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Abstract. Static analysis of the evaluation cost of programs is an exten-
sively studied problem that has many important applications. However,
most automatic methods for static cost analysis are limited to sequential
evaluation while programs are increasingly evaluated on modern multicore
and multiprocessor hardware. This article introduces the first automatic
analysis for deriving bounds on the worst-case evaluation cost of parallel
first-order functional programs. The analysis is performed by a novel
type system for amortized resource analysis. The main innovation is a
technique that separates the reasoning about sizes of data structures
and evaluation cost within the same framework. The cost semantics of
parallel programs is based on call-by-value evaluation and the standard
cost measures work and depth. A soundness proof of the type system
establishes the correctness of the derived cost bounds with respect to the
cost semantics. The derived bounds are multivariate resource polynomials
which depend on the sizes of the arguments of a function. Type inference
can be reduced to linear programming and is fully automatic. A prototype
implementation of the analysis system has been developed to experimen-
tally evaluate the effectiveness of the approach. The experiments show
that the analysis infers bounds for realistic example programs such as
quick sort for lists of lists, matrix multiplication, and an implementation
of sets with lists. The derived bounds are often asymptotically tight and
the constant factors are close to the optimal ones.
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1 Introduction

Static analysis of the resource cost of programs is a classical subject of computer
science. Recently, there has been an increased interest in formally proving cost
bounds since they are essential in the verification of safety-critical real-time and
embedded systems.

For sequential functional programs there exist many automatic and semi-
automatic analysis systems that can statically infer cost bounds. Most of them
are based on sized types [1], recurrence relations [2], and amortized resource
analysis [3, 4]. The goal of these systems is to automatically compute easily-
understood arithmetic expressions in the sizes of the inputs of a program that
bound resource cost such as time or space usage. Even though an automatic
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computation of cost bounds is undecidable in general, novel analysis techniques are
able to efficiently compute tight time bounds for many non-trivial programs [5–9].

For functional programs that are evaluated in parallel, on the other hand,
no such analysis system exists to support programmers with computer-aided
derivation of cost bounds. In particular, there are no type systems that derive
cost bounds for parallel programs. This is unsatisfying because parallel evalu-
ation is becoming increasingly important on modern hardware and referential
transparency makes functional programs ideal for parallel evaluation.

This article introduces an automatic type-based resource analysis for deriving
cost bounds for parallel first-order functional programs. Automatic cost analysis
for sequential programs is already challenging and it might seem to be a long shot
to develop an analysis for parallel evaluation that takes into account low-level
features of the underlying hardware such as the number of processors. Fortunately,
it has been shown [10, 11] that the cost of parallel functional programs can be
analyzed in two steps. First, we derive cost bounds at a high abstraction level
where we assume to have an unlimited number of processors at our disposal.
Second, we prove once and for all how the cost on the high abstraction level
relates to the actual cost on a specific system with limited resources.

In this work, we derive bounds on an abstract cost model that consists of
the work and the depth of an evaluation of a program [10]. Work measures
the evaluation time of sequential evaluation and depth measures the evaluation
time of parallel evaluation assuming an unlimited number of processors. It is
well-known [12] that a program that evaluates to a value using work w and depth
d can be evaluated on a shared-memory multiprocessor (SMP) system with p
processors in time Opmaxpw{p, dqq (see Section 2.3). The mechanism that is used
to prove this result is comparable to a scheduler in an operating system.

A novelty in the cost semantics in this paper is the definition of work and
depth for terminating and non-terminating evaluations. Intuitively, the non-
deterministic big-step evaluation judgement that is defined in Section 2 expresses
that there is a (possibly partial) evaluation with work n and depth m. This
statement is used to prove that a typing derivation for bounds on the depth or
for bounds on the work ensures termination.

Technically, the analysis computes two separate typing derivations, one for the
work and one for the depth. To derive a bound on the work, we use multivariate
amortized resource analysis for sequential programs [13]. To derive a bound
on the depth, we develop a novel multivariate amortized resource analysis for
programs that are evaluated in parallel. The main challenge in the design of
this novel parallel analysis is to ensure the same high compositionality as in
the sequential analysis. The design and implementation of this novel analysis
for bounds on the depth of evaluations is the main contribution of our work.
The technical innovation that enables compositionality is an analysis method
that separates the static tracking of size changes of data structures from the
cost analysis while using the same framework. We envision that this technique
will find further applications in the analysis of other non-additive cost such as
stack-space usage and recursion depth.
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We describe the new type analysis for parallel evaluation for a simple first-
order language with lists, pairs, pattern matching, and sequential and parallel
composition. This is already sufficient to study the cost analysis of parallel
programs. However, we implemented the analysis system in Resource Aware ML
(RAML), which also includes other inductive data types and conditionals [14]. To
demonstrate the universality of the approach, we also implemented NESL’s [15]
parallel list comprehensions as a primitive in RAML (see Section 6). Similarly, we
can define other parallel sequence operations of NESL as primitives and correctly
specify their work and depth. RAML is currently extended to include higher-order
functions, arrays, and user-defined inductive types. This work is orthogonal to
the treatment of parallel evaluation.

To evaluate the practicability of the proposed technique, we performed an
experimental evaluation of the analysis using the prototype implementation in
RAML. Note that the analysis computes worst-case bounds instead of average-
case bounds and that the asymptotic behavior of many of the classic examples
of Blelloch et al. [10] does not differ in parallel and sequential evaluations. For
instance, the depth and work of quick sort are both quadratic in the worst-case.
Therefore, we focus on examples that actually have asymptotically different
bounds for the work and depth. This includes quick sort for lists of lists in
which the comparisons of the inner lists can be performed in parallel, matrix
multiplication where matrices are lists of lists, a function that computes the
maximal weight of a (continuous) sublist of an integer list, and the standard
operations for sets that are implemented as lists. The experimental evaluation
can be easily reproduced and extended: RAML and the example programs are
publicly available for download and through an user-friendly online interface [16].

In summary we make the following contributions.
1. We introduce the first automatic static analysis for deriving bounds on the

depth of parallel functional programs. Being based on multivariate resource
polynomials and type-based amortized analysis, the analysis is compositional.
The computed type derivations are easily-checkable bound certificates.

2. We prove the soundness of the type-based amortized analysis with respect
to an operational big-step semantics that models the work and depth of
terminating and non-terminating programs. This allows us to prove that
work and depth bounds ensure termination. Our inductively defined big-step
semantics is an interesting alternative to coinductive big-step semantics.

3. We implemented the proposed analysis in RAML, a first-order functional
language. In addition to the language constructs like lists and pairs that are
formally described in this article, the implementation includes binary trees,
natural numbers, tuples, Booleans, and NESL’s parallel list comprehensions.

4. We evaluated the practicability of the implemented analysis by performing
reproducible experiments with typical example programs. Our results show
that the analysis is efficient and works for a wide range of examples. The de-
rived bounds are usually asymptotically tight if the tight bound is expressible
as a resource polynomial.

The full version of this article [17] contains additional explanations, lemmas,
and details of the technical development.
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2 Cost Semantics for Parallel Programs

In this section, we introduce a first-order functional language with parallel and
sequential composition. We then define a big-step operational semantics that
formalizes the cost measures work and depth for terminating and non-terminating
evaluations. Finally, we prove properties of the cost semantics and discuss the
relation of work and depth to the run time on hardware with finite resources.

2.1 Expressions and Programs

Expressions are given in let-normal form. This means that term formers are
applied to variables only when this does not restrict the expressivity of the
language. Expressions are formed by integers, variables, function applications,
lists, pairs, pattern matching, and sequential and parallel composition.

e, e1, e2 ::“ n | x | fpxq | px1, x2q || matchxwith px1, x2q ñ e

| nil | conspx1, x2q | matchxwith xnil ñ e1 ~ conspx1, x2q ñ e2y

| letx “ e1 in e2 | par x1 “ e1 andx2 “ e2 in e

The parallel composition par x1 “ e1 andx2 “ e2 in e is used to evaluate e1 and
e2 in parallel and bind the resulting values to the names x1 and x2 for use in e.

In the prototype, we have implemented other inductive types such as trees,
natural numbers, and tuples. Additionally, there are operations for primitive
types such as Booleans and integers, and NESL’s parallel list comprehensions [15].
Expressions are also transformed automatically into let normal form before the
analysis. In the examples in this paper, we use the syntax of our prototype
implementation to improve readability.

