, remember that in this iteration of the loop the GC has scanned the object

173

S(rscan). B and B′ are the sets of objects scanned beginning with the next iteration

of the loop, where B is those objects that were gray at the start of the next iteration

of the loop and B′ is the rest of the newly scanned objects, which were copied during

the rest of the iterations of the loop.

First, the set of objects that, during the entire execution of the loop, were scanned,

but not newly copied, is {S(rscan)}∪ (B ∩G). In other words, this is the object that

the GC scanned during this iteration of the loop, along with any objects scanned

during the rest of the loop (B) that were also gray at the initial entry into the loop

(G).

Next, the set of objects that were copied and had their fields forwarded is (B ∩

(G1 ∪G2))∪B′. In other words, this is the set of objects that were scanned but not

copied during the rest of the loop, but were copied during the first iteration of the

loop, along with those objects B′ that were copied and scanned in the rest of the

iterations of the loop.

The set of gray objects that were neither copied nor scanned during the loop is

G∩G3, which is those objects that were gray upon entry into the loop, and gray upon

exit from the loop. The set of objects that were copied during the entire execution

of the loop but not scanned is ((G1 ∪G2) ∩G3) ∪G4.

All that remains is to show that the final state actually satisfies all of these sets

that I have selected. This involves a lot of reasoning about sets, requiring properties

such as the distributivity of set intersection over set union and the associativity of

set union. It also requires a lemma that says that the union of two isomorphisms

is an isomorphism from the union of their domains to the unions of their ranges, if

their domains and ranges are disjoint.

To show that the final state is well-formed, I must split up and then recombine

in different ways many sets. For instance, B can be split into the set of initially

174

gray objects that were scanned after reentering the loop ((G − {(S(rscan))}) ∩ B)

and the set of objects that became gray during the first iteration of the loop that

were scanned after reentering the loop ((G1 ∪G2)∩B). I also apply various lemmas

that allow me to reason about transitivity. For example, if an object is unchanged

from a state S to a state S′, and state S′′ contains a scanned version of the object

from S′, then it also contains a scanned version of the object in S. Or, if an object is

copied and scanned from state S to S′, then unchanged from state S′ to S′′, then it

is also copied and scanned from S to S′′. Some of these lemmas can be reused from

the verification of the Cheney collector, but some are new. In addition, I also have

to reason about weakening of object forwarding: if an object has been forwarded

according to map φ, then it has also been forwarded according to the map φ ∪ φ′, if

φ and φ′ are disjoint in their domains and ranges.

7.4 Allocator

Next I will discuss the entry point into the Baker allocator. The actual allocation

occurs after the loop, as described in the previous section. In terms of the actual

instructions, the allocator blocks mostly initialize variables and perform a few checks.

However, this is where I show that the concrete representation I have described so far

in this chapter matches with the abstract representation described in Chapter 5.4.

The Baker collector has the most complex representation of any of the collectors I

have discussed. For this reason, the verification of the allocator entry block is more

complex than verifying the loop, at around 4300 lines of Coq proof, versus 3000 lines

to verify loop.

175

void bakerAlloc () {

// if we have not run out of space, do some collection

// and allocate a new object

if (free <> alloc)

return bakerLoop();

// if we are out of space, but have not finished scanning, abort

if (scan < free)

while (1) {};

// swap semi-spaces

swap(frStart, toStart);

swap(frEnd, toEnd);

// init other pointers

free = toStart;

scan = toStart;

alloc = toEnd;

scanField(root);

return bakerLoop();

}

Figure 7.10: Baker allocator pseudocode

176

7.4.1 Implementation

Pseudocode for the implementation is given in Figure 7.10. If there is still space left,

the allocator immediately goes to the loop, which performs some collection work and

allocates a new object. If not, and the previous collection has not completed, the

collector gives up. It is possible to maintain an invariant between the amount of work

left and the number of free objects left that would avoid this, but it also sometimes

requires expanding the size of the semi-spaces (for instance, if there is not enough

free space left after a collection to maintain the ratio), so I skip it to simplify things.

The actual assembly implementation is broken into two blocks. The first block,

bakerAlloc, does most of the work. The second block, restoreRoot does a little bit

of cleanup, then performs the final call to bakerLoop. Otherwise, the main difference

from the pseudocode implementation is that the various pointers are stored in mem-

ory instead of in global variables, which must be restored and saved appropriately.

7.4.2 Specification

Basic state formation

Before I give the actual specifications for the two blocks in the allocator, I first need

to build up some helper specifications. First, the basic formation specification for

the Baker collector is given in Figure 7.11. This has a number of parameters that can

be instantiated in different ways at different points in the code. MA is the abstract

memory and M is the concrete memory. gcInfo is a pointer to the GC information

record, root is the root, while frStart, frEnd, toStart and toEnd are the beginning and

ends of the from- and to- spaces. scan, free and alloc are the scan, free and allocation

pointers. The scan pointer points to the first unscanned object, while the free and

allocation pointers demarcate the beginning and end of the free space. x, y and z are

177

bakerStOk′(MA,M, gcInfo, root, frStart, frEnd, toStart, toEnd, scan, free, alloc,
x, y, z, A) ::=
∃φ,W,M.

aligned8 [toStart, scan, free, alloc, toEnd] ∧ aligned8(frStart, frEnd) ∧
W ∪M = rangeObjs(frStart, frEnd) ∧M ∼=φ B ∪G ∧
okFieldVal(toObjs, root) ∧
M `̀mapHp(M,φ) ∗ objHp(W ∪M,W)∗

objHp(toObjs, B ∪B′) ∗ objHp(W ∪M ∪ toObjs, G) ∗
(∀∗x ∈ rangeObjs(free, alloc). x 7→ −,−) ∗
gcInfo 7→ frStart, frEnd, toStart, toEnd, x, y, z ∗ A ∧

MA `̀ (∀∗x ∈ B ∪B′. objCopied(x,M, x)) ∗
(∀∗x ∈ G ∪W. objRespMap(φid,M, x))

where B = rangeObjs(toStart, scan), B′ = rangeObjs(alloc, toEnd),
G = rangeObjs(scan, free), toObjs = B ∪G ∪B′

Figure 7.11: Basic Baker state well-formedness predicate

the values of the last three fields of the GC information record. While the collector is

not operating, x, y and z will be the values of the scan, free and allocation pointers,

respectively. Finally, as usual A describes the portion of the concrete memory not

containing the collector data structure.

There are only three existential variables for this predicate. φ is the isomorphism

describing the object copying that has already occurred. M is the set of from-space

objects that have been copied already, while W is the rest of the from-space objects.

There are also a few abbreviations I use for convenience. B is the set of objects that

have already been copied and scanned, ranging from the beginning of the to-space

to the scan pointer, while B′ is the set of objects that have been allocated by the

mutator during the current collection cycle and ranges from the allocation pointer to

the end of the to-space. G is the set of gray objects (objects that have been copied

but not scanned), and ranges from the scan pointer to the free pointer. Finally,

toObjs is the set of allocated to-space objects, and includes all three of these sets.

178

First there are constraints that do not involve memory. The many heap pointers

must be object aligned, to avoid having to reason about fractional objects. I write

aligned8 [x0, x1, ...xn] as an abbreviation for aligned8(x0, x1)∧ aligned8(x1, x2)∧ ...∧

aligned8(xn−1, xn). Next, W and M must together comprise the entire from-space,

and φ must be an isomorphism from M to B ∪ G. The root must either be atomic

or a pointer to a to-space object. Note that the root cannot contain a from-space

pointer. The read barrier will maintain this invariant.

The next part of the invariant describes the concrete memory. The concrete

memory contains mapped objects M which implement the finite map φ, uncopied

from-space objects W which can only point to other from-space objects, black to-

space objects B ∪ B′ that can only point to to-space objects, and gray objects G

that can point to either from- or to-space objects. Next, there is a pair for every

object in the free space. Finally, the concrete memory contains a record with all of

the garbage collector information and the rest of memory is described by A.

The abstract memory contains two types of objects and nothing else. First, any

black objects (in B ∪ B′) are copied exactly from the concrete memory. The other

objects, in G and W , might contain from-space pointers in the concrete memory, so

the invariant requires that in the abstract memory they have their fields mapped by

the forwarding map. The map used to do the forwarding is φid, which is simply the

map φ extended with the identity map at any object not in M . In this way, the

abstract memory is a version of the concrete object heap where all obsolete pointers

to M have been forwarded by φ.

State formation variants

Three variants of the basic Baker state formation predicate are given in Figure 7.12.

All of these variants take three arguments. The first argument is the abstract state,

179

bakerStOk(A, A,S) ::=
∃frStart, frEnd, toStart, toEnd, scan, free, alloc.

A(root) = S(root) ∧
bakerStOk′(memOf(A),memOf(S), S(gcInfo),S(root),

frStart, frEnd, toStart, toEnd, scan, free, alloc, scan, free, alloc, A)

bakerStOkLoaded(A, A,S) ::=
∃x, y, z.

A(root) = S(root) ∧
bakerStOk′(memOf(A),memOf(S), S(gcInfo),S(root),S(rfrStart),S(rfrEnd),

S(rtoStart), S(rtoEnd), S(rscan),S(rfree),S(ralloc), x, y, z, A)

bakerStOkPost(A, A,S) ::=
∃frStart, frEnd, toStart, toEnd, scan, free, alloc.

A(root) = S(root) ∧
x ∈ rangeObjs(alloc, toEnd) ∧
A(x) 6∈ dom(memOf(A)) ∧ (A(x) + 4) 6∈ dom(memOf(A)) ∧
bakerStOk′(memOf(A′),memOf(S),S(gcInfo),S(root), frStart, frEnd, toStart,

toEnd, scan, free, alloc, scan, free, alloc, A)
where x = S(v0) and A′ = A{x NULL}{x+ 4 NULL}{v0 x}

Figure 7.12: Baker state well-formedness predicate variants

180

the second is the predicate describing the remainder of the concrete memory, and

the third argument is the concrete state. All three of these variants require that the

roots in the concrete and abstract states are equal, like all of the collectors I have

discussed. (This is not the case in, for instance, the Brooks incremental copying

collector [Brooks 1984].) Also, in all three variants the root and GC information

record pointer are stored in registers, and the memories of the abstract and concrete

states are passed along to bakerStOk′.

The predicate bakerStOk describes the state when the collector is not running.

No additional pointers are in registers, and the values of the scan, free and allocation

pointers are stored in the GC information record. The predicate bakerStLoaded

describes the state after the GC information record has been loaded into registers.

In this state, all of the relevant pointers have been loaded, and the values of the scan,

free and allocation slots in the GC information record are junk values x, y and z

the GC does not care about. Finally, bakerStOkPost describes the state after a new

object has been allocated. The new object is stored in x (i.e., S(v0)). The new object

is in the range of allocated objects, and must not exist in the initial abstract state A.

The new abstract state A′ is the actual abstract state represented by the concrete

state, and is the initial abstract state with the fields of the new object initialized and

the return register updated. Otherwise, the various pointers (aside from gcInfo and

root) are stored away in memory, as in bakerStOk.

Code block specifications

I use the basic Baker allocator state predicates to define the specifications for the

code blocks. The specifications for the allocator entry point are given in Figure 7.13.

This allocator specification is similar in spirit to the high-level allocator specifica-

tion given in Chapter 4, but not identical. There is no fundamental reason for this

181

bakerAllocPre(S) ::= ∃M. bakerStOk(M, true, S)

bakerVirtGuar(A,A′) ::=
∀objs,M. A `̀ (minObjHp({A(root)}, objs) ∧ eq M) ∗ true→
∃objs′, φ. objs ∼=φ objs′ ∧ φ∗(A(root)) = A′(root) ∧

A′ `̀ (∀∗x ∈ objs′. objIsFwded1(φ,M, x)) ∗ true

bakerAllocGuar(S,S′) ::=
(∀A, A. bakerStOk(A, A,S)→
∃A′. bakerVirtGuar(A,A′) ∧ bakerStOkPost(A′, A,S′)) ∧

calleeSavedOk(S, S′) ∧ S(ra) = S′(ra)

Figure 7.13: Baker allocator specification

discrepancy. The Baker-specific specification was developed from the bottom-up to

give a comprehensible specification for the Baker collector. On the other hand, the

general interface was developed from the top-down, in an attempt to describe allo-

cation in general. In Section 7.4.5, I will describe how I prove that the specification

given in this section is weaker than the top-down specification described previously.

