
Compositional Verification of Termination-Preserving
Refinement of Concurrent Programs

Hongjin Liang† Xinyu Feng† Zhong Shao‡

†University of Science and Technology of China ‡Yale University

lhj1018@mail.ustc.edu.cn xyfeng@ustc.edu.cn zhong.shao@yale.edu

Abstract

Many verification problems can be reduced to refinement verifica-
tion. However, existing work on verifying refinement of concurrent
programs either fails to prove the preservation of termination, al-
lowing a diverging program to trivially refine any programs, or is
difficult to apply in compositional thread-local reasoning. In this
paper, we first propose a new simulation technique, which estab-
lishes termination-preserving refinement and is a congruence with
respect to parallel composition. We then give a proof theory for the
simulation, which is the first Hoare-style concurrent program logic
supporting termination-preserving refinement proofs. We show two
key applications of our logic, i.e., verifying linearizability and lock-
freedom together for fine-grained concurrent objects, and verifying
full correctness of optimizations of concurrent algorithms.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification – Correctness proofs, Formal
methods; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

General Terms Theory, Verification

Keywords Concurrency, Refinement, Termination Preservation,
Rely-Guarantee Reasoning, Simulation

1. Introduction

Verifying refinement between programs is the crux of many ver-
ification problems. For instance, reasoning about compilation or
program transformations requires proving that every target pro-
gram is a refinement of its source [9]. In concurrent settings, re-
cent work [4, 12] shows that the correctness of concurrent data
structures and libraries can be characterized via some forms of con-
textual refinements, i.e., every client that calls the concrete library
methods should refine the client with some abstract atomic oper-
ations. Verification of concurrent garbage collectors [11] and OS
kernels [18] can also be reduced to refinement verification.

Refinement from the source program S to the target T , written
as T ⊑ S, requires that T have no more observable behaviors
than S. Usually observable behaviors include the traces of external
events such as I/O operations and runtime errors. The question is,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c© 2014 ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603123

should termination of the source be preserved too by the target? If
yes, how to verify such refinement?

Preservation of termination is an indispensable requirement
in many refinement applications. For instance, compilation and
optimizations are not allowed to transform a terminating source
program to a diverging (non-terminating) target. Also, implemen-
tations of concurrent data structures are often expected to have
progress guarantees (e.g., lock-freedom and wait-freedom) in ad-
dition to linearizability. The requirements are equivalent to some
contextual refinements that preserve the termination of client pro-
grams [12].

Most existing approaches for verifying concurrent program
refinement, including simulations (e.g., [11]), logical relations
(e.g., [22]), and refinement logics (e.g., [21]), do not reason
about the preservation of termination. As a result, a program that
does an infinite loop without generating any external events, e.g.
while true do skip, would trivially refine any source program
(just like that it trivially satisfies partial correctness in Hoare logic).
Certainly this kind of refinement is not acceptable in the applica-
tions mentioned above.

CompCert [9] addresses the problem by introducing a well-
founded order in the simulation, but it works only for sequential
programs. It is difficult to apply this idea to do thread-local ver-
ification of concurrent program refinement, which enables us to
know T1 ‖ T2 ⊑ S1 ‖ S2 by proving T1 ⊑ S1 and T2 ⊑ S2.
In practice, the termination preservation in the refinement proofs of
individual threads could be easily broken by the interference from
their environments (i.e., other threads running in parallel). For in-
stance, a method call of a lock-free data structure (e.g., Treiber
stack) may never terminate when other threads call the methods
and update the shared memory infinitely often. As we will explain
in Sec. 2, the key challenge here is to effectively specify the en-
vironments’ effects on the termination preservation of individual
threads. As far as we know, no previous work can use “composi-
tional” thread-local reasoning to verify termination-preserving re-
finement between (whole) concurrent programs.

In this paper, we first propose novel rely/guarantee conditions
which can effectively specify the interference over the termina-
tion properties between a thread and its environment. Traditional
rely/guarantee conditions [8] are binary relations of program states
and they specify the state updates. We extend them with a boolean
tag indicating whether a state update may let the thread or its envi-
ronment make more moves.

With the help of our new rely/guarantee conditions, we then
propose a new simulation RGSim-T, and a new Hoare-style pro-
gram logic, both of which support compositional verification
of termination-preserving refinement of concurrent programs.
Our work is based on our previous compositional simulation
RGSim [11] (which unfortunately cannot preserve termination),
and is inspired by Hoffmann et al.’s program logic for lock-



(a) source code S: x++;

1 local t;
2 t := x;
3 x := t + 1;

(b) target code Tb

1 local t, done := false;
2 while (! done) {
3 t := x;
4 done := cas(&x, t, t+1);
5 }

(c) target code Tc

Figure 1. Counters.

freedom [7] (which does not support refinement verification and
has limitations on local reasoning, as we will explain in Sec. 7), but
makes the following new contributions:

• We design a simulation, RGSim-T, to verify termination-
preserving refinement of concurrent programs. As an exten-
sion of RGSim, it considers the interference between threads
and the environments by taking our novel rely/guarantee condi-
tions as parameters. RGSim-T is compositional. It allows us to
thread-locally reason about the preservation of whole-program
termination, but without enforcing the preservation of individ-
ual threads’ termination, thus can be applied to many practical
refinement applications.

• We propose the first program logic that supports compositional
verification of termination-preserving refinement of concurrent
programs. In addition to a set of compositionality (binary rea-
soning) rules, we also provide a set of unary rules (built upon
the unary program logic LRG [3]) that can reason about con-
ditional correspondence between the target and the source, a
usual situation in concurrent refinement (see Sec. 2). The logic
enables compositional verification of nested loops and sup-
ports programs with infinite nondeterminism. The soundness of
the logic ensures RGSim-T between the target and the source,
which implies the termination-preserving refinement.

• Our simulation and logic are general. They can be applied
to verify linearizability and lock-freedom together for fine-
grained concurrent objects, or to verify the full correctness of
optimizations of concurrent programs, i.e., the optimized pro-
gram preserves behaviors on both functionality and termination
of the original one. We demonstrate the effectiveness of our
logic by verifying linearizability and lock-freedom of Treiber
stack [20], Michael-Scott queue [14] and DGLM queue [2], the
full correctness of synchronous queue [16] and the equivalence
between TTAS lock and TAS lock implementations [6].

It is important to note that our simulation and logic ensure that
the target preserves the termination/divergence behaviors of the
source. The target could diverge if the source diverges. Therefore
our logic is not for verifying total correctness (i.e., partial correct-
ness + termination). It is actually more powerful and general. We
give more discussions on this point in Secs. 2.2 and 5.2.

In the rest of this paper, we first analyze the challenges and
explain our approach informally in Sec. 2. Then we formulate
termination-preserving refinement in Sec. 3. We present our new
simulation RGSim-T in Sec. 4 and our new program logic in Sec. 5.
We summarize examples that we verified in Sec. 6, and discuss the
related work and conclude in Sec. 7.

2. Informal Development

Below we informally explain the challenges and our solutions in
our design of the simulation and the logic respectively.

2.1 Simulation

Simulation is a standard technique for refinement verification. We
start by showing a simple simulation for verifying sequential re-

S S′

T T ′

+

� � or

S

T T ′

� �

(with |T ′| < |T |)

(a) T � S

S1

T1 T2

S2

T3 T4

�′ �′ �′ �′R

(with |T2| < |T1| and |T4| < |T3|)

(b) R ⊢ T �′ S

Figure 2. Simulation diagrams.

finement and then discuss its problems in termination-preserving
concurrent refinement verification.

Fig. 1(a) shows the source code S that increments x. In a
sequential setting, it can be implemented as Tb in Fig. 1(b). To
show that Tb refines S, a natural way is to prove that they satisfy
the (weak) simulation � in Fig. 2(a).

The simulation first establishes some consistency relation be-
tween the source and the target (note S and T here are whole pro-
gram configurations consisting of both code and states). Then it
requires that there is some correspondence between the execution
of the target and the source so that the relation is always preserved.
Every execution step of the target must either correspond to one
or more steps of the source (the left part of Fig. 2(a)), or corre-
spond to zero steps (the right part; Let’s ignore the requirement of
|T ′| < |T | for now).1

For our example in Fig. 1, the simulation requires that x at the
target level have the same value with x in the source. We let line 2
at Tb correspond to zero steps of S, and line 3 correspond to the
single step of S.

