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Abstract. In this paper, we formalize relaxed memory models by giving
a parameterized operational semantics to a concurrent programming lan-
guage. Behaviors of a program under a relaxed memory model are defined
as behaviors of a set of related programs under the sequentially consis-
tent model. This semantics is parameterized in the sense that different
memory models can be obtained by using different relations between pro-
grams. We present one particular relation that is weaker than many mem-
ory models and accounts for the majority of sequential optimizations. We
then show that the derived semantics has the DRF-guarantee, using a
notion of race-freedom captured by an operational grainless semantics.
Our grainless semantics bridges concurrent separation logic (CSL) and
relaxed memory models naturally, which allows us to finally prove the
folklore theorem that CSL is sound with relaxed memory models.

1 Introduction

For many years, optimizations of sequential code — by both compilers and ar-
chitectures — have been the major source of performance improvement for com-
puting systems. However, they were designed to preserve only the sequential
semantics of the code. When placed in a concurrent context, many of them vio-
late the so-called sequential consistency [19], which requires that the instructions
in each thread be executed following the program order.

A classic example to demonstrate this problem is Dekker’s mutual exclusion
algorithm [12] as shown below:

Initially [x]=[y]=0 and x �= y
[x]:= 1;
v1:= [y];
if v1 = 0 then critical section

‖
[y]:= 1;
v2:= [x];
if v2 = 0 then critical section

where [e] refers to the memory cell at the location e. Its correctness in the
sequentially consistent memory model is ensured by the invariant that we would
never have v1 = v2 = 0 when the conditional statements are reached. However,
memory models in reality often relax the ordering of memory accesses and their

A.D. Gordon (Ed.): ESOP 2010, LNCS 6012, pp. 267–286, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



268 R. Ferreira, X. Feng, and Z. Shao

visibility to other threads to create room for optimizations. Many of them allow
reordering of the first two statements in each thread above, thus breaking the
invariant. Other synchronization algorithms are susceptible to failure in a similar
fashion, which is a well-known problem [5, 1].

The semantics of concurrent programming languages rely on a formal mem-
ory model to rigorously define how threads interact through a shared memory
system. Many relaxed memory models have been proposed in the computer ar-
chitecture community. A tutorial about the subject is given by Adve and Ghara-
chorloo [1], and a detailed survey is given by Mosberger [22]. Formalization of
memory models for languages such as Java [21, 11], C++ [4] and x86 multipro-
cessor machine code [24] were also developed recently. These models typically
allow some relaxation of the program order and provide mechanisms for enforc-
ing ordering when necessary. These mechanisms are commonly referred to as
barriers, fences, or strong/ordered operations at the machine level, and locks,
synchronization blocks and volatile operations at the high level. The majority
of the models provide the so-called DRF-guarantee [2], in which data-race-free
programs (i.e. well-synchronized programs) behave in a sequentially consistent
manner. The DRF-guarantee is also known as the fundamental property [26] of
a memory model. It is desirable because it frees the programmer from reasoning
about idiosyncrasies of memory models when the program is well-synchronized.

However, as Boudol and Petri [7] pointed out, most memory models are de-
fined axiomatically by giving partial orders of events in the execution traces of
programs. These are more abstract than operational semantics of languages that
are normally used to model the execution of programs and also to reason about
them. Also, they “only establish a very abstract version of the DRF-guarantee,
from which the notion of a program, in the sense of programming languages, is
actually absent” [7]. This gap, we believe, partly explains why most program log-
ics for concurrency verification are proved sound only in a sequentially consistent
model, and their soundness in relaxed memory models is rarely discussed.

For instance, the soundness of concurrent separation logic (CSL) [23] in se-
quentially consistent models has been proved in various ways [9, 10, 14, 18],
which all show directly or indirectly that CSL-verified programs are race-free.
So it seems quite obvious that CSL is sound with any memory model that gives
the DRF-guarantee, as Hobor et al. [18] argued that it “permits only well-
synchronized programs to execute, so we can [. . . ] execute in an interleaving
semantics or even a weakly consistent memory model”. However, to our best
knowledge, this folklore theorem has never been formally proved. Actually prov-
ing it is non-trivial, and is especially difficult in an operational setting, because
the two sides (CSL and memory models) use different semantics of languages
and different notions of data-race-freedom (as shown in Fig. 1 (a)).

In this paper, we propose a new approach to formalizing relaxed memory
models by giving a parameterized operational semantics to a concurrent pro-
gramming language. Behaviors of a program under a relaxed memory model are
defined as behaviors of a set of related programs under the sequentially consis-
tent model. This semantics is parameterized in that different relations between
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Fig. 1. (a) the gap between the language-side (above the dashed line) and the memory-
model-side (below the line); we use subscripts x and y to represent the different for-
mulations in the two sides; (b) our solution: a new RMM and a grainless semantics.
Here single arrows represent (informally) logical implications. Double arrows represent
logical equivalence, with premises annotated on top. The single arrow and the double
arrows on the left and right in (b) correspond to Lemmas 6.2, 5.3 and 5.4 respectively.

programs yield different memory models. We present one particular relation that
is weaker than many memory models and accounts for the majority of sequential
optimizations. We then give an operational grainless semantics to the language,
which gives us an operational notion of data-race-freedom. We show that our
derived relaxed semantics has the DRF-guarantee. Our grainless semantics also
bridges CSL and relaxed memory models naturally and allows us to prove the
soundness of CSL in relaxed memory models. Our paper makes the following
new contributions.

First, we propose a simple, operational and parameterized approach to for-
malizing memory models. We model the behaviors of a program as the behaviors
of a set of related programs in the interleaving semantics. The idea is shown by
the prototype rule.

(c, c′′)∈Λ 〈c′′, σ〉 �−→〈c′, σ′〉
[Λ] 〈c, σ〉 �−→〈c′, σ′〉

Our relaxed semantics is parameterized over the relation Λ. At each step, the
original program c is substituted with a related program c′′, and then c′′ executes
one step following the normal interleaving semantics. Definition of the semantics
is simple: the only difference between it and the standard interleaving semantics
is this rule and a corresponding rule that handles the case that a program aborts.