In the following, we define a standard type system for expressions and pro-
grams. Data types A,B and function types F are defined as follows.

A,B ::“ int | LpAq | A ˚B F ::“ AÑ B

Let A be the set of data types and let F be the set of function types. A signature
Σ : FID á F is a partial finite mapping from function identifiers to function
types. A context is a partial finite mapping Γ : Var á A from variable identifiers
to data types. A simple type judgement Σ;Γ $ e : A states that the expression
e has type A in the context Γ under the signature Σ. The definition of typing
rules for this judgement is standard and we omit the rules.

A (well-typed) program consists of a signature Σ and a family pef , yf qfPdompΣq

of expressions ef with a distinguished variable identifier yf such that Σ; yf :A $
ef :B if Σpfq “ AÑ B.

2.2 Big-Step Operational Semantics

We now formalize the resource cost of evaluating programs with a big-step
operational semantics. The focus of this paper is on time complexity and we only
define the cost measures work and depth. Intuitively, the work measures the time
that is needed in a sequential evaluation. The depth measures the time that is
needed in a parallel evaluation. In the semantics, time is parameterized by a
metric that assigns a non-negative cost to each evaluation step.
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Fig. 1. Interesting rules of the operational big-step semantics.

Motivation. A distinctive feature of our big-step semantics is that it models
terminating, failing, and diverging evaluations by inductively describing finite
subtrees of (possibly infinite) evaluation trees. By using an inductive judgement
for diverging and terminating computations while avoiding intermediate states,
it combines the advantages of big-step and small-step semantics. This has two
benefits compared to standard big-step semantics. First, we can model the resource
consumption of diverging programs and prove that bounds hold for terminating
and diverging programs. (In some cost metrics, diverging computations can have
finite cost.) Second, for a cost metric in which all diverging computations have
infinite cost we are able to show that bounds imply termination.

Note that we cannot achieve this by step-indexing a standard big-step se-
mantics. The available alternatives to our approach are small-step semantics and
coinductive big-step semantics. However, it is unclear how to prove the soundness
of our type system with respect to these semantics. Small-step semantics is
difficult to use because our type-system models an intentional property that goes
beyond the classic type preservation: After performing a step, we have to obtain
a refined typing that corresponds to a (possibly) smaller bound. Coinductive
derivations are hard to relate to type derivations because type derivations are
defined inductively.

Our inductive big-step semantics can not only be used to formalize resource
cost of diverging computations but also for other effects such as event traces. It is
therefore an interesting alternative to recently proposed coinductive operational
big-step semantics [18].

Semantic Judgements. We formulate the big-step semantics with respect to
a stack and a heap. Let Loc be an infinite set of locations modeling memory
addresses on a heap. A value v ::“ n | p`1, `2q | pcons, `1, `2q | nil P Val is either
an integer n P Z, a pair of locations p`1, `2q, a node pcons, `1, `2q of a list, or nil.

A heap is a finite partial mapping H : Loc á Val that maps locations to
values. A stack is a finite partial mapping V : Var á Loc from variable identifiers
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to locations. Thus we have boxed values. It is not important for the analysis
whether values are boxed.

Figure 1 contains a compilation of the big-step evaluation rules (the full
version contains all rules). They are formulated with respect to a resource metric
M . They define the evaluation judgment

V,H M e ó ρ | pw, dq where ρ ::“ p`,Hq | ˝ .

It expresses the following. In a fixed program pef , yf qfPdompΣq, if the stack V
and the initial heap H are given then the expression e evaluates to ρ. Under the
metric M , the work of the evaluation of e is w and the depth of the evaluation
is d. Unlike standard big-step operational semantics, ρ can be either a pair of a
location and a new heap, or ˝ (pronounced busy) indicating that the evaluation
is not finished yet.

A resource metric M : K Ñ Q`0 defines the resource consumption in each
evaluation step of the big-step semantics with a non-negative rational number.
We write Mk for Mpkq.

An intuition for the judgement V,H M e ó ˝ | pw, dq is that there is a
partial evaluation of e that runs without failure, has work w and depth d, and
has not yet reached a value. This is similar to a small-step judgement.

Rules. For a heap H, we write H, ` ÞÑ v to express that ` R dompHq and to
denote the heap H 1 such that H 1pxq “ Hpxq if x P dompHq and H 1p`q “ v.
In the rule E:Par2, we write H1 Z H2 to indicate that H1 and H2 agree on
the values of locations in dompH1q X dompH2q and to a combined heap H with
dompHq “ dompH1qYdompH2q. We assume that the locations that are allocated
in parallel evaluations are disjoint. That is easily achievable in an implementation.

The most interesting rules of the semantics are E:Abort, and the rules
for sequential and parallel composition. They allow us to approximate infinite
evaluation trees for non-terminating evaluations with finite subtrees. The rule
E:Abort states that we can partially evaluate every expression by doing zero
steps. The work w and depth d are then both zero (i.e., w “ d “ 0).

To obtain an evaluation judgement for a sequential composition letx “ e1 in e2

we have two options. We can use the rule E:Let1 to partially evaluate e1 using
work w and depth d. Alternatively, we can use the rule E:Let2 to evaluate e1

until we obtain a location and a heap p`,H 1q using work w1 and depth d1. Then
we evaluate e2 using work w2 and depth d2. The total work and depth is then
given by M let`w1`w2 and M let`d1`d2, respectively.

Similarly, we can derive evaluation judgements for a parallel composition
par x1 “ e1 andx2 “ e2 in e using the rules E:Par1 and E:Par2. In the rule
E:Par1, we partially evaluate e1 or e2 with evaluation cost pw1, d1q and pw2, d2q.
The total work is then MPar`w1`w2 (the cost for the evaluation of the parallel
binding plus the cost for the sequential evaluation of e1 and e2). The total depth is
MPar`maxpd1, d2q (the cost for the evaluation of the binding plus the maximum
of the cost of the depths of e1 and e2). The rule E:Par2 handles the case in
which e1 and e2 are fully evaluated. It is similar to E:Let2 and the cost of the
evaluation of the expression e is added to both the cost and the depth since e is
evaluated after e1 and e2.
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2.3 Properties of the Cost-Semantics

The main theorem of this section states that the resource cost of a partial
evaluation is less than or equal to the cost of an evaluation of the same expression
that terminates.

Theorem 1. If V,H M e ó p`,H 1q | pw, dq and V,H M e ó ˝ | pw1, d1q then
w1 ď w and d1 ď d.

Theorem 1 can be proved by a straightforward induction on the derivation of the
judgement V,H M e ó p`,H 1q | pw, dq.

Provably Efficient Implementations. While work is a realistic cost-model
for the sequential execution of programs, depth is not a realistic cost-model for
parallel execution. The main reason is that it assumes that an infinite number of
processors can be used for parallel evaluation. However, it has been shown [10]
that work and depth are closely related to the evaluation time on more realistic
abstract machines.

For example, Brent’s Theorem [12] provides an asymptotic bound on the
number of execution steps on the shared-memory multiprocessor (SMP) machine.
It states that if V,H M e ó p`,H 1q | pw, dq then e can be evaluated on a p-
processor SMP machine in time Opmaxpw{p, dqq. An SMP machine has a fixed
number p of processes and provides constant-time access to a shared memory. The
proof of Brent’s Theorem can be seen as the description of a so-called provably
efficient implementation, that is, an implementation for which we can establish
an asymptotic bound that depends on the number of processors.

Classically, we are especially interested in non-asymptotic bounds in resource
analysis. It would thus be interesting to develop a non-asymptotic version of
Brent’s Theorem for a specific architecture using more refined models of concur-
rency [11]. However, such a development is not in the scope of this article.

Well-Formed Environments and Type Soundness. For each data type A
we inductively define a set JAK of values of type A. Lists are interpreted as lists
and pairs are interpreted as pairs.

JintK “ Z JA ˚BK “ JAKˆ JBK
JLpAqK “ tra1, . . . , ans | n P N, ai P JAKu

If H is a heap, ` is a location, A is a data type, and a P JAK then we write
H ( ` ÞÑ a :A to mean that ` defines the semantic value a P JAK when pointers
are followed in H in the obvious way. The judgment is formally defined in the
full version of the article.

