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Abstract. Formal, modular, and mechanized verification of realistic systems code
is desirable but challenging. Verification of machine context management (a basis
of multi-tasking) is one representative example. With context operations occur-
ring hundreds to thousands of times per second on every computer, their correct-
ness deserves careful examination. Given the small and stable code bases, it is
a common misunderstanding that the context management code is suitable for
informal scrutiny and testing. Unfortunately, after being extensively studied and
used for decades, it still proves to be a common source of bugs and confusion. Yet
its verification remains difficult due to the machine-level detail, irregular patterns
of control flows, and rich application scenarios.

This paper reports our experience applying XCAP—a recent theoretical ver-
ification framework—to certify a realistic x86 implementation of machine con-
text management. XCAP supports expressive and modular logical specifications,
but has only previously been applied on simple idealized machine and code.
By applying the XCAP theory to an x86 machine model, building libraries of
common proof tactics and lemmas, composing specifications for the context data
structures and routines, and proving that the code behave accordingly, we achieved
the first formal, modular, and mechanized verification of realistic x86 context
management code. Our proofs are fully mechanized in the Coq proof assistant.
Our certified library code runs on stock hardware and can be linked with other
certified systems and application code. Our technique applies to other variants
or extensions of context management (e.g., more complex context, different plat-
forms), provides a solid basis for further verification of thread implementation
and concurrent programs, and illustrates how to achieve formal, modular, and
mechanized verification of realistic systems code.

1 Introduction

Formally establishing safety and correctness properties of realistic systems code in a
modular and machine-checkable fashion is a highly desirable but extremely challenging
goal. Among various systems code libraries, machine context management, the basis of
multi-tasking and an essential feature of modern system software, is one representative
example. We use the following 19-line x86 machine-context switching routine (omitting
floating-point and special registers) to illustrate our point.



swapcontext:

mov eax, [esp+4] | mov eax, [esp+8]

mov [eax+_eax], 0 | mov esp, [eax+_esp]

mov [eax+_ebx], ebx | mov ebp, [eax+_ebp]

mov [eax+_ecx], ecx | mov edi, [eax+_edi]

mov [eax+_edx], edx | mov esi, [eax+_esi]

mov [eax+_esi], esi | mov edx, [eax+_edx]

mov [eax+_edi], edi | mov ecx, [eax+_ecx]

mov [eax+_ebp], ebp | mov ebx, [eax+_ebx]

mov [eax+_esp], esp | mov eax, [eax+_eax]

| ret

The left half of the code saves the current machine context, whereas the right half
loads the new machine context and resumes the program control from there. Although
conceptually easy to recognize, context switching is hard to reason about even at the
meta-level—it involves program counters, register files, stacks, private and shared heaps,
function calls/returns, higher-order control-flows, etc.

Because context switching occurs so frequently—hundreds to thousands of times
per second on every computer—code sequences similar to the above one deserve the
most careful examination. Their safety and correctness are crucial to all multi-tasking
software built on top of them. A common misunderstanding is that such code is so stable
and small in size that it is more suitable for informal scrutiny and testing. Unfortunately,
despite having been extensively studied and used for decades, this code still proves to
be a common source of bugs and confusion. A quick web search reveals many reports
and discussions of bugs in context management code [8, 19, 11, 7, 16, 18] even today.
Thus, it should be a focus of formal methods and mechanized verifications. Yet to the
authors’ knowledge, there has been no formal proof, either manual or mechanized, of
the safety and correctness of code similar to the above one.

Recently, formal studies on systems code for operating system kernels have attracted
growing interest. One example is the Singularity project [5], which aims to build a
highly reliable OS using a type-safe language (C#) and other techniques. Another ex-
ample is the Verisoft project [3], which uses computer-aided logical proofs to obtain
the correctness of critical systems including OS kernels. Unfortunately, both fall short
at the above 19-line code: Singularity trusts unsafe assembly code for doing context
switching; Verisoft uses an abstract model of user process that hides the context switch-
ing details. Moreover, without a full verification of context management, existing work
on concurrent verification is prevented from being integrated with the verification of
systems code, as it relies on the correctness of concurrency primitives.

This paper reports our experience on applying XCAP [12], a recent assembly code
verification framework, to an x86 machine model, and certifying a realistic machine
context implementation with it. XCAP allows expressive and modular logical speci-
fications of safety and correctness, but has been applied previously only on a simple
idealized machine model and application code. Starting with the code for context man-
agement, we show in this paper how to build the implementation infrastructure and
carry out the verification. We first applied the XCAP theory to an x86 machine model,
which required some changes to the inference rules for program reasoning. To support
practical verification, we built libraries of proof tactics and lemmas. We then specified



the context data structures and routines using the XCAP logic-based specifications, and
proved that the code behaves accordingly.

Our library code and proof can be linked with other systems code and application
code, as well as their corresponding proofs. The code runs on stock hardware. Our ap-
proach is applicable to other variants of context management (such as more complex
contexts, different hardware platforms, etc.). It provides a solid basis for further verifi-
cation of concurrent programs. Besides achieving the first formal, modular, and mecha-
nized verification of x86 context management code, our experience also illustrates how
verification of realistic systems code can be done in general.

In particular, we want to point out the following features in our case study.

– As shown by swapcontext(), our code is representative and realistic, and runs on
stock hardware. Its verification does not require a change of programming style or
the abandonment of legacy code. There are no performance penalties or compati-
bility issues.

– Without compromising soundness, our machine model supports realistic features
such as variable-length instruction decoding, finite machine-word, word-aligned
byte-addressed memory, conditional flags, stack push/pop, and function call/return.

