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Abstract
Software systems usually use many different computation features
and span different abstraction levels (e.g.,user code level and the
runtime system level). To build foundational certified systems, it
is hard to have one verification system supporting all computation
features. In this paper we present an open framework for founda-
tional proof-carrying code (FPCC). It allows program modules to
be specified and certified separately using different type systems
or program logics. Certified modules (code + proof) can be linked
to compose fully certified systems. The framework supports mod-
ular verification and proof reuse. It is extensible, and is expressive
enough to allow invariants established in verification systems to
be maintained when they are embedded in. Our framework is the
first FPCC framework that systematically supports interoperation
between different verification systems. It is fully mechanized in the
Coq proof assistant with machine-checkable soundness proof.

1. Introduction
Foundational certified systems are packages containing machine
code and mechanical proof about safety properties [15, 2]. Build-
ing foundational certified systems is hard because softwaresystems
usually use many different computation features (stacks and heaps,
strong and weak memory update, first- and higher-order function
pointers, sequential and concurrent control flows,etc.), and span
different abstraction levels (e.g.,user level code and run-time sys-
tem code such as thread schedulers and garbage collectors).

Although many type systems and program logics have been pro-
posed in the last decades to certify properties of low-levelcode,
they work at different abstraction levels, use different specification
languages and axioms, and have different emphasis on computation
features and properties. For instance, the typed assembly language
(TAL) [14] uses types to specify assembly code and proves type
safety. TAL code is at a higher abstraction level than machine code
because it uses the abstractmalloc instruction for memory alloca-
tion, while the actual implementation ofmalloc cannot be certified
using TAL itself. In addition, TAL also assumes a trusted garbage
collector in the run-time system. Recent works on certifying con-
current assembly code [23, 9] apply the rely-guarantee method to
prove concurrency properties. They also use abstract machines with
abstract instructions such asfork andyield.

It is hard (if possible) to design a verification system supporting
all the computation features. It may not be necessary to do soeither
because, fortunately, programmers do not use all these features at
the same time. Instead, in each program module, only certaincom-
bination of limited features are used at certain abstraction level. If
each module can be certified using existing systems (which isusu-
ally the case), it will be desirable to link each certified modules
(code + proof) constructed in different verification systems to com-
pose a completely certified system.

Suppose we want to build FPCC package [2] which contains
the machine codeC and a proof showing thatC satisfies the safety
policy SP, as shown in Fig. 1. The systemC consists of code mod-
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Figure 1. Building FPCC Package by Linking Certified Modules

ulesC1, C2 . . .Ck. Some of them are system libraries or code of the
run-time system, others are compiled from user modules. EachCi is
certified using certain verification system, with specifications about
imported and exported interfaces. We want to reuse proofs for the
modules and link them to generate the proof about the safety of the
whole system. It is a challenging job because modules are certi-
fied separately using different specification languages andverifica-
tion systems. When some of the modules (e.g.,system libraries) are
specified and verified, the programmer may have no idea about the
context where the code gets used and the verification system with
which they will interoperate.

To compose the certified modules, we need an open FPCC
framework which satisfies the following requirements:

• modularity: modules can be specified and certified separately;
when they are linked the proof for each module can be reused;

• extensibility: instead of being designed specifically for certain
combination of verification systems, the framework should be
(mostly) independent with specification languages and verifica-
tion systems (foreign systems hereafter); new systems can be
designed and integrated into this framework;

• expressiveness: invariants enforced in foreign systems should
be maintained in the framework, so that we can infer interesting
properties about the composed program other than an overly-
conservative safety policy.

Existing work on FPCC [3, 12, 8] only shows how to construct
foundational proof for each specific verification system anddoes
not support interoperation between systems, with the only excep-
tion of [11] which shows the interoperation between two specific
systems (TAL and CAP). It is not trivial to make existing FPCC
frameworks open either. The syntactic approach to FPCC [12,8]
simply formalizes the global syntactic soundness proof of verifi-
cation systems in a mechanized meta-logic framework. It is un-
clear how different foreign verification systems can interoperate.
The Princeton FPCC [3, 4, 19] uses a semantic approach. They con-
struct FPCC for TAL by building semantic models for types. The
semantic approach may potentially have nice support of interoper-
ability as long as consistent models are built for foreign systems.
However, sometimes it is hard to build and use semantic models.



Most importantly, the step-indexed model [4] is defined specifically
for type safety (i.e.,program never gets stuck). It is hard to use the
indexed model for embedded code pointers to support Hoare-style
program logics, which usually certifiess the partial correctness of
programs with respect to program specifications. More discussion
about related work will be given in section 7.

In this paper, we propose an open framework, OCAP, for devel-
oping foundational proof carrying code. OCAP is the first FPCC
framework which systematically supports interoperation of dif-
ferent verification systems. It lays a set of Hoare-style inference
rules above the raw machine semantics, so that proofs can be con-
structed following these rules instead of directly using the mecha-
nized meta-logic. Soundness of these rules are proved in themeta-
logic framework with machine-checkable proof, therefore these
rules are not trusted. OCAP is modular, extensible and expressive,
therefore it satisfies all the requirements mentioned abovefor an
open framework. Our work on OCAP builds upon previous work
on program verification but makes the following new contributions:

• OCAP is built to reason about real machine code, but it still
allows user level code to be specified and certified with higher-
level abstractions. Instead of introducing higher-level primitive
operations in the machine, we let user code call runtime which
implements the required functionality. Runtime code can be
fully certified in a different verification system.

• OCAP supports modular verification. When user code and run-
time code are specified and certified, no knowledge about the
other side is required. Modules certified in one verificationsys-
tem can be easily adapted to interoperate with other modulesin
a different system without redoing the proof.

• OCAP uses an extensible and heterogeneous program specifi-
cation. Taking advantage of Coq’s support of dependent types,
any program specification definable in Coq can be incorpo-
rated as OCAP program specification. The heterogeneous pro-
gram specification also allows OCAP to specify embedded code
pointers following the XCAP [16] approach, which enables
OCAP’s support for modularity.

• The assertions used in OCAP inference rules are expressive
enough to specify invariants enforced in most type systems and
program logics. The soundness of OCAP ensures that these
invariants are maintained when foreign systems are embedded
in the framework.

• Our applications of OCAP to support interoperation of verifica-
tion systems are interesting in their own right. In the first appli-
cation, we show how to link user code in TAL with a simple cer-
tified memory management library. TAL only supports weak-
memory update and the free memory is invisible to TAL code.
The memory management library is specified in SCAP [10],
which supports reasoning about operations over free memory
and still ensures that the invariants of TAL code is maintained.
In our second application, we show how to construct FPCC for
concurrent codewithout trusting the scheduler. The user thread
code is certified using the rely-guarantee method [13], which
supports thread modular verification; the thread scheduleris
certified as sequential code in SCAP. They are linked in OCAP
to construct FPCC package.

In the rest of this paper, we first present in section 2 the basic set-
tings of the meta-logic and the machine we use to construct FPCC.
We propose our OCAP framework in section 3. In section 4 we
illustrate the embedding of a specific verification system, SCAP,
in the OCAP framework. Then we show our two applications in-
volving interoperation between different systems in section 5 and
6. Finally we discuss related work and conclude in Section 7.

(Program) P ::= (C,S,pc)

(CodeHeap) C ::= {f ; ι}∗

(State) S ::= (H,R)

(Memory) H ::= {l ; w}∗

(RegFile) R ::= {r ; w}∗

(Register) r ::= {rk}
k∈{0...31}

(Labels) f,l,pc ::= n (nat nums)

(Word) w ::= i (integers)

(Instr) ι ::= addu rd,rs,rt | addiu rd,rs,w | bgtz rs,f

| lw rt ,w(rs) | subu rd,rs,rt | sw rt ,w(rs)

| j f | jal f | jr rs

(InstrSeq) I ::= ι | ι;I

Figure 2. The Target Machine TM

2. Basic Settings for FPCC
In the FPCC framework, the operational semantics of machine
instructions is formalized in a mechanized meta-logic. Program
logics or type systems are formally defined in the meta-logicwith
machine checkable soundness proof, resulting in smaller TCB for
the safety proof. In this Section, we introduce the meta-logic we
use for OCAP and present the formulation of our target machine.

2.1 The Mechanized Meta-Logic
We use the calculus of inductive constructions (CiC) [18] asour
meta-logic, which is an extension of the calculus of construc-
tions (CC) with inductive definitions. CC corresponds to Church’s
higher-order predicate logic via the Curry-Howard isomorphism.
CiC is supported by the Coq proof assistant [6], which we use to
implement the results presented in this paper.

(Term) A,B ::= Set | Prop | Type | X | λX :A.B | A B
| A→B | ∀X :A. B | inductive def.| . . .

Syntax of some of mostly common-used CiC terms are shown
above, whereProp is the universe of all propositions, andType
is the (stratified) universe of all terms.A → B represents function
spaces. It also means logical implication ifA andB have kindProp.
Meanings of other terms will be explained at the time they areused.

2.2 The Target Machine
The syntax of machine programs is defined in Fig. 2. A machine
programP contains a code heapC, an updatable program state
S and a program counterpc pointing to the next instruction to
execute.C is a partial mapping from code labels (f) to instructions.
The program state consists of a data heapH and a register fileR. H

is a partial mapping from memory locations (l) to word values.R
is a total function from registers to word values.

To simplify the presentation, we do not model the Von Newman
architecture since reasoning about self-modifying code isbeyond
the scope of this paper. We model the code and data heaps sepa-
rately and make the code heap read-only. This allows us to avoid
formulating the encoding/decoding of instructions and theprotec-
tion of code heaps, which is straightforward and is orthogonal to the
interoperability issue we are trying to address. Also, we only show
a small set of common-used instructions. Adding more instructions
to the framework is straightforward.

To lay some structure over the flat code heapC, we use the
instruction sequenceI to represent a basic code block.C[f] extracts
from C a basic block ending with a jump instruction.