Such a simulation, however, has two problems for termination-
preserving concurrent refinement verification. First, it does not
require the target to preserve the termination of the source. Since
a silent step at the target level may correspond to zero steps at the
source (the right part of Fig. 2(a)), the target may execute such
steps infinitely many times and never correspond to a step at the
source. For instance, if we insert while true do skip before
line 2 in Tb, the simulation still holds, but Tb diverges now. To
address this problem, CompCert [9] introduces a metric |T | over
the target program configurations, which is equipped with a well-
founded order <. If a target step corresponds to no moves of the
source, the metric over the target programs should strictly decrease
(i.e., the condition |T ′| < |T | in Fig. 2(a)). Since the well-founded
order ensures that there are no infinite decreasing chains, execution
of the target will finally correspond to at least one step at the source.

Second, it is not compositional w.r.t. parallel compositions.
Though Tb � S holds, (Tb ‖ Tb); print(x) � (S ‖ S); print(x)
does not hold since the left side may print out 1, which is im-
possible for the source on the right. The problem is that when we
prove Tb � S, Tb and S are viewed as closed programs and the
interference from environments is ignored. To get the parallel com-
positionality, we follow the ideas in our previous work RGSim [11]
and parameterize the simulation with the interference between the
programs and their environments.

As shown in Fig. 2(b), the new simulation �′ is parameterized
with the environment interference R, i.e. the set of all possible
transitions of the environments at the target and source levels. Here
we use thin arrows for the transitions of the current thread at the
source and the target levels (e.g., from T1 to T2 and from T3 to T4

in Fig. 2(b)), and thick arrows for the possible environment steps
(e.g., from T2 to T3 and from S1 to S2 in the figure). We require
the simulation �′ to be preserved by R.

1 Note here we only discuss silent steps (a.k.a. τ -steps) which produce no
external events. The simulation also requires that every step with an external
event at the target level must correspond to one step at the source with the
same event plus zero or multiple τ -steps.



Then, to prove termination-preserving concurrent refinement, it
seems natural to combine the two ideas and have a simulation pa-
rameterized with environment interference and a metric decreasing
for target steps that correspond to no steps at the source. Therefore
we require |T2| < |T1| and |T4| < |T3| in the case of Fig. 2(b). But
how would the environment steps change the metric?

First attempt. Our first attempt to answer this question is to allow
environment steps to arbitrarily change the metrics associated with
the target program configurations. Therefore it is possible to have
|T2| < |T3| in Fig. 2(b).

The resulting simulation, however, is still not compositional
w.r.t. parallel compositions. For instance, for the following two
threads in the target program:

while(i==0) i--; ‖ while(i==0) i++;

we can prove that this simulation holds between each of them and
the source program skip, if we view i as local data used only
at the target level. We could define the metric as 1 if i = 0
and 0 otherwise. For the left thread, it decreases the metric if it
executes the loop body. The increment of i by its environment
(the right thread) may change i back to 0, increasing the metric.
This is allowed in our simulation. The case for the right thread is
symmetric. However, if we view the parallel composition of the two
threads as a whole program, it may not terminate, thus cannot be a
termination-preserving refinement of skip‖skip.

Second attempt. The first attempt is too permissive to have par-
allel compositionality, because we allow a thread to make more
moves whenever its environment interferes with it. Thus our sec-
ond attempt enforces the metric of a thread to decrease or stay un-
changed under environment interference. For the case of Fig. 2(b),
we require |T3| ≤ |T2| on environment steps.

This simulation is compositional, but it is too strong and can-
not be satisfied by many useful refinements. For instance, Tc in
Fig. 1(c) uses a compare-and-swap (cas) instruction to atomically
update x. It is a correct lock-free implementation of S in concur-
rent settings, but the new simulation of our second attempt does
not hold between Tc and S. If an environment step between lines 3
and 4 of Tc increments x, the cas at line 4 will return false and Tc

needs to execute another round of loop. Therefore such an environ-
ment step increases the number of silent steps of Tc that correspond
to no moves of S. However, our new simulation does not allow an
environment step to increase the metric, so the simulation cannot
be established.

Our solution. Our solution lies in the middle ground of the two
failed attempts. We specify explicitly in the parameter R which
environment steps may make the current thread move more (i.e.,
allow the thread’s metric to increase in the simulation). Here we
distinguish in R the steps that correspond to source level moves
from those that do not. We allow the metric to be increased by the
former (as in our first attempt), but not by the latter (which must
decrease or preserve the metric, as in our second attempt).

This approach is based on the observation that the failure of
cas in Tc of Fig. 1(c) must be caused by an environment step
that successfully increments x, which corresponds to a step at the
source level. Although the termination of the current thread Tc is
delayed, the whole system consisting of both the current thread and
the environment progresses by making a corresponding step at the
source level. Therefore, the delay of the termination of the current
thread should be acceptable, and we should allow such environment
steps to increase the metric of the current thread.

In this paper, we follow the idea of rely/guarantee reasoning [8]
and use the rely condition to specify environment steps. However,
we extend the traditional rely conditions with an extra boolean tag
indicating whether an environment step corresponds to a step at the

source level. Our new simulation RGSim-T extends RGSim by in-
corporating the idea of metrics to achieve termination preservation.
It is parameterized with the new rely (and guarantee) conditions so
that we know how an environment step could affect the metric. The
formal definition of RGSim-T is given in Sec. 4.

Relationships to lock-freedom, obstruction-freedom and wait-
freedom. If the source program is just a single atomic opera-
tion (e.g. x++), our new simulation RGSim-T can be viewed as a
proof technique for lock-freedom of the target, which ensures that
there always exists some thread that will complete an operation at
the source level in a finite number of steps. That is, the failure of
a thread to finish its operation must be caused by the successful
completion of source operations by its environment.

In fact, the simulations of our first and second attempts can
be viewed as proof techniques for obstruction-freedom and wait-
freedom respectively of concurrent objects. Obstruction-freedom
ensures that every thread will complete its operation whenever it is
executed in isolation (i.e., without interference from other threads).
In the simulation of our first attempt, though a thread is allowed to
not make progress under environment interference, it has to com-
plete some source operations when its environments do not inter-
fere. Wait-freedom ensures the completion of the operation of any
thread. Correspondingly in the simulation of our second attempt, a
thread has to make progress no matter what the environment does.

2.2 Program Logic

The compositionality of our new simulation RGSim-T allows us
to decompose the refinement for large programs to refinements
for small program units, therefore we could derive a set of syn-
tactic Hoare-style rules for refinement verification, as we did for
RGSim [11]. For instance, a sequential composition rule may be in
the following form:

R ⊢ {P}T1�S1{P ′} R ⊢ {P ′}T2�S2{Q}

R ⊢ {P}T1; T2�S1;S2{Q}

Here we use R ⊢ {P}T � S{Q} to represent the corresponding
syntactic judgment of RGSim-T. R denotes the environment inter-
ference. P , Q and P ′ are relational assertions that relate the pro-
gram states at the target and the source levels. The rule says if we
could establish refinements (in fact, RGSim-Ts) between T1 and
S1, and between T2 and S2, we know T1;T2 refines S1;S2. We
could give similar rules for parallel composition and other compo-
sitional commands.

However, in many cases the correspondence between program
units at the target and the source levels cannot be determined
statically. That is, just by looking at T1;T2 and S1;S2, we may
not know statically that T1 refines S1 and T2 refines S2 and then
apply the above sequential composition rule. To see the problem,
we unfold the while-loop of Tc in Fig. 1 and get the following T ′

c:

1 local t, done; 4 while (!done) {
2 t := x; 5 t := x;
3 done := cas(&x,t,t+1); 6 done := cas(&x,t,t+1);

7 }

Clearly T ′
c refines S too. However, whether the cas instruction at

line 3 fulfils the operation in S or not depends on whether the com-
parison succeeds in runtime. Thus we cannot apply the composi-
tionality rules for RGSim-T to decompose the refinement about T ′

c.
We have to refer to the semantics of the simulation definition to
prove the refinement, which would be rather ineffective for large
scale programs. Similar issues also show up in our earlier work on
RGSim [11], and in relational Hoare logic [1] and relational sepa-
ration logic [25] if they are applied to concurrent settings.