We write H ( ` :A to indicate that there exists a, necessarily unique, semantic
value a P JAK so that H ( ` ÞÑ a :A . A stack V and a heap H are well-formed
with respect to a context Γ if H ( V pxq :Γ pxq holds for every x P dompΓ q. We
then write H ( V : Γ .

Simple Metrics and Progress. In the reminder of this section, we prove a
property of the evaluation judgement under a simple metric. A simple metric M
assigns the value 1 to every resource constant, that is, Mpxq “ 1 for every x P K.
With a simple metric, work counts the number of evaluation steps.
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Theorem 2 states that, in a well-formed environment, well-typed expressions
either evaluate to a value or the evaluation uses unbounded work and depth.

Theorem 2 (Progress). Let M be a simple metric, Σ;Γ $ e : B, and H (

V : Γ . Then V,H M e ó p`,H 1q | pw, dq for some w, d P N or for every n P N
there exist x, y P N such that V,H M e ó ˝ | px, nq and V,H M e ó ˝ | pn, yq.

A direct consequence of Theorem 2 is that bounds on the depth of programs
under a simple metric ensure termination.

3 Amortized Analysis and Parallel Programs

In this section, we give a short introduction into amortized resource analysis for
sequential programs (for bounding the work) and then informally describe the
main contribution of the article: a multivariate amortized resource analysis for
parallel programs (for bounding the depth).

Amortized Resource Analysis. Amortized resource analysis is a type-based
technique for deriving upper bounds on the resource cost of programs [3]. The
advantages of amortized resource analysis are compositionality and efficient
type inference that is based on linear programming. The idea is that types are
decorated with resource annotations that describe a potential function. Such
a potential function maps the sizes of typed data structures to a non-negative
rational number. The typing rules ensure that the potential defined by a typing
context is sufficient to pay for the evaluation cost of the expression that is typed
under this context and for the potential of the result of the evaluation.

The basic idea of amortized analysis is best explained by example. Consider
the function mult : int ˚ Lpintq Ñ Lpintq that takes an integer and an integer list
and multiplies each element of the list with the integer.

mult(x,ys) = match ys with | nil Ñ nil

| (y::ys’) Ñ x*y::mult(x,ys’)

For simplicity, we assume a metric M˚ that only counts the number of multipli-

cations performed in an evaluation in this section. Then V,H M˚

multpx, ysq ó
p`,H 1q | pn, nq for a well-formed stack V and heap H in which ys points to a list
of length n. In short, the work and depth of the evaluation of multpx, ysq is |ys|.

To obtain a bound on the work in type-based amortized resource analysis, we
derive a type of the following form.

x:int, ys:Lpintq;Q M˚

multpx, ysq : pLpintq, Q1q

Here Q and Q1 are coefficients of multivariate resource polynomials pQ : Jint ˚
LpintqK Ñ Q`0 and pQ1 : JLpintqK Ñ Q`0 that map semantic values to non-negative
rational numbers. The rules of the type system ensure that for every evaluation
context (V,H) that maps x to a number m and ys to a list a, the potential
pQpm, aq is sufficient to cover the evaluation cost of multpx, ysq and the potential
pQ1pa

1q of the returned list a1. More formally, we have pQpm, aq ě w ` pQ1pa
1q if

V,H M˚

multpx, ysq ó p`,H 1q | pw, dq and ` points to the list a1 in H 1.
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In our type system we can for instance derive coefficients Q and Q1 that
represent the potential functions

pQpn, aq “ |a| and pQ1paq “ 0 .

The intuitive meaning is that we must have the potential |ys| available when
evaluating multpx, ysq. During the evaluation, the potential is used to pay for the
evaluation cost and we have no potential left after the evaluation.

To enable compositionality, we also have to be able to pass potential to the
result of an evaluation. Another possible instantiation of Q and Q1 would for
example result in the following potential.

pQpn, aq “ 2¨|a| and pQ1paq “ |a|

The resulting typing can be read as follows. To evaluate multpx, ysq we need the
potential 2|ys| to pay for the cost of the evaluation. After the evaluation there is
the potential |multpx, ysq| left to pay for future cost in a surrounding program.
Such an instantiation would be needed to type the inner function application in
the expression multpx,multpz, ysqq.

Technically, the coefficients Q and Q1 are families that are indexed by sets
of base polynomials. The set of base polynomials is determined by the type
of the corresponding data. For the type int ˚ Lpintq, we have for example Q “

tqp˚,rsq, qp˚,r˚sq, qp˚,r˚,˚sq, . . .u and pQpn, aq “ qp˚,rsq` qp˚,r˚sq¨|a|` qp˚,r˚,˚sq¨
`

|a|
2

˘

`

. . .. This allows us to express multivariate functions such as m ¨ n.

The rules of our type system show how to describe the valid instantiations of
the coefficients Q and Q1 with a set of linear inequalities. As a result, we can use
linear programming to infer resource bounds efficiently.

A more in-depth discussion can be found in the literature [3, 19, 7].

Sequential Composition. In a sequential composition letx “ e1 in e2, the
initial potential, defined by a context and a corresponding annotation pΓ,Qq,
has to be used to pay for the work of the evaluation of e1 and the work of the
evaluation of e2. Let us consider a concrete example again.

mult2(ys) = let xs = mult(496,ys) in

let zs = mult(8128,ys) in (xs,zs)

The work (and depth) of the evaluation of the expression mult2pysq is 2|ys| in the
metric M˚. In the type judgement, we express this bound as follows. First, we
type the two function applications of mult as before using

x:int, ys:Lpintq;Q M˚

multpx, ysq : pLpintq, Q1q

where pQpn, aq “ |a| and pQ1paq “ 0. In the type judgement

ys:Lpintq;R M˚

mult2pysq : pLpintq ˚ Lpintq, R1q

we require that pRpaq ě pQpaq`pQpaq, that is, the initial potential (defined by the
coefficients R) has to be shared in the two sequential branches. Such a sharing can
still be expressed with linear constraints. such as rr˚s ě qp˚,r˚sq ` qp˚,r˚sq. A valid
instantiation of R would thus correspond to the potential function pRpaq “ 2|a|.
With this instantiation, the previous typing reflects the bound 2|ys| for the
evaluation of mult2pysq.
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A slightly more involved example is the function dyad : Lpintq ˚ Lpintq Ñ
LpLpintqq which computes the dyadic product of two integer lists.

dyad (u,v) = match u with | nil Ñ nil

| (x::xs) Ñ let x’ = mult(x,v) in

let xs’ = dyad(xs,v) in x’::xs’;

Using the metric M˚ that counts multiplications, multivariate resource analysis
for sequential programs derives the bound |u|¨|v|. In the cons branch of the
pattern match, we have the potential |xs|¨|v| ` |v| which is shared to pay for the
cost |v| of multpx, vq and the cost |xs|¨|v| of dyadpxs, vq.

Moving multivariate potential through a program is not trivial; especially in
the presence of nested data structures like trees of lists. To give an idea of the
challenges, consider the expression e that is defined as follows.

let xs = mult(496,ys) in

let zs = append(ys,ys) in dyad(xs,zs)

The depth of evaluating e in the metric M˚ is bounded by |ys| ` 2|ys|2. Like
in the previous example, we express this in amortized resource analysis with
the initial potential |ys| ` 2|ys|2. This potential has to be shared to pay for the
cost of the evaluations of multp496, ysq (namely |ys|) and dyadpxs, zsq (namely
2|ys|2). However, the type of dyad requires the quadratic potential |xs|¨|zs|. In
this simple example, it is easy to see that |xs|¨|zs| “ 2|ys|2. But in general, it is
not straightforward to compute such a conversion of potential in an automatic
analysis system, especially for nested data structures and super-linear size changes.
The type inference for multivariate amortized resource analysis for sequential
programs can analyze such programs efficiently [7].

Parallel Composition. The insight of this paper is that the potential method
works also well to derive bounds on parallel evaluations. The main challenge in
the development of an amortized resource analysis for parallel evaluations is to
ensure the same compositionality as in sequential amortized resource analysis.