C[f] =







C(f) if C(f) = j f or C(f) = jr rs

C(f); I if f ∈ dom(C) andI = C[f+1]

undefined otherwise
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Figure 4. OCAP: an open framework for FPCC

(C,(H,R),pc) 7−→ P

if C(pc) = thenP = if

j f (C,(H,R),f)
jr rs (C,(H,R),R(rs))
jal f (C,(H,R{r31;pc+1}),f)
bgtz rs,f (C,(H,R),pc+1) R(rs)≤0

(C,(H,R),f) R(rs)>0
otherι (C,Nextι (H,R),pc+1)

where

if ι = thenNextι (H,T) =

addu rd,rs,rt (H,R{rd ;R(rs)+R(rt)})
addiu rd,rs,w (H,R{rd ;R(rs)+w})
lw rt ,w(rs) (H,R{rt ;H(R(rs)+w)})

whenR(rs)+w ∈ dom(H)
subu rd,rs,rt (H,R{rd ;R(rs)−R(rt)})
sw rt ,w(rs) (H{R(rs)+w;R(rt)},R)

whenR(rs)+w ∈ dom(H)

Figure 3. Operational Semantics of TM

We define the operational semantics of machine programs in
Fig. 3. One-step execution of a program is modeled as a transition
relationP 7−→ P′. P 7−→k P′ meansP reachesP′ in k steps, and
7−→∗ is the reflexive and transitive closure of the step-relation.
The auxiliary (partial) functionNextι ( ) defines the effects of
sequential instructions over program states. It is partialbecause the
operational semantics for memory access instructions is undefined
if the memory address is not in the domain ofH.

2.3 Program Safety
The FPCC framework is used to construct the mechanized proof
about program safety. Safety of the program means the execution
of the programP satisfies certain safety policySP, which can be
formalized as follows:

∀P
′. (P 7−→∗

P
′) → SP(P′).

Usually we use the invariant-based proof to prove the program
safety. We first define a program invariantINV which is stronger
than the safety policy. Then we prove that

1. the initial programP0 satisfiesINV, i.e., INV(P0);

2. ∀P. INV(P) →∃P′. (P 7−→ P′)∧ INV(P′).

Using CiC as the meta-logic, we can support very general spec-
ifications of the safety policy, which may range from simple type
safety (i.e., programs never get stuck) to correctness of programs
with respect to their specifications (a.k.a. partial correctness). For
instance, we can ensure the type safety by definingSP(P) as:

OneStep(P) , ∃P
′. P 7−→ P

′.

Such anSP can be trivially implied by the invariant-based proof
method. On the other hand, suppose we have a program specifi-
cationΨ which defines the loop-invariants at certain points of the
program. We can defineSP as:

SP(P) , OneStep(P)∧ (P.pc ∈ dom(Ψ) → Ψ(P.pc) P.S),

which says that the program can make one step, and that if it
reaches the point where a loop invariant is specified inΨ, the loop
invariant will hold over the program state. In this way, we capture
the partial correctness of programs.

An FPCC package represented in the meta-logical framework
is then a pairF containing the program and a proof showing that
the program satisfies the safety policy [12]. Through Curry-Howard
isomorphism, we know that

F ∈ Σ P : Program. ∀P
′. (P 7−→∗

P
′) → SP(P′),

whereΣx:A.P(x) represents the type of a dependent pair.

3. The OCAP Framework
The OCAP framework, as shown in Fig. 4, lays a set of Hoare-style
inference rules over the raw machine semantics. Soundness of these
rules are proved in the meta-logic with machine checkable proof,
so they are not in the TCB. OCAP rules are expressive enough
to embed most existing verification systems for low-level code.
To embed a verification system, we define an interpretation which
maps specifications in that system to assertions used in OCAP, then
we prove system specific rules/axioms as lemmas based on the the
interpretation and OCAP rules. Proofs constructed in each system
can be incorporated as OCAP proof and be linked to compose the
complete safety proof.

3.1 Overview of Certified Assembly Programming
We first give an overview of our previous work on certified assem-
bly programming, upon which we develop our OCAP framework.

3.1.1 The CAP system
Yu et al. proposed a simple Hoare-style program logic CAP [22]
to certify assembly code. CAP expects a program specification
Ψ which collects the loop invariants asserted for each basic code
block. Instead of defining its own assertion language in the meta-
logic, CAP uses the meta-logic as the assertion language (a.k.a.
shallow embedding) and each assertionp is a predicate over the
program state, as shown below.

(CHSpec) Ψ ∈ Labels⇀ StatePred

(StatePred) p ∈ State→ Prop

CAP inference rules. Fig. 5 shows inference rules in CAP. Using
the invariant-based proof, CAP enforces the program invariantΨ `
P. As shown in thePROGrule, the invariant requires that:
• Ψ characterize the code heapC and guarantee the safe execu-

tion of C, i.e.,Ψ ` C :Ψ.
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Ψ ` P (Well-formed program)

Ψ ` C :Ψ (p S) Ψ `{p}pc : C[pc]

Ψ ` (C,S,pc)
(PROG)

Ψ ` C :Ψ′ (Well-formed code heap)

for all f ∈ dom(Ψ′): Ψ `{Ψ′(f)}f : C[f]

Ψ ` C :Ψ′
(CDHP)

Ψ `{p}f : I (Well-formed instruction sequence)

ι∈{addu,addiu, lw,subu,sw}
Ψ `{p′}f+1 : I p⇒ p′ ◦Nextι

Ψ `{p}f : ι; I
(SEQ)

∀S. p S →∃p′. codeptr(S.R(rs),p
′) Ψ∧p′ S

Ψ `{p}f : jr rs
(JR)

Figure 5. Selected CAP Rules

• There exist a preconditionp for the current instruction se-
quenceC[pc] (recall our definition ofC[f] in section 2.2).
Given the knowledgeΨ about the complete code heap, the
preconditionp will guarantee the safe execution ofC[pc], i.e.,
Ψ `{p}pc : C[pc].

• The current program stateS satisfyp.
To certify a program, we only need to prove that the initial pro-

gram(C,S0,pc0) satisfies the invariant. Soundness of CAP guar-
antees that the invariant holds at each step of execution.

The CDHP rule defines well formed code heapΨ ` C : Ψ′. The
rule says that it is safe to execute code inC if the loop invariant
asserted at each labelf in Ψ′ guarantees the safe execution of the
corresponding basic blockC[f], i.e., Ψ `{Ψ′(f)}f : C[f]. TheΨ
on the left hand side specifies the preconditions of code which
may be reached fromC[f]. In other words,Ψ specifies imported
interfaces for each basic block inC.

Rules for well-formed instruction sequences ensure that itis
safe to execute the instruction sequence under certain precondition.
For sequential instructions, theSEQrule requires that the user find a
preconditionp′ and prove that the remaining instruction sequence
I is well-formed with respect top′. Also the user needs to prove
that the preconditionp′ holds over the resulting state ofι. Here
p⇒ p′ ◦Nextι is the shorthand for

∀S. p S →∃S
′.(S′ = Nextι (S))∧p′ S

′ .

It implies thatp must ensure the safe execution ofι, sinceNextι ( )
is a partial function. Usuallyp′ can be the automatically derived
strongest postconditionλS. ∃S0.p S0∧ (S = Nextι (S0)) .

TheJR rule essentially requires that the precondition for the tar-
get address hold at the time of jump. The propositioncodeptr(f,p) Ψ
is defined as:

codeptr(f,p) Ψ , f ∈ dom(Ψ)∧Ψ(f) = p .

Above definition also ensures that the target address is in the do-
main of the global code heapC, following Lemma 3.1.

Lemma 3.1
If Ψ ` C :Ψ, thendom(Ψ) ⊆ dom(C).

Soundness. The soundness of CAP ensures that well-formed pro-
grams never get stuck, as shown in Theorem 3.2. Proof for the theo-
rem follows the syntactic approach to proving type soundness [21].

Theorem 3.2 (CAP-Soundness)
If Ψ ` P, then for alln there exists aP′ such thatP 7−→n P′.

3.1.2 Specifications of embedded code pointers
CAP is a general framework for assembly code verification, but it
does not support modularity very well, as pointed out by Ni and
Shao [16]. That is because CAP’s specification language (predicate
over state) is not expressive enough to expresscodeptr(f,p) Ψ,
which requires the reference toΨ. A quick attack to this problem
may be extending the specification langauge as follows:

(CHSpec) Ψ ∈ Labels⇀ Assert

(Assert) a ∈ CHSpec→ State→ Prop

and a code pointerf with specificationa is defined as:

codeptr(f,a) , λΨ,S. f ∈ dom(Ψ)∧Ψ(f) = a .

Unfortunately, this simple solution does not work because the
definitions ofCHSpecandAssertmutually refer to each other and
are not well-founded. To break the circularity, Ni and Shao [16]
defined a syntactic specification language. In their XCAP, the pro-
gram specification is in the following form.

(CHSpec) Ψ ∈ Labels⇀ Assert

(PropX) P ::= . . .

(Assert) a ∈ State→ PropX

(Interp) [[ ]] ∈ PropX→ (CHSpec→ Prop)

The meaning of extended propositionP is given by the interpre-
tation [[P ]]Ψ. A code pointer specificationcodeptr(f,a) is just a
built-in syntactic construct inPropX, whose interpretation is:

[[codeptr(f,a) ]]Ψ , f ∈ dom(Ψ)∧Ψ(f) = a .

“State→ PropX” does not have to be the only form of specifi-
cation language used for certified assembly programming. For in-
stance, the register file type used in TAL can be treated as a specifi-
cation language. We can generalize the XCAP approach to support
different specification languages [10]. Then we get the following
generic framework:

(CHSpec) Ψ ∈ Labels⇀ CdSpec

(CdSpec) θ ∈ . . .

(Interp) [[ ]] ∈ CdSpec→ (CHSpec→ State→ Prop)

where the code specificationθ can be of different forms, as long
as appropriate interpretations are defined. A code pointerf with
specificationθ is now formulated as:

codeptr(f,θ) , λΨ,S. f ∈ dom(Ψ)∧Ψ(f) = θ .