– Our specifications are modular and expressive. For example, the private local data
that belongs to a context can be of arbitrary shape and size. The approach is not
specialized to a particular kind of multi-tasking implementation, thus our method
will likely support other possible usages of machine contexts.

– Everything—the code, machine model, adapted XCAP meta theory (including sound-
ness), proof tactics and lemmas, and code specification and proof—is fully mecha-
nized using the Coq proof assistant, thus leaving a tiny trusted computing base.

The paper is organized as follows. We start in Section 2 by discussing our machine
context implementation. In Section 3 we show how to apply XCAP to an x86 machine
model. We then specify and verify the context code in Section 4. Section 5 discusses our
Coq implementation. Finally, we compare with related work and conclude in Section 6.

2 Machine Context Management

Context refers to the local (private) data of a computation task. It is a widely used
concept in software and programming. It is crucial to multi-tasking, as the latter is
eventually carried out by doing a context switch. Depending on its application and
abstraction level, a context may contain program counters, register files, stacks, private
heap, thread control blocks, process control blocks, etc. Common context management
operations include context creation, restoring, and switching.

Context data structures. The x86 machine context implementation in this paper is at the
same level as those found in typical Windows, Unix, and Linux systems. To simplify
the problem and focus on the most critical part, we ignore orthogonal features such as
floating point and special registers. The machine context structure mctx st contains the
eight general purpose registers of an x86 processor (including a stack pointer register,
which should point to a stack with a valid return address on top). The corresponding
pointer type is mctx t. Below are the definitions in C.



typedef struct mctx_st *mctx_t;

struct mctx_st {int eax, int ebx, int ecx, int edx,

int esi, int edi, int ebp, int esp};

Context creation. The makecontext() function initializes a new context with its argu-
ments: location of context, new stack pointer, return link, address of target function,
and argument for target function. It is basis of and analogous to the creation of a new
thread. The new stack pointer points to a stack frame prepared for the target function.
Notice here f unc() is a higher-order function pointer, and lnk is also a higher-order
continuation pointer. When the newly created context gets first switched to, f unc()
will start execution. When it finishes, f unc() should return to lnk.

void makecontext (mctx_t mctx, char *sp, void *lnk, void *func, void *arg);

mov eax, [esp+4] // load address of the context

mov ecx, [esp+8] // load stack top pointer for the new stack frame

mov edx, [esp+20] // load the function’s argument

mov [ecx-4], edx // push it onto new stack

mov edx, [esp+12] // load the function’s return link

mov [ecx-8], edx // push it onto new stack

mov edx, [esp+16] // load the function address

mov [ecx-12], edx // push it as return IP onto new stack

sub ecx, 12

mov [eax+_esp], ecx // all useful info for fresh context is on new stack

ret

Context switching. The swapcontext() function saves the current old context and loads
a new one for further execution. Because the stack pointer is changed to the new con-
text’s, instead of returning to its direct caller in the old context, it returns to its previous
caller in the new context. (Alternatively, the first time a new context gets switched to,
it “returns” to the function pointer f unc(), as supplied upon its creation.) Because its
code was presented in the beginning of the paper, we only present its interface below.

void swapcontext (mctx_t old, mctx_t new);

Context loading. The loadcontext() function loads a new context and continues exe-
cution from there. It is essentially the second half of swapcontext(), with a slight dif-
ference in the location of context pointers. Technically speaking, it is not a “function”
since it never returns to its caller.

void loadcontext (mctx_t mctx);

mov eax, [esp+8] // load address of the new context

mov esp, [eax+_esp] // load the new stack pointer

mov ebp, [eax+_ebp] // load the new registers

mov edi, [eax+_edi]

mov esi, [eax+_esi]

mov edx, [eax+_edx]

mov ecx, [eax+_ecx]

mov ebx, [eax+_ebx]

mov eax, [eax+_eax]

ret // invoke the new context



Why traditional methods are insufficient? One may be tempted to think that traditional
type systems or program logics should be sufficient to verify the safety and correctness
of this “simple” code. After all, it is only 3 functions and 40 assembly instructions.
However, as will become apparent in the detailed discussion in the next few sections,
a general verification of this code requires at least the following features: 1) polymor-
phism over arbitrary shape of program data; 2) explicit multiple stacks with flexible
stack handling (such as one context manipulating other contexts’ stacks); 3) separation-
logic-like strong-update style of memory model (i.e., context data should not be man-
aged by garbage collectors, as is in the real-world scenario); 4) general embedded code
pointers (not merely higher-order functions, but also higher-order continuations, e.g.,
see the discussion of f unc and lnk for makecontext() earlier); 5) support of partial
correctness. Traditional type systems such as Typed Assembly Languages (TAL) [9]
typically have problems with (1), (2), (3), and (5). Traditional program logics, includ-
ing Hoare Logic [4] and Separation Logic [15] often fail on (4), as explained in [12].
The very recent index-based semantic model approach for Foundational Proof-Carrying
Code [1] does not support (5). Only with recent hybrid type/logic systems such as
XCAP [12], can all of these features be supported simultaneously.

3 Applying XCAP to x86 Machine Model

Our verification is carried out following XCAP [12], a logic-based verification frame-
work that facilitates modular reasoning in the presence of embedded code pointers and
other higher-order features. In [12], XCAP is applied to an idealized RISC-like toy
machine and simple user-level code. When applying XCAP to x86, we had to make
practical adaptations and build useful abstractions, particularly for the machine-level
details and the handling of the stack and function calls. In this section we first briefly
present our adaptation steps and then show how to carry out the verification in general.
Interested readers are referred to [12] and Appendix B for more details.