In any event, the precondition simply requires that the state is a well-formed

Baker collector state. For the guarantee, I first define an abstract guarantee. This

says that for any minimal set of objects objs reachable from the root register contained

in a memory M, there exists some other set of objects objs′ and a map φ such that

φ is an isomorphism from objs to objs′. Furthermore, the root in A′ is forwarded

according to φ, and the fields of the objects in objs are forwarded versions of the

equivalent objects in objs. I do not specify what happens to the rest of the abstract

memory. Note that objs, and thus M, is unique, but the verification of the allocator

does not depend on this, so I do not prove it.

Using the abstract guarantee, I can define the concrete guarantee for the allocator.

In any well-formed Baker state that represents the abstract state A, there exists

some other abstract state A′ such that A and A′ are related by the abstract Baker

182

restoreRootPre(S) ::=
∃root,M. S `̀ S(gcInfo) + 16 7→ root ∗ true ∧

bakerStOkLoaded(M, true,S{root root})

restoreRootGuar(S,S′) ::=
∀root. S `̀ S(gcInfo) + 16 7→ root ∗ true→

(∃M. bakerStOkLoaded(M, true,S′))∧
bakerLoopGuar(S{root root},S′)

Figure 7.14: Restore root specification

guarantee, and the final concrete state represents the final abstract state.

I give the specification for restoreRoot in Figure 7.14. The precondition requires

that the root is stored in a particular field of the GC information record, and that

the state is a well-formed Baker collector state in which the pointer values have been

loaded into registers. The root must be stored in the GC record because the field

scanning method only scans values stored in memory, and reusing the GC record

avoids some allocation. The guarantee says that the result of this block is a well-

formed loaded Baker collector state, such that the initial and final states are related

by the collector guarantee, once the root register has been updated. Note that the

precondition is not fully present in the guarantee as is usually the case, but here it

is not needed.

7.4.3 Allocator verification

The beginning of bakerAlloc is a series of loads and adds (not shown in the pseu-

docode) that are easy to verify. At the first branch, there are two cases: either there

is space left or there is not.

183

Flip before collection

I consider the case where there is no space left first. In this case, the GC must flip

the semi-spaces and scan the root before it can continue. There are two subcases

here. Either the previous collection has finished or it has not. If it has not, then the

GC immediately goes into an infinite loop, so that subcase is easy to verify. If it has

finished, then verification can proceed, knowing that the scan pointer is greater than

or equal to the free pointer. The actual flip is a series of adds and stores, so that is

easy to verify.

After this, I pause to reflect the flip onto the abstract level, by first renaming the

from- and to-space pointers to reflect their current status. Also, the free and scan

pointers must be equal, which means there are fewer variables to worry about. I also

clean up the memory predicate. For instance, I coalesce the old white and mapped

objects into a single buffer, which is the new to-space. I also show that the two old

sets of allocated objects, B and B′, together cover the entire old to-space.

Once this is done, showing that it is safe to call scanField is mostly a matter

of grinding through some tedious proofs. The only interesting part is selecting what

the various sets of objects are. Because the GC has just flipped the semi-spaces,

going into the call to scanField the forwarding map is empty, the set of white space

objects is all of the objects of the from-space, and the set of copied objects is empty.

Finally, the set of free objects is all of the objects of the to-space.

After this, I must show that it is safe to call restoreRoot. To do this, I have to

select an abstract memory that is encoded in the concrete state. The concrete version

of this abstract memory is the part of the memory that contains the gray objects

generated by scanning the root, along with the remaining white space objects. To

convert this concrete sub-memory to an abstract sub-memory, I map its range with

184

φid, where φ is the mapping of copied from-space objects to to-space objects created,

as before, by scanning the root. As I have said before, φid is the map φ extended by

the identity function everywhere except the domain of φ. Showing that the concrete

state is well-formed requires applying many of the lemmas I have used before, plus

a lemma that says that rangeObjs(x, x) is equal to the empty set.

First I use a lemma to show that the sub-memory of the concrete state that

contains the objects I am interested in is copied from the larger sub-memory. Then

I use some lemmas to relate a memory to a version of the memory that is mapped

by a function f . For instance, if M `̀ x 7→ y, then M′ `̀ x 7→ f y, where M′ is M

with its range mapped by f . Similar lemmas are needed for ∗ and ∀∗. Using these

lemmas I can easily show that the abstract memory I selected properly matches the

concrete memory.

Guarantee

Finally for this case, I have to show that the guarantee is satisfied. This requires

stepping through the guarantees of root scanning and the Baker loop, which is similar

to what I have already done. There also is a lot of miscellaneous cleanup.

Once this is done, I work to eliminate the various intermediate states by describing

the final state in terms of the initial state. For instance, while the objects scanned

by the loop have merely had their fields forwarded relative to the beginning of the

loop, they have in fact been copied and scanned since the entry to the function, as

there were no objects in the to-space initially. Similarly, gray objects that the loop

did not scan have not been changed relative to the entry into the loop, but have been

copied from the from-space relative to the entry into the function. And so on for the

various other sets of objects.

After the intermediate states have been cleaned up, I must show that the abstract

185

guarantee holds, and that the final concrete state is well-formed. For the abstract

guarantee, the set objs′ of reachable objects in the final state is the initial set of

reachable objects (objs) mapped by (φ ∪ φ′)id, where φ and φ′ are the object map-

pings created by scanning the root and running the collector loop, respectively. In

other words, any object that has been copied is mapped to its copy, and the rest are

left alone. The mapping from the initial to the final sets of objects is idW ′ ∪ φ ∪ φ′,

with the domain restricted to objects in the initial set of reachable objects. I show

that objs′ is a subset of the gray, black and white objects at the end of the loop.

I must also show that various combinations of the objects are disjoint, in the ways

that one might expect. For instance, the set of objects that have been copied from

the from-space is disjoint from the set of to-space objects. I must also prove that the

prelude of the allocator that initializes the various fields does not alter the value of

any of the objects.

I must also show that the final abstract memory contains the objects in objs′,

and furthermore that these objects have been copied and forwarded according to the

map idW ′∪φ∪φ′. The concrete version of this memory must contain white, gray and

black objects. The white objects have been left unchanged, the gray objects have

been copied, and the black objects have been forwarded. First I split each of these

sets (for instance, W ′) into parts that are reachable in the final state (for instance,

W ′ ∪ objs′) and those that are not (for instance, W ′ − objs′). With a few lemmas

about these set operations, I can show this splitting is sound. Now I must show that

mapping the fields of the reachable objects in the white, gray and black sets results

in forwarded objects from the initial abstract state. Doing this requires the set of

lemmas mentioned before that describe what happens when the range of a memory

is mapped according to a function f . For instance, one of these lemmas states that

if M `̀ x 7→ y, then M′ `̀ x 7→ f y, where M′ is M with its range mapped by f .

186

=

same or copied or

copied and mapped

copied by idW’UΦUΦ’

mapped by (idW’UΦUΦ’)* ?

fields mapped

by (ΦUΦ’)
id

abstract

concrete

initial final

Figure 7.15: Baker commutativity

I also use a lemma that states that if S ⊆ S ′, then S = S ′ ∩ S, where S ′ is objs′

and S is the set of white, gray and black objects in the final state. After some more

tedious reasoning steps, I can show that objs′ is equal to the union of three sets,

where each of these sets is the intersection of objs′ with either the white, gray or

black objects.

A diagram showing what I am trying to prove is given in Figure 7.15. Each dot

represents one of the states being reasoned about. The top two states are abstract

states, while the bottom two states are concrete. The two states on the left are the

initial states, while the ones on the right are the final states. For instance, the upper

left state is the initial abstract state. A solid line indicates a known relationship

between two states, while the dotted line between the two top states indicates the

relationship I must prove holds.

There are three cases to consider, one for each color (white, black and gray). For

each of these colors, the final abstract state is the final concrete state with its fields

mapped by (φ ∪ φ′)id. Also, the initial abstract and concrete states are identical,

because the initial state represents the state at the beginning of a collection cycle,

187

so no forwarding needs to be done. The relationship between the initial and final

concrete states depends on the color of the object. White objects are unchanged.

Gray and black objects have been copied, following the mapping φ∪φ′. Black objects

have also had their fields forwarded, using the mapping (φ ∪ φ′)id.

The edge connecting the two top states is, as I have said, what I am trying

to prove. Specifically, I am trying to show that all of the objects in the abstract

state have been copied (and had their fields forwarded) according to the mapping

idW ′ ∪φ∪φ′. This is basically a commutativity diagram, so this can be solved this in

the obvious way: I show that the composition of the left, bottom and right relations

implies the top relation.

Consider the case of an object that is white after the collector has run (that

is, an object in W ′). This object is the same in the initial abstract and initial

concrete states. It is also the same in the initial and final concrete states. Thus the

relationship between this object in the initial abstract state and the final abstract

state is equal to the relationship between this object in the final concrete state and

the final abstract state.

Consider the top edge. Copying an object x in W ′ according to the map idW ′ ∪

φ∪φ′ does not do anything because (idW ′ ∪φ∪φ′)(x) = x. Thus for this case it only

remains to show that mapping the fields of a white object with the map (idW ′∪φ∪φ′)∗

is the same as mapping the fields with (φ ∪ φ′)id. The typing judgment of white

objects implies that there are only three subcases to consider for the value v of a

field:

1. The field value v is atomic. In this case, v is odd, and thus it cannot be in the

domain of φ ∪ φ′. Thus with both maps v is mapped to v. Subcase holds.

2. The field value v is in W ′. Again, v is not in the domain of φ ∪ φ′, and thus

188

v will again be mapped to v by both maps. (Though for slightly different

reasons.) Subcase holds.

3. The field value v is in M ∪M ′ (the sets of objects that have been copied). In

this case, v must be even and not in W ′, so both maps will map v to (φ∪φ′)(v).

Subcase holds.

All subcases hold, so this case holds.

The cases for black and gray objects are similar. First, compose the effects of

the three sides, simplifying where possible. Then ensure that the objects are copied

to the same places. Finally, ensure the fields of the objects are updated properly by

considering the various possible values of the fields.

Next, I must show that the object being allocated is not already part of the

abstract object heap. I can do this because I have already shown that the object

being allocated is not part of the concrete object heap, and the abstract object heap

is just the concrete object heap with its range mapped.

Then, I must show that the final concrete state is well-formed. In addition to

the usual barrage of tedious reasoning about sets, I must show that the final object

heap is well-formed. This requires showing that the colored sets produced by the

collector do indeed occur in the expected ranges, a sort of reasoning I have had to do

before. It also requires showing that an object with its fields initialized to NULL is

well-formed, and that forwarding a well-formed object results in another well-formed

object that contains object pointers in the range of the map used for forwarding, if

the initial object had only pointers in the domain of the forwarding map. The final

major bit of reasoning here requires showing that the gray objects are well-formed,

which is true because they are copies of well-formed white-space objects.

Finally, I must show that the final abstract state is well-formed, by showing that

189

black objects are the same in the concrete and abstract states, and that gray and

white objects are forwarded using the current mapping. Black objects are the same

in both states because any pointers they contain are for to-space objects, and the

map only changes from-space objects. For gray and white objects, I am basically

just showing that their field values are in the domain of the mapping. I also have

to reason about the addition of the newly allocated object to the abstract memory.

To do this, I use a lemma that says that if M `̀ A, ¬M `̀ x 7→ − ∗ true and x is a

word-aligned pointer, then M{x v} `̀ x 7→ v ∗ A. In other words, if x is fresh in

memory, then setting x to some value v will extend memory with that value, without

interfering with the rest of memory.

After the usual light reasoning about the registers, this case is complete.