Second, we give a particular instantiation of Λ — called program subsump-
tion ( 	 ) — which can relate a sequential segment of a thread between barriers
with any other sequential segments that have the same or fewer observational
behaviors. This gives programmers a simple and extensional view of relaxed
memory models. The derived semantics is weaker than many existing memory
models. It allows behaviors such as reordering of any two data-independent mem-
ory operations, write buffering with read bypassing, and those caused by the lack
of cache coherence and store atomicity.

Third, our semantics gives us a simple way to prove the soundness of se-
quential program transformations in a relaxed memory model: now we only
need to prove that the transformations preserve the subsumption relation used
to instantiate Λ. Then the DRF-guarantee of our relaxed semantics gives us
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their soundness in concurrent settings for data-race-free programs. Furthermore,
existing works on verification of sequential program transformations [3, 20, 30]
have developed techniques to prove observational equivalence or simulation rela-
tions, which may be used to further derive the subsumption relation. Therefore
our work makes it possible to incorporate these techniques into this framework
and reuse the existing verification results.

Fourth, we give a grainless semantics to concurrent programs. The seman-
tics is inspired by previous work on grainless trace semantics [25, 8], but it is
operational instead of denotational. Since it permits only race-free programs to
execute, the semantics gives us an operational formulation of data-race-freedom.
As shown in Fig. 1 (b), it also bridges the sequential consistency semantics and
our relaxed semantics, which greatly simplifies the proofs of the DRF-guarantee.

Last but not least, we finally give a formal proof of the folklore theorem that
CSL is sound in relaxed memory models. As Fig. 1 (b) shows, we first prove that
CSL guarantees the data-race-freedom and partial correctness of programs in
our grainless semantics. This, combined with the DRF-guarantee of our relaxed
semantics, gives us the soundness of CSL in the relaxed model.

2 The Language and Interleaving Semantics

(Expr) e ::= n | x | e1 + e2 | - e | . . .

(BExpr) b ::= true | false | e1 = e2 | e1 < e2 | . . .

(Comm) c ::= x:= e | x:=[e] | [e]:= e′ | skip | x:= cons(e1, . . . , en)
| dispose(e) | c1; c2 | if b then c1 else c2 | while b do c
| atomic c | c1 ‖ c2

The syntax of the language is shown above. Arithmetic expressions (e) and
boolean expressions (b) are pure: they do not access memory. To simplify the
presentation, we assume in this paper that parallel threads only share read-only
variables, therefore evaluation of expressions would not be interfered by other
threads. This allows us to focus on studying memory reads (x:= [e]) and writes
([e]:= e′). cons and dispose allocate and free memory respectively.

atomic c ensures that the execution of c is not interrupted by other threads.
It can be viewed as a synchronization block in high-level languages. On the other
hand, we can take a very low-level view and treat atomic as an annotation for
hardware supported atomic operations with memory barriers. For instance, we
can simulate a low-level compare-and-swap (CAS(�, x, y)) operation:

atomic { v:= [�]; if v =x then [�]:= y else skip; y:= v }
Higher-level synchronization primitives such as semaphores and mutexes can be
implemented using this primitive construct. Also in this paper we only consider
non-nested atomic blocks and we do not have parallel compositions in the block.

Before presenting the operational semantics of the language, we first define
the runtime constructs in Fig. 2. Program states (σ) consist of heaps and stores.
A heap (h) is a partial mapping from memory locations to integers. A store (s)
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(Location) � ::= n (natural number)

(Heap) h ∈ Location ⇀fin Integer (State) σ ::= (h, s)

(Store) s ∈ Variable → Integer (ThrdTree) T ::= c | 〈〈T, T 〉〉c

(LocSet) rs,ws ∈ P(Location) (Footprint) δ ::= (rs,ws)

emp
def
= (∅, ∅) δ ∪ δ′ def

= (δ.rs∪ δ′.rs, δ.ws∪ δ′.ws)

δ⊆δ′ def
= (δ.rs ⊆ (δ′.rs∪ δ′.ws)) ∧ (δ.ws ⊆ δ′.ws) δ⊂δ′ def

= (δ ⊆ δ′) ∧ (δ 	= δ′)

Fig. 2. Runtime constructs and footprints

maps variables to integers. A thread tree (T ) is either a command c, which can
be viewed as a single thread; or two sub-trees running in parallel, with the parent
node c to be executed after the two sub-trees both terminate.

(SeqContext) E ::= [ ] | E; c

(ThrdContext) T ::= [ ] | 〈〈T, T 〉〉c | 〈〈T,T〉〉c

We give a contextual operational semantics for the language. The sequential
context (E) and thread context (T) defined above show the places where the ex-
ecution of primitive commands occurs. Sequential execution of threads is shown
in Fig. 3. We use �e�s to represent the evaluation of e with the store s. The
definition is standard and is omitted here. The execution of a normal primitive
command is modeled by the labeled transition ( u−−→

δ
). Here the footprint δ

is defined in Fig. 2 as a pair (rs,ws), which records the memory locations that
are read and written in this step. Recording the footprint allows us to discuss
races between threads in the following sections. Since we assume threads only
share read-only variables, accesses of variables do not cause races and we do not
record variables in footprints. A step aborts if it accesses memory locations that
are not in the domain of the heap.

The transition ( o−−→
δ

) models the execution of cons and dispose. We use

the label o instead of u to distinguish them from other commands. They are at
higher abstraction levels than other primitive commands that may have direct
hardware implementations, but we decide to support them in our language be-
cause they are important high-level language constructs. Their implementations
usually require synchronizations to be thread-safe, so we model them as built-in
synchronized operations and they cannot be reordered in our relaxed semantics.
In this paper we call them (along with atomic blocks and fork/join of threads)
ordered operations. Remaining operations are called unordered.