Although generic, this framework is not “open” because it only al-
lows homogeneous program specificationΨ with a specific type of
θ. If program modules are specified in different specificationlan-
guages, the code pointerf1 specified in the specification language
L1 is formulated ascodeptr(f1,θL1), while code pointerf2 in L2 is
specified ascodeptr(f2,θL2). To make bothcodeptr definable, we
need a heterogeneous program specificationΨ in OCAP.

3.2 OCAP Specifications
The first attempt to define the program specifications for OCAPis
to take advantage of the support of dependent types in CiC andpack
each code specificationθ with its corresponding interpretation.

(LangTy) L ::= (CiC terms) ∈ Type

(CdSpec) θ ::= (CiC terms) ∈ L

(Assert) a ∈ CHSpec→ State→ Prop

(Interp) [[ ]]
L

∈ L → Assert

(OCdSpec) π ::= 〈L , [[ ]]
L
,θ〉 ∈ ΣX.(X → Assert)∗X

(CHSpec) Ψ ∈ Labels⇀ OCdSpec

As shown above, specifications in each specification language will
be encoded in CiC asθ, whose typeL is also defined in CiC. The
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(LangID) ρ ::= n (nat nums)

(LangTy) L ::= (CiC terms) ∈ Type

(CdSpec) θ ::= (CiC terms) ∈ L

(OCdSpec) π ::= 〈ρ,L ,θ〉 ∈ LangID∗ (ΣX.X)

(CHSpec) Ψ ∈ Labels∗ OCdSpec

(Assert) a ∈ CHSpec→ State→ Prop

(Interp) [[ ]]
L

∈ L → Assert

(LangDict) D ∈ LangID⇀ ΣX.(X → Assert)

Figure 6. Specification Constructs of OCAP

interpretation[[ ]]
L

for the languageL mapsθ to the OCAP asser-
tion a. The language-specific specificationθ is lifted to an “open”
specificationπ, which is a dependent package containing the lan-
guage typeL , its interpretation function[[ ]]

L
and the specification

θ. The heterogeneous program specificationΨ is simply defined as
a partial mapping from code labels to the lifted specification π.

Unfortunately, this obvious solution introduces circularity again,
because definitions ofCHSpecand OCdSpecrefer to each other.
To break the circularity, we remove the interpretation fromπ and
collect all the interpretations into an extra “language dictionary”.

The final solution. The final definition of OCAP program specifi-
cation constructs is shown in Fig. 6. To embed a system into OCAP,
we first assign a unique IDρ to its specification language. Specifi-
cations in that language and their type are still represented asθ and
L . Both are CiC terms. The lifted specificationπ now contains the
language IDρ, the corresponding language typeL and the specifi-
cationθ. The program specificationΨ is a binary relation of code
labels and lifted code specifications. We do not defineΨ as a par-
tial mapping because the interface of modules may be specified in
more than one specification language.

As explained above, the interpretation for languageL maps
specifications inL to assertionsa. To avoid circularity, we do not
put the interpretation[[ ]]

L
in π. Instead, we collect the interpre-

tations and put them in a language dictionaryD, which maps lan-
guage IDs to dependent pairs containing the language type and the
corresponding interpretation.

Given a lifted specificationπ, the following operation maps it to
an assertiona:

[[[〈ρ,L ,θ〉 ]]]
D

, λΨ,S. ∃[[ ]]
L
. (D(ρ)=〈L , [[ ]]

L
〉) ∧ ([[θ ]]

L
Ψ S).

It takes the language IDρ and looks up the interpretation fromD.
Then the interpretation is applied to the specificationθ. If there is
no interpretation found, the result is simply false.

We allow a specification languageL to have more than one
interpretation, each assigned a different language ID. That is why
we useρ instead ofL to look up the interpretation fromD.

3.3 OCAP Inference Rules
Fig. 7 shows OCAP inference rules. ThePROGrule is similar to the
one for CAP, but with several differences:
• In addition to the program specificationΨ, OCAP requires a

language dictionaryD to interpret code specifications.

• The well-formedness ofC is checked with respect toD andΨ.

• The assertiona is now a predicate over code heap specifications
and states. It holds overΨ and the current stateS.

• We check the well-formedness of the current instruction se-
quencesC[pc] with respect toD anda.

As in CAP, to certify programs using OCAP, we only need to
prove that the invariant holds at the initial program(C,S0,pc0).
The preconditiona specifies the initial stateS0. It takesΨ to be able

D;Ψ ` P (Well-formed program)

D;Ψ ` C :Ψ (a Ψ S) D `{a}pc : C[pc]

D;Ψ ` (C,S,pc)
(PROG)

D;Ψ ` C :Ψ′ (Well-formed code heap)

for all (f,π) ∈ Ψ′: a = 〈[[[π ]]]
D
〉Ψ D `{a}f : C[f]

D;Ψ ` C :Ψ′
(CDHP)

D1;Ψ1 ` C1 :Ψ′
1 D2;Ψ2 ` C2 :Ψ′

2 D1#D2 C1#C2

D1∪D2;Ψ1∪Ψ2 ` C1∪C2 :Ψ′
1∪Ψ′

2

(LINK *)

D `{a}f : I (Well-formed instruction sequence)

a⇒ λΨ′,S. ∃π′.(codeptr(f′,π′)∧ [[[π′ ]]]
D

) Ψ′ S

D `{a}f : j f′
(J)

a⇒ λΨ′,S. ∃π′.(codeptr(S.R(rs),π′)∧ [[[π′ ]]]
D

) Ψ′ S

D `{a}f : jr rs
(JR)

a⇒ λΨ′,S. ∃π′. (codeptr(f′,π′)∧ [[[π′ ]]]
D

) Ψ′ Ŝ

whereŜ = (S.H,S.R{r31;f+1})

D `{a}f : jal f′;I
(JAL)

ι∈{addu,addiu, lw,subu,sw}
D `{a′}f+1 : I a⇒ λΨ′. (a′ Ψ′)◦Nextι

D `{a}f : ι; I
(SEQ)

D `{a′′}I

a⇒ λΨ′,S. (S.R(rs)≤0→ a′′ Ψ′ S)
∧ (S.R(rs)>0→

∃π′. (codeptr(f′,π′)∧ [[[π′ ]]]
D

) Ψ′ S)

D `{a}f : bgtz rs,f
′; I

(BGTZ)

a⇒ a′ D `{a′}f : I

D `{a}f : I
(WEAKEN*)

Figure 7. OCAP Inference Rules

to specify embedded code pointers inS0, as explained before. The
soundness of OCAP will guarantee that the invariant holds ateach
step of execution and that the invariant ensures program progress.

Well-formed code heaps. The CDHP rule checks that the specifi-
cation asserted at eachf in Ψ′ ensures safe execution of the corre-
sponding instruction sequenceC[f]. As in CAP, theΨ on the left
hand side specifies the code to which eachC[f] may jump. Instead
of using the specificationΨ′(f) directly, we first map it to an as-
sertion ([[[Ψ′(f) ]]]

D
) by applying the corresponding interpretation

defined inD. Then we do another lifting〈 〉Ψ, which is defined as:

〈a〉Ψ ,





∧

(f,π)∈Ψ
codeptr(f,π)



∧a .

Herecodeptr(f,π) is defined as the following assertion:

codeptr(f,π) , λΨ,S. (f,π) ∈ Ψ .

We also overload the conjunction connector “∧” for assertions:

a∧a′ , λΨ,S. a Ψ S∧a′ Ψ S .

Therefore, the lifted assertion (〈[[[Ψ′(f) ]]]
D
〉Ψ) carries the knowl-

edge of the code pointers which may be reached fromC[f]. When
we checkC[f], we do not need to carryΨ, but we need to carryD
to interpret the specificationπ for eachcodeptr(f,π).
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Linking of modules. The C checked in theCDHP rule does not
have to be the global code heap used in thePROGrule. SubsetsCi
of the complete code heap can be certified with local interfacesDi ,
Ψi andΨ′

i . Then they are linked using the admissibleLINK rule. We
use a “*” in the name to distinguish admissible rules from normal
rules. The compatibility of partial mappingsf andg is defined as

f #g , ∀x. x∈ dom( f )∧x∈ dom(g) → f (x) = g(x) .

TheLINK rule shows the openness of OCAP:C1 andC2 may be
specified and certified in different verification systems with inter-
pretations defined inD1 and D2 respectively. Proofs constructed
in foreign systems are converted to proofs of OCAP judgments
Di ;Ψi ` Ci : Ψ′

i at the time of linkage. We will demonstrate this
in the following sections.

Lemma 3.3 is used to prove the admissibility of theLINK rule.

Lemma 3.3
If D;Ψ ` C :Ψ′′, D ⊆ D

′, andΨ ⊆ Ψ′, we haveD
′;Ψ′ ` C :Ψ′′.

Well-formed instruction sequences.Rules for jump instructions
(J, JR and JAL) are simple. They require that the target address be
a valid code pointer with specificationπ′, and that there be an
interpretation forπ′ in D. The interpretation ofπ′ should hold at
the resulting state of the jump. Here we usea⇒ a′ as a shorthand
for ∀Ψ,S. a Ψ S → a′ Ψ S.

The SEQ rule for sequential instructions is similar to the CAP
SEQ rule. It requires no further explanation. TheBGTZ rule is like
a simple combination of theJ rule and theSEQ rule, which is
straightforward to understand.

The WEAKEN rule. TheWEAKEN rule is also admissible in OCAP.
It is a normal rule in Hoare-style program logics, but plays an im-
portant role in OCAP to interface foreign verification systems. The
instruction sequenceI may have specificationsθ andθ′ in different
foreign systems. Their interpretations area anda′, respectively. If
the proof ofD `{a′}f : I is converted from proof constructed in
the system whereI is certified with specificationθ′, it can be called
from the other system as long asa is stronger thana′. The use of
this rule will be shown in section 5.2.3.

3.4 Soundness of OCAP
The soundness of OCAP inference rules is proved following the
syntactic approach [21] to proving type soundness. We need to first
prove the progress and preservation lemmas.

Lemma 3.4 (Progress)
If D;Ψ ` P, there existsP′ such thatP 7−→ P′.

Lemma 3.5 (Preservation)
If D;Ψ ` P andP 7−→ P′, then we haveD;Ψ ` P′.