No need to flip

In this case, there is still free space left, so there is no need to flip spaces and start

a new collection. But the GC still needs to do some more work for the current

collection. This case is easier than the other case in some respects, as I do not have

to reason about the flip. On the other hand, things are not starting from a clean

slate, as the initial set of copied objects is not empty.

First I define the various sets of objects, and relate them to the various pointers.

The to-space looks like Figure 7.2. One set of black objects begins at the beginning

of the to-space and ends at the scan pointer. The set of gray objects begins at the

scan pointer and ends at the free pointer. These objects together comprise the set of

objects that have been copied during the current collection cycle. An isomorphism

φ relates the set of copied from-space objects M to them. In addition, there is

another set of black objects that have been allocated during the current collection

cycle, which ranges from the allocation pointer to the end of the to-space. These

190

two sets of black objects plus the set of gray objects together comprise the set of

allocated to-space objects. The root is either atomic or a member of the set of to-

space objects. There are also unallocated free objects F in the to-space that range

from the free pointer to the allocation pointer. The allocated to-space objects along

with F comprise the entire to-space. The from-space is made up of copied objects

M plus white objects W that have not been copied.

Once that is done, I can show that it is safe to enter the Baker loop, which

poses no difficulties. Next, I must verify the guarantee. After a little cleanup of

the hypotheses I apply the loop guarantee. After that, I can extract the concrete

object heap from the larger concrete state. As in the other case, the abstract state

is (M′, rfileOf(S′)), where S′ is the final concrete state and M′ is the concrete object

heap with its range mapped by (φ ∪ φ′)id. φ is the initial mapping from copied

objects to to-space objects, and φ′ is the mapping created by the execution of the

Baker loop. Before showing the rest of the guarantee, I show that various sets are

disjoint as one might expect. For instance, W and M are disjoint.

Next I must show that the abstract guarantee holds. The set of reachable objects

in the final state is the set of reachable objects in the initial state mapped by φ and

φ′. This is fairly similar to the equivalent part of the other case.

Finally I show bakerStOkPost (defined in Figure 7.12) holds on the final state.

There are a number of subgoals here.

The first tricky subgoal is to show that each field of the newly allocated object

is fresh in the abstract object heap (i.e., was not previously allocated). First I

establish that the newly allocated object is fresh in the concrete object heap. I do

this by contradiction: the object being allocated must be part of the concrete memory

outside of the object heap (specifically, in the free space), so it cannot be part of the

concrete memory inside of the object heap. Next, the concrete and abstract object

191

heaps must have the same domain, so the newly allocated object cannot have been

part of the initial abstract object heap either.

Next, I must show that the final state satisfies bakerStOk′, defined in Figure 7.11.

The mapping from old to new objects is the union of the old and new mappings, while

the set of white objects is the set of white objects after performing the collection.

Finally, the set of mapped objects is the initial set of mapped objects plus the set of

objects copied during the most recent collection. After this, there is a lot of tedious

reasoning about finite sets and the alignment of objects.

In one of these subgoals, I show that the set of gray objects in the final state (that

range from the final scan pointer to the final free pointer) is equivalent to the initial

set of gray objects, minus the set of newly black objects, and along with the new

gray objects. This lemma requires a 150 line Coq proof, reasoning about the various

contiguous sets of objects (gray, black and free) in terms of splitting, coalescing,

disjointedness, and the alignment of the pointers demarcating each of these sets.

Next I show that the concrete object heap contains the appropriate white, black

and gray objects, and that each color of object contains references of the appropriate

color (white contains white and mapped, black contains black and gray, and gray con-

tains any of the above). This requires the usual reasoning about the well-formedness

of copied or scanned well-formed objects, which should probably be factored out into

lemmas.

I then use the fact that the concrete object heap is well-formed to help show that

the entire concrete memory is well-formed. I must also use the various set equalities

I previously proved.

Finally, I must show that the abstract memory contains copies of all of the black

objects, and forwarded versions of the gray and white objects. This is true because

the abstract memory is a forwarded version of the concrete object memory. Black

192

objects contain only to-space objects, so their fields are unchanged by the forwarding

function. To prove this, I deploy my set of lemmas for reasoning about memories

with their ranges mapped, as discussed in Section 7.4.3.

With that, and the simple checking of the register specifications, the verification

of the main allocator block is complete.

7.4.4 Restore root verification

As I have discussed in previous sections, restoreRoot does not do very much: it

loads the new value of the root back into the root register, then invokes the Baker

collector loop. Nonetheless, the verification of the specification (given in Figure 7.14)

is not trivial, though not as long as the rest of the allocator. The hard part here is

showing that the state after the loop runs is a well-formed Baker state. In the end,

though, this is almost identical to the proof for the case of the allocator when there

is no need to flip, as described in Section 7.4.3. In fact, most of the proof is just

copied and pasted directly from there. It would of course be more elegant to factor

out the common proof into a lemma. This similarity is not surprising, as most of

the proof is concerned with reconciling the loop’s limited view of the state with the

allocator’s broader view of the state.

7.4.5 Specification weakening

I have now verified that the allocator matches the specification in Figure 7.13, but

this is not the final specification I wish to give to the allocator, which is given in

Figure 4.8. While these two specifications are at a similar level of abstraction, some

of the details are different.

The first task is to show that the Baker state well-formedness predicate is equiv-

193

alent in strength to the Baker representation predicate that I have defined. In other

words, I must show ∀S,A, A. S `̀ repr(A, rfileOf(S), {root})∗A ↔ bakerStOk(A, A,S).

The main difficulty of this proof is that each predicate treats the abstract memory

in a different way. In repr, the abstract memory is a scanned version of the part of

the concrete memory containing white, gray and black objects. bakerStOk is more

fine grained, specifying that the abstract memory contains copies of black objects,

and scanned versions of white and gray objects. So, I must show that the black

objects are not affected by the forwarding map. This is the case because black

objects cannot contain from-space pointers, which are the only values affected by

the forwarding map. This is a bit tedious, but nothing fundamentally different from

what has been done in the rest of the verification of the Baker collector.

The second task is to show that the postcondition of the allocator, bakerStOkPost,

implies that the concrete state contains the representation of the abstract state with

an additional object allocated. In other words, it must be shown that

∀S,A, A. bakerStOkPost(A, A,S)→ S `̀ repr(A′, rfileOf(S), {v0, root}) ∗ A

where A′ = A{x NULL}{x + 4 NULL}{v0 x} and x = S(v0). To prove

this, I use the equivalence between bakerStOk and repr I have already established,

and show that I can add a root that contains a to-space pointer.

Combining the previous two facts, I can show that the precondition of the Baker

allocator I have already verified is equivalent to the precondition of the allocation

operation from the GC interface.

Next, I must show that the Baker allocator guarantee implies the GC interface’s

allocator guarantee. To do this, I first show that bakerVirtGuar implies the interface’s

GC guarantee. I must show that the reachable portion of a state is isomorphic to the

194

forwarded version of the reachable portion of the state, when the state is forwarded

using an isomorphism. I do this by using the various lemmas about forwarded states

I have previously used.

Once I know that the abstract guarantee is stronger, I can show that the actual

guarantee is stronger. To do this, I have to apply the various lemmas I have just

discussed, and prove that the newly allocated object is fresh.

After all of that, I use the SCAP instruction sequence weakening lemma to show

that the allocation operation satisfies the specification given in the GC interface.

7.5 Read barrier

In this section I discuss the implementation and verification of the read barrier for

the Baker collector. In the Cheney collector, a read is just a read. Verification

then is purely a matter of showing the read operation respects and maintains the

abstraction.

The Baker collector allows the mutator to run before the collector has finished.

As a result, the invariants of the object heap are more fragile. As I discussed in

Section 7.1, soundness of the Baker collector requires that all roots are either atomic

or to-space pointers. However, objects that root values point to may contain stale

from-space values, so to maintain this invariant the barrier must scan the field being

read from before returning its value. Fortunately this can be implemented with the

existing field scanning operation described in Section 7.2.

7.5.1 Implementation

The pseudocode implementation for the Baker collector read barrier is given in Fig-

ure 7.16. The barrier takes two arguments. x is the object the mutator is reading

195

void bakerRead (x, k) {

scanField(&x[k]);

return x[k];

}

Figure 7.16: Baker read barrier psuedocode

BAKERREAD(k) :
// load the registers we need for scanField
lw rfrStart,0(gcInfo)
lw rfrEnd,4(gcInfo)
lw rtoStart,8(gcInfo)
lw rtoEnd,12(gcInfo)
lw rfree,20(gcInfo)
lw ralloc,24(gcInfo)

// call scanField on the field we are reading
addiu t3,ra,0
addiu a0,root,k
addiu t6,a0,0
jal SCANFIELD, BAKERREADRET

BAKERREADRET:
// load the scanned value and return
lw v0,0(t6)
sw rfree,20(gcInfo)
addiu ra,t3,0
jr ra

Figure 7.17: Baker read barrier assembly implementation

from and k is the field offset. k is either 0 or 1, as objects are pairs. To execute the

read barrier, the field the barrier is going to read from is scanned using the same field

scanning method used in the collector. After this is done, the field will not contain

a from-space value, and the barrier can return value of the field.

As usual, the real assembly implementation, given in Figure 7.17, contains more

annoying details. The implementation is parameterized by a field offset k, which will

either be 0 or 4. There is one read barrier for each possible offset. This makes things

a little easier, but is not necessary.

The implementation first initializes the various registers that the field scanning

method needs by loading their values from the garbage collector information record.

After this is done, it prepares for a call to SCANFIELD by saving the return pointer ra to

register t3 (as part of my rather ill-advised manual interprocedural register allocation

196

readPrek(S) ::=
∃A. S `̀ repr(A,S, {root}) ∗ true ∧

A `̀ A(root) + k 7→ − ∗ true

readGuark(S,S′) ::=
(∀A, A,R.

S `̀ repr(A,S, R) ∗ A→
root ∈ R ∧ R ⊆ {root} ∪ calleeSaved→
∃A′. gcStep(A,A′, R) ∧

S′ `̀ repr(A′,S′, {v0} ∪R) ∗ A ∧
A′ `̀ A′(root) + k 7→ A′(v0) ∗ true) ∧

∀r.presReg(r) ∧ r 6= v0→ S(r) = S′(r)

Figure 7.18: Baker read barrier specification

to avoid spilling registers), calculating the address of the field being scanned, then

saving the pointer to this field to register t6 so it will be available after execution

returns from field scanning.

The second code block BAKERREADRET loads the new value of the field into the

return register v0, stores the new value of the free pointer (this is the only GC infor-

mation record value that field scanning might change), restores the return register,

then returns.

7.5.2 Specification

The specification of BAKERREAD is the standard specification of the read barrier,

described in Section 4.4.2. I reproduce it here in Figure 7.18 for convenience. For the

precondition, the basic idea is that the concrete state S contains the representation of

the abstract state A. In the abstract state, the field the mutator is reading from must

be a valid pointer. The guarantee takes any abstract state that has a representation in

the current state with root register set R and returns a concrete state that represents

a new abstract state A′. A′ is related to the original abstract state by gcStep, which,

197

bakerReadRetPre(S) ::= S `̀ S(t6) 7→ − ∗ S(gcInfo) + 20 7→ − ∗ true

bakerReadRetGuar(S,S′) ::=
(∀A, x, y.

S `̀ S(t6) 7→ x ∗ S(gcInfo) + 20 7→ y ∗ A →
S `̀ S(t6) 7→ x ∗ S(gcInfo) + 20 7→ S(rfree) ∗ A ∧
S′(v0) = x) ∧

(∀r 6∈ {v0, ra}. S(r) = S′(r)) ∧ S′(ra) = S(t3)

Figure 7.19: Baker read return specification

for copying collectors such as the Baker GC, states that all reachable objects are

preserved, though they are moved around by some isomorphism. (The GC step for

copying collectors is described in Section 4.4.1.) Furthermore, A′ also contains, in

register v0, the value of the field the barrier is loading from.