We may omit the footprint δ and the labels u and o when they are not relevant.
We also use R∗ to represent the reflexive transitive closure of the relation R. For
instance, we use ( −−→

δ
) to represent the union of ordered and unordered

transitions, and use ( −−→ ) to ignore the footprint, whose reflexive transitive
closure is represented by ( −−→∗ ).
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〈E[ x:= [e] ], (h, s)〉 u−−−−→
({�},∅)

〈E[ skip ], (h, s′)〉 if �e�s =�, h(�)=n, s′ =s[x�n]

〈E[ x:= [e] ], (h, s)〉 u−−→
emp

abort otherwise

〈E[ [e]:= e′ ], (h, s)〉 u−−−−→
(∅,{�})

〈E[ skip ], (h′, s)〉 if �e�s =�, �e′�s =n, � ∈ dom(h),

and h′ = h[��n]

〈E[ [e]:= e′ ], (h, s)〉 u−−→
emp

abort otherwise

〈E[ x:= e ], (h, s)〉 u−−→
emp

〈E[ skip ], (h, s′)〉 if �e�s = n and s′ = s[x�n]

〈E[ skip; c ], σ〉 u−−→
emp

〈E[ c ], σ〉 always

. . . . . .

〈E[dispose(e) ], (h, s)〉 o−−−−→
(∅,{�})

〈E[ skip ], (h′, s)〉 if �e�s =�, �∈dom(h), h′ =h\{�}

〈E[dispose(e) ], (h, s)〉 o−−→
emp

abort otherwise

〈E[ x:=cons(e1, . . . , ek) ], (h, s)〉 o−−−−→
(∅,ws)

〈E[ skip ], (h′, s′)〉
if ws = {�, . . . , �+k−1}, ws∩dom(h) = ∅, �ei�s = ni,

s′ = s[x� �] and h′ = h[��n1, . . . , �+k−1�nk]

〈c, σ〉 −−→
δ

〈c′, σ′〉 if 〈c, σ〉 u−−→
δ

〈c′, σ′〉 or 〈c, σ〉 o−−→
δ

〈c′, σ′〉
〈c, σ〉 −−→

δ
abort if 〈c, σ〉 u−−→

δ
abort or 〈c, σ〉 o−−→

δ
abort

Fig. 3. Sequential footprint semantics

〈T[ c ], σ〉 −→ 〈T[ c′ ], σ′〉 if 〈c, σ〉 −−→ 〈c′, σ′〉
〈T[ c ], σ〉 −→ abort if 〈c, σ〉 −−→ abort

〈T[E[atomic c ] ], σ〉 −→ 〈T[E[ skip ] ], σ′〉 if 〈c, σ〉 −−→∗ 〈skip, σ′〉
〈T[E[atomic c ] ], σ〉 −→ abort if 〈c, σ〉 −−→∗ abort

〈T[E[ c1 ‖c2 ] ], σ〉 −→ 〈T[ 〈〈c1, c2〉〉E[ skip ] ], σ〉 always

〈T[ 〈〈skip, skip〉〉c ], σ〉 −→ 〈T[ c ], σ〉 always

Fig. 4. Interleaving semantics of concurrent programs

Figure 4 defines the interleaving semantics of concurrent programs. Following
Vafeiadis and Parkinson [29], the execution of c in atomic c does not interleave
with the environment. If c does not terminate, the thread gets stuck. Again, we
assume there are no atomic blocks or parallel compositions in c.

Next we give a simple example to show the use of contexts and thread trees.

Example 1. Suppose c = (c1 ‖ c2); c′. Then we know c = T[E[ c1 ‖ c2 ] ], where
T = [ ] and E = [ ]; c′. After one step, we reach the thread tree 〈〈c1, c2〉〉(skip; c′).
Then the T′ for the next step can be either 〈〈[ ], c2〉〉(skip; c′) or 〈〈c1, [ ]〉〉(skip; c′).
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[Λ] 〈T, σ〉 −→ 〈T ′, σ′〉 if ∃T ′′. (T, T ′′)∈Λ ∧ 〈T ′′, σ〉 −→〈T ′, σ′〉

[Λ] 〈T, σ〉 −→ abort if ∃T ′. (T, T ′)∈Λ ∧ 〈T ′, σ〉 −→ abort

Fig. 5. Semantics parameterized over Λ

3 Parameterized Relaxed Semantics

In this section, we present our parameterized operational semantics. Then we
instantiate it with a relation between sequential programs to capture relaxed
memory models and compiler optimizations.

3.1 Parameterized Semantics

Figure 5 shows the two new rules of our parameterized semantics. The stepping
relation takes Λ as a parameter, which is a binary relation between thread trees:

Λ ∈ P(ThrdTree × ThrdTree)

The semantics follows the interleaving semantics in Fig. 4, except that the cur-
rent thread tree can be replaced at any given step by another thread tree related
through the Λ relation. Λ is supposed to provide a set of thread trees that are
equivalent to the current thread tree with some notion of equivalence. This Λ-
based semantics chooses nondeterministically which command will execute.

Naturally, different instantiations of Λ yield different semantics. As one can
see, this semantics is trivially equivalent to the interleaving semantics shown
in Fig. 4 once Λ is instantiated with an identity relation. A more interesting
relation to be used as an instantiation of Λ is presented in the following sections.

3.2 Command Subsumption

We define a command subsumption relation that

1. preserves synchronized operations of the code;
2. but permits the rewriting of non-synchronized sequential portions while pre-

serving their sequential semantics.

The intuition is that programs should be well-synchronized to avoid unexpected
behaviors in relaxed memory models. That is, accesses to shared memory should
be performed through synchronized operations (cons, dispose and atomic c in
our language), and non-synchronized (unordered) operations should only access
thread-local or read-only memory (but note that the term “shared” and “local”
are dynamic notions and their boundary does not have to be fixed). Therefore,
the effect of a thread’s non-synchronized code is not visible to other threads
until the next synchronized point is reached. On the other hand, the behavior
of the non-synchronized code will not be affected by other threads either since
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〈c, σ〉 u−−→
emp

0 〈c, σ〉 always

〈c, σ〉 u−−→
δ

k+1 〈c′, σ′〉 if there exist c′′, σ′′, δ′, and δ′′ such that δ = δ′ ∪ δ′′,

〈c, σ〉 u−−→
δ′

〈c′′, σ′′〉 and 〈c′′, σ′′〉 u−−→
δ′′

k〈c′, σ′〉
〈c, σ〉 ⇓δ 〈c′, σ′〉 if 〈c, σ〉 u−−→

δ

∗〈c′, σ′〉, ¬(〈c′, σ′〉 u−−→ abort),

and ¬∃c′′, σ′′.(〈c′, σ′〉 u−−→ 〈c′′, σ′′〉)
〈c, σ〉 ⇓ 〈c′, σ′〉 if there exists δ such that 〈c, σ〉 ⇓δ 〈c′, σ′〉

〈c, σ〉 −−→
emp

0 〈c, σ〉 always

〈c, σ〉 −−→
δ

k+1 〈c′, σ′〉 if there exist c′′, σ′′, δ′, and δ′′ such that δ = δ′ ∪ δ′′,

〈c, σ〉 −−→
δ′

〈c′′, σ′′〉 and 〈c′′, σ′′〉−−→
δ′′

k〈c′, σ′〉

Fig. 6. Multi-step sequential transitions

the data it uses would not be updated by others. So we do not need to consider
its interleaving with other threads.