We prove two soundness theorems for OCAP. The first one
shows that we can use OCAP to certify type safety (the non-
stuckness property); while the second one shows that we can ad-
ditionally certify the partial correctness of programs.

Theorem 3.6 (Soundness-Type Safety)
If D;Ψ ` P, then forn there existsP′ such thatP 7−→n P′.

Before we present Theorem 3.7, we first define[[[Ψ(f) ]]]
D

as:

[[[Ψ(f) ]]]
D

,

{ ∨

(f,πi)∈Ψ [[[πi ]]]D ∃π.(f,π) ∈ Ψ
FALSE ¬∃π.(f,π) ∈ Ψ

where “∨” is lifted for assertions.

Theorem 3.7 (Soundness-Correctness)
If D;Ψ ` (C,S,pc), for all natural numbern there existS′ andpc′

such that(C,S,pc) 7−→n (C,S′,pc′), and

OCAP

TAL

...

...

CCAP

...

...

getm threads

SCAP

...

...

scheduler
...
...

newpair
...
...

threads
...
...

threads

sec. 5.1 sec. 4 sec. 6.3

sec. 5 sec. 6

Figure 8. Case Studies for OCAP

1. if C(pc′) = j f, then[[[Ψ(f) ]]]
D

Ψ S′;

2. if C(pc′) = jal f, then[[[Ψ(f) ]]]
D

Ψ (S′.H,S′.R{r31;pc′+1});

3. if C(pc′) = jr rs, then[[[Ψ(S′.R(rs)) ]]]D Ψ S′;

4. if C(pc′) = bgtz rs,f andS
′.R(rs) > 0, then[[[Ψ(f) ]]]

D
Ψ S

′.
Therefore, if the interpretation for a specification language cap-

tures the invariant enforced in the corresponding verification sys-
tem, the soundness of OCAP ensures that the invariant holds when
the modules certified in that system get executed.

A similar soundness theorem was also proved for CAP [22].
Yu et al. [22] exploited CAP’s support of partial correctness to
certify an implementation ofmalloc and free libraries. CAP and
OCAP’s ability to support partial correctness of programs benefits
from the way we specifycodeptr. As we will discuss later, it is
unclear how this soundness theorem can be proved using the step-
indexed semantic model ofcodeptr.

3.5 Applicability of OCAP
In the rest of the paper, we will explore the applicability ofthe
OCAP framework by showing how to embed existing type systems
and program logics into the framework, and how to support inter-
operations between different systems at different abstraction levels.
As shown in Fig. 8, we embed SCAP into OCAP to certify runtime
library code. We also show how to embed TAL as a type system and
CCAP as a program logic for concurrency verification. In section 5
we link TAL code with a simple memory management library cer-
tified in SCAP. In section 6, user-level threads certified in CCAP
is linked with a simple implementation of a scheduler certified in
SCAP. Since we mainly focus on interfacing systems, no familiar-
ity of specific systems is required to understand these examples.

4. Case Study: Embedding SCAP in OCAP
In general, it takes three steps to embed a foreign system into
OCAP: first identify the invariant enforced in the system; then de-
fine an interpretation for code specifications and embed the invari-
ant in the interpretation; finally prove the soundness of theembed-
ding by showing that inference rules in the original system can be
proved as lemmas in OCAP based on the interpretation. In thissec-
tion, we show how to embed SCAP into OCAP.

SCAP is a compositional Hoare-style program logic proposed
in [10] for assembly code verification. It supports reasoning about
function call/return without requiring specifications of return code
pointers (which is a special form of embedded code pointers).
SCAP specification. SCAP uses a pair of predicates(p,g) as
code specifications (θ). As shown below,p is a predicate over a
state; the guaranteeg is a predicate over a pair of states.LSCAP
specifies the type ofθ. The code heap specificationψ maps code
labels toθs.

(StatePred) p ∈ State→ Prop

(Guarantee) g ∈ State→ State→ Prop

(CdSpec) θ ::= (p,g) ∈ LSCAP

(LangTy) LSCAP , StatePred∗ Guarantee

(LocalSpec) ψ ::= {f ; θ}∗ ∈ Labels⇀ LSCAP
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ψ ` C :ψ′ (Well-formed code heap)

for all f ∈ dom(ψ′): ψ `{ψ′(f)}f : C[f]

ψ ` C :ψ′
(CDHP)

ψ `{(p,g)}f : I (Well-formed instruction sequence)

(p′,g′) = ψ(f′) (p′′,g′′) = ψ(f+1)
∀S. p S → p′ (S.H,S.R{r31;f+1})
∀S,S′. p S → g′ (S.H,S.R{r31;f+1}) S′

→ p′′ S′ ∧ (∀S′′. g′′ S′ S′′ → g S S′′)
∀S,S′. g′ S S

′ → S.R(r31) = S
′.R(r31)

ψ `{(p,g)}f : jal f′; I
(CALL )

∀S. p S → g S S

Ψ `{(p,g)}f : jr r31
(RET)

ψ `{(p′,g′)}f+1 : I ι∈{addu,addiu, lw,subu,sw}
p⇒ p′ ◦Nextι ∀S,S′. p S → g′ (Nextι (S)) S′ → g S S′

ψ `{(p,g)}f : ι; I
(SEQ)

(p′,g′) = ψ(f′) p⇒ p′ ∀S,S′. p S → g′ S S′ → g S S′

ψ `{(p,g)}f : j f′
(J)

Figure 9. Selected SCAP Rules

Program invariant. The idea behind SCAP is very intuitive. The
predicatep is the precondition, which plays the same role as thep
in CAP. We useg to specify the behavior of code from the specified
point to the return point of a function. A function call is made in
SCAP by executing thejal instruction. Function returns by jumping
to the registerr31. The program invariant enforced in SCAP is
formalized [10] as

INV(S) , p S∧∃n. wfst(n,g S,ψ) ,

where (p,g) is the SCAP specification for the current program
point. ψ is the code heap specification. It requires that, at any
program point, the state satisfy the current preconditionp, and there
be a well-formed control stack with certain depthn. The predicate
wfst is defined as:

wfst(0,q,ψ) , ¬∃S. q S

wfst(n+1,q,ψ) , ∀S′. q S′ →∃p′,g′. ψ(S′.R(r31)) = (p′,g′)∧
p′ S′∧wfst(n,g′ S′,ψ) .

At the return point of the current function (whereg has been
fulfilled), if the stack depth is greater than 0,r31 contains a code
pointer with certain specification(p′,g′). After the current function
returns,p′ holds so that it is safe to run the return continuation; and
the stack is still well-formed with depths decreased by 1. When
stack depth is 0, we are executing the topmost function and cannot
return (i.e., the guarantee cannot be fulfilled).

Fig. 9 shows selected SCAP rules. These rules ensure that the
invariant specified above is maintained during program execution.
The call rule (for jal) requires that, if the specification for the
callee is(p′,g′) and the return continuationI is well-formed with
specification(p′′,g′′), then

• the preconditionp′ of callee be satisfied afterjal;

• the preconditionp′′ for the return continuation be satisfied when
the callee returns and has fulfilled its guaranteeg′;

• composing the behavior of the callee and the return continua-
tion fulfill the guaranteed behaviorg; and

• the callee reinstate the return address when it returns.

The RET rule simply require that a function fulfill its guarantee
before it returns. Therefore an identity transition will satisfy the
remaining guarantee.

The rest instruction rules are easy to understand. Interested
readers can refer to [10] for more details.

Embedding and soundness.To embed SCAP into OCAP, we first
use the lifting functionxψyρ to convert theψ in SCAP to OCAP’s
specificationΨ, whereρ is the language ID assigned to SCAP.

xψyρ , {(f, 〈ρ,LSCAP,(p,g)〉) | ψ(f) = (p,g)}

For anyρ, the following interpretation function takes the SCAP
specification(p,g) and transforms it into the assertion in OCAP.

[[ (p,g) ]]
(ρ,D)
LSCAP

, λΨ,S. p S ∧ ∃n.WFST(n,g S,D,Ψ)

Here D is an open parameter which describes the verification
systems used to verify the external world around SCAP code. The
interpretation simply specifies the SCAP program invariants we
have just shown, except that we reformulate the previous definition
of wfst to adapt to OCAP code heap specificationΨ.

WFST(0,q,D,Ψ) ,
∀S

′. q S
′ →∃π. (codeptr(S′.R(r31),π)∧ [[[π ]]]

D
) Ψ S

′

WFST(n+1,q,D,Ψ) ,
∀S

′. q S
′ →∃p′,g′.(S′.R(r31), 〈ρ,LSCAP,(p

′,g′)〉)∈Ψ
∧ p′ S′ ∧ WFST(n,g′ S′,D,Ψ).

WFST is similar towfst, but we look up code specifications from
OCAP’s Ψ. Since we are now in an open world, we allow SCAP
code to return to the external world even if the depth of the SCAP
stack is 0, as long asr31 is a valid code pointer and the interpreta-
tion of its specificationπ is satisfied at the return point. The open
parameterD is used here to interpret the specificationπ.

It is important to note that we do not needρ andD to use SCAP,
although they are open parameters in the interpretation. When we
certify code using SCAP, we only use rules shown in Fig. 9. The
interpretation isnot used until we want to link the certified SCAP
code with code certified in other systems. We instantiateρ and
D in each specific application scenarios. Theorem 4.1 shows the
soundness of SCAP rules and their embedding in OCAP, which is
independent with these open parameters.

Theorem 4.1 (Soundness of the Embedding of SCAP)
Supposeρ is the language ID assigned to SCAP. For allD for

foreign code, letD ′ = D{ρ;〈LSCAP, [[ ]]
(ρ,D)
LSCAP

〉}.

1. If ψ `{(p,g)}f : I, we haveD
′ `{〈a〉Ψ}f : I, where Ψ =

xψyρ anda = [[(p,g) ]]
(ρ,D)
LSCAP

.