In the mutator, the representation predicate repr is abstract, to ensure modu-

larity. In the collector itself, it is concrete. The representation predicate for the

Baker collector is described in Section 5.4. The main trick in the representation

predicate is that any from-space values that have already been copied get forwarded

whenever they appear in object fields. This is a variation on the basic Baker state

well-formedness predicate bakerLoopStOk′ defined in Figure 7.11.

The specification for the Baker read return block is given in Figure 7.19. This is

not very interesting, and simply gives a low-level description of what happens in the

block.

7.5.3 Verification

First the block must be stepped through. Showing that the block itself is safe to

execute is direct, as it is loading from addresses that the precondition explicitly states

exist.

198

Before I get into the difficult part of verification, I derive some basic facts from

the representation predicate. For instance, the root is an object pointer, so it must

be either a black or gray pointer. Also, the abstract and concrete roots have the

same value. I also show that the to-space is made entirely up of black objects, gray

objects and free objects.

Now I am ready to show that it is safe to call SCANFIELD. To do this I must

derive some more facts from the precondition, such as that the from- and to-spaces

are disjoint. I can show that the field being scanned is valid because it is the field

of an object that is either black or gray, and consequently will either be atomic or

contain a valid free- or to-space pointer.

After this is done, I must show the guarantee is valid. This begins in the way that

many of these proofs do with a lot of tedious reasoning about sets and memory. I am

dealing with a different abstract state than in the precondition, so I must reprove

many of the same basic things. I also define an offset k′ which is simply the offset of

the other field. For example, if the barrier is reading from the first field, k is 0 and

k′ is then 4. This will allow me to combine the two cases for the two possible values

of k as much as possible.

Next I show that the state before SCANFIELD is a well-formed field scanning state.

I do this slightly differently than I did when I were showing that it is safe to call

SCANFIELD. I separate the field the barrier is scanning from the rest of the to-space,

which allows me to show that the entire to-space, excluding the field being scanned,

is unchanged by field scanning. This must be done because eventually I will need to

show that the initial and final states are related by an isomorphism. For the initial

set of to-space objects, this isomorphism will be the identity function. To show that

this extraction is okay, I must consider a number of cases depending on whether the

root is black or gray. I can, however, reflect all of these cases in a single final result.

199

For instance, if the set of black objects is B, then the set of black objects that is

unchanged by the field scanning operation is B − S(root). If the root is black, this

is B without the root. If the root is not black, this is just B. After this is done, I

can apply the guarantee of SCANFIELD.

After the field has been scanned it must contain a forwarded value. Additionally,

some objects may have been copied, and thus moved from the set of white objects

to the set of mapped objects. All of the to-space objects, aside from the one being

read from, are unchanged. From the state after the call, I extract (almost) the new

concrete object heap, which is the part of the concrete memory that contains the

remaining white objects, along with all of the allocated to-space objects. I do not

extract quite the full concrete object heap because I do not include the field that the

barrier has just scanned. This will be read by the read return block, so it must be

left alone for the moment. Then I can apply the read return block guarantee, then

add the scanned field back into the concrete state.

After this, there is some tedious reasoning to show that the initial set of to-space

objects (aside from the root) and the final set of white objects are not changed.

The abstract object heap is the concrete object heap, as described in the previous

paragraph, with stale from-space pointers forwarded.

I then prove that the new value of the field being read from is a valid to-space

value, because it is the result of applying the forwarding map, which has a range

that does not include from-space objects.

At this point, there are three major subgoals remaining. First, I must show

that the abstract state respects the GC guarantee. Next, I must show that the

concrete state contains a representation of the abstract state. Finally, I must show

that the abstract return register contains the value of the abstract object the barrier

is reading from. I verify the first two of these three subgoals using lemmas. The

200

final subgoal, regarding registers, is simple and the same as my various prior proofs

involving registers, so I will not discuss it further.

Respect the abstract GC guarantee

The proof that the abstract states respect the guarantee picks up where I left off.

I do not reproduce the lemma here because merely stating the lemma takes about

60 lines. The proof itself is around 1400 lines of Coq proof script. This proof is

very similar to the parts of the verification of the Cheney collector that deal with

verifying that the collection respects the GC guarantee.

The read barrier is simpler than the collector, because less is happening. There

are only two changes. First, one field of the root object may change. Second, some

white objects may be copied, becoming gray. Everything else is unchanged. The

isomorphism relating the old and new objects is the identity, except for the white

objects that are newly copied. In this case, the isomorphism is the map generated

by the field scanning.

Representation okay

For this lemma, I have to show that the final concrete memory contains a represen-

tation of the final abstract state, and that the abstract value returned by the read

barrier is indeed the value of the kth field of the object the barrier is reading from.

The proof of this lemma opens by showing a variety of basic properties, such as

that various sets of objects are disjoint in the expected way, that the gray objects

cover the entire space from the scan pointer to the free pointer, and that the root

must be a to-space object.

One part of this proof is showing that the new concrete memory is “well-colored”

after the field the barrier is reading from is scanned (and consequently has its value

201

void write (void* root, int k, void* x) {

root[k] = x;

}

Figure 7.20: Baker write barrier pseudocode

updated): white objects can contain only pointers to from-space objects, black ob-

jects can contain only pointers to to-space objects, and gray objects can contain

pointers to either. The root object is always a to-space object (which can contain

any valid to-space pointer), and scanning a field always results in a black field, which

is valid in any to-space object. The other interesting case is the objects that have

been copied from the to-space. For these objects, I make use of a lemma I have used

many times before that says that copying an object does not change the colors of

the objects it contains.

To show that the barrier has read the right abstract value, I first show that the

value being returned is the same value v of the kth field of the root object in the

concrete state. Also, the concrete memory must be related to the abstract memory

by a forwarding function φ. Because the forwarding function only changes from-space

values, and because v must be a to-space value, φ(v) = v. Therefore v is also the

value of the kth field of the root in the abstract state, so the barrier is returning the

right value.

I have shown that all of the cases hold, so I have successfully verified the read

barrier.

7.6 Write barrier

Now I will describe the write barrier for the Baker collector. In the Baker collector,

roots cannot contain from-space pointers (thanks to the read barrier). Therefore,

202

any storing of a pointer into an object will be writing a to-space pointer into the

field of a to-space object. This is perfectly valid to do, so the write barrier does not

need to do any additional work.

As a consequence, the Baker write barrier is, like the Cheney write barrier, just

a store instruction. I repeat the pseudocode implementation of the barrier in Fig-

ure 7.20. The assembly implementation (which is a single instruction) is the same

as the Cheney collector write barrier given in Figure 6.34.

The specification of the write barrier is that standard specification given in Chap-

ter 4. Now all that remains is to verify that the implementation matches the specifi-

cation. In essence, this is formally checking the belief that the write barrier does not

have to do any additional work to preserve the heap abstraction for the mutator.

7.6.1 Verification

First I show that the precondition of the write barrier implies that the kth field of

the object the barrier is writing to is a valid memory location in the concrete state.

This is enough to show that the write barrier is safe.

With that done, I must show that the write barrier satisfies its guarantee. The

abstract state of the final state is the initial abstract state with the value of the kth

field set to be the abstract value the barrier is writing to that field. The guarantee

includes a collector step, but the write barrier does not do anything, so I use a lemma

to show that doing nothing is also a collector step.

7.7 Putting it all together

As with the Cheney collector, there is some additional work required even after I

have verified all of the basic blocks in the program. First, I must show the properties

203

component lines
Baker specific lemmas 3162
field scanning 2032
collector loop 3266
allocator 4258
read and write barriers 3176
top level 1039
total 16933

Figure 7.21: Baker line counts

of the representation predicate as described in Section 4.3.3. These proofs are all

very similar to those in the Cheney collector, because the properties deal with roots,

and roots are represented the same way in both collectors.

7.8 Conclusion

In this chapter, I have discussed my machine-checked proof of the soundness of an

implementation of the Baker garbage collector algorithm. As far as I am aware,

this is the first machine-checkable proof of the Baker collector. Line counts for the

various components of the Coq implementation appear in Figure 7.21. These line

counts include white space, comments, assembly implementations, specifications, and

proofs, but the overwhelming majority of the lines are proofs. Not included are the

lemmas that are shared with the Cheney collector proofs, which are less than 1800

lines in total. The compiled proof files for the Baker collector are about 11 megabytes

large, though that measure might not be very meaningful.

The incremental nature of this algorithm greatly complicates the verification,

even though at a glance the algorithm is fairly similar to the Cheney collector. The

memory is generally in a complicated partially copied state, and requires a read

barrier. Despite this, I am able to give my Baker collector implementation the

204

same interface as the Cheney collector. Thus to the mutator the two algorithms are

indistinguishable. This demonstrates the ability of my approach to garbage collector

interfaces to abstract away details of the implementation.

205

Chapter 8

Tools and Tactics

8.1 Introduction

The verification of the collectors discussed in Chapters 6 and 7 requires complex

reasoning. Without powerful tactics for dealing with machine semantics and sepa-

ration logic, these proofs would be impractical. In this chapter, I discuss some of

the techniques I developed to simplify the verification of the collectors, which I have

implemented in the Coq proof assistant [Coq Development Team 2007b]. Without

these tactics, the verification of the garbage collectors I have described would be

impractical.

In Coq, theorems are proved interactively. The system shows the user the current

goal and the current set of hypotheses. The user then selects a tactic to be executed.

This transforms the goal and/or hypotheses, hopefully progressing towards comple-

tion.

At their simplest, tactics correspond to introduction or elimination rules in logic.

For instance, if the goal is A∧B, the tactic constructor applies the introduction rule

for conjunction, producing two subgoals A and B. Similarly, if there is a hypothesis

206

H that is a proof of C ∧D, then the tactic elim H will produce two new hypotheses,

one a proof of C and the other a proof of D.

On top of these basic tactics is the tactic language Ltac that is a simple un-

typed imperative language (as the core tactics are fundamentally imperative) with

features such as control flow structures, sophisticated pattern matching of goals and

hypotheses, exceptions and function definitions. Ltac enables implementing sophisti-

cated tactics out of more primitive ones.

All of the tactics described in this chapter are part of the full Coq implementation

available online [McCreight 2008].

8.2 Machine semantics

As described in Chapter 2, I reason about assembly programs using the program

logic WeakSCAP. With WeakSCAP, the first step in verifying that a program block

matches a particular specification is relating the entry state to the exit states. At the

same time, the individual instructions must be safe to execute. Once the final state

in the block is defined in terms of the initial state, reasoning can be done regarding

the guarantee. For instance, if I have an instruction sequence c; c′; c′′; jr ra that I

wish to show has the specification (p, g), I must show that for all initial states S such

that p S holds, there is some S′ such that cstepc′′(cstepc′(cstepc(S))) = S′, and that

furthermore g S S′ holds.

8.2.1 Command step simplifications

The first task is to reduce the series of csteps. To this end, I prove a series of lemmas

for reasoning about command steps for the various instructions. For every instruction

except except lw and sw, these lemmas are fairly trivial, because these operations

207

are always safe and are derived fairly directly from the operational semantics:

cstepaddu rd,rs,rt
(S) = S{rd S(rs) + S(rt)}

cstepaddiu rd,rs,w
(S) = S{rd S(rs) + w}

cstepsubu rd,rs,rt
(S) = S{rd S(rs)− S(rt)}

cstepsltu rd,rs,rt
(S) = S{rd if S(rs) < S(rt) then 1 else 0}

cstepandi rd,rs,1
(S) = S{rd if isOdd(S(rs)) then 1 else 0}

There are also two specialized versions of the rule for addiu when one of the

operands is equal to 0:

cstepaddiu rd,r,0
(S) = S{rd S(r)}

cstepaddiu rd,r0,w
(S) = S{rd w}

For load and store, I want to relate the high-level separation logic description

of memory to the low-level dynamic semantics (and later, vice versa). These are

a slightly higher level wrapper around the separation logic properties given in Sec-

tion 2.5.3.