The basic idea of our new analysis system is to allow each branch in a parallel
evaluation to use all the available potential without sharing. Consider for example
the previously defined function mult2 in which we evaluate the two applications
of mult in parallel.

mult2par(ys) = par xs = mult(496,ys)

and zs = mult(8128,ys) in (xs,zs)

Since the depth of multpn, ysq is |ys| for every n and the two applications of mult
are evaluated in parallel, the depth of the evaluation of mult2parpysq is |ys| in the
metric M˚.

In the type judgement, we type the two function applications of mult as in
the sequential case in which

x:int, ys:Lpintq;Q M˚

multpx, ysq : pLpintq, Q1q

such that pQpn, aq “ |a| and pQ1paq “ 0. In the type judgement

ys:Lpintq;R M˚

mult2parpysq : pLpintq ˚ Lpintq, R1q

for mult2par we require however only that pRpaq ě pQpaq. In this way, we express
that the initial potential defined by the coefficients R has to be sufficient to
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cover the cost of each parallel branch. Consequently, a possible instantiation of
R corresponds to the potential function pRpaq “ |a|.

In the function dyad, we can replace the sequential computation of the inner
lists of the result by a parallel computation in which we perform all calls to the
function mult in parallel. The resulting function is dyad par.

dyad_par (u,v) = match u with | nil Ñ nil

| (x::xs) Ñ par x’ = mult(x,v)

and xs’ = dyad_par(xs,v) in x’::xs’;

The depth of dyad par is |v|. In the type-based amortized analysis, we hence start
with the initial potential |v|. In the cons branch of the pattern match, we can
use the initial potential to pay for both, the cost |v| of multpx, vq and the cost |v|
of the recursive call dyadpxs, vq without sharing the initial potential.

Unfortunately, the compositionality of the sequential system is not preserved
by this simple idea. The problem is that the naive reuse of potential that is
passed through parallel branches would break the soundness of the system. To
see why, consider the following function.

mult4(ys) = par xs = mult(496,ys)

and zs = mult(8128,ys) in (mult(5,xs), mult(10,zs))

Recall, that a valid typing for xs “ multp496, ysq could take the initial potential
2|ys| and assign the potential |xs| to the result. If we would simply reuse the
potential 2|ys| to type the second application of mult in the same way then we
would have the potential |xs| ` |zs| after the parallel branches. This potential
could then be used to pay for the cost of the remaining two applications of mult.
We have now verified the unsound bound 2|ys| on the depth of the evaluation of
the expression mult4pysq but the depth of the evaluation is 3|ys|.

The problem in the previous reasoning is that we doubled the part of the
initial potential that we passed on for later use in the two parallel branches of
the parallel composition. To fix this problem, we need a separate analysis of the
sizes of data structures and the cost of parallel evaluations.

In this paper, we propose to use cost-free type judgements to reason about
the size changes in parallel branches. Instead of simply using the initial potential
in both parallel branches, we share the potential between the two branches but
analyze the two branches twice. In the first analysis, we only pay for the resource
consumption of the first branch. In the second, analysis we only pay for resource
consumption of the second branch.

A cost-free type judgement is like any other type judgement in amortized
resource analysis but uses the cost-free metric cf that assigns zero cost to every
evaluation step. For example, a cost-free typing of the function multpysq would
express that the initial potential can be passed to the result of the function. In
the cost-free typing judgement

x:int, ys:Lpintq;Q cf multpx, ysq : pLpintq, Q1q

a valid instantiation of Q and Q1 would correspond to the potential

pQpn, aq “ |a| and pQ1paq “ |a| .

The intuitive meaning is that in a call zs “ multpx, ysq, the initial potential |ys|
can be transformed to the potential |zs| of the result.
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Using cost-free typings, we can now correctly reason about the depth of the
evaluation of mult4. We start with the initial potential 3|ys| and have to consider
two cases in the parallel binding. In the first case, we have to pay only for resource
cost of multp496, ysq. So we share the initial potential and use 2|ys|: |ys| to pay
the cost of multp496, ysq and |ys| to assign the potential |xs| to the result of the
application. The reminder |ys| of the initial potential is used in a cost-free typing
of multp8128, ysq where we assign the potential |zs| to the result of the function
without paying any evaluation cost. In the second case, we derive a similar typing
in which the roles of the two function calls are switched. In both cases, we start
with the potential 3|ys| and end with the potential |xs| ` |zs|. We use it to pay
for the two remaining calls of mult and have verified the correct bound.

In the univariate case, using the notation from [3, 19], we could formulate
the type rule for parallel composition as follows. Here, the coefficients Q are
not globally attached to a type or context but appear locally at list types such
as Lqpintq. The sharing operator Γ . pΓ1, Γ2, Γ3q requires the sharing of the
potential in the context Γ in the contexts Γ1,Γ2 and Γ3. For instance, we have
x:L6pintq .px:L2pintq, x:L3pintq, x:L1pintqq.

Γ .p∆1, Γ2, Γ
1q Γ .pΓ1, ∆2, Γ

1q Γ1
M e1 : A1 ∆2

cf e2 : A2

∆1
cf e1 : A1 Γ2

M e2 : A2 Γ 1, x1:A1, x2:A2
M e : B

Γ M par x1 “ e1 andx2 “ e2 in e : B

In the rule, the initial potential Γ is shared twice using the sharing operator ..
First, to pay the cost of evaluating e2 and e, and to pass potential to x1 using the
cost-free type judgement ∆1

cf e1 : A1. Second, to pay the cost of evaluation
e1 and e, and to pass potential to x2 via the judgement ∆2

cf e2 : A2.
This work generalizes the idea to multivariate resource polynomials for which

we also have to deal with mixed potential such as |x1|¨|x2|. The approach features
the same compositionality as the sequential version of the analysis. As the
experiments in Section 7 show, the analysis works well for many typical examples.

The use of cost-free typings to separate the reasoning about size changes of
data structures and resource cost in amortized analysis has applications that go
beyond parallel evaluations. Similar problems arise in sequential (and parallel)
programs when deriving bounds for non-additive cost such as stack-space usage
or recursion depth. We envision that the developed technique can be used to
derive bounds for these cost measures too.
Other Forms of Parallelism. The binary parallel binding is a simple yet
powerful form of parallelism. However, it is (for example) not possible to directly
implement NESL’s model of sequences that allows to perform an operation for
every element in the sequence in constant depth. The reason is that the parallel
binding would introduce a linear overhead.

Nevertheless it is possible to introduce another binary parallel binding that is
semantically equivalent except that it has zero depth cost. We can then analyze
more powerful parallelism primitives by translating them into code that uses this
cost-free parallel binding. To demonstrate such a translation, we implemented
NESL’s [15] parallel sequence comprehensions in RAML (see Section 6).
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4 Resource Polynomials and Annotated Types

In this section, we introduce multivariate resource polynomials and annotated
types. Our goal is to systematically describe the potential functions that map data
structures to non-negative rational numbers. Multivariate resource polynomials
are a generalization of non-negative linear combinations of binomial coefficients.
They have properties that make them ideal for the generation of succinct linear
constraint systems in an automatic amortized analysis. The presentation might
appear quite low level but this level of detail is necessary to describe the linear
constraints in the type rules.

Two main advantages of resource polynomials are that they can express more
precise bounds than non-negative linear-combinations of standard polynomials
and that they can succinctly describe common size changes of data that appear
in construction and destruction of data. More explanations can be found in the
previous literature on multivariate amortized resource analysis [13, 7].

4.1 Resource Polynomials

A resource polynomial maps a value of some data type to a nonnegative ratio-
nal number. Potential functions and thus resource bounds are always resource
polynomials.

Base Polynomials. For each data type A we first define a set PpAq of functions
p : JAK Ñ N that map values of type A to natural numbers. These base polynomials
form a basis (in the sense of linear algebra) of the resource polynomials for type
A. The resource polynomials for type A are then given as nonnegative rational
linear combinations of the base polynomials. We define PpAq as follows.

Ppintq “ ta ÞÑ 1u PpA1 ˚A2q “ tpa1, a2q ÞÑ p1pa1q ¨ p2pa2q | pi P PpAiqu

PpLpAqq “ tΣΠrp1, . . . , pks | k P N, pi P PpAqu

We have ΣΠrp1, . . . , pkspra1, . . . , ansq “
ř

1ďj1ă¨¨¨ăjkďn

ś

1ďiďk pipajiq. Every
set PpAq contains the constant function v ÞÑ 1. For lists LpAq this arises for
k “ 0 (one element sum, empty product).