The subsumption of c1 by c2 (c1 	 c2) is defined below. Here ( u−−→
δ

∗ ) rep-

resents zero or multiple steps of unordered transitions, where δ is the union of
the footprints of individual steps. 〈c, σ〉 ⇓ 〈c′, σ′〉 is a big-step transition of un-
ordered operations. From the definition shown in Fig. 6, we know c′ must be
either skip, or a command starting with an ordered operation.

Definition 3.1. c1 	0 c2 always holds; c1 	k+1 c2 holds if and only if, for all
j ≤ k, the following are true:

1. If 〈c1, σ〉 u−−→∗ abort, then 〈c2, σ〉 u−−→∗ abort;
2. If 〈c1, σ〉 ⇓ 〈c′1, σ′〉, then either 〈c2, σ〉 u−−→∗ abort, or there exists c′2 such

that 〈c2, σ〉 ⇓ 〈c′2, σ′〉 and the following constraints hold:
(a) if c′1 = skip, then c′2 = skip;
(b) if c′1 = E1[ c′′1 ‖c′′′1 ], there exist E2, c′′2 and c′′′2 such that

i. c′2 = E2[ c′′2 ‖c′′′2 ];
ii. c′′1 	j c′′2 and c′′′1 	j c′′′2 ;
iii. E1[ skip ] 	j E2[ skip ];

(c) if c′1 = E1[atomic c′′1 ], there exist E2 and c′′2 such that
i. c′2 = E2[atomic c′′2 ];
ii. c′′1 	j c′′2 ;
iii. E1[ skip ] 	j E2[ skip ];

(d) if c′1 = E1[ c′′1 ], where c′′1 is a cons or dispose command, there exist E2

and c′′2 such that
i. for all σ, if 〈c′′1 , σ〉 o−−→ abort, then 〈c′′2 , σ〉 o−−→ abort;
ii. for all σ and σ′, if 〈c′′1 , σ〉 o−−→ 〈skip, σ′〉, then〈c′′2 , σ〉 o−−→〈skip, σ′〉;
iii. E1[ skip ] 	j E2[ skip ].
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3. If 〈c1, σ〉 u−−→
δ1

∗〈c′1, σ′〉, then either 〈c2, σ〉 u−−→∗ abort, or there exist δ2, c′2

and σ′′ such that 〈c2, σ〉 u−−→
δ2

∗〈c′2, σ′′〉 and δ1 ⊆ δ2;

We define c1 	 c2 as ∀k. c1 	k c2; and c1 � c2 as c2 	 c1. �

Informally, we say c1 is subsumed by c2 if for all input states — after performing
a sequential big step — c1 aborts only if c2 aborts; or, if c1 completes, then c2

either aborts or takes a big step that ends in the same state. Also, if c1 at the
end of the big step terminates (skip case) or reaches a synchronization point
(cases for thread fork and join, atomic blocks, cons and dispose), there must be
a corresponding termination or synchronization point at the end of the big step
taken by c2 and the remaining parts (if any) of c1 and c2 still satisfy the relation.
We use indices in the definition since E1[ skip ] in the cases 2(b), 2(c) and 2(d)
might be “larger” than c1. The last condition requires that the footprint of c1

is not larger than that of c2 if c2 does not abort. The subset relation between
footprints is defined in Fig. 2.

Properties of subsumption. Suppose c1 and c2 are sequential programs consisting
of unordered operations only, and c1 	 c2. For any input state we have the
following possibilities:

1. c2 aborts and c1 may have any behaviors;
2. c1 and c2 complete a big step and reach the same state;
3. c1 diverges and c2 may have any behaviors.

Here we intend to use c2 to represent the original program and c1 the one after
optimizations (by compilers or hardware). By the three cases above we know c1

preserves the partial correctness of c2 [10] (to handle total correctness, an extra
condition must be added to Definition 3.1 to ensure that normal termination is
preserved by subsumption). The last condition in Definition 3.1 is also necessary
to ensure the transformation from c2 to c1 does not introduce new races. We give
examples in Sect. 4 to show the expressiveness of the subsumption relation and
how it models behaviors of programs in relaxed memory models. More properties
about the relation are shown by the following two lemmas.

Lemma 3.2. The relation 	 is reflexive and transitive.

Lemma 3.3. If c1 	 c2, then, for all contexts C, C[ c1 ] 	 C[ c2 ].

Here C can be any context, i.e. a program with a hole in it. It does not have to
be E or T.

3.3 Relaxed Semantics

The subsumption relation can be lifted for thread trees.
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Definition 3.4. We define the binary relation 	t for thread trees.

T1 	t T2
def=

⎧
⎨

⎩

c1 	 c2 if T1 = c1 and T2 = c2

c1 	 c2 ∧ T ′
1 	t T ′

2 if T1 = 〈〈T ′
1, T

′′
1 〉〉c1

∧T ′′
1 	t T ′′

2 and T2 = 〈〈T ′
2, T

′′
2 〉〉c2

We use T1 �t T2 to represent T2 	t T1. �

We obtain a relaxed operational semantics by instantiating Λ of our parameter-
ized semantics with this relation. The resulting stepping relation becomes

[�t] 〈T, σ〉 �−→ 〈T ′, σ′〉 .