For load instructions, the rule is:

If S `̀ (S(rs) + w) 7→ w′ ∗ true, then csteplw rd,w(rs)(S) = S{rd w′}

In other words, if I can demonstrate using separation logic that the memory of

the current state S contains a value w′ at the address being loaded from (S(rs) + w

), then carrying out the load instruction is the same as setting rd to w′. Memory can

contain anything else, signified by true.

The rule for store instructions is similar:

If S `̀ (S(rs) + w) 7→ − ∗ true, then cstepsw rs,w(rd)(S) = S{S(rs) + w S(rs)}

If I can demonstrate using separation logic that the memory of the current state

S contains some value at address S(rs) + w, then carrying out the store instruction

is the same as setting the value of that address to S(rs).

208

The actual rules I use in the implementation are slightly different, because they

add a level of indirection. For instance, the precondition of the full load rule is

S `̀ x 7→ w′∗true, with an additional condition that x = S(rs)+w. This allows more

flexibility when applying the rewriting rule. For instance, if I were attempting to load

from an offset of 4, and had a proof that S `̀ S(rs) + 2 + 2 7→ 7 ∗ true, I could apply

the rewriting lemma directly using this proof, then show that S(rs)+2+2 = S(rs)+4

as a side condition instead of manipulating the existing proof. The tactic attempts

to automatically solve such side goals, so in the simple case there is no extra work.

8.2.2 State update simplifications

In the course of verifying an instruction sequence, I must reason about the val-

ues of register and memory locations after a series of commands have been exe-

cuted. To simplify these expressions, I have a set of rewriting rules I use with Coq’s

autorewrite tactic, that repeatedly invokes a set of rewriting rules until no more

change is made. The simplifying tactic is called stSimpl.

Here is a list of the major rules used, along with side conditions and an explana-

tion of the rule:

S(r0) = 0 r0 is always 0

(S{l w})(r) = S(r) changing mem. does not affect the reg. file

(S{r w})(w) = S(w) changing the reg. file does not affect mem.

(S{r w})(r) = w if r 6= r0 get a value just set

(S{r w})(r′) = S(r′) if r 6= r′ ignore the setting of other registers

Now I will give an example of how and why stSimpl is used. Say I have the

following assembly block:

209

addu r1,r2,r3;

addu r4,r5,r6;

jr ra

I want to reason about the values of each register after executing this block, in

terms of the state I had when entering the block. Assuming the initial state is S, using

the standard command step reductions from Section 8.2.1 the state after the first

step will be S{r1 7→ S(r2)+S(r3)}, so the final state S′ is S{r1 7→ S(r2)+S(r3)}{r4 7→

(S{r1 7→ S(r2) + S(r3)})(r5) + (S{r1 7→ S(r2) + S(r3)})(r6)}. This is quite a mess!

With more instructions in a block, things get even worse.

But stSimpl is able to immediately show that S′(r31) = S(r31), because r31 was

not changed during execution of the block, and that S′(r4) is equal to S(r5) + S(r6),

because although r4 is changed from the initial value, the operands of the sum that

it is set to are not changed during the block.

8.3 Finite sets

My garbage collector specifications are defined in terms of various finite sets of ob-

jects, so the proofs involve the extensive use of finite sets. I represent finite sets as

lists: if a value is in the list, it is in the set. A value can occur multiple times. The

basic idea is taken from the ListSet library of Coq version 8.0 [Coq Development

Team 2007a], though they do not apply it consistently. My library also has many

more operations and predicates than theirs, though I probably am missing some they

have. Coq version 8.1 [Coq Development Team 2007b] has a more extensive finite

set library, but it was not available when I began my collector work.

I implement a variety of operations on sets, including membership testing, addi-

tion, removal, union, difference, intersection, cardinality, map, “multi-map” (each set

210

element is mapped to a set of elements), and filtering. These operations have all of

the introduction and elimination lemmas one would expect. For instance, the intro-

duction rule for set remove says that if a ∈ S and a 6= b, then a ∈ set remove b s.

The elimination rule says that if a ∈ set remove b s, then a ∈ S and a 6= b. This

style of lemma is taken from the Coq ListSet library.

I also implement canonization for my set representation. Two sets are equivalent

if they contain the same elements. The canonical forms of two sets that are equiva-

lent are structurally equal. Canonization is implemented with a duplicate-removing

insertion sort of the set. The main (and perhaps only) use of this is to allow me

to define the iterated separating conjunction (see Section 2.6) as a fix point on a

canonical set instead of as an inductive definition, to simplify proofs.

Set cardinality is needed to verify the Cheney collector, because I maintain the

invariant that the number of free objects is never smaller than the number of uncopied

from-space objects.

In addition, I implement a number of set predicates, including equivalence (both

sets contain exactly the same elements), disjointedness, membership, subsets, and

isomorphisms from one set to another.

I use set isomorphisms extensively when reasoning about copying collectors. In

fact, my goal is to verify that the collector maintains an isomorphism between the

sets of reachable objects in the initial and final states. I have lemmas about, for

instance, the unions of isomorphisms and the transitivity of isomorphisms.

For set equivalence, I have various rules about symmetry and distribution over

many of the operations.

I make extensive use of the Coq setoid rewriting mechanism to reason about set

equivalence. Setoid rewriting allows the user to define their own notions of equality,

prove that some operations respect that equivalence, then do “rewriting” using the

211

custom notion of equality as if it were the standard notion of equality in Coq.

8.4 Separation logic

I implement a separation logic library using a weak embedding. The weak embedding

allows me to easily extend the logic with new predicates as needed. I have a variety

of tactics for manipulating proofs in this embedded logic. This is needed because

the separation logic predicates I need to describe the garbage collectors can get very

large.

I use a standard series of steps to prove a large separation logic goal:

1. The hypothesis and goal are each simplified.

2. Hypothesis and/or goal are reordered and regrouped.

3. Corresponding parts of hypothesis and goal are matched to produce smaller

subgoals.

4. In each subgoal, basic lemmas further break down goal and/or hypothesis.

5. If not solved, go back to step 1.

I will now describe the tactics used in each of these phases.

8.4.1 Simplification

There are two simplification tactics, linLogIntro and linLogElim. The primary

goal is to render the goal (in the case of linLogIntro) or the hypothesis (in the case

of linLogElim) into a “right normal form” (RNF) with respect to the separating

conjunction operator ∗. In other words, it will transform things into proofs of the

form A∗B ∗C ∗D. (∗ is right associative.) This makes further manipulations easier.

212

In addition, these tactics combine all instances of the trivial separation logic

predicate true and eliminate all instances of the empty separation logic predicate

emp, including those of the form ∀∗x ∈ ∅. P . They also extract parts that do not

involve memory, which are indicated by the separation logic operators ! and ∃. In

a hypothesis, these are split into separate hypotheses, while in the goal, these are

split into separate goals. Finally, linLogElim solves the goal immediately when the

hypothesis contains something of the form x 7→ y ∗ x 7→ z ∗ A.

Here is an example of simplification. Consider the hypothesis:

M `̀ ∃x : Nat. !(x > 0) ∗ (x 7→ − ∗ (emp ∗ true ∗ A)) ∗ true ∗ true

This would be simplified into four hypotheses: x : Nat, y : Nat, a proof that

x > 0, and finally

M `̀ x 7→ y ∗ A ∗ true

Recall that x 7→ − is an abbreviation for ∃y. x 7→ y, so the simplification will

eliminate that existential.

8.4.2 Matching

I describe matching before reordering and regrouping, even though it is done last,

because it gives context to those phases. The tactic sconjMatch attempts to match

an RNF goal to an RNF hypothesis, breaking the problem into subgoals by matching

the respective sub-predicates. For example, if the goal is M `̀ A ∗B ∗C, and there is

a hypothesis of the form M `̀ A′ ∗ B′ ∗ C ′, then the tactic sconjMatch will produce

three subgoals:

1. ∀M. M `̀ A→M `̀ A′

2. ∀M. M `̀B →M `̀B′

3. ∀M. M `̀ C →M `̀ C ′

213

Any trivial subgoals are solved. For instance, if C = C ′, or C ′ = true, then only

the first two subgoals would be generated. This tactic relies on a lemma that says

that if A⇒ A′ and B ⇒ B′, then (A ∗B)⇒ (A′ ∗B′).

8.4.3 Reordering

As I said in the previous section, if I have a hypothesis M `̀ A ∗ B ∗ C and a goal

M `̀D ∗ E ∗ F , then the tactic will match A to D, B to E and C to F . However, I

do not want this if the part of memory described by A is not the same as the part

described by D. In this case, I need to reorder either the goal or the hypothesis,

so that the parts match up appropriately. If A, B and C correspond to E, F and

D, respectively, then I need to transform the hypothesis to M `̀ C ∗ A ∗ B for the

matching to work correctly.

How do I do this? The underlying method is to apply a series of associativity

and commutativity lemmas to the hypothesis. I can get from M `̀ A ∗ B ∗ C to

M `̀ (A ∗ B) ∗ C by associativity, then to the final goal of M `̀ C ∗ A ∗ B by

commutativity.

I initially applied these basic lemmas by hand, but in practice, memory pred-

icates have many parts (sometimes 8 or more) and these manipulations become

tedious. The next refinement of reordering was to prove a series of “lifting” lemmas.

sconjLift2, for instance, will transform a proof like M `̀ A∗B∗C into M `̀B∗A∗C

in a single step, by moving the second component of the predicate to the front while

leaving the rest of it alone. Using this approach, I perform the example transforma-

tion to M `̀ C ∗A ∗B in a single step using sconjLift3of3. This works fairly well,

and in fact is the approach I used during most of the development of my GC proofs.

This lifting-based approach is useful when there are only a few changes to be

made, but becomes cumbersome when I need to make many changes. For instance,

214

if I were attempting to transform M `̀ A ∗ B ∗ C into M `̀ C ∗ B ∗ A, this would

require 2 steps: lifting the third element, then lifting the third element again. To be

able to do any reordering in a single step, a more complex method is needed.

To handle this situation, I developed a third and final refinement of the reordering

tactics to allow arbitrary reordering in a single step. The desired ordering is indicated

by a list of natural numbers. The kth element of the list indicates the desired final

position of the kth element of the separating conjunction. For example, the list

[3, 2, 1] would transform M `̀ A ∗B ∗ C into M `̀ C ∗B ∗ A. No attempt is made at

error checking: if [3, 2, 1] was used to permute M `̀ A ∗B, then the tactic might fail

or produce bizarre output.

The implementation of this tactic is heavyweight, but it works. The intuition is

that a proof that one list is a permutation of another can be interpreted as a series of

steps to transform one list into the other. I can define a sorting function and prove

that a list is a permutation of its sorted form. This proof is then used to generate a

permutation proof to drive the basic tactic.

Extensions It would be more efficient to derive the reordering directly, instead

of via a proof term. Another improvement would be adding error checking, as the

sorted version of the supplied list should have the form [1, 2, 3, ..., k− 1, k]. If it does

not, the result of applying the tactic will not make much sense.

8.4.4 Reassociation

In addition to reordering, one may wish to change how the predicates are associated.

If I am trying to prove M `̀ A ∗ B ∗ C given M `̀ D ∗ E, it may be the case that

the part of memory described by D corresponds to the part described by A ∗ B.

To ensure that things are matched up appropriately, I must transform the goal into

215

M `̀ (A ∗B) ∗ C. This will give me subgoals A ∗B ⇒ D and C ⇒ E.

As before, it is possible to do these transformations manually, and I did, in much

of my GC development. However, it is nice to have a way to quickly and declaratively

change the associations in predicates. I proceed much as I did for reordering: create

a Coq term that describes the desired transformation and then write a tactic that

analyzes the Coq term to carry it out. However, reassociation is simpler because it

does not need an intermediate derivation.

Instead, it works on inductively defined binary trees. A tree t is either a leaf

containing a natural number k or a node containing two subtrees:

t ::= leaf(k) | node(t, t)

The values in the nodes are ignored by the reassociation tactic, but will be useful

later when I combine reassociation with reordering.