Machine model. We formalized a subset of x86 as the machine model for XCAP, as
presented in Fig. 1. The execution environment consists of a memory, a register file
of general-purpose registers, a flags register made up of a carry bit and a zero bit, and
a program counter. The memory appears as a single continuous address space, where
both code and data (static and dynamic) reside in. The data part of the memory, the
register file, and the flags register form the machine state. We support common in-
structions for arithmetic, data movement, comparison, control flow transfer, and stack
manipulation, as well as realistic x86 features such as variable-length instruction decod-
ing, finite machine-word, word-aligned byte-addressed memory, conditional flags, stack
push/pop, and function call/return. Operational semantics for the x86 machine model
can be found in Appendix A . In the rest of this paper, I represents a sequence of in-
structions; and Nextc denotes a function that computes the resulting state of executing
instruction c.

Basic reasoning. The basic idea of XCAP follows Hoare logic—a program point can
be associated with an assertion which documents its requirement on the machine state.
The readers can assume that an assertion is simply a logical predicate on machine state.



(Prog) P ::= (S, pc)
(State) S ::= (H,R,F)
(Mem) H ::= {l1 ; w1, . . . ,ln ; wn}
(R f ile) R ::= {eax ; w1, . . . ,esp ; w8}
(FReg) F ::= {cf ; b1,zf ; b2}
(Cond) cc ::= a | ae | b | be | e | ne

(Word) w ::= i (uint32)
(CdLbl) f ::= i (uint32)
(Label) l ::= i (i%4=0)
(Bool) b ::= tt | f f
(Addr) d ::= i | r±i
(Opr) o ::= i | r

(Reg) r ::= eax | ebx | ecx | edx | esi | edi | ebp | esp

(Instr) c ::= add r,o | sub r,o | mov r,o | mov r, [d] | mov [d],o | cmp r,o | jcc f | jmp o

| push o | pop r | call o | ret

Fig. 1. Syntax of the x86 machine model

A program can be viewed as a collection of code blocks (instruction sequences)
connected together with control-flow instructions such as jmp and call. Every code block
has an associated assertion as its precondition, which is put together in a code heap
specification Ψ (think of this as a header file). The verification is carried out by finding
appropriate intermediate assertions for all program points, following inference rules.

To verify that a code block add r,o;I is well-formed (i.e., correct with respect
to the specification) under pre-condition a, which can be thought of as a predicate of
type State→ Prop, we must find an intermediate assertion a′ to serve both as the post-
condition of add r,o and as the pre-condition of I. More specifically, we must establish:
(1) if a holds on a machine state, then a′ holds on the updated machine state after exe-
cuting add r,o; (2) I is well-formed under pre-condition a′. Below is the corresponding
inference rule (⇒ and ◦ stand for assertion implication and function composition).

a⇒ (a′ ◦Nextadd r,o) Ψ `{a′}I
Ψ `{a}add r,o;I

(ADD)

Reasoning about memory. The reasoning on memory (data heap and stack) operations
is carried out following separation logic [15]. In particular, the primitives of separation
logic are defined as shorthands using the primitives of the underlying assertion logic in
XCAP via a shallow embedding. Some representative cases are given as follows.

emp , λH.H={}
l 7→w , λH.l 6=NULL∧H={l;w}
l 7→ , λH.∃w.(l 7→w H)

a1 ∗a2 , λH.∃H1,H2.H1]H2 =H∧a1 H1∧a2 H2

l 7→w1, . . . ,wn , l 7→w1 ∗ l+4 7→w2 ∗ . . . ∗ l+4(n−1) 7→wn

l 7→ [n] , l 7→ , . . . , (the number of is n/4)

Reasoning about control-flow transfer. Direct control transfers are simple—when trans-
ferring control to code at label f, one should establish the pre-condition of f as required
by the code heap specification. This is illustrated with the following rule:

a⇒Ψ(f) f∈dom(Ψ)
Ψ `{a} jmp f

(JMPI)



A distinguishing feature of XCAP compared to other program logics is the special
support for embedded code pointers. It introduces a syntactic construct cptr(f,a) to
serve as an assertion of “f points to code with pre-condition a”. For an indirect jump,
the verification only uses the information enclosed in the cptr assertion. Modularity is
achieved by not referring to the actual target address or the local code heap specification.

a⇒ (λ(H,R).a′ (H,R) ∧ cptr(R(r),a′))
Ψ `{a} jmp r

(JMPR)

The above rule claims that it is safe to jump to register r under assertion a, if r contains
a code pointer with a pre-condition a′ that is weaker than a. Interested readers are
referred to [12] for more details on cptr and the new assertion language, PropX . For
this paper, please keep in mind that assertions are actually of type State→ PropX .

The function call and return instructions are supported as in the following new rules:

a⇒ (Ψ(f)◦Nextpush fret
) f∈dom(Ψ)

Ψ `{a}call f; [fret ]
(CALLI)

a⇒ λ(H,R,F).cptr(H(R(esp)),a′) a⇒(a′ ◦Nextpop)
Ψ `{a} ret

(RET)

A call instruction pushes a return address onto the stack and transfers control to the
target code. In our actual implementation, the return address is calculated from the pc.
To avoid obfuscating the presentation, we use an explicit [fret ] in the above Rule CALLI.
This rule says, if a holds on the current state, then Ψ(f) holds on the updated state after
executing the stack push. The rule RET says, the top of the stack is a code pointer with
pre-condition a′ and, if a holds on the current state, a′ holds on the updated state after
executing the stack pop (of the return address). It is worth noting that Rule CALLI does
not enforce the validity of the return address. This allows some “fake” function calls
that never return, a pattern indeed used in loadcontext().

Stack and calling convention. The support for call and return instructions is one of the
many adaptations made for x86. Besides specializing XCAP for the machine model,
we also built key abstractions to help manage the complexity of the reasoning, such as
the handling of the stack and calling convention. The calling convention is illustrated in
Fig. 2. It is convenient to build a specification template reflecting this convention.