At each step, this semantics performs a program transformation following the
subsumption relation. This resembles a dynamic compiler that modifies the pro-
gram as it executes.

On the other hand, as we show in Lemma 3.5, the execution according to
this semantics is equivalent to performing one single initial program transfor-
mation and then executing the target program using the interleaving semantics.
This resembles a static compiler that modifies the program prior to execution.
Similarly, Lemma 3.6 shows the abort case.

Lemma 3.5. [�t] 〈T, σ〉 �−→∗ 〈skip, σ′〉 iff there exists a T ′ such that T �t T ′

and 〈T ′, σ〉 �−→∗ 〈skip, σ′〉.
Lemma 3.6. [�t] 〈T, σ〉 �−→∗ abort iff there exists a T ′ such that T �t T ′ and
〈T ′, σ〉 �−→∗ abort.

We will formulate and prove the DRF-guarantee of this relaxed semantics in
Sect. 5, after we formally define data-race-freedom.

4 Examples

There are different aspects that characterize a particular memory model. In this
section, we show how they are reflected in our semantics. The examples are shown
with the following naming convention: v1, v2, v3, etc, are thread-local variables
that hold values; x, y, z, etc, are variables that hold memory addresses.

Data dependencies. At first glance, the definition of � is too restrictive since it
quantifies over all input states. It does not allow

([x]:= 1; v1:= [y]) � (v1:= [y]; [x]:= 1) ,

where the data dependency of the two statements depends on the runtime values
of x and y. However, the � relation allows the following transformation:

[x]:= 1; v1:= [y] � if x = y then ([x]:= 1; v1:= [x]) else (v1:= [y]; [x]:= 1),

where we insert a dynamic test to see if x is an alias of y. So we do allow
reordering of memory accesses that do not have data dependencies at runtime.



Parameterized Memory Models and Concurrent Separation Logic 277

Memory reordering. It is easy to see that the � relation supports all four types
of memory reordering (R,W → R,W). In the example below,

(v1:= [x]; [y]:= 1) ‖ (v2:= [y]; [x]:= 1) ,

we can get v1 =v2 =1 if x �=y. This can be achieved by reordering the commands
in the second thread (not supported by Boudol and Petri [7]),

v2:= [y]; [x]:= 1 � if x = y then (v2:= [x]; [x]:= 1) else ([x]:= 1; v2:= [y]) .

Write atomicity. Write atomicity is not preserved by the � relation. In the
classic cross-over example below,

([x]:= 1; v1:= [x]) ‖ ([x]:= 2; v2:= [x]) ,

we can get v1 = 2 and v2 = 1. This is achieved by adding a redundant write
in the right hand side thread: [x]:= 2; v2:= [x] � [x]:= 2; v2:= [x]; [x]:= 2 .
This simulates the duration between the beginning and the end of the write. We
may also store arbitrary values to memory before completing. For instance, the
program below allows v1 = 33 at the end.

v1:= [x] ‖ [x]:= 1

It happens with the following transformation of the right hand side thread:

[x]:= 1 � [x]:= 33; [x]:= 1 ,

which means the memory value is undefined until the write completes. This is
commonly referred to as “out-of-thin-air” behavior. A similar behavior shows up
when we have simultaneous writes to the same location:

(v1:= 1; [x]:= v1) ‖ [x]:= 2 .

In this case, the final value of [x] could be arbitrary. It could be 3 if we do the
following transformation of the left hand side thread:

v1:= 1; [x]:= v1 � [x]:= 0; v1:= [x]; v1:= v1 + 1; [x]:= v1 .

Strong barrier. In the relaxed semantics, we can enforce both atomicity and order-
ing by using atomic c. A memory fence MF can be implemented by atomic skip.
The following examples show that MF is not sufficient to enforce program orders
when there is no cache coherence. In the example below,

[x]:= 1 ‖ [x]:= 2 ‖
⎛

⎝
v1:= [x];
MF;
v2:= [x]

⎞

⎠ ‖
⎛

⎝
v3:= [x];
MF;
v4:= [x]

⎞

⎠

We can get the outcome v1 = v4 = 1 and v2 = v3 = 2 by rewriting the leftmost
thread: [x]:= 1 � [x]:= 1; [x]:= 1.
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See also the independent-reads-independent-writes (IRIW) example:

[x]:= 1 ‖ [y]:= 1 ‖
⎛

⎝
v1:= [x];
MF;
v2:= [y]

⎞

⎠ ‖
⎛

⎝
v3:= [y];
MF;
v4:= [x]

⎞

⎠

where the behavior v1 = v3 = 1 and v2 = v4 = 0 is permissible if we rewrite the
leftmost thread through [x]:= 1 � [x]:= 1; [x]:= 0; [x]:= 1.

Race-free programs. Race-free programs do not have unexpected behaviors in
our semantics (see the DRF-guarantee in Sect. 5). In the example below:

(
v1:= [x];
if v1 = 1 then [y]:= 1

)

‖
(

v2:= [y];
if v2 = 1 then [x]:= 1

)

the only behavior allowed is v1 = v2 = 0. Because the two conditional statements
cannot be reached (assuming [x] = [y] = 0 and x �= y initially), the program
never issues a memory write. So the program is race-free. Also, transformations
allowed by the � relation cannot introduce races by inserting redundant writes.
This is guaranteed by the fact that the footprints of both threads are disjoint,
and they cannot increase after transformations.

Compiler optimizations (and obfuscations). Redundant memory reads and writes
can be introduced and eliminated, as shown by the following examples:

v1:= [x]; v2:= 1 � v1:= [x]; v2:= [x]; v2:= 1
v1:= [x]; v2:= [x] � v1:= [x]; v2:= v1

[x]:= v1 � [x]:= 1; [x]:= v1

[x]:= 1; [x]:= v1 � [x]:= v1

Furthermore, we can eliminate dead memory operations and reduce the memory
footprint: v1:= [x]; v1:= 1 � v1:= 1. Note that the reverse is not true: ¬(v1:= 1 �
v1:= [x]; v1:= 1). A transformation cannot increase the footprint.