A reassociation tactic takes a binary tree t and transforms the RNF goal or

hypothesis to match the shape of the tree. The leaves in the tree correspond to the

base memory predicates, while the nodes correspond to ∗ operators. In addition,

the tactic takes an additional argument isLeft which is true only if the tactic has

followed a left branch to get to the current node. In the leaf case, nothing needs to

be done. In a node case, there are two subtrees, t1 and t2. First, the tactic is invoked

on t1, with isLeft set to true, because t1 is a left branch. This recursive call ensures

that the goal is of the form M `̀ A1 ∗ A2, where A1 corresponds to t1. Next, the

tactic is recursively invoked on the right subtree t2, with isLeft unchanged from the

current invocation, because this is a right branch.

Finally, the predicates must be grouped together. When the tactic returns, the

first memory predicate must correspond to node(t1, t2). If isLeft is true, then

216

Ltac assocConjG’ T isLeft :=

match eval compute in T with

| leaf _ => idtac

| node ?T1 ?T2 =>

assocConjG’ T1 true;

eapply sconjImplR;

[idtac |

let h := fresh "h" in

let Hp := fresh "Hp" in

(intros h Hp; assocConjG’ T2 isLeft; apply Hp)];

match eval compute in isLeft with

| true => apply sconjAssocL

| false => idtac

end

end.

Ltac assocConjG T := assocConjG’ T false.

Figure 8.1: Association tactic

the tactic has followed a left branch. This means that the current goal is of the

form M `̀ A1 ∗ A2 ∗ B, where A1 corresponds to t1 and A2 corresponds to t2, and

B has not yet been examined, because it includes parts of the right children of

parents of the current node. Applying the association lemma transforms the goal to

M `̀ (A1 ∗A2) ∗B, and it is safe to return. If isLeft is false, then this is a finished

rightmost subtree, so no more work remains to be done. Thus the goal looks like

M `̀ A1 ∗ A2, and the tactic can return without doing any further work. The Coq

definition of this tactic is given in Figure 8.1. As before, there is a similar tactic for

hypotheses.

8.4.5 Reordering and reassociation

Finally, both reordering and reassociation can be carried out with a single tactic

aspConjG (or the similar aspConj for hypotheses). The combination is described by

217

a binary tree with natural numbers at the leaves. The leaves give the ordering for

the sub-predicates, while the tree gives their final shape. This tactic first flattens

the tree into a list, then uses the reordering tactic. Next, it uses the initial tree to

reassociate.

I use a couple of Coq’s facilities to make writing these trees simpler. First, I

declare that leaf is a coercion from natural numbers to binary trees. Thus if I

write 4 when a tree is expected, Coq will automatically treat it as if I had written

leaf(4). I also declare a notation, so that [|t1, t2|] is treated as though I had

written node(t1, t2).

Putting all of these things together, I can give an example of the use of these

tactics. If the goal is M `̀ A ∗B ∗ C ∗D ∗ E ∗ F ∗G then the tactic

aspConjG ([|7, [|6, [|[|[|5, 4|], 3|], [|1, 2|]|]|]|])

automatically transforms the goal to M `̀ G ∗ F ∗ ((E ∗ D) ∗ C) ∗ A ∗ B. There is

room for improvement in the syntax.

8.5 Related work

There is a lot of existing work on mechanizing separation logic and developing tools

for automated reasoning about programs using separation logic. In this section, I

give an overview of some of this work.

Weber [2004] describes a shallow embedding of separation logic in the theorem

prover Isabelle/HOL, and uses this to define three separate Hoare logics for a C-like

language, and prove soundness and relative completeness of the program logics. The

paper also describes an example verification of in-place list reversal. It is not clear

218

what degree of automation is achieved.

Smallfoot [Berdine et al. 2005] is a tool for automatically verifying C-like pro-

grams using separation logic. It favors automation over expressiveness. Smallfoot

can reason about data structures, but it is limited to a couple of types of linked lists

and trees, and requires quantifier-free assertions. For this reason, it is not sufficient

to reason about garbage collectors, which tend to have complex data structures, but

adopting some of their techniques to my more general purpose tool set might greatly

simplify some portions of the proofs. An OCaml implementation is available [Small-

foot Development Team 2005], but the underlying theory does not appear to be

mechanized.

Marti et al. [2006] describe the formal verification of a heap manager in Coq using

separation logic. They also use a shallow embedding of separation logic. They have

an automated tactic for doing separation logic proofs that they describe as being

similar in power to Berdine et al. [2005] “without inductively defined datatypes”.

This automated tactic is certified in Coq, and is described in greater detail in Marti

and Affeldt [2007]. Using this tactic reduces one proof to a third of its size compared

to their manual proofs. However, this automated tactic has similar limitations of

expressiveness as Smallfoot, so manual proofs are still required when verifying pro-

grams with complex memory invariants. Their manual proofs about separation logic

predicates appear to be lower level than mine, breaking down separating conjunctions

and reasoning about the disjointedness of memories. By contrast, I rarely need to

do such reasoning outside of the proof of basic properties such as the commutativity

and associativity of ∗.

Appel [2006] also develops a set of Coq tactics for verifying programs using sepa-

ration logic. This work shares with my approach an emphasis on simplifying manual

proofs, rather than attempting to develop fully automated proving for a limited frag-

219

ment of separation logic. This work is more automated than mine, able to match up

separation logic hypotheses with goals that differ only in the application of associa-

tive and commutative rules. Such an addition would be useful for my system. This

approach to reasoning resembles traditional Hoare logic more closely than mine: at

each step, the goal is a precondition, a program, and a post-condition. By contrast,

in my approach, the current state is described by a hypothesis, and a goal involves

the evaluation of the current program along with the post-condition. My goal is to

pull as much reasoning out into the broader Coq environment as possible, with the

aim of simplifying reasoning.

8.6 Conclusion

In this chapter, I have given an overview of the tools and techniques I have developed

to verify programs in Coq using separation logic. I believe that without these tools

my task would have been more difficult or impossible. The complex specifications

required by garbage collectors have led me to emphasize streamlining manual proofs,

rather than focusing on the fully automated solving of simple goals. At the same

time, some parts of my proofs do not require this level of complex reasoning, and

adopting methods from related work would likely further ease verification.

220

Chapter 9

Conclusion

A variety of languages such as Java and ML use strong type systems or other means

of static verification to ensure that programs are well-behaved. But one does not

truly know that the implementation of such a program is safe unless one knows that

the runtime system has certain safety properties. One of the most complex parts of

a runtime system is the garbage collector. While there is extensive existing work on

the verification of garbage collectors, it generally either does not deal with imple-

mentations, or does not allow the verification of properties stronger than memory

safety.

In this dissertation, I have developed an expressive, formalized interface for rea-

soning about mutator-garbage collector interaction and demonstrated that this in-

terface hides enough implementation details to be used with more than one collector,

including a collector with a read barrier. The central idea of the interface is to treat

the entire garbage collected heap as an abstract data type. This approach only hides

implementation details that do not directly affect the mutator, such as the layout of

auxiliary GC data structures. Other implementation details, such as the representa-

tion of the root set, cannot be hidden in this way. I discussed the realization of this

221

interface for mark-sweep, copying and incremental copying collectors.

My mechanized verification of implementations of Cheney and Baker garbage col-

lectors demonstrates that this is practical. As discussed, this is the first mechanized

verification of the Baker GC that I am aware of. I also discussed how I verified

that the implementations of these two collectors properly implement my ADT-based

interface. By enabling the verification of both mutator and collector within a single

formal system, the safety of an entire garbage collected program can be verified.

I also gave an overview of some of the tools that made my verification efforts

possible. These include the development of the WeakSCAP program logic, a weakest-

precondition based variation of an existing program logic SCAP, and a large number

of tactics developed to reason about machine semantics and separation logic.

9.1 Related work

In this section, I will discuss work related to the big-picture focus of the dissertation,

which is garbage collector verification. I have previously discussed work related to

other aspects of my dissertation. Chapter 2 discusses the large body of work I have

drawn on for reasoning about programs and memory. In Section 3.6 I discussed work

related to my approach to reasoning about ADTs, and in Section 8.5 I discussed

work related to my tools for reasoning about separation logic.

McCreight et al. [2007] discuss much of the same work described in this thesis,

although in less detail. It also describes how my approach can be used to ver-

ify a mark-sweep collector. Lin et al. [2007] apply the approach described in this

dissertation to a mutator verified with typed assembly language, combined with a

conservative mark-sweep garbage collector.

There is a lot of prior work on verifying garbage collector algorithms [such as

222

Gries 1977; 1978, Dijkstra et al. 1978, Hudak 1982, Ben-Ari 1984, Gonthier 1996].

Some of this prior work even uses machine-checked proofs [such as Russinoff 1994,

Jackson 1998, Havelund 1999, Nieto and Esparza 2000, Burdy 2001]. Prior work

differs from my work primarily in that they focus on algorithms rather than imple-

mentations. As a consequence, their machine models are less realistic than mine,

and often do not include as many details. The drawback of this is that errors may

arise during the translation of an algorithm into an implementation that can actually

be used. Their work also does not seem to generally emphasize the separate verifi-

cation of the mutator and collector, often modeling the mutator as a process that

non-deterministically permutes memory. In addition, their work generally focuses on

reasoning about a single algorithm, instead of a variety of algorithms as I attempt.

My work might be improved by drawing on their work, as verifying a GC imple-

mentation might be more efficient if it is done by relating a verified GC algorithm

to an implementation. This might allow the implementation to be changed without

requiring a lot of changes to the proof. In contrast, my work as described here is

essentially verifying the algorithm at the same time as the implementation.

On the other hand, their work on verifying garbage collector algorithms has been

successfully applied to verifying liveness properties and concurrent algorithms, which

is not possible in my present framework. Liveness properties include termination and

showing that a collector eventually collects all garbage. I can show that a collector

collects all garbage with stop-the-world collectors, but not incremental collectors.

Another approach, taken by Vechev et al. [2006], is to start with a very high level

collector and apply a series of correctness-preserving transformations to produce

a more optimized collector algorithm. While they are in effect reasoning about a

number of different algorithms, all of the collectors they deal with are concurrent

mark-sweep collectors. Similar work by Vechev et al. [2007] uses model checking as

223

part of a system that is able to automatically check the correctness and efficiency of

over a million variations of a single concurrent mark-sweep algorithm. Their work

deals with more algorithms than mine, but the variation between these algorithms

is much more limited.

Morrisett et al. [1995] discuss a high level semantics of garbage collection, which

is similar to my work in that it involves reasoning about interference between the

mutator and the garbage collector. They study more radical notions of garbage,

including type-based approaches.

My work builds on that of Birkedal et al. [2004], which discusses the verification

of a Cheney copying collector implemented in a C-like language using separation

logic. They also use a heap isomorphism to describe copying, based on Calcagno

et al. [2003]. However, they do not show how to verify the mutator in the presence

of the garbage collector, nor do they discuss a high-level collector interface. They

also do not show how to reason about a read barrier, and their proofs do not appear

to be machine-checked.

Along with the work focusing on the verification of collectors, there is also some

work that focuses on reasoning about a program in the presence of garbage collection.

The main shortcoming of their work relative to mine is that they do not present

systems capable of reasoning about both mutator and collector. On the other hand,

my mutator interfaces could likely be improved by taking ideas from their work.

Calcagno et al. [2003] present a program logic that is able to hide collection entirely

from mutator-side reasoning, by making it impossible for specifications to refer to

unreachable objects. Hunter and Krishnamurthi [2003] extend a formal model of

Java with garbage collection and show that doing so is sound. Vanderwaart and

Crary [2003] present a type system that can describe the collector interface for a

precise GC.

224

There also is extensive prior work that focuses on using a single type system to

reason about both the mutator and collector [Wang and Appel 2001, Monnier et al.