For example, the function ` ÞÑ
`

|`|
k

˘

is in PpLpAqq for every k P N; simply take

p1 “ . . . “ pk “ 1 in the definition of PpLpAqq. The function p`1, `2q ÞÑ
`

|`1|
k1

˘

¨
`

|`2|
k2

˘

is in PpLpAq ˚ LpBqq for every k1, k2 P N and r`1, . . . , `ns ÞÑ
ř

1ďiăjďn

`

|`i|
k1

˘

¨
`

|`j |
k2

˘

P PpLpLpAqqq for every k1, k2 P N.

Resource Polynomials. A resource polynomial p : JAK Ñ Q`0 for a data type A
is a non-negative linear combination of base polynomials, i.e., p “

ř

i“1,...,m qi ¨pi
for qi P Q`0 and pi P PpAq. RpAq is the set of resource polynomials for A.

An instructive, but not exhaustive, example is given by Rn “ RpLpintq ˚ ¨ ¨ ¨ ˚
Lpintqq. The set Rn is the set of linear combinations of products of binomial
coefficients over variables x1, . . . , xn, that is, Rn “ t

řm
i“1 qi

śn
j“1

`

xj

kij

˘

| qi P

Q`0 ,m P N, kij P Nu. Concrete examples that illustrate the definitions follow in
the next subsection.



14 Jan Hoffmann and Zhong Shao

4.2 Annotated Types

To relate type annotations in the type system to resource polynomials, we
introduce names (or indices) for base polynomials. These names are also helpful
to intuitively explain the base polynomials of a given type.

Names For Base Polynomials. To assign a unique name to each base polyno-
mial we define the index set IpAq to denote resource polynomials for a given data
type A. Essentially, IpAq is the meaning of A with every atomic type replaced
by the unit index ˝.

Ipintq “ t˝u IpA1 ˚A2q “ tpi1, i2q | i1 P IpA1q and i2 P IpA2qu

IpLpAqq “ tri1, . . . , iks | k ě 0, ij P IpAqu
The degree degpiq of an index i P IpAq is defined as follows.

degp˝q “ 0 degpi1, i2q “ degpi1q ` degpi2q

degpri1, . . . , iksq “ k ` degpi1q ` ¨ ¨ ¨ ` degpikq

Let IkpAq “ ti P IpAq | degpiq ď ku. The indices i P IkpAq are an enumeration
of the base polyonomials pi P PpAq of degree at most k. For each i P IpAq, we
define a base polynomial pi P PpAq as follows: If A “ int then p˝pvq “ 1 . If
A “ pA1 ˚A2q is a pair type and v “ pv1, v2q then ppi1,i2qpvq “ pi1pv1q ¨ pi2pv2q. If
A “ LpBq is a list type and v P JLpBqK then pri1,...,imspvq “ ΣΠrpi1 , . . . , pimspvq.
We use the notation 0A (or just 0) for the index in IpAq such that p0A

paq “ 1 for
all a. We have 0int “ ˝ and 0pA1˚A2q “ p0A1

, 0A2
q and 0LpBq “ rs. If A “ LpBq

for a data type B then the index r0, . . . , 0s P IpAq of length n is denoted by just
n. We identify the index pi1, i2, i3, i4q with the index pi1, pi2, pi3, i4qqq.

Examples. First consider the type int. The index set Ipintq “ t˝u only contains
the unit element because the only base polynomial for the type int is the constant
polynomial p˝ : Z Ñ N that maps every integer to 1, that is, p˝pnq “ 1 for all
n P Z. In terms of resource-cost analysis this implies that the resource polynomials
can not represent cost that depends on the value of an integer.

Now consider the type Lpintq. The index set for lists of integers is IpLpintqq “
trs, r˝s, r˝, ˝s, . . .u, the set of lists of unit indices ˝. The base polynomial prs :
JLpintqK Ñ N is defined as prspra1, . . . , ansq “ 1 (one element sum and empty
product). More interestingly, we have pr˝spra1, . . . , ansq “

ř

1ďjďn 1 “ n and

pr˝,˝spra1, . . . , ansq “
ř

1ďj1ăj2ďn
1 “

`

n
2

˘

. In general, if ik “ r˝, . . . , ˝s is as list

with k unit indices then pikpra1, . . . , ansq “
ř

1ďj1ă¨¨¨ăjkďn
1 “

`

n
k

˘

. The intuition
is that the base polynomial pikpra1, . . . , ansq describes a constant resource cost
that arises for every ordered k-tuple paj1 , . . . , ajnq.

Finally, consider the type LpLpintqq of lists of lists of integers. The corre-
sponding index set is IpLpLpintqqq “ trsuYtris | i P IpLpintqquYtri1, i2s | i1, i2 P
IpLpintqqu Y ¨ ¨ ¨ . Again we have prs : JLpLpintqqK Ñ N and prspra1, . . . , ansq “ 1.
Moreover we also get the binomial coefficients again: If the index ik “ rrs, . . . , rss
is as list of k empty lists then pikpra1, . . . , ansq “

ř

1ďj1ă¨¨¨ăjkďn
1 “

`

n
k

˘

. This
describes a cost that would arise in a program that computes something of con-
stant cost for tuples of inner lists (e.g., sorting with respect to the smallest head
elements). However, the base polynomials can also refer to the lengths of the inner
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lists. For instance, we have prr˝, ˝sspra1, . . . , ansq “
ř

1ďiďn

`

|ai|
2

˘

, which repre-
sents a quadratic cost for every inner list (e.g, sorting the inner lists). This is not
to be confused with the base polynomial pr˝,˝spra1, . . . , ansq “

ř

1ďiăjďn |ai||aj |,
which can be used to account for the cost of the comparisons in a lexicographic
sorting of the outer list.

Annotated Types and Potential Functions. We use the indices and base
polynomials to define type annotations and resource polynomials. We then give
examples to illustrate the definitions.

A type annotation for a data type A is defined to be a family

QA “ pqiqiPIpAq with qi P Q`0
We say QA is of degree (at most) k if qi “ 0 for every i P IpAq with degpiq ą k.
An annotated data type is a pair pA,QAq of a data type A and a type annotation
QA of some degree k.

Let H be a heap and let ` be a location with H ( Þ̀Ña :A for a data
type A. Then the type annotation QA defines the potential ΦHp`:pA,QAqq “
ř

iPIpAq qi ¨ pipaq. If a P JAK and Q is a type annotation for A then we also write

Φpa : pA,Qqq for
ř

i qipipaq.
Let for example, Q “ pqiqiPLpintq be an annotation for the type Lpintq and

let qrs “ 2, qr˝s “ 2.5, qr˝,˝,˝s “ 8, and qi “ 0 for all other i P IpLpintqq. The we

have Φpra1, . . . , ans : pLpintq, Qqq “ 2` 2.5n` 8
`

n
3

˘

.

The Potential of a Context. For use in the type system we need to extend
the definition of resource polynomials to typing contexts. We treat a context like
a tuple type. Let Γ “ x1:A1, . . . , xn:An be a typing context and let k P N. The
index set IpΓ q is defined through IpΓ q “ tpi1, . . . , inq | ij P IpAjqu.

The degree of i “ pi1, . . . , inq P IpΓ q is defined through degpiq “ degpi1q `
¨ ¨ ¨ ` degpinq. As for data types, we define IkpΓ q “ ti P IpΓ q | degpiq ď ku. A
type annotation Q for Γ is a family Q “ pqiqiPIkpΓ q with qi P Q`0 . We denote a
resource-annotated context with Γ ;Q. Let H be a heap and V be a stack with
H ( V : Γ where H ( V pxjqÞÑaxj

: Γ pxjq .
The potential of an annotated context Γ ;Q with respect to then environment

H and V is ΦV,HpΓ ;Qq “
ř

pi1,...,inqPIkpΓ q
q~ı
śn
j“1 pij paxj q. In particular, if Γ “

H then IkpΓ q “ tpqu and ΦV,HpΓ ; qpqq “ qpq. We sometimes also write q0 for qpq.

5 Type System for Bounds on the Depth

In this section, we formally describe the novel resource-aware type system. We
focus on the type judgement and explain the rules that are most important for
handling parallel evaluation. The full type system is given in the extended version
of this article [17].