For a function with n arguments a1 . . .an, we write its specification (i.e., a pre-
condition in the form of an assertion) as:

Fn a1, . . . ,an {Aux : x1, . . . ,xm; Local : [ f s]; Pre : apre; Post : apost}
The intention of this macro is that x1, . . . ,xm are “auxiliary variables” commonly used
in Hoare-logic style reasoning, f s is the size of required free space on the stack, and
apre and apost are the pre- and post-conditions of the function. This macro is defined as:

∃a1, . . . ,an,cs,sp,ss,ret,x1, . . . ,xm,aprv.

reg(cs,sp) ∧ ss≥ f s
∧ stack(sp,ss,ret,a1, . . . ,an) ∗ aprv ∗ apre

∧ cptr(ret, ∃retv. reg(cs,sp+4)∧eax=retv
∧ stack(sp+4,ss+4,a1, . . . ,an) ∗ aprv ∗ apost)



argument 1
return addr

…
argument n

Caller frames

local storage

excess space

Heap Data

esp

user handled
auto enforced

Fig. 2. Function calling convention

The first line of this definition quantifies over the values of (1) function arguments
a1, . . . ,an, (2) callee-save registers cs (a 4-tuple), (3) the stack pointer sp, (4) the size of
available space on stack ss, (5) the return address ret, (6) auxiliary variables x1, . . . ,xm,
and (7) some hidden private data expressed as the predicate aprv.

The second line relates the register file with the callee-save values cs (4-tuple) and
the stack pointer sp and makes sure that there is enough space available on the stack.

reg(ebx,esi,edi,ebp,esp) , ebx=ebx∧esi=esi∧edi=edi∧ebp=ebp∧esp=esp

The third line describes (1) the stack frame upon entering the function using the
macro below, (2) the private data hidden from the function, and (3) the user customized
pre-condition apre, which does not directly talk about register files and the current stack
frame, because they are already handled by the calling convention.

stack(sp,ss,w1, . . . ,wn) , sp−ss 7→ [ss] ∗ sp 7→w1, . . . . ,wn.

The last two lines of the Fn definition specify the return address ret as an embedded
code pointer using cptr. When a function returns, the callee-save registers, stack frame,
and private data must all be preserved, and the post-condition apost must be established.
Note that (1) eax may contain a return value retv, and (2) the return instruction auto-
matically increases the stack pointer by 4.

4 Formal Verification of Machine Context Management

What is a machine context? Although the C specification in Section 2 appears to in-
dicate that a context is merely eight words, the actual assumptions underlying it are
rather complex. As illustrated in Figure 3, the eight words represent a return value retv,
six registers referred to collectively as cs, and a stack pointer sp. sp points to a return
address ret found on top of a stack frame. The saved registers may point to some private
data. There may also be some environment data shared with external code. Eventually, a
context is consumed when being invoked. A correct invocation of jumping to the return
address ret requires (1) the saved register contents be restored into the register file, (2)
the stack and private data be preserved, and (3) the shared environment be available.



retv
bx
cx
dx
si
di
bp
sp

mctx
shared environment

private data ret code to 
execute

cs

Fig. 3. Machine context

All these requirements make it challenging to specify the invariants on contexts. Be-
cause of the expressiveness of XCAP, we can define a heap predicate mctx t(aenv,mctx)
for the context data structure, parametric to the environment described as aenv,

∃retv,cs,sp,ret,aprv. mctx 7→retv,cs,sp ∗ sp 7→ret ∗ aprv

∧ cptr(ret, reg6(cs,sp+4) ∧ eax=retv ∧ aenv ∗ mctx 7→retv,cs,sp ∗ sp 7→ret ∗ aprv)

where aprv describes the private data, and reg6 is defined similarly to reg with 6-tuple.

Context switching. The swapcontext() function take two pointers (one to the old con-
text and another to the new context) and performs three tasks: saves registers to the old
context, loads registers from the new context, and transfers control to the new context.
From the implementation, swapcontext() gets called by one client and “returns” to an-
other. However, this is entirely transparent to the clients—when swapcontext() returns,
the stack and private data of that client are kept intact.

We present the specification and proof outline of swapcontext() in Fig. 4. It uses a
macro Fn6, a variant of Fn obtained by replacing reg with reg6 and changing cs to refer
to 6 registers. Fn6 automatically manages the preservation of the stack and private data.
In addition, the pre-condition specifies three pieces of memory: (1) the old context
pointed to by old—at the beginning of the routine it is simply 32 bytes of memory
available for use, (2) the shared data aenv, and (3) the new context pointed to by new.

The new context is specified with the help of the macro mctx t. The environment
parameter of this macro consists of two parts: the shared data aenv and another mctx t
macro, describing the old context. This is because the old context will be properly
set up by the routine before switching to the new one. One tricky point is that the old
context will be expecting an (existentially quantified) new shared environment anewenv.
Although one may expect the new environment to be simply the old one, aenv, together
with the new context at new, this may not necessarily be the case. For instance, the new
context may be dead already and de-allocated when the old context regains control.

The post-condition of swapcontext() is relatively simple: the space for the old con-
text will still be available, together with the new shared data anewenv.

An interesting proof step in Fig. 4 is the one after the old context is packed but before
the new one is unpacked. At that point, there is no direct notion of stack or function.
The relevant machine state essentially comprises of two contexts and one environment:

eax=new∧ mctx t(anewenv,old)∗aenv ∗mctx t(mctx t(anewenv,old)∗aenv,new)

Intuitively, it should be safe to load the new context from eax and then switch to it.