Now we can reproduce the prescient-write example:

(v1:= [x]; [x]:= 1) ‖ (v2:= [x]; [x]:= v2)

where we could have v1 = v2 = 1 by rewriting the left hand side thread:

v1:= [x]; [x]:= 1 � v1:= [x]; [x]:= 1; [x]:= v1; v1:= [x]; [x]:= 1 .

Other optimizations, including instruction scheduling, register allocation, alge-
braic transformations and control transformations, can also be supported. More
examples can be found in the technical report [15].

Total store ordering. We give another non-trivial instantiation of Λ in our param-
eterized semantics, which yields the Total Store Ordering (TSO) model imple-
mented by the SPARCv8 architecture [28]. TSO allows write-to-read reordering.
It enforces cache-coherence, but allows a thread to read its own writes earlier.
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E[ [e1]:= e′; x:= [e2] ] �tso E[

⎛

⎝
if (e1 = e2)
then (x:= e′; [e1]:=x)
else (x:= [e2]; [e1]:= e′)

⎞

⎠ ]

if x 	∈ fv(e1)∪fv(e′)

E[ [e]:= e′1; x:= e′2 ] �tso E[ x:= e′2; [e]:= e′1 ] if x 	∈ fv(e)∪fv(e′1)

E[ [e]:= e′; skip ] �tso E[ skip; [e]:= e′ ] always

E[ [e1]:= e′1; [e2]:= e′2 ] �tso c′ if ∃c′′. E[ [e2]:= e′2 ] �tso c′′

∧ ([e1]:= e′1; c
′′) �tso c′

E[

(
[e]:= e′;
if b then c1 else c2

)

] �tso E[

(
if b then ([e]:= e′; c1)

else ([e]:= e′; c2)

)

] always

E[ [e]:= e′;while b do c ] �tso E[

⎛

⎝
if b
then ([e]:= e′; c;while b do c)
else [e]:= e′

⎞

⎠ ] always

c �tso c always

Fig. 7. TSO

We define �tso, an instantiation of Λ, in Fig. 7. The first rule shows the
reordering of a write with a subsequent read. The else branch shows the re-
ordering when there is no data dependency. The then branch allows a thread to
read its own write earlier. Here fv(e) is the set of free variables in e. The other
rules (except the last one) show how to propagate the reordering to the subse-
quent code. Remember that the transformation may occur at any step during
the execution in our parameterized semantics, so we only need to consider the
statements starting with a write operation, and the write might be postponed
indefinitely until an ordered operation is reached.

In real architectures, the reordering is caused by write buffering instead of
swapping the two instructions. We do not model the write buffer here since our
goal is not to faithfully model what happens in hardware. Instead, we just want
to give an extensional model for programmers. To see the adequacy of our rules,
we can view the right hand side of the first rule as a simplification of the following
code, which simulates the write buffering [24] more directly:

local tmp, buf
in tmp:= e1; buf:= e′;(if tmp = e2 then x:= buf else x:= [e2]); [tmp]:= buf end

Here the local variable buf can be viewed as a write buffer. Also note that the
side condition of this rule can be eliminated if we also simulate the hardware
support of register renaming (like our use of tmp above).

Remark 1. �tso is a subset of � .

Partial Store Ordering (PSO). In our technical report [15], we define �pso,
another instantiation of Λ that yields the PSO model [28]. It is defined by simply
adding a couple of rules to �tso to support write-to-write reordering.
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5 Grainless Semantics and DRF Guarantee

Following Reynolds [25] and Brookes [8], here we give a grainless semantics to
our language, which is operational instead of being a trace-based denotational
semantics. The semantics permits only data-race-free programs to execute, there-
fore it gives us a simple and operational formulation of data-race-freedom and
allows us to prove the DRF-guarantee of our relaxed semantics.

5.1 Grainless Semantics

Below we first instrument thread trees with footprints for threads. Execution
contexts T̃ in the instrumented trees are defined similarly to T in Sect. 2.

(ThrdTree) T̃ ::= (c, δ) | 〈〈T̃ , T̃ 〉〉c
(ThrdCtxt) T̃ ::= [ ] | 〈〈T̃, T̃ 〉〉c | 〈〈T̃ , T̃〉〉c

The footprint δ associated with each leaf node on T̃ records the memory locations
that are being accessed by this thread. To ensure the data-race-freedom, the
footprint δ of the active thread at the context T̃ must be disjoint with the
footprints of other threads. This requirement is defined in Fig. 8 as the wft
(well-formed tree) condition. We also define �T � to convert T to an instrumented
thread tree with an initial footprint emp for each thread.

The grainless semantics is shown in Fig. 9, which refers to the sequential
transitions defined in Figs. 3 and 6. In this semantics we execute unordered
commands in a big step, as shown in the first rule (see Fig. 6 for the definition
of 〈c, σ〉 ⇓δ 〈c′, σ′〉). It cannot be interrupted by other threads, therefore the
environment cannot observe transitions of the smallest granularity. The footprint
δ of this big step is recorded on the thread tree at the end, which means the
transition has duration and the memory locations in δ are still in use (even
though the state is changed to σ′). So when other threads execute, they cannot
assume this step has finished and cannot issue conflicting memory operations.

cons and dispose (the third rule), atomic blocks (the sixth rule) and thread
fork/join (the last two rules) are all atomic instead of being grainless. Comparing
with the first rule, we can see the footprint at the end of the step is emp, showing
that this step finishes and the memory locations in δ are no longer in use. Note
the emp footprint also clears the footprint of the preceding unordered transition
of this thread, therefore these atomic operations also serve as memory barriers
that mark the end of the preceding unordered commands. The footprint on the
left hand side is not used in these rules, so we use to omit it.