2001, Monnier and Shao 2002, Hawblitzel et al. 2007]. By using a type system to

verify the collector, most of their work is thus able to give a well-defined interface

between the mutator and collector: the type of the collector. However, with the

notable exception of Hawblitzel et al. [2007], each type system seems to be fairly

specialized to a particular collector and does not give a high level interface indepen-

dent of a particular algorithm. Type systems usually excel at this sort of abstraction

so it would likely not be difficult to add. A more difficult problem is that their work

is fairly restricted in the notions of safety that it is able to reason about. Verifying

that a GC adheres to a stronger property than memory safety would likely need a

more complex type system, which would in turn require a new proof of safety.

Hawblitzel et al. [2007] use the type-based approach closest to my work. They use

a linear logic based type system to mechanically verify the safety of a Cheney copying

collector. Their system blurs the line between a type system and a Hoare logic

because it includes explicit proofs. Their collector works with more complex objects

that store header information. However, they have an unnecessary bounds check

inside of their collector that I am able to show can be safely eliminated. They may

be able to remove this check, but it is still not going to be possible for them to prove

a safety condition as strong as showing the initial and final heaps are isomorphic.

They have implemented a type checker for their system in OCaml, but the soundness

of their type system is only proved on paper.

Fluet and Wang [2004] implement a copying collector in Cyclone, applying an

approach similar to Wang and Appel [2001] based on region types. This collector

is part of a Scheme interpreter, which is not entirely verified, apparently due to

the runtime system of Cyclone itself. The bulk of this runtime is apparently an

225

implementation of malloc.

There have been a number of papers that have used Hoare-like logic with sepa-

ration logic to verify implementations of malloc and free [such as Yu et al. 2004,

Marti et al. 2006].

Finally, my heap interface is somewhat inspired by the rely-guarantee method for

reasoning about concurrent programs [Jones 1983].

9.2 Future work

The current work can be extended in a number of directions. In fact, I have already

begun to pursue some and have verified a Cheney copying collector implemented

in the C-like language Cminor [Leroy 2006] that uses 32-bit machine arithmetic.

This collector also supports an arbitrary number of object fields, as well as static

typing, using object headers. I have also developed an improved program logic and

verification infrastructure. However, I have not yet applied the ADT-based interface

to this collector. This work is not described here as it is outside the scope of the

current dissertation.

9.2.1 Improved machine model

The machine model can be made more realistic. The main change that would make

the machine model more realistic would be the use of 32-bit modular machine arith-

metic. This does not introduce any fundamental difficulty for my approach, but

reasoning about modular arithmetic is more difficult, as Coq does not have any

built-in tools for reasoning about it.

One fundamental aspect of my collectors that differs from practice is that they

are implemented in assembly, instead of a higher level language such as C. Working

226

at a higher level will make programming the collector easier, but given my current

techniques verifying the collector is much harder than programming the collector,

so this is only a minor advantage of working at a higher level. A more important

advantage to verifying collectors written at a higher level is that a collector could be

verified once at a high level then compiled to a variety of targets. One disadvantage

is that if a GC written in C is verified and then compiled with an unverified compiler,

the resulting binary is unverified. It may be possible to solve this problem by using a

fully verified collector such as CompCert [Leroy 2006]. The main obstacle to working

at a higher level is that a new program logic will be needed. Fortunately, Appel and

Blazy [2007] describe a program logic for Cminor, one of the intermediate languages

compiled by the CompCert verified compiler, that uses separation logic. I could

apply this work to collector verification.

9.2.2 More realistic collectors

There are a number of ways the collector implementations could be improved to

better support mutator programs. These include support for static typing, objects

and root sets of arbitrary size, and more efficient algorithms.

One aspect of my verified compilers that prevents them from being used with

modern functional languages is that the object heap is dynamically typed: pointerness

is on a per-value basis. In languages such as SML and Haskell are statically typed,

so pointerness is on a per-location basis: the first field of a particular object, for

instance, will always be a pointer, or will always not be a pointer. Static typing does

not require reserving field bits for the GC, allowing unboxed floating point numbers.

One common way to track this kind of pointer information is to add a header to

each object that indicates whether each field is a pointer or not. This change would

require modifying both the verification of the collectors as well as the interface, as

227

one of the most fundamental aspects of a GC-mutator interface is specifying what

values are object pointers.

Another limitation of my GCs is that all objects are pairs, which obviously is not

very general. I would like to support an arbitrary number of fields per object. Again,

I can add information about the length of each object to some kind of per-object

header. This would require extending the interface as well as the specifications of

each collector, but should not cause any fundamental difficulty. Adding support for

an arbitrary number of fields might actually reduce the size of proofs, because right

now there are many places where the reasoning about the first and second fields are

each handled as a special case, often with a lot of cutting-and-pasting.

My current GC interface and implementations only allow a single value in the

root set. This restriction makes implementing even simple mutators difficult. In a

real implementation of a garbage collected language the mutator has many roots,

often stored on a stack. To support garbage collection, the mutator must properly

maintain metadata to allow the GC to examine the entire root set and, in the case

of a precise collector, specify which stack values are object pointers. As the mutator

must explicitly maintain these structures they cannot be abstracted away from the

mutator. In fact, it would make more sense to hide the details of these mutator-

maintained data structures from the collector. Vanderwaart and Crary [2003] have

given a type system for reasoning about precise GC information, but do not address

the GC’s side of the interface.

Finally, I am not aware of production systems that actually use Cheney or Baker

collectors, so I would like to apply my approach to verify different GC algorithms.

Generational collectors [Appel 1989] are widely used for functional languages and

require a write barrier. These should not be any more difficult than the Baker

collector, which also requires a barrier. Concurrent collectors also would be a natural

228

next step. Verifying a concurrent collector would be challenging, as they are even

more fine grained than an incremental collector. Verifying a concurrent collector

would require a new program logic capable of reasoning about such programs and

would likely require a more sophisticated GC-mutator interface.

9.2.3 Improved program reasoning

My large-scale verification efforts have provided me with a lot of practical experience

with reasoning about programs. While I was able to verify collectors, there were a

number of aspects of the effort that were more tedious than they needed to be. As

I have mentioned (and shown in my example in Section 2.8), WeakSCAP produces

a verification condition with a lot of redundancy. This redundancy does not present

any theoretical difficulty, but results in a lot of unnecessary duplication of effort. By

constructing a new improved program logic I could eliminate this.

Additionally, my tools for reasoning about separation logic could be improved.

While I do not expect to be able to fully automate verification, adopting techniques

from tools such as Smallfoot [Berdine et al. 2005] should help to eliminate a lot of

tedium. Finally, while reviewing my proof of the Baker collector, I was stunned

by how many lines were devoted to fairly basic reasoning about finite sets. This is

an area where it should be possible to greatly improve automation without a lot of

effort, perhaps by leveraging the new finite set library in the latest version of Coq.

9.2.4 Other uses of ADTs for system level interfaces

A more speculative direction for my work is to apply my approach to reasoning about

mutator-collector interfaces to interfaces used in systems programming. There are

many resources and abstractions in operating systems, from virtual memory to file

229

systems to hypervisors such as Xen [Barham et al. 2003]. Allowing user programs

that leverage these services to be verified with respect to a high-level interface, while

still allowing a foundational proof that encompasses the entire system, will result in

more reliable systems. As with language runtime systems, if an operating system is

buggy, no real guarantee can be made about anything that runs on top of it.

230

Bibliography

Andrew W. Appel. Tactics for separation logic. http://www.cs.princeton.edu/

~appel/papers/septacs.pdf, January 2006.

Andrew W. Appel. Simple generational garbage collection and fast allocation. Soft-

ware Practice and Experience, 19(2):171–183, 1989. ISSN 0038-0644.

Andrew W. Appel and Sandrine Blazy. Separation logic for small-step Cminor. In

Theorem Proving in Higher Order Logics, 20th Int. Conf. TPHOLs 2007, volume

4732 of Lecture Notes in Computer Science, pages 5–21. Springer, 2007.

David F. Bacon, Perry Cheng, and V. T. Rajan. A real-time garbage collector

with low overhead and consistent utilization. In Proc. 30th ACM Symposium on

Principles of Programming Languages, pages 285–298, New York, NY, USA, 2003.

ACM Press. ISBN 1-58113-628-5.

Henry G. Baker, Jr. List processing in real time on a serial computer. Communica-

tions of the ACM, 21(4):280–294, 1978. ISSN 0001-0782.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf

Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization.

In SOSP ’03: Proc. of the Nineteenth ACM Symposium on Operating Systems

231

Principles, pages 164–177, New York, NY, USA, 2003. ACM. ISBN 1-58113-757-

5. doi: http://doi.acm.org/10.1145/945445.945462.

Mordechai Ben-Ari. Algorithms for on-the-fly garbage collection. ACM Transactions

on Programming Languages and Systems, 6(3):333–344, 1984. ISSN 0164-0925.

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular au-

tomatic assertion checking with separation logic. In 4th Formal Methods for Com-

ponents and Objects, pages 115–137, 2005.

Lars Birkedal, Noah Torp-Smith, and John C. Reynolds. Local reasoning about

a copying garbage collector. In Proc. 31st ACM Symposium on Principles of

Programming Languages, pages 220–231, New York, NY, USA, 2004. ACM Press.

ISBN 1-58113-729-X.

Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative

environment. Software Practice and Experience, 18(9):807–820, 1988. URL http:

//www.hpl.hp.com/personal/Hans_Boehm/gc/index.html.

Rodney A. Brooks. Trading data space for reduced time and code space in real-time

garbage collection on stock hardware. In LFP ’84: Proc. of the 1984 ACM Symp.

on LISP and Functional Prog., pages 256–262, New York, NY, USA, 1984. ACM

Press. ISBN 0-89791-142-3.

L. Burdy. B vs. Coq to prove a garbage collector. In R. J. Boulton and P. B. Jack-

son, editors, 14th Int’l Conference on Theorem Proving in Higher Order Logics:

Supplemental Proc., pages 85–97, September 2001. Report EDI–INF–RR–0046,

Division of Informatics, University of Edinburgh.

Cristiano Calcagno, Peter O’Hearn, and Richard Bornat. Program logic and equiva-

232

lence in the presence of garbage collection. Theoretical Comp. Sci., 298(3):557–581,

2003. ISSN 0304-3975.

C. J. Cheney. A nonrecursive list compacting algorithm. Communications of the

ACM, 13(11):677–678, 1970. ISSN 0001-0782.

Adam Chlipala. A certified type-preserving compiler from lambda calculus to as-

sembly language. In Proc. 2007 ACM Conf. on Prog. Lang. Design and Impl.,

pages 54–65, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-633-2. doi:

http://doi.acm.org/10.1145/1250734.1250742.

Christopher Colby, Peter Lee, George C. Necula, Fred Blau, Mark Plesko, and Ken-

neth Cline. A certifying compiler for java. In Proc. 2000 ACM Conf. on Prog.

Lang. Design and Impl., pages 95–107, New York, NY, USA, 2000. ACM. ISBN

1-58113-199-2. doi: http://doi.acm.org/10.1145/349299.349315.

Coq Development Team. The Coq proof assistant reference manual. Coq release

v8.0pl4, January 2007a.

Coq Development Team. The Coq proof assistant reference manual. Coq release

v8.1pl3, December 2007b.

Karl Crary and Joseph Vanderwaart. An expressive, scalable type theory for certified

code. Technical Report CMU-CS-01-113, School of Computer Science, Carnegie

Mellon Univ., Pittsburgh, PA, May 2001.

Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Stef-

fens. On-the-fly garbage collection: an exercise in cooperation. Communications

of the ACM, 21(11):966–975, 1978. ISSN 0001-0782.

233

Damien Doligez and Georges Gonthier. Portable, unobtrusive garbage collection for

multiprocessor systems. In Proc. 21st ACM Symposium on Principles of Program-

ming Languages, pages 70–83, New York, NY, USA, 1994. ACM. ISBN 0-89791-

636-0.

Xinyu Feng, Zhong Shao, Alexander Vaynberg, Sen Xiang, and Zhaozhong Ni. Mod-

ular verif. of assembly code with stack-based control abstractions. In Proc. 2006

ACM Conf. on Prog. Lang. Design and Impl., June 2006.