Fn6 old,new { Aux: anewenv; Local: [0];
Pre: old 7→ [32]∗aenv ∗mctx t(mctx t(anewenv,old)∗aenv,new);
Post: old 7→ [32]∗anewenv∧eax=0}

swapcontext: // void swapcontext (mctx t old, mctx t new);

reg6(cs,sp) ∧ ss≥0 ∧ stack(sp,ss,ret,old,new) ∗old 7→ [32] ∗aprv ∗aenv
∗mctx t(mctx t(anewenv,old)∗aenv,new)
∧cptr(ret, reg6(cs,sp+4)∧eax=0∧ stack(sp+4,ss+4,old,new)∗old 7→ [32] ∗aprv ∗anewenv)

mov eax, [esp+4] // load address of the context data structure we save in
... // save old context
mov eax, [esp+8] // load address of the context data structure we have to load

eax=new ∧ ss≥0 ∧ stack(sp,ss,ret,old,new) ∗old 7→0,cs,sp∗aprv ∗aenv
∗mctx t(mctx t(anewenv,old)∗aenv,new)
∧cptr(ret, reg6(cs,sp+4)∧eax=0∧ stack(sp+4,ss+4,old,new)∗old 7→ [32] ∗aprv ∗anewenv)

// shuffle and cast

eax=new ∧ old 7→0,cs,sp∗ sp 7→ret ∗ stack(sp,ss)∗ sp+4 7→old,new∗aprv
∧cptr(ret, reg6(cs,sp+4)

∧eax=0∧anewenv ∗old 7→0,cs,sp∗ sp 7→ret ∗ stack(sp,ss)∗ sp+4 7→old,new∗aprv)
∗aenv ∗mctx t(mctx t(anewenv,old)∗aenv,new)

// pack old context

eax=new ∧mctx t(anewenv,old)∗aenv ∗mctx t(mctx t(anewenv,old)∗aenv,new)

// unpack new context

eax=new ∧mctx t(anewenv,old)∗aenv ∗new 7→retv′,cs′,sp′ ∗ sp′ 7→ret ′ ∗anewprv
∧cptr(ret ′, reg6(cs′,sp′+4)

∧eax=retv′∧mctx t(anewenv,old)∗aenv ∗new 7→retv′,cs′,sp′ ∗ sp′ 7→ret ′ ∗anewprv)

mov esp, [eax+ esp] // load the new stack pointer.
... // load the new context

reg6(cs′,sp′)∧eax=retv′∧mctx t(anewenv,old)∗aenv ∗new 7→retv′,cs′,sp′ ∗ sp′ 7→ret ′ ∗anewprv
∧cptr(ret ′, reg6(cs′,sp′+4)

∧eax=retv′∧mctx t(anewenv,old)∗aenv ∗new 7→retv′,cs′,sp′ ∗ sp′ 7→ret ′ ∗anewprv)

ret

Fig. 4. Verification of machine context switching

Context creation. We present the specification and proof outline of makecontext() in
Figure 5. The intermediate assertions are also organized using Fn. For conciseness, we
omitted common parts of these macros, thus emphasizing only the changeable parts.

The pre-condition of the routine specifies (1) an empty context at mctx, (2) a stack
nsp with available space of size nss, (3) some private data of the target context (poten-
tially accessible from the argument arg of the function f unc() of the target context, (4)
a link (return address) lnk to be used when the target context finishes execution, and (5)
a function pointer f unc() for the code to be executed in the target context. It also spec-
ifies the exact requirements on the code at pointers lnk and f unc: (1) aret occurs both
in the post-condition of f unc() and in the pre-condition of lnk, indicating that the code
at the return address lnk may expect some results from the context function f unc(); (2)



Fn mctx,nsp, lnk, f unc,arg { Aux: aenv; Local: [0];
Pre: mctx 7→ [32]∗ stack(nsp,nss)∗aprv∧nss≥12

∧cptr(lnk, esp=nsp−4∧ stack(nsp−4,nss−4,arg)∗aret)
∧cptr( f unc, Fn arg′ { Local: nss−8;

Pre: sp′=nsp−8∧arg′=arg∧aenv ∗mctx 7→ [32]∗aprv;
Post: aret });

Post: mctx t(aenv,mctx)}
makecontext: // void makecontext (mctx t mctx, char *sp, void *lnk, void *func, void *arg);

Local: [0]; Pre: mctx 7→ [32]∗ stack(nsp,nss)∗aprv∧nss≥12
∧cptr(lnk, esp=nsp−4∧ stack(nsp−4,nss−4,arg)∗aret)
∧cptr( f unc, Fn arg′ { Local: nss−8;

Pre: sp′=nsp−8∧arg′=arg∧aenv ∗mctx 7→ [32]∗aprv;
Post: aret });

mov eax, [esp+4] // load address of the context data structure.
... // initialize the new context
mov [eax+ esp], ecx // only the stack pointer matters for a fresh new context

Local: [0]; Pre: mctx 7→ [28],nsp−12∗ stack(nsp−12,nss−12, f unc, lnk,arg)∗aprv
∧cptr(lnk, esp=nsp−4∧ stack(nsp−4,nss−4,arg)∗aret)
∧cptr( f unc, Fn arg′ { Local: nss−8;

Pre: sp′=nsp−8∧arg′=arg∧aenv ∗mctx 7→ [32]∗aprv;
Post: aret });

// unfold, shuffle, and cast

Local: [0]; Pre: mctx 7→retv′,cs′,nsp−12∗nsp−12 7→ f unc
∗stack(nsp−12,nss−12)∗nsp−8 7→ lnk,arg∗aprv
∧cptr(lnk, esp=nsp−4∧ stack(nsp−4,nss−4,arg)∗aret)

∧cptr( f unc, reg6(cs′,nsp−8)∧eax=retv′∧aenv ∗mctx 7→retv′,cs′,nsp−12∗nsp−12 7→ f unc
∗stack(nsp−12,nss−12)∗nsp−8 7→ lnk,arg∗aprv
∧cptr(lnk, esp=nsp−4∧ stack(nsp−4,nss−4,arg)∗aret));

// pack the fresh context

Local: [0]; Pre: mctx t(aenv,mctx);

ret

Fig. 5. Verification of machine context creation

the stack should be properly maintained upon returning to lnk. The post-condition of
the routine simply states that, when makecontext() returns, mctx will point to a proper
context which expects a shared environment of aenv.