δ � δ′ def
= (δ.ws ∩ (δ′.rs ∪ δ′.ws) = ∅) ∧ (δ.rs ∩ δ′.ws = ∅)

wft(T̃, δ)
def
= ∀c, c′, δ′, T̃′. (T̃[ (c, δ) ]= T̃′[ (c′, δ′) ]) ∧ (T̃ 	= T̃′) → δ�δ′

�T � def
=

{
(c, emp) if T = c
〈〈�T1�, �T2�〉〉c if T = 〈〈T1, T2〉〉c

Fig. 8. Auxiliary definitions
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〈T̃[ (c, ) ], σ〉=⇒〈T̃[ (c′, δ) ], σ′〉 if 〈c, σ〉 ⇓δ 〈c′, σ′〉 and wft(T̃, δ)

〈T̃[ (c, δ) ], σ〉=⇒〈T̃[ (c, δ′) ], σ〉 if 〈c, σ〉 u−−→
δ′

∗〈c′, σ′〉, δ ⊂ δ′, wft(T̃, δ′)

〈T̃[ (c, ) ], σ〉=⇒〈T̃[ (c′, emp) ], σ′〉 if 〈c, σ〉 o−−→
δ

〈c′, σ′〉 and wft(T̃, δ)

〈T̃[ (c, ) ], σ〉=⇒ race if 〈c, σ〉 u−−→
δ

∗〈c′, σ′〉 or 〈c, σ〉 o−−→
δ

〈c′, σ′〉,
and ¬wft(T̃, δ)

〈T̃[ (c, ) ], σ〉=⇒ abort if 〈c, σ〉 u−−→∗ abort or 〈c, σ〉 o−−→ abort

〈T̃[ (E[atomic c ], ) ], σ〉=⇒〈T̃[ (E[ skip ], emp) ], σ′〉 if 〈c, σ〉−−→
δ

∗〈skip, σ′〉
and wft(T̃, δ)

〈T̃[ (E[atomic c ], ) ], σ〉=⇒ race if 〈c, σ〉−−→
δ

∗〈c′, σ′〉
and ¬wft(T̃, δ)

〈T̃[ (E[atomic c ], ) ], σ〉=⇒ abort if 〈c, σ〉 −−→∗ abort

〈T̃[ (E[ c1 ‖c2 ], ) ], σ〉 =⇒ 〈T̃[ 〈〈(c1, emp), (c2, emp)〉〉E[ skip ] ], σ〉 always

〈T̃[ 〈〈(skip, ), (skip, )〉〉c ], σ〉 =⇒ 〈T̃[ (c, emp) ], σ〉 always

Fig. 9. Grainless semantics

In all these rules, we check the wft condition to ensure that each step does
not issue memory operations that are in conflict with those ongoing ones made
by other threads. If the check fails, we reach the special race configuration and
the execution stops (the fourth and seventh rules).

The second rule, which has not been explained yet, allows an intermediate
footprint δ′ to be recorded on the thread tree before the big step transition of
unordered commands finishes. This is necessary to characterize the following
program as one with data-races:

(while true do [x]:= 3) ‖ (while true do [x]:= 4)

The first rule does not apply here because both threads diverge, but we can
apply the second rule to record the write set {x} on the thread tree and then
apply the fourth rule to detect the race. Note that this rule does not change the
command c or the state σ. If we ignore the footprint, it simply adds stuttering
steps in the semantics. The side condition δ ⊂ δ′ (defined in Fig. 2) ensures
the stuttering steps are not inserted arbitrarily. Here δ is either an intermediate
footprint accessed earlier during this big-step transition, or the footprint accessed
by the preceding transition of this thread. In the second case, the last step must
be an atomic operation and δ must be emp.

Following Reynolds’ principles for grainless semantics [25], both abort and
race are viewed as bad program configurations. We distinguish race from abort
to define data-race-freedom. A thread tree T is race-free if its execution never
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leads to race. By this definition, programs that abort may still be race-free. This
allows us to talk about race-free but unsafe programs, as shown in Theorem 5.2.

Definition 5.1. 〈T, σ〉 racefree iff ¬(〈�T �, σ〉 =⇒∗ race); T racefree iff, for all
σ, 〈T, σ〉 racefree.

Example 2. Given the following programs,

(1) [x]:= 3 ‖ [x]:= 4
(2) [x]:= 3 ‖ atomic {[x]:= 4}
(3) [x]:= 3 ‖ atomic {while true do [x]:= 4}
(4) atomic {[x]:= 3} ‖ atomic {[x]:= 4}
we know (4) is race-free, but (1), (2) and (3) are not.

5.2 DRF-Guarantee of the Relaxed Semantics

Theorem 5.2 formulates the DRF-guarantee of the relaxed semantics. It says a
race-free program configuration has the same observable behaviors in both the
relaxed semantics and the interleaving semantics: if it aborts in one semantics,
it aborts in the other; if it never aborts (which means it is “safe”), it reaches the
same set of final states in both settings. We need the premise in the second case
because the subsumption relation allows us to transform an unsafe program into
a safe one. Therefore a program that reaches 〈skip, σ′〉 in the relaxed semantics
may abort and never terminate at σ′ in the interleaving semantics.

Theorem 5.2 (DRF-guarantee). If 〈T, σ〉 racefree, then

1. [�t] 〈T, σ〉 �−→∗ abort iff 〈T, σ〉 �−→∗ abort.
2. If ¬(〈T, σ〉 �−→∗ abort), then

[�t] 〈T, σ〉 �−→∗ 〈skip, σ′〉 iff 〈T, σ〉 �−→∗ 〈skip, σ′〉.
The proof trivially follows from two important lemmas. Lemma 5.3 shows the
equivalence between the interleaving semantics and the grainless semantics for
race-free programs. Lemma 5.4 shows the equivalence between the grainless se-
mantics and the relaxed semantics. Therefore, we can derive the DRF-guarantee
using the grainless semantics as a bridge (see Fig. 1 (b)).

Lemma 5.3. If 〈T, σ〉 racefree, then

1. 〈T, σ〉 �−→∗ abort iff 〈�T �, σ〉 =⇒∗ abort.
2. 〈T, σ〉 �−→∗ 〈skip, σ′〉 iff 〈�T �, σ〉 =⇒∗ 〈(skip, ), σ′〉.

Lemma 5.4. If 〈T, σ〉 racefree, then

1. [�t] 〈T, σ〉 �−→∗ abort iff 〈�T �, σ〉 =⇒∗ abort.
2. if ¬(〈T, σ〉 �−→∗ abort), then

[�t] 〈T, σ〉 �−→∗ 〈skip, σ′〉 iff 〈�T �, σ〉 =⇒∗ 〈(skip, ), σ′〉.
Details about the proofs can be found in the technical report [15].
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� {p ∗ I} c {q ∗ I}
I � {p}atomic c {q} (atom)

I � {p1} c1 {q1} I � {p2} c2 {q2}
I � {p1 ∗ p2} c1 ‖ c2 {q1 ∗ q2} (par)

c2 does not update free var. in p1, c1 and q1, and conversely.