Matthew Fluet and Daniel Wang. Implementation and performance evaluation of a

safe runtime system in cyclone. In Informal Proc. of the SPACE 2004 Workshop,

January 2004.

Georges Gonthier. Verifying the safety of a practical concurrent garbage collector. In

R. Alur and T. Henzinger, editors, Computer Aided Verification CAV’96, Lecture

Notes in Computer Science, New Brunswick, NJ, 1996. Springer-Verlag.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language Specifi-

cation, The (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley Professional,

2005. ISBN 0321246780.

Paul Graham. ANSI Common Lisp. Prentice Hall Press, Upper Saddle River, NJ,

USA, 1996. ISBN 0-13-370875-6.

David Gries. An exercise in proving parallel programs correct. Communications

of the ACM, 20(12):921–930, 1977. ISSN 0001-0782. doi: http://doi.acm.org/10.

1145/359897.359903.

David Gries. Corrigendum. Communications of the ACM, 21(12):1048, 1978.

234

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of

the ACM, 40(1):143–184, 1993.

Klaus Havelund. Mechanical verification of a garbage collector. In FMPPTA’99,

1999. URL http://ic-www.arc.nasa.gov/ic/projects/amphion/people/

havelund/Publications/gc-fmppta99.ps.

Chris Hawblitzel, Heng Huang, Lea Wittie, and Juan Chen. A garbage-collecting

typed assembly language. In Proc. 2007 ACM SIGPLAN International Workshop

on Types in Language Design and Implementation, pages 41–52, New York, NY,

USA, 2007. ACM. ISBN 1-59593-393-X. doi: http://doi.acm.org/10.1145/1190315.

1190323.

Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. The C# Programming Lan-

guage (2nd Edition). Addison-Wesley Professional, 2006. ISBN 0321334434.

C. A. R. Hoare. An axiomatic basis for computer programming. Communications of

the ACM, October 1969.

Paul Hudak. Object and task reclamation in distributed applicative processing sys-

tems. PhD thesis, University of Utah, Salt Lake City, UT, USA, 1982.

Rob Hunter and Shriram Krishnamurthi. A model of garbage collection for oo

languages. In Tenth Int’l Workshop on Foundations of Object-Oriented Lang.

(FOOL10), 2003.

Paul Jackson. Verifying a garbage collection algorithm. In Proc. of 11th Int’l Con-

ference on Theorem Proving in Higher Order Logics TPHOLs’98, volume 1479 of

Lecture Notes in Computer Science, pages 225–244, Canberra, September 1998.

Springer-Verlag.

235

C. B. Jones. Tentative steps toward a development method for interfering programs.

ACM Transactions on Programming Languages and Systems, 5(4):596–619, 1983.

ISSN 0164-0925.

Richard E. Jones and Rafael Lins. Garbage Collection: Algorithms for Automatic

Dynamic Memory Management. Wiley, Chichester, July 1996. ISBN 0–471–94148–

4. URL http://www.cs.ukc.ac.uk/people/staff/rej/gcbook/gcbook.html.

With a chapter on Distributed Garbage Collection by R. Lins.

Simon Peyton Jones, editor. Haskell 98 Language and Libraries – The Revised Report.

Cambridge University Press, Cambridge, England, 2003.

B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice-Hall,

Englewood Cliffs, New Jersey, 1978.

Xavier Leroy. A modular module system. Journal of Functional Programming, 10

(3):269–303, 2000. ISSN 0956-7968.

Xavier Leroy. Formal certification of a compiler back-end, or: programming a com-

piler with a proof assistant. In 33rd ACM Symposium on Principles of Program-

ming Languages, pages 42–54. ACM Press, 2006. URL http://gallium.inria.

fr/~xleroy/publi/compiler-certif.pdf.

Chunxiao Lin, Andrew McCreight, Zhong Shao, Yiyun Chen, and Yu Guo. Foun-

dational typed assembly language with certified garbage collection. In TASE ’07:

Proc. of the First Joint IEEE/IFIP Symposium on Theoretical Aspects of Soft-

ware Engineering, pages 326–338, Washington, DC, USA, 2007. IEEE Computer

Society. ISBN 0-7695-2856-2.

Nicolas Marti and Reynald Affeldt. A certified verifier for a fragment of separation

236

logic. In 9th JSSST Workshop on Programming and Programming Languages (PPL

2007), 2007.

Nicolas Marti, Reynald Affeldt, and Akinori Yonezawa. Formal verification of the

heap manager of an operating system using separation logic. In ICFEM 2006:

Eighth International Conference on Formal Engineering Methods, 2006.

Andrew McCreight. The mechanized verification of garbage collector implementa-

tions: Coq implementation. http://flint.cs.yale.edu/flint/publications/

mccreight-thesis.html, May 2008.

Andrew McCreight, Zhong Shao, Chunxiao Lin, and Long Li. A general framework

for certifying garbage collectors and their mutators. In Proc. 2007 ACM Conf. on

Prog. Lang. Design and Impl., pages 468–479, New York, NY, USA, 2007. ACM.

ISBN 978-1-59593-633-2.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Defini-

tion of Standard ML (Revised). MIT Press, Cambridge, MA, USA, 1997. ISBN

0262631814.

Stefan Monnier and Zhong Shao. Typed regions. Technical Report

YALEU/DCS/TR-1242, Dept. of Comp. Sci., Yale University, New Haven, CT,

October 2002.

Stefan Monnier, Bratin Saha, and Zhong Shao. Principled scavenging. In Proc. 2001

ACM Conf. on Prog. Lang. Design and Impl., pages 81–91, New York, 2001. ACM

Press.

Greg Morrisett, Matthias Felleisen, and Robert Harper. Abstract models of memory

management. In FPCA ’95: Proc. of the 7th Int’l Conference on Functional Prog.

237

Lang. and Comp. Architecture, pages 66–77, New York, NY, USA, 1995. ACM

Press. ISBN 0-89791-719-7.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed

assembly language. ACM Transactions on Programming Languages and Systems,

21(3):527–568, 1999. ISSN 0164-0925.

Aleksander Nanevski, Amal Ahmed, Greg Morrisett, and Lars Birkedal. Abstract

predicates and mutable ADTs in Hoare type theory. In Proc. 2007 European

Symposium on Programming, 2007.

George Necula and Peter Lee. The design and implementation of a certifying com-

piler. In Proc. 1998 ACM Conf. on Prog. Lang. Design and Impl., pages 333–344,

New York, 1998.

George C. Necula. Proof-carrying code. In Proc. 24th ACM Symposium on Principles

of Programming Languages, pages 106–119, New York, NY, USA, 1997. ACM

Press. ISBN 0-89791-853-3.

Zhaozhong Ni and Zhong Shao. Certified assembly programming with embedded

code pointers. In Proc. 33rd ACM Symposium on Principles of Programming

Languages, January 2006.

Leonor Prensa Nieto and Javier Esparza. Verifying single and multi-mutator garbage

collectors with Owicki-Gries in Isabelle/HOL. In MFCS ’00: Proc. of the 25th Int’l

Symp. on Mathematical Foundations of Comp. Sci., pages 619–628, London, UK,

2000. Springer-Verlag. ISBN 3-540-67901-4.

Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. Separation and infor-

mation hiding. In Proc. 31st ACM Symposium on Principles of Programming

238

Languages, pages 268–280, New York, NY, USA, 2004. ACM. ISBN 1-58113-729-

X.

Matthew Parkinson and Gavin Bierman. Separation logic and abstraction. In Proc.

32nd ACM Symposium on Principles of Programming Languages, pages 247–258,

New York, NY, USA, 2005. ACM.

Lawrence C. Paulson. ML for the working programmer (2nd ed.). Cambridge Uni-

versity Press, New York, NY, USA, 1996. ISBN 0-521-56543-X.

Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-logical

framework for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th

International Conference on Automated Deduction (CADE-16), pages 202–206,

Trento, Italy, July 1999. Springer-Verlag LNAI 1632.

Benjamin C. Pierce. Types and Programming Languages. The MIT Press, Cambridge,

MA, 2002.

John C. Reynolds. Separation logic: A logic for shared mutable data structures. In

LICS ’02: Proc. of the 17th Annual IEEE Symp. on Logic in Comp. Sci., pages

55–74, Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1483-9.

David M. Russinoff. A mechanically verified incremental garbage collector. Formal

Aspects of Computing, 6:359–390, 1994.

Carsten Schürmann. Automating the meta theory of deductive systems. PhD thesis,

Carnegie Mellon University, Pittsburgh, PA, USA, 2000. Chair-Frank Pfenning.

Zhong Shao, Bratin Saha, Valery Trifonov, and Nikolaos Papaspyrou. A type system

for certified binaries. In Proc. 29th ACM Symposium on Principles of Programming

Languages, pages 217–232. ACM Press, January 2002.

239

Smallfoot Development Team. Smallfoot. http://www.dcs.qmul.ac.uk/research/

logic/theory/projects/smallfoot/, December 2005.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2000. ISBN 0201700735.

Dominic Sweetman. See MIPS Run, Second Edition. Morgan Kaufmann, 2006. ISBN

0120884216.

Noah Torp-Smith, Lars Birkedal, and John C. Reynolds. Local reasoning about a

copying garbage collector. ACM Transactions on Programming Languages and

Systems, 2006. To appear.

Joseph C. Vanderwaart and Karl Crary. A typed interface for garbage collection. In

Proc. 2003 ACM SIGPLAN International Workshop on Types in Language Design

and Implementation, pages 109–122, New York, NY, USA, 2003. ACM Press. ISBN

1-58113-649-8.

Martin T. Vechev, Eran Yahav, and David F. Bacon. Correctness-preserving deriva-

tion of concurrent garbage collection algorithms. In Proc. 2006 ACM Conf. on

Prog. Lang. Design and Impl., pages 341–353, New York, NY, USA, 2006. ACM

Press. ISBN 1-59593-320-4.

Martin T. Vechev, Eran Yahav, David F. Bacon, and Noam Rinetzky. CGCExplorer:

a semi-automated search procedure for provably correct concurrent collectors. In

Proc. 2007 ACM Conf. on Prog. Lang. Design and Impl., pages 456–467, New

York, NY, USA, 2007. ACM. ISBN 978-1-59593-633-2. doi: http://doi.acm.org/

10.1145/1250734.1250787.

Philip Wadler. A taste of linear logic. In Mathematical Foundations of Computing

Science. Springer Verlag, 1993.

240

Daniel C. Wang and Andrew W. Appel. Type-preserving garbage collectors. In Proc.

28th ACM Symposium on Principles of Programming Languages, pages 166–178,

New York, NY, USA, 2001. ACM Press. ISBN 1-58113-336-7.

Tjark Weber. Towards mechanized program verification with separation logic. In

Jerzy Marcinkowski and Andrzej Tarlecki, editors, Computer Science Logic –

18th International Workshop, CSL 2004, 13th Annual Conference of the EACSL,

Karpacz, Poland, September 2004, Proceedings, volume 3210 of Lecture Notes in

Computer Science, pages 250–264. Springer, September 2004. ISBN 3-540-23024-6.

Martin Wildmoser and Tobias Nipkow. Certifying machine code safety: Shallow

versus deep embedding. In K. Slind, A. Bunker, and G. Gopalakrishnan, editors,

Theorem Proving in Higher Order Logics (TPHOLs 2004), volume 3223 of Lecture

Notes in Computer Science, pages 305–320. Springer, 2004. ISBN 3-540-23017-3.

Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In Proc.

26th ACM Symposium on Principles of Programming Languages, pages 214–227.

ACM Press, 1999.

Hongseok Yang. An example of local reasoning in BI pointer logic: The Schorr-Waite

graph marking algorithm. In Proc. of the SPACE 2001 Workshop on Semantics,

Program Analysis and Computing Environments for Memory Management, pages

41–68, 2001. URL http://www.dcs.qmul.ac.uk/~hyang/paper/SchorrWaite.

ps.

Dachuan Yu, Nadeem A. Hamid, and Zhong Shao. Building certified libraries for

PCC: Dynamic storage allocation. Science of Computer Programming, 50(1-3):

101–127, March 2004.

241