Our interface of makecontext() is faithful to the Unix/Linux implementations. The
heavy usage of function and continuation pointers shows how crucial XCAP’s support
of embedded code pointers is. As the proof shows, the most complex step is on trans-
forming code pointers’ pre-conditions and packing all the resources into a context.

Context loading. loadcontext() essentially performs the second half of the task of
swapcontext(), with some differences in the stack layout. Although we refer to it as
a “function”, it actually never returns and does not require the stack top to contain a
valid return address. We present the verification of loadcontext() in Figure 6.



loadcontext: // void loadcontext (mctx t mctx);

reg(cs,sp)∧ stack(sp,ss,ret,mctx)∗aenv ∗mctx t(stack(sp,ss,ret,mctx)∗aenv,mctx)

mov eax, [esp+4]

eax=mctx∧ stack(sp,ss,ret,mctx)∗aenv ∗mctx t(stack(sp,ss,ret,mctx)∗aenv,mctx)

// unpack context

eax=mctx ∧anewenv ∗mctx t(anewenv,mctx)

// unpack context

eax=mctx ∧anewenv ∗mctx 7→retv′,cs′,sp′ ∗ sp′ 7→ret ′ ∗aprv
∧cptr(ret ′, reg6(cs′,sp′+4)∧eax=retv′∧anewenv ∗mctx 7→retv′,cs′,sp′ ∗ sp′ 7→ret ′ ∗aprv)

mov esp, [eax+ esp] // load the new stack pointer.
mov ebp, [eax+ ebp]

mov edi, [eax+ edi]

mov esi, [eax+ esi]

mov edx, [eax+ edx]

mov ecx, [eax+ ecx]

mov ebx, [eax+ ebx]

mov eax, [eax+ eax]

reg6(cs′,sp′+4)∧eax=retv′∧anewenv ∗mctx 7→retv′,cs′,sp′ ∗ sp′ 7→ret ′ ∗aprv
∧cptr(ret ′, reg6(cs′,sp′+4)∧eax=retv′∧anewenv ∗mctx 7→retv′,cs′,sp′ ∗ sp′ 7→ret ′ ∗aprv)

ret

Fig. 6. Verification of machine context loading

5 The Coq Implementation

We have mechanized everything in this paper using the Coq proof assistant [17]. By ev-
erything we mean the machine model, XCAP and its meta theory (including soundness
proof), separation logic, and specification and proof of the context implementation.

Proof details. Our Coq implementation (downloadable at [14]) consists of approxi-
mately 17,000 lines of Coq code. Figure 7 presents a break down of individual compo-
nents in the implementation. The full compilation of our implementation in Coq (proof-
script checking and proof-binary generation) takes about 52 minutes under Windows
Vista on an Intel Core 2 Duo T7200 2GHz CPU with 4MB L2 cache and 2GB memory.

The proof for lemmas and the context code is typically on implications from one
assertion to another, either on the same machine state (casting), or on two consecutive
states before and after the execution of an instruction. Proof steps mostly adjust the
shape of the assertions to match, split implications into smaller ones, and track the
changed parts down to the basic data units. Coq’s proof searching ability is useful, but
often too weak for the reasoning about memory and resources.

Coq has many built-in proof tactics for intuitive handling of proofs of Prop sort, such
as intro, split, left, right, exists, cut, auto, etc. Following them, we defined a similar set
of proof tactics for PropX , such as introx, splitx, leftx, rightx, existsx, cutx, autox, etc.
Each of these new PropX tactics can be used similarly to the Prop ones, which increases
the productivity when working with PropX for experienced Coq users.



Implementation component Line of code Compile time
Safe extension to Coq on extensional equality on functions 9 Loc 1s
Math lemmas 384 Loc 1s
Set level mapping 220 Loc 1s
Type level mapping 218 Loc 1s
Type list 103 Loc 1s
Target machine (TM) 441 Loc 10s
PropX meta theory (independent of XCAP meta theory) 4,504 Loc 6m
PropX lemmas (independent of XCAP meta theory) 258 Loc 3s
Separation-logic style memory assertions 74 Loc 1s
Common data-structure related lemmas 1,171 Loc 10s
(independent of XCAP meta theory)
XCAP (x86 version) 755 Loc 3s
XCAP common definitions and lemmas 297 Loc 3s
Machine context module: code, data structure, and specification 144 Loc 1s
Proof for loadcontext() function 753 Loc 15s
Proof for swapcontext() function 4,917 Loc 3m
Proof for makecontext() function 2,372 Loc 40m
Total (on Intel Core 2 Duo T7200 2GHz / 4MB L2 / 2GB Ram) 16,620 Loc 52m

Fig. 7. Break-down of Coq implementation

To make PropX formulas more readable, we defined some pretty-printing notations.
For example, one can directly write the following formula:

All x, <<even x>> .\/ Ex y, z. <<x = y + z>> ./\ <<prime y /\ prime z>>

and write a function specification in the same style as used in our paper presentation:

Fn ... {Aux : ...; Local: [...]; Pre: ... ; Post: ...}

Development time. The development of the proof took about three person-months.
There are several reasons for the large proof size and development time. First of all,
this is the first time we did this kind of realistic proof, so a lot of infrastructure code and
experience needed to be developed and learned. For example, about half of the 17,000
lines of code is independent of machine context verification; such code can be reused
for other verification purposes. The first procedure we certified, swapcontext(), took
one person-month and 5,000 lines of code. We believe these numbers would be at least
halved if we did it again. Second, there is much redundancy due to the relatively low
level of proof reuse. The third reason is the complexity of the machine model, which
needs features such as finite integers that are not supported well in Coq. Nevertheless,
the biggest reason, we believe, is the complexity of reasoning about the actual code.