To address this problem, we extend the assertion language to
specify as auxiliary state the source code remaining to be refined.



In addition to the binary judgment R ⊢ {P}T �S{Q}, we intro-
duce a unary judgment in the form of R ⊢ {P ∧ arem(S)}T{Q ∧
arem(S′)} for refinements that cannot be decomposed. Here
arem(S) means S is the remaining source to be refined by the
target. Then R,G ⊢ {P ∧ arem(S)}T{Q ∧ arem(skip)} says
that T refines S, since the postcondition shows at the end of the
target T there are no remaining operations from S to be refined.
We provide the following rule to derive the binary judgment from
the unary one:

R ⊢ {P ∧ arem(S)}T{Q ∧ arem(skip)}

R ⊢ {P}T �S{Q}

On the other hand, if the final remaining source is the same as
the initial one, we know the execution steps of the target correspond
to zero source steps. Then for the T ′

c above, we can give pre- and
post-conditions for line 3 as follows:

{· · · ∧ arem(S)}
done := cas(&x, t, t+1)
{· · · ∧ (done ∧ arem(skip) ∨ ¬done ∧ arem(S))}

As the postcondition shows, whether the cas instruction refines S
or not is now conditional upon the value of done. Thanks to the
new assertions arem(S), we can reduce the relational and semantic
refinement proofs to unary and syntactic Hoare-style reasoning.

The key to verifying the preservation of termination is the rule
for while loops. One may first think of the total correctness rule for
while loops in Hoare-style logics (e.g., [19]). However, preserving
the termination does not necessarily mean that the code must termi-
nate, and the total correctness rule would not be applicable in many
cases. For example, the following T ′′

c and S′ never terminate:

T ′′
c : S′ :

local t;
while (true){ while (true)

t := x; x++;
cas(&x, t, t+1);

}

but T ′′
c � S′ holds for our RGSim-T (�) — Every iteration of T ′′

c

either corresponds to a step of S′, or is interfered by environment
steps corresponding to source moves.

Inspired by Hoffmann et al.’s logic for lock-freedom [7], we
introduce a counter n (i.e. the number of tokens assigned to the
current thread) as a while-specific metric, which means the thread
can only run the loop for no more than n rounds before it or its
environment fulfils one or more source-level moves. The counter
is treated as an auxiliary state, and decreases at the beginning of
every round of loop (i.e., we pay one token for each iteration).
If we reach a step in the loop body that corresponds to source
moves, we could reset the counter to increase the number of tokens.
Tokens could also increase under environment interference if the
environment step corresponds to source moves. Correspondingly
our WHILE rule is in the following form (we give a simplified
version to demonstrate the idea here. The actual rule is given in
Sec. 5):

P ∧B ⇒ P ′ ∗ wf(1) R ⊢ {P ′}C{P}

R ⊢ {P}while (B) C{P ∧ ¬B}

We use wf(1) to represent one token, and “∗” for normal sepa-
rating conjunction in separation logic. To verify the loop body C,
we use the precondition P ′, which has one less token than P , show-
ing that one token has been consumed to start this new round of
loop. During the execution of C, the number of token could be in-
creased if C itself or its environment steps correspond to source
moves. As usual, the loop invariant P needs to be re-established at
the end of C.

(Event) e ::= . . . (Label) ι ::= e | τ

(Store) s, s ∈ PVar ⇀ Val (Heap) h,h ∈ Addr ⇀ Val

(State) σ,Σ ::= (s, h) (Instr) c,  ::= . . .

(Expr) E,E ::= x | n | E + E | . . .

(BExp) B,B ::= true | false | E = E | !B | . . .

(Stmt) C,C ::= skip | c | 〈C〉 | C1;C2 | if (B) C1 else C2

| while (B) C | C1 ‖C2

Figure 3. Generic language at target and source levels.

To prove that T ′′
c shown above preserves the termination of S′,

we set the initial number of tokens to 1. We use up the token at
the first iteration, but could gain another token during the iteration
(either by self moves or by environment steps) to pay for the next
iteration. We can see that the above reasoning with tokens coincides
with the direct refinement proof in our simulation RGSim-T. In fact,
RGSim-T can serve as the meta-theory of our logic.

The use of tokens as an explicit metric for termination reason-
ing poses another challenge, which is to handle infinite nondeter-
minism. Consider the following target C.

C: x := 0; while(i > 0) i--;

Assume the environment R may arbitrarily update i when x is not
0, but does not change anything when x is 0. We hope to verify C
refines skip. We can see that the loop in C must terminate (thus the
refinement holds), and the number n of tokens must be no less than
the value of i at the beginning of the loop. But we cannot decide
the value of n before executing x := 0. This example cannot be
verified if we have to predetermine and specify the metric for the
while loops at the very beginning of the whole program.

To address this issue, we introduce the following hiding rule:

R ⊢ {p}C{q}

R ⊢ {⌊p⌋w}C{⌊q⌋w}

Here ⌊p⌋w discards all the knowledge about tokens in p. For the
above example, we can hide the number of tokens after we verify
the while loop. Then we do not need to specify the number of
tokens in the precondition of the whole program. We formally
present the set of logic rules in Sec. 5.

3. Formal Settings and Termination-Preserving

Refinement

In this section, we define the termination-preserving refinement ⊑,
which is the proof goal of our RGSim-T and logic.

3.1 The Language

Fig. 3 shows the programming language for both the source and
the target levels. We model the program semantics as a labeled
transition system. A label ι that will be associated with a state
transition is either an event e or τ . The latter marks a silent step
generating no events.

A state σ is a pair of a store and a heap. The store s is a fi-
nite partial mapping from program variables to values (e.g., inte-
gers and memory addresses) and a heap h maps memory addresses
to values. Statements C are either primitive instructions or compo-
sitions of them. A single-step execution of statements is modeled

as a labeled transition: (C, σ)
ι

−→ (C′, σ′). We abstract away the
form of an instruction c. It may generate an external event (e.g.,
print(E) generates an output event). It may be non-deterministic
(e.g., x := nondet assigns a random value to x). It may also be
blocked at some states (e.g., requesting a lock). We assume prim-
itive instructions are atomic in the semantics. We also provide an



(C, σ) −→+ abort

ETr(C, σ, )

(C, σ)
e

−→+ (C′, σ′) ETr(C′, σ′, E)

ETr(C, σ, e ::E)

(C, σ) −→∗ (skip, σ′)

ETr(C, σ,⇓)

(C, σ) −→+ (C′, σ′) ETr(C′, σ′, E)

ETr(C, σ, E)

Figure 4. Co-inductive definition of ETr(C, σ, E).

atomic block 〈C〉 to execute a piece of code C atomically. Then
the generic language in Fig. 3 is expressive enough for the source
and the target programs which may have different granularities of
state accesses. Due to the space limit, the operational semantics and
more details about the language are formally presented in TR [13].

Conventions. We usually write blackboard bold or capital letters
(s, h, Σ, , E, B and C) for the notations at the source level to
distinguish from the target-level ones (s, h, σ, c, E, B and C).

Below we use −→∗ for zero or multiple-step transitions with
no events generated, −→+ for multiple-step transitions without

events, and
e

−→ + for multiple-step transitions with only one
event e generated.

3.2 Termination-Preserving Event Trace Refinement

Now we formally define the refinement relation ⊑ that relates
the observable event traces generated by the source and the target
programs. A trace E is a finite or infinite sequence of external events
e, and may end with a termination marker ⇓ or an abortion marker
 . It is co-inductively defined as follows.

(EvtTrace) E ::= ⇓ |  | ǫ | e ::E (co-inductive)

We use ETr(C, σ, E) to say that the trace E is produced by
executing C from the state σ. It is co-inductively defined in Fig. 4.
Here skip plays the role of a flag showing the end of execution (the
normal termination). Unsafe executions lead to abort. We know
if C diverges at σ, then its trace E is either of infinite length or
finite but does not end with ⇓ or  . For instance, while (true) skip
only produces an empty trace ǫ, and while (true) {print(1)} only
produces an infinite trace of output events.