2. If ψ ` C :ψ′, we haveD
′;xψyρ ` C :xψ′yρ.

5. Case II: TAL with Certified Runtime
In this section, we will show how to link TAL code with certified
memory allocation libraries. Unlike traditional TALs [14,7] which
are based on abstract machines with primitive operations for mem-
ory allocation, we present a variation of TAL for our TM (defined
in section 2.2).

We use a simple functionnewpair to do memory allocation.
The code fornewpair is specified and verified in SCAP without
knowing about the future interoperation with TAL. User codeis
certified in TAL. There is also a TAL interface fornewpair so that
the call tonewpair can be type-checked. To allow the interoper-
ation, we first embed both systems in OCAP. Then we show that,
given the interpretations for TAL and SCAP, the TAL interface for
newpair is compatible with the SCAP interface.

The tricky part is that TAL and SCAP have different views about
machine states. As shown in Fig. 10, TAL (the left side) only knows
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newpair

H'

H

newpair:
.
.

jr r31

gn

FList

FList

TAL SCAP

Figure 10. Interoperation with TAL and SCAP

(InitFlag) ϕ ::= 0 | 1

(WordTy) τ ::= α | int | ∀[∆].Γ | 〈τϕ1
1 , . . . ,τϕn

n 〉 | ∃α.τ | µα.τ
(TyVarEnv) ∆ ::= · | α,∆

(RfileTy) Γ ::= {r;τ}∗

(CHType) ψ ::= {(f, [∆].Γ)}∗

(DHType) Φ ::= {l ; τϕ}∗

Figure 11. Type Definitions of TAL

the heap reachable from the user code. It believes thatnewpair will
magically generate a memory block of two-word size. The freelist
of memory blocks (FList) and other parts of the system resource is
invisible to TAL code and type. SCAP (on the right side) only cares
about operations over the free list. It does not know what theheap
for TAL is. But when it returns, it has to ensure that the invariant
in TAL is not violated. As we will show in this section, the waywe
use specification interpretations and our SCAP have nice support
of memory polymorphism. They help us achieve similar effectof
the frame rule in separation logic [17].

We first embed into OCAP a TAL over TM. The embedding
follows similar steps we did for SCAP.

5.1 Embedding TAL into OCAP
TAL types and typing rules. Figure 11 shows the definition of
TAL types, including polymorphic code types, mutable references,
existential types, and recursive types. Definitions for types are
similar to the original TAL.Γ is the type for the register file.∀[∆].Γ
is the polymorphic type for code pointers, which means the code
pointer expects a register file of typeΓ with type variables declared
in ∆. The flagϕ is used to mark whether memory cell has been
initialized or not.〈τϕ1

1 , . . . ,τϕn
n 〉 is the type for a mutable reference

pointing to a tuple in the heap. The fresh memory cells returned by
memory allocation libraries will have types with flag 0. The reader
should keep in mind that this TAL is designed for TM, so there is no
“heap values” as in the original TAL. Also, since we separatecode
heap and data heap in our TM, specifications for them are separated
too. We useψ for code heap type andΦ for data heap type.

We present selected typing rules of TAL in Fig. 12 and 13. The
TAL typing rules are similar1 to the original TAL [14] and are not
explained in details here. Readers who are not familiar withTAL
can view[∆].Γ as assertions about states and the subtyping relation
as logic implication. Then the rules in Fig. 12 look very similar to
CAP rules shown in Fig. 5. Actually this is exactly how we embed
TAL in OCAP below.

The invariant enforced in TAL is that, at any step of execution,
the program state is well-typed with respect to the code heaptypeψ

1 But we do not need aPROGrule to type check whole programsP because
this TAL will be embedded in OCAP and only be used to type checkcode
heaps which may be a subset of the whole program code.

ψ ` C :ψ′ (Well-formed Code Heap)

ψ `{[∆].Γ}f : C[f] for all (f, [∆].Γ) ∈ ψ′

ψ ` C :ψ′
(CDHP)

ψ `{[∆].Γ}f : I (Well-formed Instruction Sequence)

(f′, [∆′].Γ′) ∈ ψ ` [∆].Γ ≤ [∆′].Γ′

ψ `{[∆].Γ}f : j f′
(J)

(f′, [∆′].Γ′) ∈ ψ (f+1, [∆′′].Γ′′) ∈ ψ
` [∆].Γ{r31 ; ∀[∆′′].Γ′′} ≤ [∆′].Γ′

ψ `{[∆].Γ}f : jal f′; I
(JAL)

Γ(rs)=∀[∆′].Γ′ ` [∆].Γ ≤ [∆′].Γ′

ψ `{[∆].Γ}f : jr rs
(JR)

Γ(rs)= int ψ `{[∆].Γ{rd ; int}}f+1 : I

ψ `{[∆].Γ}f : addiu rd,rs,w; I
(ADDI )

Figure 12. Selected TAL typing rules

and certain register file type[∆].Γ. Judgment for well-typed state is
represented asψ ` S : [∆].Γ . The TAL state typings and subtyping
rules are shown in Fig. 13.

Embedding of TAL The code specificationθ in TAL is the regis-
ter file type[∆].Γ. The type of its CiC encoding isLTAL . Then we
define the mapping between the TAL code heap specificationψ and
the OCAP code heap specificationΨ:

xψyρ , {(f, 〈ρ,LTAL , [∆].Γ〉) | (f, [∆].Γ)∈ ψ}

pΨqρ,L = {(f,θ) | (f, 〈ρ,L ,θ〉) ∈ Ψ}

The lifting function xψyρ assigns a language idρ to TAL, and
packs each code specification inψ with ρ into an OCAP spec-
ification π. The sink functionpΨqρ,L collects from OCAP’sΨ
the specifications of code certified in languageρ, and constructs
a language-specific code heap specification.

To link TAL programs with run-time systems, the interpretation
function for TAL specification is defined with an open parameter r,
which is the invariant about memory invisible from TAL (the grey
blocks in Fig. 10):

[[ [∆].Γ ]]
(ρ,r)
LTAL

, λΨ,S. ∃H1,H2. S.H=H1]H2 ∧

(pΨqρ,LTAL ` (H1,S.R) : [∆].Γ) ∧ r Ψ H2.

Here ρ is the language ID assigned to TAL;f ] g means union
of partial mappings with disjoint domains. Instead of building
semantic models for TAL types, we reuse the TAL state typing
(ψ ` S : [∆].Γ as shown in Fig. 13) as the interpretation. Also note
that the invariantr is a predicate overΨ and H only. Although
expressiveness is limited, this should be sufficient for runtime re-
source because usually runtime does not reserve registers.Also this
limitation can be lifted if we model the register fileR as a partial
mapping (like data heap).

Soundness. Theorem 5.1 states the soundness of TAL rules and
the interpretation for TAL specifictions. It shows that, given the
interpretation, TAL rules are derivable as lemmas in OCAP. The
soundness is independent with the open parameterr.

Theorem 5.1 (TAL Soundness)
For all ρ andr, let D = {ρ ; 〈LTAL , [[ ]]

(ρ,r)
LTAL

〉}.

1. if ψ `{[∆].Γ}I thenD `{〈a〉Ψ}I, wherea = [[ [∆].Γ ]]
(ρ,r)
LTAL

and
Ψ = xψyρ;
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` [∆].Γ ≤ [∆′].Γ′ (Subtyping)

Γ(r)=Γ′(r) ∀ r∈dom(Γ′)

` [].Γ ≤ [].Γ′
(SUBT)

Γ(r)=∀[α,∆′].Γ′ ∆ ` τ′

` [∆].Γ ≤ [∆].Γ{r :∀[∆′].Γ′[τ′/α]}
(TAPP)

Γ(r)=τ[τ′/α] ∆ ` τ′

` [∆].Γ ≤ [∆].Γ{r :∃α.τ}
(PACK)

Γ(r)=∃α.τ
` [∆].Γ ≤ [α,∆].Γ{r :τ}

(UNPACK)
Γ(r)=τ[µα.τ/α]

` [∆].Γ ≤ [∆].Γ{r :µα.τ}
(FOLD)

Γ(r)=µα.τ
` [∆].Γ ≤ [∆].Γ{r :τ[µα.τ/α]}

(UNFOLD)

∆ ` τ ψ ` S : [∆].Γ ψ ` H :Φ ψ;Φ ` R :Γ ψ;Φ ` w :τ ψ;Φ ` w :τϕ ` τϕ ≤ τϕ′

f tv(τ) ⊆ ∆
∆ ` τ

(TYPE)
· ` τi ψ ` H :Φ ψ;Φ ` R :Γ[τ1, . . . ,τn/α1, . . . ,αn]

ψ ` S : [α1, . . . ,αn].Γ
(STATE)

ψ;Φ ` H(l) :Φ(l) ∀ l∈dom(Φ)

ψ ` H :Φ
(HEAP)

ψ;Φ ` R(r) :Γ(r) ∀ r∈dom(Γ)

ψ;Φ ` R :Γ
(RFILE)

ψ;Φ ` w : int
(INT)

(f, [∆].Γ)∈ψ
ψ;Φ ` f :∀[∆].Γ

(CODE)
· ` τ′ ψ;Φ ` f :∀[α,∆].Γ

ψ;Φ ` f :∀[∆].Γ[τ′/α]
(POLY)

` Φ(l+i−1) ≤ τϕi
i

ψ;Φ ` l :〈τϕ1
1 , . . . ,τϕn

n 〉
(TUP)

· ` τ′ ψ;Φ ` w :τ[τ′/α]

ψ;Φ ` w :∃α.τ
(EXT)

ψ;Φ ` w :τ[µα.τ/α]

ψ;Φ ` w :µα.τ
(REC)

ψ;Φ ` w :τ
ψ;Φ ` w :τϕ (INIT ) ψ;Φ ` w :τ0

(UNINIT )

` τϕ ≤ τϕ (REFL)
` τ1 ≤ τ0

(0-1)

Figure 13. TAL typing rules – II

2. if ψ ` C :ψ′ thenD;xψyρ ` C :xψ′yρ.

Lemma 5.2 is used to prove the soundness theorem. It shows the
TAL subtyping relation is sound with respect to the interpretation.