As an example, the machine context data type in the previous section is implemented
as in Figure 8, which is far more complex than what its meta presentation looks like.
Part of the complexity is due to the de Bruijn representation of impredicative quan-
tifiers. Further improved pretty printing notations can help simplify the presentation.
Still, there is the inherent complexity surrounding a machine context data structure that
can not be omitted or avoided by any formal reasoning about it.



Definition mctx_t L aenv mctx : Heap -> PropX L := fun H =>

Ex retv, bx, cx, dx, si, di, bp, sp, ret.

star (ptolist _ mctx (retv::bx::cx::dx::si::di::bp::sp::nil))

(star (pto _ sp ret)

(fun H => extv _ _ (eq_rect _ _

(Lift _ _ (var tO _ H)

./\ codeptr _ ret

(fun S’ => match S’ with ((H’,R’),F’) in

reg6 _ bx cx dx si di bp (sp+4) R’ ./\ << R’ eax = retv>>

./\ star (fun H => Shift _ _

(eq_rect _ _ (aenv H) _ (app_nil_eq _)) _)

(star (ptolist _ mctx (retv::bx::cx::dx::si::di::bp::sp::nil))

(star (pto _ sp ret)

(fun H => Lift _ _ (var tO _ H)))) H’

end)) _ (nil_app_eq _)))) H.

Fig. 8. Coq encoding of mctx t

Discussion on the proof size. The large size of the proof naturally raises practicality
concerns. However, when making comparisons with other verification methods, there
are several aspects of our method that need to be taken into consideration.

For comparison with abstraction-based verification methods, we believe that while
they provide insights on the invariants of the algorithms and high-level programs, for
low-level systems code such as context management, working at an abstract level will
not have an actual advantage. As explained in the beginning of this paper, it is the level
it works at and the complexity of this code that are most interesting.

For comparison with analysis- and test-based verification methods, the important
question to ask is what kind of guarantee one can deliver. Many of these tools can au-
tomatically find bugs, but only in a “best-effort” fashion—false negatives are expected.
In our case, we want to completely exclude certain categories of bugs, as guaranteed by
the language-based approach in general.

For comparison with other language-based methods, such as type systems, the im-
portant question to ask is what kind of code is supported. There have been efforts to use
higher-level safe languages for systems programming, all with trade-offs in efficiency
and/or compatibility, some even with significant changes in programming style. In our
case, we require no change to the existing systems programming style and code base,
and thus we expect no performance or compatibility issues. In general, we believe that
systems and application code requires different level of safety guarantees, thus their
verification will naturally result in different levels of productivity. For example, it is
feasible to automatically generate proofs for TAL programs in XCAP [13] and link
them with the certified context routines in this paper following methods in [13] or [2].

6 Related Work and Conclusion

Hoare-logic style systems have been widely used in program verification. They support
formal reasoning using assertions and inference rules based on expressive program log-
ics. Nonetheless, there has been no work in the literature on the logical specification



and verification of machine context management. The challenge there, based on our ex-
perience, largely lies in working with embedded code pointers. For example, among the
efforts applying Hoare-logic-based verification to machine code, an earlier work, Yu et
al [20], is able to do mechanized verification of MC68020 object code. However, as ex-
plained in [12], they cannot support embedded code pointers and they encountered the
problem of “functional parameters”. Recently, Myreen et al [10] support verification of
realistic ARM code, but support of embedded code pointers is missing.

Separation logic [15, 6] provides a helpful abstraction for working with memory.
Our verification makes use of a shallow embedding of separation logic in the assertion
language to reason about the machine state.

The Singularity OS [5] uses a mixture of C# and assembly code to implement thread-
ing. Whereas most parts of the code enjoy type safety, context switching is written in
unsafe assembly code. Furthermore, threading and context data structures are specified
using managed data pointers, which belong to the weak update memory model (ML-
like reference types also belong to it). It is significantly different from the separation-
logic style unmanaged strong update memory model used in this paper, as well as in
Unix/Windows kernel. One disadvantage for using weak update for certified systems
programming is that its memory management relies on garbage collection, which may
not be appropriate for some systems programs.

The verification of context switching in this paper addresses the actual implemen-
tation details, including those hidden behind the implementation of continuations and
storage management. The code we verified is at the same level as the actual executable
running on a real machine. The trusted computing base is extremely small. Besides the
obvious progress/preservation property, because our verification is based on logical as-
sertions, it conveys a more expressive safety policy: the run-time states of the machine
should satisfy the corresponding assertions as written in the specification.

Conclusion. We have presented the first formal, modular, and mechanized verification
of machine context management code and showed how to build a verification infrastruc-
ture for certifying realistic low-level systems code. In particular, we applied the XCAP
framework to an x86 machine model, developed new proof-tactics and lemma libraries,
and used it to certify the code and data structures in an x86 machine-context imple-
mentation. Everything has been mechanized in the Coq proof assistant. Our approach
is applicable to other variants of context, provides a solid basis for further verification
of thread implementations, and illustrates the formal, modular, and mechanized verifi-
cation of realistic systems code in general.