The main theorem of this section proves the soundness of the type system
with respect to the depths of evaluations as defined by the operational big-step
semantics. The soundness holds for terminating and non-terminating evaluations.

Type Judgments. The typing rules in Figure 2 define a resource-annotated
typing judgment of the form

Σ;Γ ; tQ1, . . . , Qnu
M e : pA,Q1q
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where M is a metric, n P t1, 2u, e is an expression, Σ is a resource-annotated
signature (see below), pΓ ;Qiq is a resource-annotated context for every i P
t1, . . . , nu, and pA,Q1q is a resource-annotated data type. The intended meaning
of this judgment is the following. If there are more than ΦpΓ ;Qiq resource units
available for every i P t1, . . . , nu then this is sufficient to pay for the depth of the
evaluation of e under the metric M . In addition, there are more than Φpv:pA,Q1qq
resource units left if e evaluates to a value v.

In outermost judgements, we are only interested in the case where n “ 1 and
the judgement is equivalent to the similar judgement for sequential programs [7].
The form in which n “ 2 is introduced in the type rule E:Par for parallel
bindings and eliminated by multiple applications of the sharing rule E:Share
(more explanations follow).

The type judgement is affine in the sense that every variable in a context
Γ can be used at most once in the expression e. Of course, we have to also
deal with expressions in which a variable occurs more than once. To account for
multiple variable uses we use the sharing rule T:Share that doubles a variable
in a context without increasing the potential of the context.

As usual Γ1, Γ2 denotes the union of the contexts Γ1 and Γ2 provided that
dompΓ1q X dompΓ2q “ H. We thus have the implicit side condition dompΓ1q X

dompΓ2q “ H whenever Γ1, Γ2 occurs in a typing rule. Especially, writing Γ “
x1:A1, . . . , xk:Ak means that the variables xi are pairwise distinct.

Programs with Annotated Types. Resource-annotated first-order types have
the form pA,Qq Ñ pB,Q1q for annotated data types pA,Qq and pB,Q1q. A
resource-annotated signature Σ is a finite, partial mapping of function identi-
fiers to sets of resource-annotated first-order types. A program with resource-
annotated types for the metric M consists of a resource-annotated signature Σ
and a family of expressions with variables identifiers pef , yf qfPdompΣq such that

Σ; yf :A;Q M ef : pB,Q1q for every function type pA,Qq Ñ pB,Q1q P Σpfq.

Sharing. Let Γ, x1:A, x2:A;Q be an annotated context. The sharing operation
.Q defines an annotation for a context of the form Γ, x:A. It is used when the
potential is split between multiple occurrences of a variable. Details can be found
in the full version of the article.

Typing Rules. Figure 2 shows the annotated typing rules that are most
relevant for parallel evaluation. Most of the other rules are similar to the rules
for multivariate amortized analysis for sequential programs [13, 20]. The main
difference it that the rules here operate on annotations that are singleton sets
tQu instead of the usual context annotations Q.

In the rules T:Let and T:Par, the result of the evaluation of an expression e
is bound to a variable x. The problem that arises is that the resulting annotated
context ∆,x:A,Q1 features potential functions whose domain consists of data
that is referenced by x as well as data that is referenced by ∆. This potential
has to be related to data that is referenced by ∆ and the free variables in e.

To express the relations between mixed potentials before and after the evalu-
ation of e, we introduce a new auxiliary binding judgement of the from

Σ;Γ,∆;Q M e ∆,x:A;Q1
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Σ;Γ1, Γ2;R
M

e1  Γ2, x:A;R1

Σ; , Γ2, x:A; tR1
u

M
e2 : pB,Q1

q Q “ R`M let

Σ;Γ1, Γ2; tQu
M

letx “ e1 in e2 : pB,Q1
q

(T:Let)

Σ;Γ1, Γ2,∆;P
cf

e1  Γ2,∆, x1:A1;P 1

Σ;Γ2,∆, x1:A1;P 1 M
e2  ∆,x1:A1, x2:A2;R

Σ;Γ2,∆, x1:A1;Q1 cf
e2  ∆,x1:A1, x2:A2;R

Σ;Γ1, Γ2,∆;Q
M
e1  Γ2,∆, x1:A1;Q1 Σ;∆,x1:A1, x2:A2;R

M
e : pB,R1

q

Σ;Γ1, Γ2,∆; tQ`MPar, P `MPar
u

M
par x1 “ e1 andx2 “ e2 in e : pB,R1

q

(T:Par)

Σ;Γ, x1:A, x2:A; tP1, . . . , Pmu
M

e : pB,Q1
q @i Dj : Qj“.Pi

Σ;Γ, x:A; tQ1, . . . , Qnu
M

erx{x1, x{x2s : pB,Q1
q

(T:Share)

˛ ˛ ˛

@j P Ip∆q: j“~0 ùñ Σ;Γ ;πΓj pQq
M

e : pA, πx:Aj pQ1
qq

j‰~0 ùñ Σj ;Γ ;πΓj pQq
cf

e : pA, πx:Aj pQ1
qq

Σ;Γ,∆;Q
M

e ∆,x:A;Q1
(B:Bind)

Fig. 2. Selected novel typing rules for annotated types and the binding rule for multi-
variate variable binding.

in the rule B:Bind. The intuitive meaning of the judgement is the following.
Assume that e is evaluated in the context Γ,∆, that FVpeq P dompΓ q, and
that e evaluates to a value that is bound to the variable x. Then the initial
potential ΦpΓ,∆;Qq is larger than the cost of evaluating e in the metric M plus
the potential of the resulting context Φp∆,x:A;Q1q.

The rule T:Par for parallel bindings par x1 “ e1 andx2 “ e2 in e is the main
novelty in the type system. The idea is that we type the expressions e1 and
e2 twice using the new binding judgement. In the first group of bindings, we
account for the cost of e1 and derive a context Γ2, ∆, x1:A1;P 11 in which the
result of the evaluation of e1 is bound to x1. This context is then used to bind
the result of evaluating e2 in the context ∆,x1:A1, x2:A2;R without paying for
the resource consumption. In the second group of bindings, we also derive the
context ∆,x1:A1, x2:A2;R but pay for the cost of evaluating e2 instead of e1.
The type annotations Q1 and Q2 for the initial context Γ “ Γ1, Γ2, ∆ establish
a bound on the depth d of evaluating the whole parallel binding: If the depth
of evaluating e1 is larger than the depth of evaluating e2 then ΦpΓ ;Q1q ě d.
Otherwise we have ΦpΓ ;Q2q ě d. If the parallel binding evaluates to a value v
then we have additionally that maxpΦpΓ ;Q1q, ΦpΓ ;Q2qq ě d` Φpv:pB,Q1qq.

It is important that the annotations Q1 and Q2 of the initial context Γ1, Γ2, ∆
can defer. The reason is that we have to allow a different sharing of potential in
the two groups of bindings. If we would require Q1 “ Q2 then the system would
be too restrictive. However, each type derivation has to establish the equality
of the two annotations directly after the use of T:Par by multiple uses of the
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sharing rule T:Share. Note that T:Par is the only rule that can introduce a
non-singleton set tQ1, Qnu of context annotations.

T:Share has to be applied to expressions that contain a variable twice (x in
the rule). The sharing operation .P transfers the annotation P for the context
Γ, x1:A, x2:A into an annotation Q for the context Γ, x:A without loss of potential
. This is crucial for the accuracy of the analysis since instances of T:Share are
quite frequent in typical examples. The remaining rules are affine in the sense
that they assume that every variable occurs at most once in the typed expression.

T:Share is the only rule whose premiss allows judgements that contain a
non-singleton set tP1, . . . , Pmu of context annotations. It has to be applied to
produce a judgement with singleton set tQu before any of the other rules can be
applied. The idea is that we always have n ď m for the set tQ1, . . . , Qnu and the
sharing operation . i is used to unify the different Pi.

Soundness. The operational big-step semantics with partial evaluations makes
it possible to state and prove a strong soundness result. An annotated type
judgment for an expression e establishes a bound on the depth of all evaluations
of e in a well-formed environment; regardless of whether these evaluations diverge
or fail.Moreover, the soundness theorem states also a stronger property for
terminating evaluations. If an expression e evaluates to a value v in a well-formed
environment then the difference between initial and final potential is an upper
bound on the depth of the evaluation.