Lemma 5.2 (Subtyping Soundness)
For any ρ, r, [∆].Γ and [∆′].Γ′, let a = [[ [∆].Γ ]]

(ρ,r)
LTAL

and a′ =

[[ [∆′].Γ′ ]]
(ρ,r)
LTAL

. If ` [∆].Γ ≤ [∆′].Γ′, we havea⇒ a′.

5.2 Linking TAL with newpair

Since we have already embedded SCAP, our next step is to link
TAL code with an implementation ofnewpair certified in SCAP.
The newpair function takes no argument and returns a memory
block of two-word size. The reference to the memory block is saved
in the registerr30. The callee-save registers arer1, . . . ,r9.

5.2.1 Certifying the caller in TAL.
The following code schema (CTAL ) shows part of the code for the
callergetm. Code following thejal instruction is labeled bycont,
which will be passed tonewpair as the return address.

getm:

jal newpair

cont: ... ; r30 points to a pair

We use the following TAL code heap specification to type check
the above codeCTAL . In addition to specifications forgetm and
cont, newpair is also specified here, so that the function call to it
can be type checked in TAL.

ψt , {newpair; [α1, . . . ,α9].{r1 ;α1, . . . ,r9;α9,
r31;∀[].{r1;α1, . . . ,r9 ;α9,

r30;〈τ0,τ′0〉}},
getm ; [∆].{r1;τ1, . . . ,r9;τ9, . . .},
cont ; [∆].{r1;τ1, . . . ,r9;τ9,r30;〈τ0,τ′0〉}.

From TAL’s point of view,newpair takes no argument and returns
a reference inr30 pointing to two fresh memory cells with typesτ
andτ′ (tagged by 0). Also values of callee safe registers have to be
maintained, which is enforced by the polymorphic type.

The user will certify the callerCTAL by constructing the follow-
ing derivations in TAL.

ψt `{ψt (getm)}getm : Igetm (1)

ψt `{ψt (cont)}cont : Icont (2)

whereIgetm = CTAL [getm] andIcont = CTAL [cont].

5.2.2 Certifying newpair in SCAP.
The following code schema shows the implementationCSCAP of
newpair, which largely follows themalloc function in [22]. We
omit the actual code here.

newpair:

...

jr r31

Before we specify thenewpair function in SCAP, we first define
separation logic connectors in our meta-logic:

l 7→ i , λS. dom(S.H) = {l} ∧ S.H(l) = i

p1 ∗p2 , λ(H,R).∃H′,H′′. H = H′]H′′ ∧
p1 (H′,R) ∧ p2 (H′′,R)

(

p
q

)

∗ ID , λ(H1,R1),(H2,R2).

∀H,H′
1. H1=H′

1]H ∧ p (H′
1,R1) →

∃H′
2. H2=H′

2]H ∧ q (H′
2,R2)

Following [22], we use an assertionsFList to specify the list
of free memory blocks maintained bynewpair. The SCAP code
specification fornewpair is (pn,gn) where

pn , FList

gn , (∀r∈{r1, . . . ,r9,r31}. [r] = [r]′) ∧
(

FList
FList ∗ [r30]

′ 7→ ∗ [r30]
′+1 7→

)

∗ ID .

Recall thatg in SCAP specifies the guarantee of functions. We use
[r] to represent the value ofr in the first state (the current state),
while the primed value[r]′ means the value ofr in the second
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state (the return state). Heregn says the function will reinstate
the value of callee-save registers and the return address before it
returns. Also, as shown in Fig. 10, the originalFList is split into a
smallerFList and a memory block of two-word size. The rest of the
memory is not changed.

The specification for thenewpair codeCSCAP is as follows:

ψs , {newpair ; (pn,gn)} .

We certifynewpair by constructing the SCAP derivation of

ψs `{(pn,gn)}newpair : Inewpair (3)

whereInewpair = CSCAP[newpair].

5.2.3 Linking the caller and callee
So far, we have specified and certified the caller and callee inde-
pendently in TAL and SCAP. Our next step is to link the caller and
the callee in OCAP.

Suppose the language ID for TAL and SCAP areρ and ρ′

respectively. We useFList to instantiate the resource invariantr
used in the interpretation for TAL. Therefore TAL’s interpretation

is [[ ]]
(ρ,FList)
LTAL

. The language dictionaryDTAL is defined as:

DTAL , {ρ ; 〈LTAL , [[ ]]
(ρ,FList)
LTAL

〉}.

We feed DTAL to the interpretation for SCAP, which is now

[[ ]]
(ρ′,DTAL )
LSCAP

(see section 4 for the SCAP interpretation). The lan-
guage dictionary for both languages is:

DFULL , DTAL ∪{ρ′
; 〈LSCAP, [[ ]]

(ρ′,DTAL )
LSCAP

〉} .

Merging the code of the caller and the callee, we get

CFULL , {getm;Igetm,cont;Icont,newpair;Inp} .

TAL and SCAP specifications are lifted to OCAP specΨFULL :

{( getm , 〈ρ , LTAL , ψt (getm) 〉 ),
( cont , 〈ρ , LTAL , ψt (cont) 〉 ),
( newpair, 〈ρ′, LSCAP, ψs(newpair) 〉 ),
( newpair, 〈ρ , LTAL , ψt (newpair) 〉 ) } .

To certifyCFULL , we need to construct the proof for 4.

DFULL ;ΨFULL ` CFULL :ΨFULL (4)

By applying the OCAPCDHP rule, we need derivations for the well-
formedness of each instruction sequence. By theorems 5.1 and 4.1,
we can get most of the derivations for free from derivations (1),
(2) and (3). The only tricky part is to show thenewpair code is
well-formed with respect to the TAL specification,i.e.,

DFULL `{〈a〉ΨFULL
}newpair : Inewpair

wherea = [[[〈ρ,LTAL ,ψt(newpair) 〉 ]]]
DFULL

.
(5)

To prove (5), we prove the following implication,

a⇒ [[[〈ρ′,LSCAP,(ψs(newpair))〉 ]]]
DFULL

.

which says the TAL specification fornewpair is compatible with
the SCAP one under their interpretations. Then we apply the OCAP
WEAKEN rule and get (5).

6. Case III: Certified Threads and Scheduler
As an important application of OCAP, we show how to construct
FPCC for concurrent codewithout putting the thread scheduler
code in the TCB, yet still support modular verification.

6.1 The Problem
Almost all work on concurrency verification assumes built-in lan-
guage constructs for concurrency, including recent work onverifi-
cation of concurrent assembly code [23, 9].

H

RC1

pc1

T1

{(A1, G1)}

Cn

pcn

Tn

{(An, Gn)}

i

.  .  .

H

R
C1 Cn

.  .  .

. . .

CS

pc

ct
xt

 1

ct
xt

 n

TQ

Figure 14. Concurrent Code at Different Abstraction Levels

The top part of Fig. 14 shows a (fairly low-level) abstract ma-
chine with built-in support of threads. Each threadTi has its own
code heap and program counter. The indexi points to the current
running thread. This index and thepc of the corresponding thread
decide the next instruction to be executed by the machine. The ma-
chine provides a primitiveyield instruction. Executingyield will
change the indexi in a nondeterministic way, therefore the control
is transferred to another thread. All threads share the dataheapH

and the register fileR.
The classic rely-guarantee method [13] allows concurrent code

in such a machine to be certified in a thread modular way, as shown
in CCAP [23]. The method assigns specificationA andG to each
thread.A andG are predicates over a pair of states. They are used
to specify state transitions. The guaranteeG specifies state transi-
tions made by the specified thread between twoyield points. The
assumptionA specifies the expected state transition made by other
threads while the specified thread is waiting for the processor. If all
threads satisfy their specifications, the following non-interference
property ensures proper collaboration between threads:

NI([(A1,G1), . . . ,(An,Gn)]) , Gi ⇒ A j ∀i 6= j .

To certify concurrent code, we prove that each thread fulfills its
guarantee as long as its assumption is satisfied. When we certify
one thread, we do not need knowledge about other threads. There-
fore we do not have to worry about the exponential state space.

However, this beautiful abstraction also relies on the built-in
thread abstraction. In a single processor machine such as our TM,
there is no built-in abstractions for threads. As shown in the bot-
tom part of Fig. 14, we have multiple execution contexts saved in
heap as the thread queue. CodeCi calls the thread scheduler (im-
plemented byCS), which switches the current context (pc) with
one in the thread queue andjumpsto thepc saved in the selected
context. All we have at this level is sequential code.

It is hard to use the rely-guarantee method to certify the whole
system (Ci andCS). We cannot treatCS as a special thread because
the context-switching behavior cannot be specified unless first-
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cth

pci

pc1 pc2 pcn
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tq

Figure 15. Current thread and the thread queue

class code pointers is supported. We do not know any existing
work supporting first-class code pointers in a rely-guarantee-based
framework. On the other hand, certifying all the code as sequential
code loses thread modularity, thus impractical.

In our approach, we use CCAP to certify user thread codeCi .
Although the machine is low-level, the code can be specified and
certified as if they are working at the higher-level machine shown
in Fig. 14. The scheduler codeCS is certified as sequential code in
SCAP. From SCAP point of view, the context switching is no more
special than memory load and store, as we will show below. Then
the certified code can be linked in OCAP.

6.2 Certifying The Scheduler Code in SCAP
User threads yield by calling the scheduler with the return continua-
tion saved in registerr31. The scheduler will saver31 in the current
context, put the context in the thread queue, pick another execution
context, restorer31, and finally return by jumping tor31. Then the
control is transferred to the selected thread.

We have made several simplifications in the above procedure:
we do not save the register file in the thread context because it is
shared by threads in CCAP. There is no stack either because CCAP
threads do not make function calls. Data structures for the scheduler
is thus very simple, as shown in Fig. 15. Each thread context only
contains the savedpc. The global constantcth points to the context
of the current thread, andtq points to the other threads’ contexts
which are organized in a linked list. We useTQ(tq,Q) to represent
the linked list pointed bytq containingQ. Q is a (nonempty) list of
code labels[pc1, . . . ,pcn]. Definition ofTQ is omitted here.