Then we define a refinement (C,σ) ⊑ (C,Σ), saying that ev-
ery event trace generated by (C, σ) at the target level can be repro-
duced by (C,Σ) at the source. Since we could distinguish traces of
diverging executions from those of terminating executions, the re-
finement definition ensures that if (C, σ) diverges, so does (C,Σ).
Thus we know the target preserves the termination of the source.

Definition 1 (Termination-Preserving Refinement).
(C, σ) ⊑ (C,Σ) iff ∀E . ETr(C, σ, E) =⇒ ETr(C,Σ, E).

4. RGSim-T: A Compositional Simulation with

Termination Preservation

Below we propose RGSim-T, a new simulation as a compositional
proof technique for the above termination-preserving refinement.
As we explained in Sec. 2, the key to compositionality is to param-
eterize the simulation with the interferences between the programs
and their environments. In this paper, we specify the interferences
using rely/guarantee conditions [8], but extend them to also specify
the effects on the termination preservation of individual threads.

Our simulation relation between C and C is in the form of
R,G, I |= {P}C � C{Q}. It takes R, G, I , P and Q as pa-
rameters. R and G are rely and guarantee conditions specifying the
interference between the current thread and its environment. The
assertion I specifies the consistency relation between states at the
target and the source levels, which needs to be preserved during
the execution. P specifies the pair of initial states at the target and

(RelAssn) P,Q, I ::= B | own(x) | emp | E 7→ E | E Z⇒ E
| P ∗Q | P ∨Q | TpU | . . .

(FullAssn) p, q ::= P | arem(C) | wf(E) | ⌊p⌋a | ⌊p⌋w
| p ∗ q | p ∨ q | . . .

(RelAct) R,G ::= [P ] | P⋉Q | P ∝ Q | R∗R | R+ | . . .

Figure 5. Assertion language.

the source levels from which the simulation holds, and Q is about
the pair of final states when the target and the source terminate. So
before we give our definition of RGSim-T, we first introduce our
assertion language.

4.1 Assertions and New Rely/Guarantee Conditions

We show the syntax of the basic assertion language in Fig. 5,
including the state assertions P and Q, and our new rely/guarantee
conditions R and G (let’s first ignore the assertions p and q, which
will be explained in Sec. 5).

The state assertions P and Q relate the program states σ and Σ
at the target and source levels. They are separation logic assertions
over a pair of states. We show their semantics in the top part of
Fig. 6. For simplicity, we assume the program variables used in
the target code are different from the ones in the source (e.g., we
use x and X for target and source level variables respectively). B
holds if it evaluates to true at the disjoint union of the target and the
source stores s and s. We treat program variables as resources [15]
and use own(x) for the ownership of the program variable x.
The assertion E1 7→ E2 specifies a singleton heap of the target
level with E2 stored at the address E1 and requires that the stores
contain variables used to evaluate E1 and E2. Its counterpart for
source level heaps is represented as E1 Z⇒ E2, whose semantics is
defined similarly. emp describes empty stores and heaps at both
levels. Semantics of separating conjunction P ∗ Q is similar as
in separation logic, except that it is now lifted to assertions over
relational states (σ,Σ). The union of two disjoint relational states
(σ1,Σ1) and (σ2,Σ2) is defined in the middle part of Fig. 6. We
will define the assertion TpU in Sec. 5 (see Fig. 8), which ignores
the additional information other than the relational states about p.

Our new rely/guarantee assertions R and G specify the transi-
tions over the relational states (σ,Σ) and also the effects on termi-
nation preservation. Their semantics is defined in the bottom part
of Fig. 6. Here we use S for the relational states. A model con-
sists of the initial relational state S , the resulting state S ′, and an
effect bit b to record whether the target transitions correspond to
some source steps and can affect the termination preservation of
the current thread (for R) or other threads (for G).

We use [P ] for identity transitions with the relational states
satisfying P . The action P ⋉Q says that the initial relational states
satisfy P and the resulting states satisfy Q. For these two kinds
of actions, we do not care whether there is any source step in the
transition satisfying them (the effect bit b in their interpretations
could either be true or false). We also introduce a new action
P ∝ Q asserting that one or more steps are made at the source level
(the effect bit b must be true). Following LRG [3], we introduce
separating conjunction over actions to locally reason about shared
state updates. R1 ∗R2 means that the actions R1 and R2 start from
disjoint relational states and the resulting states are also disjoint.
But here we also require consistency over the effect bits for the two
disjoint state transitions. We use R+ for the transitive closure of
R, where the effect bits in consecutive transitions are accumulated.
The syntactic sugars Id, Emp and True represent arbitrary identity
transitions, empty transitions and arbitrary transitions respectively.

Since we logically split states into local and shared parts as in
LRG [3], we need a precise invariant I to fence actions over shared



((s, h), (s,h)) |= B iff JBKs⊎s = true

((s, h), (s,h)) |= own(x) iff dom(s ⊎ s) = {x}

((s, h), (s,h)) |= E1 7→ E2 iff h = {JE1Ks⊎s ❀ JE2Ks⊎s}

((s, h), (s,h)) |= emp iff s = h = s = h = ∅

f1⊥f2 iff (dom(f1)∩dom(f2)=∅) f1⊎f2
def
= f1∪f2 , if f1⊥f2

(s1, h1)⊥(s2, h2) iff (s1⊥s2) ∧ (h1⊥h2)

(s1, h1) ⊎ (s2, h2)
def
= (s1 ∪ s2, h1 ∪ h2) , if (s1, h1)⊥(s2, h2)

(σ1,Σ1) ⊎ (σ2,Σ2)
def
= (σ1 ⊎ σ2,Σ1 ⊎ Σ2) , if σ1⊥σ2 and Σ1⊥Σ2

S ::= (σ,Σ)

(S,S′, b) |= [P ] iff (S |= P ) ∧ (S = S′)

(S,S′, b) |= P ⋉Q iff (S |= P ) ∧ (S′ |= Q)

(S,S′, b) |= P ∝ Q iff (S |= P ) ∧ (S′ |= Q) ∧ (b= true)

(S,S′, b) |= R1 ∗R2 iff ∃S1,S2,S′
1,S

′
2. (S = S1 ⊎ S2)∧

(S′ = S′
1
⊎ S′

2
) ∧ ((S1,S′

1
, b) |= R1) ∧ ((S2,S′

2
, b) |= R2)

(S,S′, b) |= R+ iff ((S,S′, b) |= R) ∨ (∃S′′, b′, b′′.

((S,S′′, b′) |= R) ∧ ((S′′,S′, b′′) |= R+) ∧ (b = b′ ∨ b′′))

Id
def
= [true] Emp

def
= emp ⋉ emp True

def
= true ⋉ true

I ⊲ R iff ([I] ⇒ R) ∧ (R ⇒ I ⋉ I) ∧ Precise(I)

Sta(P,R) iff ∀S,S′, b. (S |=P ) ∧ ((S,S′, b) |=R) =⇒ (S′ |=P )

Figure 6. Semantics of assertions (part I).

states, which is a state assertion like P and Q. We define the fence
I ⊲ R in a similar way as in our previous work [10] and LRG [3],
which says that I precisely determines the boundaries of the states
of the transitions in R (see Fig. 6). The formal definition of the
precise requirement Precise(I) is given in TR [13], which follows
its usual meaning as in separation logic but is now interpreted over
relational states.

4.2 Definition of RGSim-T

Our simulation RGSim-T is parameterized over the rely/guarantee
conditions R and G to specify the interferences between threads
and their environments, and a precise invariant I to logically deter-
mine the boundaries of the shared states and fence R and G.

The simulation also takes a metric M , which was referred to
as |T | in our previous informal explanations in Sec. 2. We leave
its type unspecified here, which can be instantiated by program
verifiers, as long as it is equipped with a well-founded order <.