Theorem 3 (Soundness). If H ( V :Γ and Σ;Γ ;Q $ e:pB,Q1q then there
exists a Q P Q such that the following holds.
1. If V,H M e ó p`,H 1q | pw, dq then d ď ΦV,HpΓ ;Qq ´ ΦH1p`:pB,Q

1qq.
2. If V,H M e ó ρ | pw, dq then d ď ΦV,HpΓ ;Qq.

Theorem 3 is proved by a nested induction on the derivation of the evaluation
judgment and the type judgment Γ ;Q $ e:pB,Q1q. The inner induction on the
type judgment is needed because of the structural rules. There is one proof for
all possible instantiations of the resource constants.

The proof of most rules is very similar to the proof of the rules for multivariate
resource analysis for sequential programs [7]. The main novelty is the treatment
of parallel evaluation in the rule T:Par which we described previously.

If the metric M is simple (all constants are 1) then it follows from Theorem
3 that the bounds on the depth also prove the termination of programs.

Corollary 1. Let M be a simple metric. If H ( V :Γ and Σ;Γ ;Q $ e:pA,Q1q
then there are w P N and d ď ΦV,HpΓ ;Qq such that V,H M e ó p`,H 1q | pw, dq
for some ` and H 1.

Type Inference. In principle, type inference consists of four steps. First, we
perform a classic type inference for the simple types such as nat array. Second,
we fix a maximal degree of the bounds and annotate all types in the derivation of
the simple types with variables that correspond to type annotations for resource
polynomials of that degree. Third, we generate a set of linear inequalities, which
express the relationships between the added annotation variables as specified by
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the type rules. Forth, we solve the inequalities with an LP solver such as CLP.
A solution of the linear program corresponds to a type derivation in which the
variables in the type annotations are instantiated according to the solution.

In practice, the type inference is slightly more complex. Most importantly,
we have to deal with resource-polymorphic recursion in many examples. This
means that we need a type annotation in the recursive call that differs from the
annotation in the argument and result types of the function. To infer such types
we successively infer type annotations of higher and higher degree. Details can be
found in previous work [21]. Moreover, we have to use algorithmic versions of the
type rules in the inference in which the non-syntax-directed rules are integrated
into the syntax-directed ones [7]. Finally, we use several optimizations to reduce
the number of generated constraints. See [7] for an example type derivation.

6 Nested Data Parallelism

The techniques that we describe in this work for a minimal function language
scale to more advanced parallel languages such as Blelloch’s NESL [15].

To describe the novel type analysis in this paper, we use a binary binding
construct to introduce parallelism. In NESL, parallelism is introduced via built-in
functions on sequences as well as parallel sequence comprehension that is similar
to Haskell’s list comprehension. The depth of all built-in sequence functions such
as append and sum is constant in NESL. Similarly, the depth overhead of the
parallel sequence comprehension is constant too. Of course, it is possible to define
equivalent functions in RAML. However, the depth would often be linear since
we, for instance, have to sequentially form the resulting list.

Nevertheless, the user definable resource metrics in RAML make it easy to
introduce built-in functions and language constructs with customized work and
depth. For instance we could implement NESL’s append like the recursive append
in RAML but use a metric inside the function body in which all evaluation steps
have depth zero. Then the depth of the evaluation of appendpx, yq is constant
and the work is linear in |x|.

To demonstrate this ability of our approach, we implemented parallel list
comprehensions, NESL’s most powerful construct for parallel computations. A
list comprehension has the form t e : x1 in e1 ; . . . ; xn in en | eb u. where e is
an expression, e1, . . . , en are expressions of some list type, and eb is a boolean
expression. The semantics is that we bind x1, . . . , xn successively to the elements
of the lists e1, . . . , en and evaluate eb and e under these bindings. If eb evaluates
to true under a binding then we include the result of e under that binding in the
resulting list. In other words, the above list comprehension is equivalent to the
Haskell expression r e | px1, . . . , xnq Ð zipn e1 . . . en , eb s.

The work of evaluating t e : x1 in e1 ; . . . ; xn in en | eb u is sum of the cost of
evaluating e1, . . . , en´1 and en plus the sum of the cost of evaluating eb and e
with the successive bindings to the elements of the results of the evaluation of
e1, . . . , en. The depth of the evaluation is sum of the cost of evaluating e1, . . . , en´1

and en plus the maximum of the cost of evaluating eb and e with the successive
bindings to the elements of the results of the ei.
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Function Name / Computed Depth Bound / Run Time Asym. Behav.

Function Type Computed Work Bound

dyad 10m` 10n` 3 0.19 s Opn`mq

Lpintq˚Lpintq Ñ LpLpintqq 10mn` 17n` 3 0.20 s Opnmq

dyad all 1.6̄n3
´4n2

`10nm`14.6̄n`5 1.66 s Opn2
`mq

LpLpintqq Ñ LpLpLpintqqq 1.3̄n3
`5n2m2

`8.5n2m` . . . 0.96 s Opn3
`n2m2

q

m mult1 15xy ` 16x` 10n` 6 0.37 s Opxyq

LpLpintqq˚LpLpintqq Ñ LpLpintqq 15xyn` 16nm` 18n` 3 0.36 s Opxynq

m mult pairs [M :“ LpLpintqq] 4n2
`15nmx`10nm`10n`3 3.90 s O(nm + mx)

LpMq˚LpMq Ñ LpMq 7.5n2m2x`7n2m2
`n2mx . . . 6.35 s Opn2m2xq

m mult2 [M :“ LpLpintqq] 35u` 10y ` 15x` 11n` 40 2.75 s Opz`x`nq

pM˚natq˚pM˚natqÑM 3.5u2y`uyz`14.5uy` . . . 2.99 s Opnxpz`yqq

quicksort list 12n2
` 16nm` 12n` 3 0.67 s Opn2

`mq

LpLpintqq Ñ LpLpintqq 8n2m`15.5n2
´8nm`13.5n`3 0.51 s Opn2mq

intersection 10m` 12n` 3 0.49 s Opn`mq

Lpintq˚Lpintq Ñ Lpintq 10mn` 19n` 3 0.28 s Opnmq

product 8mn` 10m` 14n` 3 1.05 s Opnmq

Lpintq˚Lpintq Ñ Lpint˚intq 18mn` 21n` 3 0.71 s Opnmq

max weight 46n` 44 0.39 s Opnq

Lpintq Ñ int˚Lpintq 13.5n2
` 65.5n` 19 0.30 s Opn2

q

fib 13n` 4 0.09 s Opnq

nat ˚ nat Ñ nat ´´´ 0.12 s Op2n
q

dyad comp 13 0.28 s Op1q

Lpintq˚Lpintq Ñ LpLpintqq 6mn` 5n` 2 0.13 s Opnmq

find 12m` 29n` 22 0.38 s Opm`nq

Lpintq˚Lpintq Ñ LpLpintqq 20mn` 18m` 9n` 16 0.41 s Opnmq

Table 1. Compilation of Computed Depth and Work Bounds.

7 Experimental Evaluation

We implemented the developed automatic depth analysis in Resource Aware ML
(RAML). The implementation consists mainly of adding the syntactic form for the
parallel binding and the parallel list comprehensions together with the treatment
in the parser, the interpreter, and the resource-aware type system. RAML is
publically available for download and through a user-friendly online interface [16].
On the project web page you also find the source code of all example programs
and of RAML itself.

We used the implementation to perform an experimental evaluation of the
analysis on typical examples from functional programming. In the compilation
of our results we focus on examples that have a different asymptotic worst-case
behavior in parallel and sequential evaluation. In many other cases, the worst-case
behavior only differs in the constant factors. Also note that many of the classic
examples of Blelloch [10]—like quick sort—have a better asymptotic average
behavior in parallel evaluation but the same asymptotic worst-case behavior in
parallel and sequential cost.

Table 1 contains a representative compilation of our experimental results. For
each analyzed function, it shows the function type, the computed bounds on
the work and the depth, the run time of the analysis in seconds and the actual
asymptotic behavior of the function. The experiments were performed on an iMac
with a 3.4 GHz Intel Core i7 and 8 GB memory. As LP solver we used IBM’s
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CPLEX and the constraint solving takes about 60% of the overall run time of the
prototype on average. The computed bounds are simplified multivariate resource
polynomials that are presented to the user by RAML. Note that RAML also
outputs the (unsimplified) multivariate resource polynomials. The variables in
the computed bounds correspond to the sizes of different parts of the input. As
naming convention we use the order n,m, x, y, z, u of variables to name the sizes
in a depth-first way: n is the size of the first argument, m is the maximal size of
the elements of the first argument, x is the size of the second argument, etc.