The scheduler is then given the following specification(ps,gs),
where|Q| represents the set of elements in the listQ.

ps , ∃Q. cth 7→ ∗ cth+1 7→ ∗ TQ(tq,Q) ∗ True

gs , (∀r ∈ r0, . . .r30.[r] = [r]′)∧
∀Q.∃pcx ∈ |Q|∪{[r31]}.∃Q′.(|Q′| = |Q|∪{[r31]}\{pcx})∧

[r31]
′ = pcx∧

(

cth 7→ ∗ cth+1 7→ ∗ TQ(tq,Q)
cth 7→ pcx ∗ cth+1 7→ ∗ TQ(tq,Q′)

)

∗ ID

The guaranteegs requires that, at the return point of the scheduler,
the register file (exceptr31) be restored; a labelpcx be picked from
Q (or it can still be old[r31]) and be saved inr31; the thread queue
be well-formed; and the rest part of data heap not be changed.Note
gs leaves the scheduling strategy unspecified.

The scheduler codeCS can be certified using(ps,gs) in SCAP
without knowing about CCAP.

6.3 CCAP for User Thread Code
The code specifications in CCAP is a tuple(p, ǧ,A,G), as shown in
Fig. 16.A andG are the assumption and guarantee.p is a predicate
over the current state. Since the specified program point maybe in
the middle of yield points, we use ˇg to specify the “local” guarantee
from the specified program point to the yield point. If the specified
point immediately follows a yield, ˇg will be set toG.

We useLCCAP to represent the type ofθ (in CiC). The following
lift function convertsψ for CCAP to OCAP code heap spec.

xψyρ , {(f,〈ρ,LCCAP,(p, ǧ,A,G)〉) | ψ(f) = (p, ǧ,A,G)}

(StPred) p,q ∈ State→ Prop

(Assumption) A ∈ State→ State→ Prop

(Th-Guarant.) ǧ,G ∈ State→ State→ Prop

(CdSpec) θ ::= (p, ǧ,A,G)

(CHSpec) ψ ::= {f ; θ}∗

Figure 16. Specification Constructs for CCAP

ψ ` C :ψ′ (Well-formed code heap)

for all f ∈ dom(ψ′): ψ `{ψ′(f)}f : C[f]

ψ ` C :ψ′
(CDHP)

ψ `{(p,g)}f : I (Well-formed instruction sequence)

ψ `{(p′, ǧ′,A,G)}f+1 : I ι∈{addu,addiu, lw,subu,sw}
p⇒ p′ ◦Nextι ∀S,S′. p S → ǧ′ (Nextι (S)) S′ → ǧ S S′

ψ `{(p, ǧ,A,G)}f : ι; I
(SEQ)

∀S. p S → ǧ S (S.H,S.R{r31;f+1})
∀S,S′ .p S∧A S S′ → p S′ (p,G,A,G) = ψ(f+1)

ψ `{(p, ǧ,A,G)}f : jal yield; I
(YIELD )

Figure 17. Selected CCAP Rules

Selected CCAP rules are shown in Fig. 17. Since CCAP uses a
built-in yield, we revise its originalYIELD rule here to adapt to our
TM, whereyield is done by calling the runtime. To certify the user
thread codeCi , we use CCAP rules and construct the following
derivationψ ` Ci :ψ′. We will not explain these rules in detail here
because they are not essential to understand the interoperation.

Program invariants and the interpretation. During program ex-
ecution, we want the following invariants to hold at each state with
specification(p, ǧ,A,G):
• p holds on the state visible to the user thread;

• there are well-formed thread queueQ and other runtime data
structures as specified in section 6.2;

• eachpci in Q is a code pointer with specification(pi ,Gi ,Ai ,Gi);

• assumptions and guarantees of threads (including the executing
one) are compatible,i.e.,NI([. . . ,(Ai ,Gi), . . . ,(A,G)]);

• if pi holds at a stateS, any state transition satisfies the assump-
tion Ai does not breakpi , i.e.,∀S,S′. pi S∧Ai S S′ → pi S′;

• when we reach a state that ˇg is satisfied (i.e., the current thread
can yield), it is safe for all threads inQ to take over the control,
i.e.,(ǧ S) ⇒ pi for all i, whereS is the current program state.

The following interpretation for CCAP specification(p, ǧ,A,G)
simply specifies these invariants.

[[(p, ǧ,A,G) ]]
ρ
LCCAP

, λΨ,S.
∃H1,H2,Q. H1]H2 = S.H∧p (H1,S.R)∧

(cth 7→ ∗cth+1 7→ ∗TQ(tq,Q)) (H2,S.R)∧
WFTQ(Q, ǧ (H1,S.R),A,G,Ψ)

where
WFTQ([pc1 . . .pcn],q,A,G,Ψ) ,

∀i. ∃pi ,Ai ,Gi . (pci ,〈ρ,LCCAP,(pi ,Gi ,Ai ,Gi)〉) ∈ Ψ
∧NI([. . . ,(Ai ,Gi), . . . ,(A,G)])
∧(∀S,S′.pi S∧Ai S S′ → pi S′)∧ (q⇒ pi)

Linking the scheduler with threads. To link the certified sched-
uler with user code, we assign language IDsρ andρ′ to SCAP and
CCAP respectively. The following dictionaryDc contains the inter-
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pretation for CCAP.

Dc , {ρ′
; 〈LCCAP, [[ ]]

ρ′

LCCAP
〉} .

UsingDc to instantiate the open parameter, SCAP interpretation is
now [[ ]]

(ρ,Dc)
LSCAP

(see section 4 for the definition). Since the scheduler
has been certified, applying Theorem 4.1 will automaticallyconvert
the SCAP proof into OCAP proof.

However, CCAP derivations does not immediately give us a
complete OCAP derivation. Readers may have notice that, in the
YIELD rule, we jump to theyield without checking the specifica-
tion of yield. It is not surprising that we cannot prove theYIELD

rule as an OCAP lemma derivable from the OCAPJAL rule. Fortu-
nately, the following theorem helps us construct sound OCAPproof
from CCAP derivations after we know the specification ofyield
at the time of linkage.

Theorem 6.1 (CCAP Soundness)
Let D = Dc∪{ρ ; 〈LSCAP, [[ ]]

(ρ,Dc)
LSCAP

〉} and

Ψs = {(yield, 〈ρ,LSCAP,(ps,gs) 〉 )}

.1. If we haveψ `{(p, ǧ,A,G)}f : I, thenD `{〈a〉Ψ}f : I, where

Ψ = xψyρ′ ∪Ψs anda = [[(p, ǧ,A,G) ]]
ρ′

LCCAP
.

2. If we haveψ ` C : ψ′ in CCAP, thenD;Ψ ` C : xψ′yρ′ , where
Ψ = xψyρ′ ∪Ψs.

7. Related Work and Conclusion
Semantic approaches to FPCC.The semantic approach to FPCC [3,
4, 19] builds semantic models for types. Based on type definitions,
typing rules in TAL are proved as lemmas. Our work is similar to
this approach in the sense that a uniform assertion is used inthe
OCAP framework. Interpretations are used to map foreign specifi-
cations to OCAP assertions. Based on the interpretation, inference
rules of foreign systems are proved as OCAP lemmas.

However, our interpretation does not have to be a semantic
model of foreign specifications. For instance, when we embedTAL
into OCAP, we simply use TAL’s syntactic state typing as the
interpretation for register file types. This makes our interpretation
easier to define than semantic models. For instance, it is challenging
to define models for mutable weak references, and the resulting
indexed model is heavyweight to use [1].

OCAP also uses a different specification for embedded code
pointers than the step-indexed semantic model [4, 19] used in the
Princeton FPCC. Following our previous work on CAP systems,
specification of embedded code pointers is interpreted as a code
label specified in the code heap specificationΨ. This approach
allows our framework to support partial correctness of programs
with respect to its specifications, as shown in Theorem 3.7.

The step-indexed model is designed specifically for type safety.
A code pointerf with preconditiona will be defined as:

codeptr(f,a) , λk,C,S.∀S
′.∀ j < k. a j C S

′→Safe( j ,(C,S′,f)) .

wherea is an indexed predicate over the code heap and state, and
Safe(n,P) meansP can execute at leastn steps. It is unclear how
Theorem 3.7 could be proved if this model is used: when we do an
indirect jump to a code pointercodeptr(R(r),a), we do not know
the relationship between “a” and the loop invariant assigned to
R(r) in program specificationΨ (unless we sacrifice the support of
separate verification of modules), because the definition ofcodeptr
is independent withΨ. More detailed discussion of this issue is
shown in Appendix A.

Syntactic approaches to FPCC.The OCAP framework is quite
different from the original syntactic approach [12, 8] to FPCC. In

the syntactic approach, TALs are designed for a higher-level ab-
stract machine with its own mechanized syntactic soundnessproof.
FPCC is constructed by proving bisimulation between type safe
TAL programs and real machine code. In our framework, we allow
users to certify machine code directly, but still at a higherabstrac-
tion level in TAL. The soundness of TAL is shown by proving TAL
instruction rules as lemmas in OCAP. Runtime code for TAL is cer-
tified in a different system and is linked with TAL code in OCAP.

Hamid and Shao [12] shows how to interface XTAL with CAP.
XTAL supports stubs which encapsulate interfaces of runtime li-
brary. Actual implementation of library is certified in CAP.Our
work on linking TAL with runtime is similar to theirs, but with sev-
eral differences. XTAL is also defined for a higher-level abstract
machine. With stubs, the machine does not have a self-contained
operational semantics. They present XTAL as a stand alone system
with syntactic soundness proof. Our TAL is just a set of ruleswhich
is proved as OCAP lemmas under appropriate interpretations. It
does not even have a topPROGrule for complete programs. In [12]
CAP serves two roles from our point of view: the underlying frame-
work (like OCAP) and the system to certify runtime (like our use of
SCAP). Both OCAP and SCAP have better support of modularity
than CAP. By splitting the underlying framework and the system to
certify runtime, our work is more general and conceptually clearer.