The formal definition below follows the intuition explained in
Sec. 2. Readers who are interested only in the proof theory could
skip this definition, which can be viewed as the meta-theory of our
program logic presented in Sec. 4.3 and Sec. 5.

Definition 2 (RGSim-T). R,G, I |= {P}C�C{Q} iff
for all σ and Σ, if (σ,Σ) |= P , then there exists M such that
R,G, I |= (C, σ,M)�Q (C,Σ).

Here R,G, I |= (C, σ,M) �Q (C,Σ) is the largest rela-
tion such that whenever R,G, I |= (C,σ,M) �Q (C,Σ), then
(σ,Σ) |= I ∗ true and the following are true:

1. for any C′, σ′′, σF and ΣF , if (C, σ ⊎ σF ) −→ (C′, σ′′) and
Σ⊥ΣF , then there exist σ′, n, M ′, b, C′ and Σ′ such that

(a) σ′′ = σ′ ⊎ σF ,

(b) (C,Σ ⊎ ΣF ) −→
n (C′,Σ′ ⊎ ΣF ),

(c) R,G, I |= (C′, σ′,M ′)�Q (C′,Σ′),

(d) ((σ,Σ), (σ′,Σ′), b) |= G+ ∗ True, and

(e) if n=0, we need M ′<M and b= false, otherwise b= true.

2. for any e, C′, σ′′, σF and σF , if (C, σ⊎σF )
e

−→ (C′, σ′′) and
Σ⊥ΣF , then there exist σ′, M ′, C′ and Σ′ such that

(a) σ′′ = σ′ ⊎ σF ,

(b) (C,Σ ⊎ ΣF )
e

−→+ (C′,Σ′ ⊎ ΣF ),
(c) R,G, I |= (C′, σ′,M ′)�Q (C′,Σ′), and

(d) ((σ,Σ), (σ′,Σ′), true) |= G+ ∗ True.

3. for any b, σ′ and Σ′, if ((σ,Σ), (σ′,Σ′), b) |= R+ ∗ Id, then
there exists M ′ such that

(a) R,G, I |= (C, σ′,M ′)�Q (C,Σ′), and

(b) if b = false, we need M ′ = M .

4. if C = skip, then for any ΣF such that Σ⊥ΣF , there exist n
and Σ′ such that

(a) (C,Σ ⊎ ΣF ) −→
n (skip,Σ′ ⊎ ΣF ),

(b) (σ,Σ′) |= Q,

(c) if n > 0, then ((σ,Σ), (σ,Σ′), true) |= G+ ∗ True.

5. for any σF and ΣF , if (C, σ⊎σF ) −→ abort and Σ⊥ΣF , then
(C,Σ ⊎ ΣF ) −→

+ abort.

The simulation R,G, I |= (C, σ,M) �Q (C,Σ) relates the
executions of the target configuration (C,σ) (with its metric M )
to the source (C,Σ), under the interferences with the environment
specified by R and G. It first requires that the relational state (σ,Σ)
satisfy I ∗ true, I for the shared part and true for the local part,
establishing a consistency relation between the states at the two
levels. For every silent step of (C, σ) (condition 1, let’s first ignore
the frame states σF and ΣF which will be discussed later), the
source could make n steps (n ≥ 0) correspondingly (1(b)), and the
simulation is preserved afterwards with a new metric M ′ (1(c)).
Here we use −→ n to represent n-step silent transitions. If
n = 0 in 1(b) (i.e., the source does not move), the metric must
decrease along the associated well-founded order (M ′ < M in
1(e)), otherwise we do not have any restrictions over M ′. We also
require that the related steps at the two levels satisfy the guarantee
condition G+∗True (1(d)), the transitive closure G+ for the shared
part and True for the private. If the target step corresponds to no
source moves (n = 0), we use false as the corresponding effect bit,
otherwise the bit should be true (1(e)).

If a target step produces an event e, the requirements (condition
2) are similar to those in condition 1, except that we know for
sure that target step corresponds to one or more source steps that
produce the same e.

The simulation should be preserved after environment transi-
tions satisfying R+ ∗ Id, R+ for the shared part and Id for the
private (condition 3). If the corresponding effect bit of the envi-
ronment transition is true, we know there are one or more source
moves, therefore there are no restrictions over the metric M ′ for the
resulting code (which could be larger than M ). Otherwise, the met-
ric should be unaffected under the environment interference (i.e.,
M ′ = M in 3(b)).

If C terminates (condition 4), the corresponding C must also
terminate and the resulting states satisfy the postcondition Q. Fi-
nally, if C is unsafe, then C must be unsafe too (condition 5).

Inspired by Vafeiadis [24], we directly embed the framing as-
pect of separation logic in Def. 2. At each condition, we introduce
the frame states σF and ΣF at the target and source levels to repre-
sent the remaining parts of the states owned by other threads in the
system. The commands C and C must not change the frame states
during their executions (see, e.g., conditions 1(a) and 1(b)). These
σF and ΣF quantifications in RGSim-T are crucial to admit the
parallel compositionality and the frame rules (the B-FRAME rule in
Fig. 7 and the FRAME rule in Fig. 9).

We then define R,G, I |= {P}C�C{Q} by hiding the initial
states via the precondition P and hiding the metric M .



R ∨G2, G1, I ⊢ {P1 ∗ P}C1�C1{Q1 ∗Q′
1
} R ∨G1, G2, I ⊢ {P2 ∗ P}C2�C2{Q2 ∗Q′

2
} P∨Q′

1
∨Q′

2
⇒ I I ⊲ R

R,G1 ∨G2, I ⊢ {P1 ∗ P2 ∗ P}C1‖C2�C1‖C2{Q1 ∗Q2 ∗ (Q′
1 ∧Q′

2)}
(B-PAR)

P ⇒ (B ⇔ B) ∗ I R,G, I ⊢ {P ∧ B}C�C{P}

R,G, I ⊢ {P}while (B) C�while (B) C{P ∧ ¬B}
(B-WHILE)

P ⇒ (E = E) ∗ I Sta(P,R ∗ Id) I ⊲ {R,G}

R,G, I ⊢ {P}print(E)�print(E){P}
(B-PRT)

R,G, I ⊢ {P}C�C{Q} Sta(P ′, R′ ∗ Id) I′ ⊲ {R′, G′} P ′ ⇒ I′ ∗ true G+ ⇒ G

R ∗R′, G ∗G′, I ∗ I′ ⊢ {P ∗ P ′}C�C{Q ∗ P ′}
(B-FRAME)

Figure 7. Selected binary inference rules (compositionality of RGSim-T).

Adequacy. RGSim-T ensures the termination-preserving refine-
ment by using the metric with a well-founded order. The proof of
the following adequacy theorem is in TR [13].

Theorem 3 (Adequacy of RGSim-T). If there exist R, G, I , Q
and a metric M (with a well-founded order <) such that R,G, I |=
(C, σ,M)�Q (C,Σ), then (C,σ) ⊑ (C,Σ).

4.3 Compositionality Rules

RGSim-T is compositional. We show some of the compositionality
rules in Fig. 7. Here we use R,G, I ⊢ {P}C � C{Q} for the
judgment to emphasize syntactic reasoning, whose semantics is
RGSim-T (Def. 2). The rules can be viewed as the binary version
of those in a traditional rely-guarantee-style logic (e.g., LRG [3]
and RGSep [23]).

The B-PAR rule shows the compositionality w.r.t. parallel com-
positions. To verify C1 ‖ C2 is a refinement of C1 ‖ C2, we ver-
ify the refinement of each thread separately. The rely condition of
each thread captures the interference from both the overall envi-
ronment (R) and its sibling thread (G1 or G2). The related steps of
C1 ‖C2 and C1 ‖C2 should satisfy either thread’s guarantee. As
in LRG [3], P1 and P2 specify the private (relational) states of the
threads C1/C1 and C2/C2 respectively. The states P are shared by
them. When both threads have terminated, their private states sat-
isfy Q1 and Q2, and the shared states satisfy both Q′

1 and Q′
2. We

require that the shared states are well-formed (P , Q′
1 and Q′

2 imply
I) and the overall environment transitions are fenced (I ⊲ R).