By following better engineering practices and building smarter domain-specific proof-
searching tools, especially those for separation logic and program logics, we believe that
the automation in systems code specification and verification can be gradually increased
to a level where it is practical to apply to the building of provably correct software.
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Suppose Dc(H, pc)=(c,npc)
if c= then ((H,R,F), pc) 7−→
jmp o (H,R,F, R̂(o))
jcc f if F̂(cc) then (H,R,F,f) else (H,R,F,npc)

where suppose F={cf ; c f ,zf ; z f}, we have
F̂(a),¬c f ∧¬z f , F̂(ae),¬c f , F̂(b),c f ,
F̂(be),c f ∨ z f , F̂(e),z f , F̂(ne),¬z f

call o (Nextpush npc(H,R,F), R̂(o))
ret (Nextpop(H,R,F),H(sp)) when sp∈dom(H)
c (Nextc(H,R,F),npc)

where
if c= then Nextc(H,R,F)=
add r,o (H,R{r;R(r)+R̂(o)},CalcF(R(r)+R̂(o))) when 0≤R(r)+R̂(o)<232

sub r,o (H,R{r;R(r)−R̂(o)},CalcF(R(r)−R̂(o))) when 0≤R(r)−R̂(o)<232

cmp r,o (H,R,CalcF(R(r)−R̂(o)))
mov r,o (H,R{r; R̂(o)},F)
mov r, [d] (H,R{r;H(R̂(d))},F) when R̂(d)∈dom(H)
mov [d],o (H{R̂(d); R̂(o)},R,F) when R̂(d)∈dom(H)
push o (H{sp−4; R̂(o)}, R{esp;sp−4},F) when sp−4∈dom(H)
pop r (H,R{r;H(sp)}{esp;sp+4}, F) when sp∈dom(H) and 0≤sp+4<232

pop (H,R{esp;sp+4}, F) when 0≤sp+4<232

Dc() is the instruction decoding function

R̂(i), i R̂(r),R(r) R̂(r±i),R(r)±i CalcF(i) , {cf 7→ i<0,zf 7→ i=0}

Fig. 9. Dynamic semantics of the x86 machine model

A Operational Semantics of The x86 Machine Model

We present the operational semantics of the x86 machine model in Figure 9. We use Dc
to fetch and decode an instruction out of the memory H given a program counter pc.
The result of Dc is an instruction c and a new program counter npc. We also use a macro
Nextc(S) to define the transition of the machine state on some of the instructions.

B Inference Rules of XCAP for The x86 Machine Model

In this section we describe the change from the original XCAP [12]. The major changes
for the x86 machine model are on the inference rules, which is presented in Figure 10.
Below are the instruction sequence and the code heap definitions for it.

(InstrSeq) I ::= c | c;I | c; [f] (CodeHeap) C ::= {f1 ; I1, . . . ,fn ; In}
In the top-level well-formed program rule, DC(C) is a predicate that establishes the

proper decoding relation between the code heap C and the memory H. Its implementa-
tion makes use of the single-instruction decoding function Dc() that appears in the pre-
vious section. lookup(C,f,I) is a macro that checks whether the instruction sequence I
is inside code heap C at location f. New rules for function call/return are added.



ΨG `{a}P (Well-formed Program)

ΨG ` C :ΨG ((DC(C)∗ [[a ]]ΨG
) S) lookup(C, pc,I) ΨG `{a}I

ΨG `{a}(S, pc)
(PROG)

ΨIN ` C :Ψ (Well-formed Code Heap)

ΨIN `{ai}Ii ∀fi

ΨIN ` {f1 ;I1, . . . ,fn ;In} :{f1 ;a1, . . . ,fn ;an}
(CDHP)

ΨIN 1 ` C1 :Ψ1 ΨIN 2 ` C2 :Ψ2 ΨIN 1(f)=ΨIN 2(f)

dom(C1)∩dom(C2)= /0 ∀f∈dom(ΨIN 1)∩dom(ΨIN 2)
ΨIN 1∪ΨIN 2 ` C1∪C2 :Ψ1∪Ψ2

(LINK)

Ψ `{a}I (Well-formed Instruction Sequence)

a⇒ a′ ◦Nextc Ψ `{a′}I c∈{add,sub,cmp,mov,push,pop}
Ψ `{a}c;I

(SEQ)

a⇒Ψ(f) f∈dom(Ψ)
Ψ `{a} jmp f

(JMPI)

(λ(H,R,F).〈¬F̂(cc)〉 ∧∧ a (H,R,F))⇒ a′ Ψ `{a′}I
(λ(H,R,F).〈F̂(cc)〉 ∧∧ a (H,R,F))⇒Ψ(f) f∈ dom(Ψ)

Ψ `{a} jcc f;I
(JCC)

a⇒ λ(H,R,F). cptr(R(r),a′) a⇒ a′

Ψ `{a} jmp r
(JMPR)

(λS.cptr(f,Ψ(f))∧∧a S)⇒ a′ f∈dom(Ψ) Ψ `{a′}I
Ψ `{a}I (ECP)

a⇒Ψ(f)◦Nextpush fret
f∈dom(Ψ)

Ψ `{a}call f; [fret ]
(CALLI)

a⇒ λ(H,R,F).cptr(R(r),a′) a⇒ a′ ◦Nextpush fret

Ψ `{a}call r; [fret ]
(CALLR)

a⇒ λ(H,R,F).cptr(H(R(esp)),a′) a⇒ a′ ◦Nextpop

Ψ `{a} ret
(RET)

Fig. 10. Inference rules of XCAP for the x86 machine model