Previous work on CAP systems.CAP is first used in [22] to
certify malloc/free libraries. The system used there does not
have modular support of embedded code pointers. Ni and Shao [16]
solved this problem in XCAP by defining a specification language
with a built-in construct for code pointers. XCAP specifications are
interpreted into a predicate takingΨ as argument. This approach
is extended in [10] to support single or fixed combinations of
specification languages, which is not open and extensible. OCAP
is built upon previous work, but it is the first framework we use
to support interoperability of different systems in an extensible
and systematic way. All our previous CAP systems can be trivially
embedded in OCAP, as discussed in section 3.1.

The open verifier framework. Changet al.proposed an open ver-
ifier for verifying untrusted code [5]. Their framework can be cus-
tomized by embedding extension modules, which are executable
verifiers implementing verification strategies in pre-existing sys-
tems. However, the paper does not show how multiple extension
modules can coexist and collaborate in the framework. Especially,
since their support of indirect jumps needs to know all the possible
target addresses, it is unclear how they support separate verifica-
tion of program modules using different extensions. Open Verifier
emphasizes on implementation issues for practical proof construc-
tion, while our work explores the generality of FPCC frameworks.
OCAP provides a formal basis with clear meta properties for inter-
operation between verification systems.

Conclusion. We propose OCAP as an open framework for con-
structing FPCC. OCAP lays a thin layer of Hoare-style inference
rules over a bare meta-logic. Assertions in OCAP rules is expres-
sive enough to specify the invariants enforced in foreign verifica-
tion systems. We have embedded in OCAP a program logic (SCAP)
for certifying run-time code, a type system (TAL) and a program
logic for concurrency verification (CCAP). OCAP also supports
separate verification of program modules in different foreign sys-
tems. We showed two applications of OCAP’s support of system
interoperations. The first one shows how to use OCAP to link TAL
code with certified libraries; the second one shows how to construct
FPCC for concurrent code without trusting the scheduler: sched-
uler code and user thread code are certified in different systems and
linked in OCAP. The OCAP framework has been implemented in
the Coq proof assistant with machine checkable soundness proof.
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A. Indexed Model for Code Pointers Revisited
Appel and McAllester proposed an indexed model [4] for type
systems. Based on the indexed model, Tan and Appel [19, 20]
defined a compositional Hoare-logic systemLc which serves as an
intermediate level to translate LTAL to the meta-logic, butthey did
not show how first-class code pointers can be supported inLc.

In this section, we first present an indexed Hoare-logic systems
for TM, which is similar toLc but with modular support of indirect
jumps. Then we explain why such a system, based on the indexed
semantic model, cannot be used to prove general partial correctness
of programs.

In the indexed Hoare-logic system, the specification for thecode
heap is a partial mapping from code labels to indexed predicates
over the whole machine state (C andS):

(CHSpec) Ψ ::= {f; a}∗

(CdSpec) a ∈ nat→ CodeHeap→ State→ Prop

To support general indirect jumps, we need to give a specifica-
tion for code pointers. Following the indexed model, a valid(up to
k steps) code pointerf with preconditiona is defined as:

codeptr(f,a) ,

λk,C,S. ∀S
′.∀ j < k. a j (C,S′) → Safen(i,(C,S′,f)) ,

whereSafe( j ,P) means the programP can execute at leastj steps:

Safe(k,P) , ∀ j ≤ k. ∃P
′.P 7−→ j

P
′ .

We also defineSafe(P) as:

Safe(P) , ∀k. Safe(k,P) .

The code heapC satisfies its specificationΨ up tok steps only
if each code label inΨ is a valid one up tok steps:

� C:kΨ , dom(Ψ) ⊆ dom(C)∧
∀f ∈ dom(Ψ).∀S. codeptr(f,Ψ(f)) k C S .

In the following discussion, we will assume thatdom(Ψ) =
dom(C). This is not necessary. We want it simply because we want
to make our presentation to be as close to [4] as possible.

The safety of codeC at stateS0 andpc0 can be proved using the
following theorem, a paraphrase of the Theorem 40 in [4].

Theorem A.1 (Indexed-Sound)

∀k. � C:kΨ a = Ψ(pc) ∀k. ak C S

Safe(C,S,pc)

To use above theorem, the challenging part is to prove∀k. �

C:kΨ. By induction overk, we need to prove (6):

∀k. (� C:kΨ) → (� C:k+1Ψ) , (6)

which, as suggested in [4] (Theorem 44), can be proved from:

∀f ∈ dom(Ψ). safe at(C,Ψ,f) , (7)

where

safe at(C,Ψ,f) ,

∀k,S. (� C:kΨ)∧Ψ(f) k C S →
∃S′,f′.(C,S,f) 7−→ (C,S′,f′)∧Ψ(f′) k−1 C S′ .

The framework looks good so far. In addition to the “non-
stuckness” property specified bySafe(P), we can prove partial
correctness as a by-product of (7). The partial correctnesscan be
formalized as:

Safe(C,S,pc)∧
∀k,S′,pc′. ((C,S,pc) 7−→k (C,S′,pc′)) →∀n.Ψ(pc′) n C S′ .
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Ψ ` C :Ψ′ (Well-formed code heap)

for all f ∈ dom(Ψ′): a = 〈Ψ′(f)〉Ψ Ψ `{a}f : C(f)

Ψ ` C :Ψ′
(CDHP)

Ψ `{a}f : ι (Well-formed instruction)

a⇒ Ψ(f′)

Ψ `{a}f : j f′
(J)

a⇒ λk,C,S. ∃a′.Monotone(a′)∧
(codeptr(S.R(rs),a

′)∧a′) k C S

Ψ `{a}f : jr rs
(JR)

ι∈{addu,addiu, lw,sw} a⇒ λk,C. (Ψ(f+1) k C)◦Nextι

Ψ `{a}f : ι
(SEQ)

Figure 18. Indexed Hoare-style rules

This is not surprising because (7) essentially formulates the progress
and preservation properties.

However, Appel and McAllester did not give any guidance to
construct the proof of (7).Lc is supposed to play such a role, but
there is no rules for indirect jumps. We extendLc and present a set
of Hoare-style rules in Figure 18. Here the lifting of predicatea is
defined as:

〈a〉Ψ , λk,C,S. Monotone(a)∧ (� C:kΨ)∧ (ak C S) ,

whereMonotone(a) means:

Monotone(a) , ∀k,C,S. a k C S →∀ j < k. a j C S .

Readers can see that the definition of〈a〉Ψ is similar to the lifted
assertion we defined in OCAP (see section 3.3) if we unfold thedef-
inition of � C:kΨ. The extra monotonicity requirement fora corre-
sponds to the requirement for types in [4]. As usual, we usea⇒ a′

as a shorthand for∀k,C,S. a k C S → a′ k C S. The conjunction
connector “∧” is overloaded for assertions.

Instead of proving (7) directly, we want to let the user prove
Ψ `C :Ψ instead. Unfortunately, based on the definition ofcodeptr
and theJR rule, we cannot prove (7) from (Ψ ` C : Ψ). The JR rule
only tells us thatrs is a code pointer with certain preconditiona′

anda′ holds at the time of the jump. Since the definition ofcodeptr
is independent withΨ, we do not know whether the target address
is specified inΨ or not, and, if specified, whether the specification
is the same with (or weaker than)a′ or not.

To solve this problem, we have to use a weaker definition of
safe at:

safe at(C,Ψ,f) ,

∀k,S.(� C:kΨ)∧Ψ(f) k C S →
∃a′,S′,f′.(C,S,f) 7−→ (C,S′,f′)∧

(codeptr(f′,a′)∧a′) k C S .

With this weaker definition, we can prove (7) fromΨ ` C :Ψ, and
(7) still implies (6). Tan [19] essentially uses the weaker version of
(7) to prove the soundness of TAL1’s indirect jump rule.

However, the problem with this weaker definition ofsafe at
is that the preservation cannot be proved. As a result, we cannot
use the system to prove the partial correctness of programs as
formulated above. We can construct a counter example to show
that, there exist aC, S, pc andΨ, even though we haveΨ ` C : Ψ
(therefore∀k. � C:kΨ) and∀k. Ψ(pc) k C S, we can find anS′ and
pc′ such that(C,S,pc) 7−→∗ (C,S′,pc′) but∀k.Ψ(pc′) k C S

′ does
not hold.

f: addiu r31, r0, cont ;save return addr

j h ;call function h

cont: j cont ;infinite loop

h: addiu r1, r0, 1 ;update r1

jr r31 ;return

For the code heapC shown above, we first give it a specification
Ψ1:

Ψ1 , {f ; λk,C,S.TRUE, . . . ,cont ; λk,C,S.TRUE,
h ; codeptr(S.R(r31), λk,C,S.TRUE), . . .}.

We can prove thatΨ1 ` C : Ψ1 (which implies∀k. � C:kΨ1),
therefore we know that

∀k,S. codeptr(cont,λk,C,S.TRUE) k C S (8)

Then we defineΨ2 as:

Ψ2 , Ψ1{cont ; λk,C,S. (S.R(r1) = 0)}.

We can also proveΨ2 ` C : Ψ2 by using (8), which was proved
in the last round. However, it is trivial to see that when the pro-
gram reaches code labelcont, the program state cannot satisfy
Ψ2(cont), so we cannot prove the partial correctness of the pro-
gram with respect to the code specificationΨ2.

One way to solve the problem is to use a differentJR rule, as
shown below:

a⇒ λk,C,S. ∃a′.Monotone(a′)∧ (a′ ⇒ Ψ(S.R(rs)))∧
(codeptr(S.R(rs),a

′)∧a′) k C S

Ψ `{a}f : jr rs
(JR’)

Using theJR’ rule, we cannot certify the code shown above using
the specificationΨ2. However, this rule requires the knowledge
about all the possible target addresses of the indirect jump, which
breaks modularity of the system [16].

One may want to change the definition ofSafe to specify the
partial correctness,e.g.,to defineSafe as:

Safe(k,(C,S,pc)) ,

Ψ(pc) k C S ∧
∃S′,pc′. (C,S,pc) 7−→ (C,S′,pc′)∧Safe(k−1,(C,S′,pc′)) .

However, the definition ofΨ now becomes circular becauseΨ uses
codeptr, which usesSafe, which usesΨ.
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