The B-WHILE rule requires the boolean conditions of both sides
to be evaluated to the same value. The resources needed to evaluate
them should be available in the private part of P . The B-FRAME

rule supports local reasoning. The frame P ′ may contain shared
and private parts, so it should be stable w.r.t. R′ ∗ Id and imply
I ′ ∗ true, where I ′ is the fence for R′ and G′ (see Fig. 6 for the
definitions of fences and stability). We also require G to be closed
over transitivity. This rule is almost identical to the one in LRG [3].
Details are elided here.

We provide a few binary rules to reason about the basic program
units when they are almost identical at both sides. For instance,
the B-PRT rule relates a target print command to a source one,
requiring that they always print out the same value. For more
general refinement units, as we explained in Sec. 2, we reduce
relational verification to unary reasoning (using the U2B rule in
Fig. 9, which we will explain in the next section). Our TR [13]
contains more rules and the full soundness proofs. The soundness
theorem is shown below.

Theorem 4 (Soundness of Binary Rules).
If R,G, I ⊢{P}C�C{Q}, then R,G, I |={P}C�C{Q}.

5. A Rely-Guarantee-Style Logic for

Termination-Preserving Refinement

The binary inference rules in Fig. 7 allow us to decompose the
refinement verification of large programs into the refinement units’

w ∈ Nat D ::= C | •

(σ, w,D,Σ) |= P iff (σ,Σ) |= P

(σ, w,D,Σ) |= arem(C′) iff D = C′

((s, h), w,D,Σ) |= wf(E) iff ∃n. (JEKs = n) ∧ (n ≤ w)

(σ, w,D,Σ) |= ⌊p⌋a iff ∃D′. (σ, w,D′,Σ) |= p

(σ, w,D,Σ) |= ⌊p⌋w iff ∃w′. (σ, w′,D,Σ) |= p

(σ,Σ) |= TpU iff ∃w,D. (σ, w,D,Σ) |= p

D1⊥D2 iff (D1 = •) ∨ (D2 = •) D1 ⊎ D2
def
=

{

D2 if D1 = •
D1 if D2 = •

(σ1, w1,D1,Σ1) ⊎ (σ2, w2,D2,Σ2)
def
=

(σ1⊎σ2, w1+w2,D1⊎D2,Σ1⊎Σ2) , if σ1⊥σ2,D1⊥D2 and Σ1⊥Σ2

Sta(p,R) iff ∀σ, w,D,Σ, σ′,Σ′, b.
((σ, w,D,Σ) |= p) ∧ (((σ,Σ), (σ′,Σ′), b) |= R)
=⇒ ∃w′. (σ′, w′,D,Σ′) |= p ∧ (b = false =⇒ w′ = w)

p ⇛
0 q iff p ⇒ q

p ⇛+ q iff ∀σ, w,D,Σ,ΣF . ((σ, w,D,Σ) |= p) ∧ (Σ⊥ΣF ) =⇒
∃w′,C′,Σ′. (D,Σ⊎ΣF ) −→+ (C′,Σ′⊎ΣF ) ∧ ((σ, w′,C′,Σ′) |= q)

Figure 8. Semantics of assertions (part II).

verification. In this section, we explain the unary rules for verifying
refinement units. All the binary and unary rules constitute our novel
rely-guarantee-style logic for modular verification of termination-
preserving refinement.

5.1 Assertions on Source Code and Number of Tokens

We first explain the new assertions p and q used in the unary rules
that can specify the source code and metrics in addition to states.
We define their syntax in Fig. 5, and their semantics in Fig. 8. A
full state assertion p is interpreted on (σ,w,D,Σ). Here besides
the states σ and Σ at the target and source levels, we introduce
some auxiliary data w and D. w is the number of tokens needed for
loops (see Sec. 2). D is either some source code C, or a special sign
• serving as a unit for defining semantics of p ∗ q below.

In Fig. 8 we lift the relational assertion P as a full state assertion
to specify the states. The new assertion arem(C) says that the
remaining source code is C at the current program point. wf(E)
states that the number of tokens at the current target code is no less
than E. We can see wf(0) always holds, and for any n, wf(n+ 1)
implies wf(n). We use ⌊p⌋a and ⌊p⌋w to ignore the descriptions in
p about the source code and the number of tokens respectively. TpU
lifts p back to a relational state assertion.

Separating conjunction p ∗ q has the standard meaning as in
separation logic, which says p and q hold over disjoint parts of
(σ,w,D,Σ) respectively (the formal definition elided here). How-
ever, it is worth noting the definition of disjoint union over the
quadruple states, which is shown in the middle part of Fig. 8. The
disjoint union of the numbers of tokens w1 and w2 is simply the
sum of them. The disjoint union of D1 and D2 is defined only if



R,G, I ⊢ {P ∧ arem(C)}C{Q ∧ arem(skip)}

R,G, I ⊢ {P}C�C{Q}
(U2B)

⊢SL [p]C[q]
(TpU ⋉ TqU) ⇒ G ∗ True I ⊲ G p ∨ q ⇒ I ∗ true

[I], G, I ⊢ {p}〈C〉{q}
(ATOM)

p ⇛
a p′ ⊢SL [p′]C[q′] q′ ⇛b q + ∈ {a, b}

(TpU ∝ TqU) ⇒ G ∗ True I ⊲ G p ∨ q ⇒ I ∗ true

[I], G, I ⊢ {p}〈C〉{q}
(ATOM+)

[I], G, I ⊢ {p}〈C〉{q} Sta({p, q}, R ∗ Id) I ⊲ R

R,G, I ⊢ {p}〈C〉{q}
(ATOM-R)

p ⇒ (B = B) ∗ I
p ∧ B ⇒ p′ ∗ (wf(1) ∧ emp) R,G, I ⊢ {p′}C{p}

R,G, I ⊢ {p}while (B) C{p ∧ ¬B}
(WHILE)

R,G, I ⊢ {p}C{q}

R,G, I ⊢ {⌊p⌋w}C{⌊q⌋w}
(HIDE-W)

R,G, I ⊢ {p}C{q} Sta(p′, R′ ∗ Id) I′ ⊲ {R′, G′} p′ ⇒ I′ ∗ true G+ ⇒ G

R ∗R′, G ∗G′, I ∗ I′ ⊢ {p ∗ p′}C{q ∗ p′}
(FRAME)

Figure 9. Selected unary inference rules.

1 local t;
{

x = X ∧ arem(S′) ∧ wf(1)
}

2 while (true) {
{

x = X ∧ arem(S′)
}

3 < t := x; >
{

x = X = t ∧ arem(S′) ∨
x = X 6= t ∧ arem(S′) ∧ wf(1)

}

4 cas(&x, t, t+1);
{

x = X ∧ arem(S′) ∧ wf(1)
}

5 }

// unfolding cas

< if (x = t)
{

x = X = t ∧ arem(S′)
}

{

x = X = t ∧ arem(X++;S′)
}

x := t + 1;
{

x = X = t+ 1 ∧ arem(S′) ∧ wf(1)
}

>

(a) looping a counter: I
def
= (x = X) R = G

def
= (I ∝ I) ∨ [I]

1 local i := 100;
{

i ≥ 0 ∧ wf(i) ∧ arem(skip)
}

2 while (i > 0) {
{

i > 0 ∧ wf(i-1) ∧ arem(skip)
}

3 i--;
{

i ≥ 0 ∧ wf(i) ∧ arem(skip)
}

4 }

(b) local termination:

I
def
= emp R = G

def
= Emp

Figure 10. Proofs for two small examples.

at least one of them is the special sign •, which has no knowledge
about the remaining source code C. Therefore we know the follow-
ing holds (for any P and C):

(P ∧ arem(C) ∧ wf(1)) ∗ (wf(1) ∧ emp) ⇔ (P ∧ arem(C) ∧ wf(2))

One may think a more natural definition of the disjoint union is
to require the two Ds be the same. But this would break the FRAME

rule (see Fig. 9). For example, we can prove:

Emp,Emp, emp ⊢ {x = X ∧ arem(X++)} x++ {x = X ∧ arem(skip)}

With the FRAME rule and the separating conjunction based on
the alternative definition of disjoint union, we would derive the
following:

Emp,Emp, emp ⊢ {(x = X ∧ arem(X++)) ∗ arem(X++)}
x++ {(x = X ∧ arem(skip)) ∗ arem(X++)}

which is reduced to an invalid judgment:

Emp,Emp, emp ⊢ {x = X ∧ arem(X++)} x++ {false}

We require in p ∗ q that either p or q should not specify the source
code, therefore in this example the precondition after applying the
frame rule is invalid (thus the whole judgment is valid).