All bounds are asymptotically tight if the tight bound is representable by a
multivariate resource polynomial. For example, the exponential work bound for
fib and the logarithmic bounds for bitonic sort are not representable as a resource
polynomial. Another example is the loose depth bound for dyad all where we
would need the base function max1ďiďnmi but only have

ř

1ďiďnmi.

Matrix Operations. To study programs that use nested data structures we
implemented several matrix operations for matrices that are represented by lists
of lists of integers. The implemented operations include, the dyadic product
from Section 3 (dyad), transposition of matrices (transpose, see [16]), addition of
matrices (m add, see [16]), and multiplication of matrices (m mult1 and m mult2).

To demonstrate the compositionality of the analysis, we have implemented
two more involved functions for matrices. The function dyad all computes the
dyadic product (using dyad) of all ordered pairs of the inner lists in the argument.
The function m mult pairs computes the products M1 ¨M2 (using m mult1) of all
pairs of matrices such that M1 is in the first list of the argument and M2 is in
the second list of the argument.

Sorting Algorithms. The sorting algorithms that we implemented include quick
sort and bitonic sort for lists of integers (quicksort and bitonic sort, see [16]).

The analysis computes asymptotically tight quadratic bounds for the work
and depth of quick sort. The asymptotically tight bounds for the work and depth
of bitonic sort are Opn log nq and Opn log2 nq, respectively, and can thus not be
expressed by polynomials. However, the analysis computes quadratic and cubic
bounds that are asymptotically optimal if we only consider polynomial bounds.

More interesting are sorting algorithms for lists of lists, where the comparisons
need linear instead of constant time. In these algorithms we can often perform
the comparisons in parallel. For instance, the analysis computes asymptotically
tight bounds for quick sort for lists of lists of integers (quicksort list, see Table 1).

Set Operations. We implemented sets as unsorted lists without duplicates.
Most list operations such as intersection (Table 1), difference (see [16]), and
union (see [16]) have linear depth and quadratic work. The analysis finds these
asymptotically tight bounds.

The function product computes the Cartesian product of two sets. Work
and depth of product are both linear and the analysis finds asymptotically tight
bounds. However, the constant factors in the parallel evaluation are much smaller.

Miscellaneous. The function max weight (Table 1) computes the maximal weight
of a (connected) sublist of an integer list. The weight of a list is simply the sum
of its elements. The work of the algorithm is quadratic but the depth is linear.
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Finally, there is a large class of programs that have non-polynomial work
but polynomial depth. Since the analysis can only compute polynomial bounds
we can only derive bounds on the depth for such programs. A simple example
in Table 1 is the function fib that computes the Fibonacci numbers without
memoization.

Parallel List Comprehensions. The aforementioned examples are all imple-
mented without using parallel list comprehensions. Parallel list comprehensions
have a better asymptotic behavior than semantically-equivalent recursive func-
tions in RAML’s current resource metric for evaluation steps.

A simple example is the function dyad comp which is equivalent to dyad and
which is implemented with the expression ttx ˚ y : y in ysu : x in xsu. As listed
in Table 1, the depth of dyad comp is constant while the depth of dyad is linear.
RAML computes tight bounds.

A more involved example is the function find that finds a given integer list
(needle) in another list (haystack). It returns the starting indices of each occur-
rence of the needle in the haystack. The algorithm is described by Blelloch [15]
and cleverly uses parallel list comprehensions to perform the search in parallel.
RAML computes asymptotically tight bounds on the work and depth.

Discussion. Our experiments show that the range of the analysis is not reduced
when deriving bounds on the depth: The prototype implementation can always
infer bounds on the depth of a program if it can infer bounds on the sequential
version of the program. The derivation of bounds for parallel programs is also
almost as efficient as the derivation of bounds for sequential programs.

We experimentally compared the derived worst-case bounds with the measured
work and depth of evaluations with different inputs. In most cases, the derived
bounds on the depth are asymptotically tight and the constant factors are close
or equal to the optimal ones. As a representative example, the full version of the
article contains plots of our experiments for quick sort for lists of lists.

8 Related Work

Automatic amortized resource analysis was introduced by Hofmann and Jost for
a strict first-order functional language [3]. The technique has been applied to
higher-order functional programs [22], to derive stack-space bounds for functional
programs [23], to functional programs with lazy evaluation [4], to object-oriented
programs [24, 25], and to low-level code by integrating it with separation logic [26].
All the aforementioned amortized-analysis–based systems are limited to linear
bounds. The polynomial potential functions that we use in this paper were
introduced by Hoffmann et al. [19, 13, 7]. In contrast to this work, none of the
previous works on amortized analysis considered parallel evaluation. The main
technical innovation of this work is the new rule for parallel composition that is
not straightforward. The smooth integration of this rule in the existing framework
of multivariate amortized resource analysis is a main advantages of our work.

Type systems for inferring and verifying cost bounds for sequential programs
have been extensively studied. Vasconcelos et al. [27, 1] described an automatic
analysis system that is based on sized-types [28] and derives linear bounds for
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higher-order sequential functional programs. Dal Lago et al. [29, 30] introduced
linear dependent types to obtain a complete analysis system for the time complex-
ity of the call-by-name and call-by-value lambda calculus. Crary and Weirich [31]
presented a type system for specifying and certifying resource consumption.
Danielsson [32] developed a library, based on dependent types and manual cost
annotations, that can be used for complexity analyses of functional programs.
We are not aware of any type-based analysis systems for parallel evaluation.

Classically, cost analyses are often based on deriving and solving recurrence
relations. This approach was pioneered by Wegbreit [33] and has been extensively
studied for sequential programs written in imperative languages [6, 34] and
functional languages [35, 2].

In comparison, there has been little work done on the analysis of parallel
programs. Albert et al. [36] use recurrence relations to derive cost bounds for
concurrent object-oriented programs. Their model of concurrent imperative
programs that communicate over a shared memory and the used cost measure is
however quite different from the depth of functional programs that we study.

The only article on using recurrence relations for deriving bounds on parallel
functional programs that we are aware of is a technical report by Zimmermann [37].
The programs that were analyzed in this work are fairly simple and more involved
programs such as sorting algorithms seem to be beyond its scope. Additionally, the
technique does not provide the compositionality of amortized resource analysis.

Trinder et al. [38] give a survey of resource analysis techniques for parallel and
distributed systems. However, they focus on the usage of analyses for sequential
programs to improve the coordination in parallel systems. Abstract interpretation
based approaches to resource analysis [5, 39] are limited to sequential programs.

Finally, there exists research that studies cost models to formally analyze
parallel programs. Blelloch and Greiner [10] pioneered the cost measures work
and depth that we use in this work. There are more advanced cost models that
take into account caches and IO (see, e.g., Blelloch and Harper [11]), However,
these works do not provide machine support for deriving static cost bounds.

9 Conclusion

We have introduced the first type-based cost analysis for deriving bounds on
the depth of evaluations of parallel function programs. The derived bounds are
multivariate resource polynomials that can express a wide range of relations
between different parts of the input. As any type system, the analysis is naturally
compositional. The new analysis system has been implemented in Resource Aware
ML (RAML) [14]. We have performed a thorough and reproducible experimental
evaluation with typical examples from functional programming that shows the
practicability of the approach.

An extension of amortized resource analysis to handle non-polynomial bounds
such as max and log in a compositional way is an orthogonal research question
that we plan to address in the future. A promising direction that we are currently
studying is the use of numerical logical variables to guide the analysis to derive
non-polynomial bounds. The logical variables would be treated like regular
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variables in the analysis. However, the user would be responsible for maintaining
and proving relations such as a “ log n where a is a logical variable an n is
the size of a regular data structure. In this way, we would gain flexibility while
maintaining the compositionality of the analysis.

Another orthogonal question is the extension of the analysis to additional
language features such as higher-order functions, references, and user-defined
data structures. These extensions have already been implemented in a prototype
and pose interesting research challenges in there own right. We plan to report on
them in a forthcoming article.
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