The stability of p w.r.t. an action R, defined at the bottom part of
Fig. 8, specifies how the number of tokens of a program (specified
by p) could change under R’s interferences. As a simple example,
for the following p, R1 and R2, Sta(p,R1) holds while Sta(p,R2)
does not hold:

p
def
= (10 7→ 0 ∗ 20 Z⇒ 0) ∨ ((10 7→ 1 ∗ 20 Z⇒ 0) ∧ wf(1))

R1
def
= (10 7→ 0 ∗ 20 Z⇒ 0) ∝ (10 7→ 1 ∗ 20 Z⇒ 0)

R2
def
= (10 7→ 0 ∗ 20 Z⇒ 0) ⋉ (10 7→ 1 ∗ 20 Z⇒ 0)

5.2 Unary Inference Rules

The judgment for unary reasoning is in the form of R,G, I ⊢
{p}C{q}. We present some of the rules in Fig. 9.

The U2B rule, as explained in Sec. 2, turns unary proofs to
binary ones. It says that if the remaining source code is C at the
beginning of the target C, and it becomes skip at the end of C,
then we know C is simulated by C.

The ATOM rule allows us to reason sequentially about the target
code in the atomic block. We use ⊢SL [p]C[q] to represent the total
correctness of C in sequential separation logic. The corresponding
rules are mostly standard and elided here. Note that C only accesses
the target state σ, therefore in our sequential rules we require
the source state Σ and the auxiliary data w and D in p should
remain unchanged in q. We can lift C’s total correctness to the
concurrent setting as long as its overall transition over the shared
states satisfies the guarantee G. Here we assume the environment
is identity transitions. To allow general environment behaviors, we
can apply the ATOM-R rule later, which requires that R be fenced
by I and the pre- and post-conditions be stable w.r.t. R.

The ATOM
+ rule is similar to the ATOM rule, except that it

executes the source code simultaneously with the target atomic
step. We use p ⇛

+ q for the multi-step executions from the source
code specified by p to the code specified by q, which is defined
in the bottom part of Fig. 8. We also write p ⇛

0 q for the usual
implication p ⇒ q. Then, the ATOM

+ rule says, we can execute the
source code before or after the steps of C, as long as the overall
transition (including the source steps and the target steps) with the
effect bit true satisfies G for the shared parts.

The WHILE rule is the key to proving the preservation of termi-
nation. As we informally explained in Sec. 2, we should be able to
decrease the number of tokens at the beginning of each loop itera-
tion. And we should re-establish the invariant p between the states
and the number of tokens at the end of each iteration. Below we
give two examples, each of which shows a typical application of
the WHILE rule.



Examples. The first example is the T ′′
c and S′ in Sec. 2. We show

its proof in our logic in Fig. 10(a) (for simplicity, below we always
assume the ownership of variables). We use X for the counter at
the source, and the rely/guarantee conditions say that the counters
at the two levels can be updated simultaneously with the effect bit
true. The loop invariant above line 2 says that we should have at
least one token to execute the loop. The loop body is verified with
zero tokens, and should finally restore the invariant token number
1. The gaining of the token may be due to a successful cas at line 4
that corresponds to source steps, or caused by the environment
interferences. More specifically, the assertion following line 3 says
that we can gain a token if the counters have been updated. If the
counters are not updated before the cas at line 4, the cas succeeds
and we show the detailed proof at the right part of Fig. 10(a), in
which we execute one iteration of the source code and gain a token
(applying the ATOM

+ rule).
This example shows the most straightforward understanding of

the WHILE rule: we pay a token at the beginning of an iteration
and should be able to gain another token during the execution of
the iteration. The next example is more subtle (though simpler).
As shown in Fig. 10(b), it is a locally-terminating while loop (i.e.,
a loop that terminates regardless of environment interferences).
We prove it refines skip under the environment Emp. The loop
invariant above line 2 says that the number of tokens equals the
value of i. If the loop condition (i>0) is satisfied, we pay one
token. In the proof of the loop body, we do not (and are not able
to) gain more tokens. Instead, the value of i will be decreased in
the iteration, enabling us to restore the equality between the number
of tokens and i.

Other rules and discussions. Another important rule is the
HIDE-W rule in Fig. 9. It shows that tokens are just an auxiliary
tool, which could be safely discarded (by using ⌊ ⌋w) when the
termination-preservation of a command C (say, a while loop) is
already established. As we mentioned in Sec. 2, the HIDE-W rule
is crucial to handle infinite nondeterminism. It is also important for
local reasoning, so that when we verify a thread, we do not have
to calculate and specify in the precondition the number of tokens
needed by all the while loops. For nested loops, we could use the
HIDE-W rule to hide the tokens needed by the inner loop, and use
the FRAME rule to add back the tokens needed for the outer loop
later when we compose the inner loop with other parts of the outer
loop body.

The unary FRAME rule in Fig. 9 is similar to the binary one in
Fig. 7. Other rules can be found in our TR [13], which are very
similar to those in LRG [3], but we give different interpretations to
assertions and actions.

The binary rules (in Fig. 7) and the unary rules (in Fig. 9) gives
us a full proof theory for termination-preserving refinement. We
want to remind the readers that the logic does not ensure termina-
tion of programs, therefore it is not a logic for total correctness. On
the other hand, if we restrict the source code to skip (which always
terminates), then our unary rules can be viewed as a proof theory
for the total correctness of concurrent programs.

Also note that the use of a natural number w as the while-
specific metric is to simplify the presentation only. It is easy to
extend our work to support other types of the while-specific metrics
for more complicated examples.

6. More Examples

We have seen a few small examples that illustrate the use of our
logic, in particular, the WHILE rule. In this section, we discuss other
examples that we have proved, which are summarized in Fig. 11.
Their proofs are in TR [13].

Linearizability & Lock-Freedom

Counter and its variants
Treiber stack [20]
Michael-Scott lock-free queue [14]
DGLM lock-free queue [2]

Non-Atomic Object Correctness Synchronous queue [16]
Correctness of Optimized Algo Counter vs. its variants

(Equivalence) TAS lock vs. TTAS lock [6]

Figure 11. Verified examples using our logic.

Proving linearizability and lock-freedom together for concurrent
objects. It has been shown [12] that the verification of lineariz-
ability and lock-freedom together can be reduced to verifying a
contextual refinement that preserves the termination of any client
programs. That is, for any client as the context C , the termination-
preserving refinement C [C] ⊑ C [C] should hold. Here we use C
for the concrete implementation of the object, and C for the corre-
sponding abstract atomic operations. C [C] (or C [C]) denotes the
whole program where the client accesses the object via method
calls to C (or C).

The compositionality rules of our logic (Fig. 7) allow us to ver-
ify the above contextual refinement by proving R,G, I ⊢ {P}C�
C{Q}. Then we apply the U2B rule and turn the relational ver-
ification to unary reasoning. As in a normal linearizability proof
(e.g., [10, 23]), we need to find a single step of C (i.e., the lin-
earization point) that corresponds to the atomic step of C. Here we
also have to prove lock-freedom: the failure to make progress (i.e.,
finish an abstract operation) of a thread must be caused by success-
ful progress of its environment, which can be ensured by the WHILE

rule (in Fig. 9) in our logic.
We have used the above approach to verify several lineariz-

able and lock-free objects, including Treiber stack [20], Michael-
Scott lock-free queue [14] and DGLM queue [2]. We can further
extend the logic in this paper with the techniques [10] for verify-
ing linearizability of algorithms with non-fixed linearization points,
to support more sophisticated examples such as HSY elimination-
based stack and Harris-Michael lock-free list.

Verifying concurrent objects whose abstract operations are not
atomic. Sometimes we cannot define single atomic operations as
the abstract specification of a concurrent object. For objects that
implement synchronization between threads, we may have to ex-
plicitly take into account the interferences from other threads when
defining the abstract behaviors of the current thread. For exam-
ple, the synchronous queue [16] is a concurrent transfer channel in
which each producer presenting an item must wait for a consumer
to take this item, and vice versa. The corresponding abstract opera-
tions are no longer atomic. We used our logic to prove the contex-
tual refinement between the concrete implementation (from [16],
used in Java 6) and a more abstract synchronous queue. The refine-
ment ensures that if a producer (or a consumer) is blocked at the
concrete level, it must also be blocked at the source level.

Proving equivalence between optimized algorithms and original
ones. We also use our logic to show variants of concurrent algo-
rithms are correct optimizations of the original implementations.
In this case, we show equivalence (in fact, contextual equivalence),
i.e., refinements of both directions.

For instance, we proved the TTAS lock implementation is
equivalent to the TAS lock implementation [6] for any client using
the locks. The former tests the lock bit in a nested while loop until it
appears to be free, and then uses the atomic getAndSet instruction
to update the bit; while the latter directly tries getAndSet until
success. The equivalence result between these two lock implemen-
tations shows that no client may observe their differences, includ-
ing the differences on their termination behaviors (e.g., whether a



client thread may acquire the lock). It gives us the full correctness
of the TTAS lock. As an optimization of TAS lock, it preserves the
behaviors on both functionality and termination of the latter.

7. Related Work and Conclusion

Hoffmann et al. [7] propose a program logic to verify lock-freedom
of concurrent objects. They reason about termination quantitatively
by introducing tokens, and model the environment’s interference
over the current thread’s termination in terms of token transfer. The
idea is simple and natural, but their logic has very limited support
of local reasoning. One needs to know the total number of tokens
needed by each thread (which may have multiple while loops) and
the (fixed) number of threads, to calculate the number of tokens for
a thread to lose or initially own. This requirement also disallows
their logic to reason about programs with infinite nondeterminism.
Here we allow a thread to set its effect bit in R/G without knowing
the details of other threads; and other threads can determine by
themselves how many tokens they gain. We also introduce the
HIDE-W rule to hide the number of tokens and to support infinite
nondeterminism. Another key difference is that our logic supports
verification of refinement, which is not supported by their logic.

Gotsman et al. [5] propose program logic and tools to verify
lock-freedom. Their approach is more heavyweight in that they
need temporal assertions in the rely/guarantee conditions to spec-
ify interference between threads, and the rely/guarantee conditions
need to be specified iteratively in multiple rounds to break circu-
lar reliance on progress. Moreover, their work relies on third-party
tools to check termination of individual threads as closed sequential
programs. Therefore they do not have a set of self-contained pro-
gram logic rules and a coherent meta-theory as we do. Like Hoff-
mann et al. [7], they do not support refinement verification either.

As we explained in Sec. 1, none of recent work on general
refinement verification of concurrent programs [11, 21, 22] and
on verifying linearizability of concurrent objects [10, 23] (which
can be viewed as a specialized refinement problem) preserves
termination. Ševčı́k et al. equipped their simulation proofs for
CompCertTSO [17] with a well-founded order, following the
CompCert approach. Their approach is similar to our second at-
tempt explained in Sec. 2, thus cannot be applied to prove lock-
freedom of concurrent objects.

Conclusion and future work. We propose a new compositional
simulation RGSim-T to verify termination-preserving refinement
between concurrent programs. We also give a rely/guarantee pro-
gram logic as a proof theory for the simulation. Our logic is the first
to support compositional verification of termination-preserving re-
finement. The simulation and logic are general. They can be used
to verify both correctness of optimizations (where the source may
not necessarily terminate) and lock-freedom of concurrent objects.
As future work, we would like to further extend them with the tech-
niques of pending thread pools and speculations [10] to verify ob-
jects with non-fixed linearization points. We also hope to explore
the possibility of building tools to automate the verification.

Acknowledgments

We thank anonymous referees for their suggestions and com-
ments. This work is supported in part by China Scholarship Coun-
cil, National Natural Science Foundation of China (NSFC) under
Grant Nos. 61229201, 61379039 and 91318301, and the National
Hi-Tech Research and Development Program of China (Grant
No. 2012AA010901). It is also supported in part by DARPA
grants FA8750-10-2-0254 and FA8750-12-2-0293, ONR grant
N000141210478, and NSF grants 0915888 and 1065451. Any
opinions, findings, and conclusions contained in this document are
those of the authors and do not reflect the views of these agencies.

References

[1] N. Benton. Simple relational correctness proofs for static analyses and
program transformations. In POPL, pages 14–25, 2004.

[2] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Formal verifica-
tion of a practical lock-free queue algorithm. In FORTE, pages 97–
114, 2004.

[3] X. Feng. Local rely-guarantee reasoning. In POPL, pages 315–327,
2009.

[4] I. Filipovic, P. O’Hearn, N. Rinetzky, and H. Yang. Abstraction
for concurrent objects. Theor. Comput. Sci., 411(51-52):4379–4398,
2010.

[5] A. Gotsman, B. Cook, M. J. Parkinson, and V. Vafeiadis. Proving that
non-blocking algorithms don’t block. In POPL, pages 16–28, 2009.

[6] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008.

[7] J. Hoffmann, M. Marmar, and Z. Shao. Quantitative reasoning for
proving lock-freedom. In LICS, pages 124–133, 2013.

[8] C. B. Jones. Tentative steps toward a development method for inter-
fering programs. ACM Trans. Program. Lang. Syst., 5(4):596–619,
1983.

[9] X. Leroy. A formally verified compiler back-end. J. Autom. Reason.,
43:363–446, December 2009.

[10] H. Liang and X. Feng. Modular verification of linearizability with
non-fixed linearization points. In PLDI, pages 459–470, 2013.

[11] H. Liang, X. Feng, and M. Fu. A rely-guarantee-based simulation for
verifying concurrent program transformations. In POPL, pages 455–
468, 2012.

[12] H. Liang, J. Hoffmann, X. Feng, and Z. Shao. Characterizing progress
properties of concurrent objects via contextual refinements. In CON-
CUR, pages 227–241, 2013.

[13] H. Liang, X. Feng, and Z. Shao. Compositional verification of
termination-preserving refinement of concurrent programs (extended
version). Technical report, Univ. of Science and Technology of China,
May 2014. http://kyhcs.ustcsz.edu.cn/relconcur/rgsimt.

[14] M. M. Michael and M. L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In PODC, pages
267–275, 1996.

[15] M. Parkinson, R. Bornat, and C. Calcagno. Variables as resource in
Hoare logics. In LICS, pages 137–146, 2006.

[16] W. N. Scherer III, D. Lea, and M. L. Scott. Scalable synchronous
queues. In PPoPP, pages 147–156, 2006.

[17] J. Ševčı́k, V. Vafeiadis, F. Z. Nardelli, S. Jagannathan, and P. Sewell.
CompCertTSO: A verified compiler for relaxed-memory concurrency.
J. ACM, 60(3):22, 2013.

[18] T. A. L. Sewell, M. O. Myreen, and G. Klein. Translation validation
for a verified os kernel. In PLDI, pages 471–482, 2013.

[19] K. Stølen. A method for the development of totally correct shared-
state parallel programs. In CONCUR, pages 510–525, 1991.

[20] R. K. Treiber. System programming: coping with parallelism. Tech-
nical Report RJ 5118, IBM Almaden Research Center, 1986.

[21] A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and hoare-
style reasoning in a logic for higher-order concurrency. In ICFP, pages
377–390, 2013.

[22] A. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer.
Logical relations for fine-grained concurrency. In POPL, pages 343–
356, 2013.

[23] V. Vafeiadis. Modular fine-grained concurrency verification. PhD
thesis, University of Cambridge, Computer Laboratory, 2008.

[24] V. Vafeiadis. Concurrent separation logic and operational semantics.
In MFPS, pages 335–351, 2011.

[25] H. Yang. Relational separation logic. Theoretical Computer Science,
375:308–334, 2007.