Fig. 10. Selected CSL Rules

6 Soundness of CSL

We prove the soundness of CSL in our relaxed semantics by first proving it is
sound in the grainless semantics. The CSL we use here is mostly standard [23, 9].
It consists of sequential and concurrent rules. The sequential part (� {p} c {q})
is standard sequential separation logic rules. The concurrent rules allow us to
derive a judgment of the form I � {p} c {q}. It informally says that the state
can be split implicitly into a shared part and a local part; the local part can be
accessed only by c; p and q are pre- and post-conditions for the local state; the
shared part can be accessed by both c and its environment, but only in atomic
blocks; accesses of the shared state must preserve its invariant I. Figure 10 shows
two of the most important rules of CSL.

We define semantics of the judgment I |= {p}c{q} below, based on the grain-
less semantics. The soundness of CSL rules is shown by Lemma 6.2.

Definition 6.1. I |= {p}c{q} iff, for all σ and δ such that σ |= I ∗ p and
σ |= δ � I, we have (1) ¬ (〈(c, δ), σ〉 =⇒∗ abort) and ¬ (〈(c, δ), σ〉 =⇒∗ race),
and, (2) if 〈(c, δ), σ〉 =⇒∗ 〈(skip, ), σ′〉, then σ′ |=I ∗ q.

Here σ |=I ∗ p means σ satisfies the assertion I ∗ p, and σ |= δ � I means the set
of memory locations in δ is disjoint with the domain of the sub-heap (in σ) that
satisfies I. The formal definitions are given in the technical report [15].

Lemma 6.2. If I � {p} c {q}, then I |= {p}c{q}.
The proof of this lemma follows standard techniques, i.e. we need to first prove
the locality [31, 10] of each primitive commands. We show details of the proofs
in our technical report [15]. Next we give semantics to I � {p} c {q} based on
our relaxed semantics, and show the soundness in Theorem 6.4.

Definition 6.3. I |=[Λ] {p}c{q} iff, for all σ such that σ |= I ∗ p, we have
(1) ¬ ([Λ] 〈c, σ〉 �−→∗ abort), and, (2) if [Λ] 〈c, σ〉 �−→∗ 〈skip, σ′〉, then σ′ |=I ∗ q.

Theorem 6.4. If I � {p} c {q}, then I |=[�t] {p}c{q}.
Proof. Trivial by applying Lemmas 5.4 and 6.2. �

Extensions of CSL. Bornat et al. [6] extended CSL with fractional permissions
to distinguish exclusive total accesses and shared read-only accesses. We can
prove CSL with fractional permissions is also sound with respect to the grainless
semantics, but the model of heaps needs to be changed to a partial mapping
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from locations to a pair of values and permissions. The proof should be similar
to the proof for standard CSL. We believe other extensions of CSL, such as CSL
with storable locks [17, 18] and the combination of CSL with Rely-Guarantee
reasoning [29, 13], can also be proved sound with respect to the grainless seman-
tics. Then their soundness in our relaxed semantics can be derived easily from
Lemma 5.4. We would like to verify our hypothesis in our future work.

7 Related Work and Conclusions

The literature on memory models is vast. We cannot give a detailed overview
due to space constraints. Below we just discuss some closely related work.

The RAO model by Saraswat et al. [26] consists of a family of transformations
(IM, CO, AU, LI, PR and DX). Unlike our subsumption relation which gives only
an abstract and extensional formulation of semantics preservation between se-
quential threads, each of them defines a very specific class of transformations. We
suspect that our model is weaker (not necessarily strictly weaker) than the RAO
model. IM, CO and DX are obvious specializations of our subsumption relation
with extra constraints. Although we only support intra-thread local transfor-
mations, we can define a more relaxed version of PR: c � if q then c′ else c ,
assuming c′ has the same behaviors with c if q holds over the initial state. AU
enforces a specific scheduling. We allow all possible scheduling in our relaxed
semantics. LI is an inter-thread transformation. It is unclear how it relates to
our subsumption relation, but the examples [26] involving LI (e.g., the cross-over
example) can be supported following the pattern with which we reproduce the
prescient-write example in Sect. 4.

In this paper, we do not investigate the precise connection to the Java Mem-
ory Model (JMM [21]). Our semantics is operational and not based upon the
happens-before model. We believe it provides a weaker memory model with the
DRF-guarantee, and supports compiler optimizations that JMM does not, such
as the one described by Cenciarelli et al. [11]. However, there are two key issues if
we want to apply our model to Java, i.e. preventing the “out-of-thin-air” behav-
iors and supporting partial barriers. The first one can be addressed by adding
constraints similar to Saraswat’s DX-family transformations in our subsumption
relation. The second one can be solved by allowing transformations to go beyond
partial barriers. We will show the solution in an upcoming paper.

Boudol and Petri [7] presented an operational approach to relaxed memory
models. Their weak semantics made explicit use of write buffers to simulate the
effects of memory caching during execution, which was more concrete and con-
structive than most memory model descriptions. However, only a restricted set of
reordering was observable in their semantics, while our semantics is much weaker
and supports all four types of memory reordering. Also, since our formalization
of memory models is based on program transformations, our semantics has bet-
ter support of compiler optimizations. The connection between their semantics
and program logics such as CSL is unclear either.

Sevcik [27] analyzed the impact of common optimizations in two relaxed mem-
ory models, establishing their validity and showing counter examples; some of
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our examples were inspired by his work. Gao and Sarkar [16] introduced Loca-
tion Consistency (LC), probably the weakest memory model described in the
literature; we stand by their view that memory models should be more relaxed
and not based necessarily on cache consistence.

Conclusions. We present a simple operational semantics to formalize memory
models. The semantics is parameterized on a binary relation over programs. By
instantiating the parameter with a specific relation�t, we have obtained a mem-
ory model that is weaker than many existing ones. Since the relation is weaker
than observational equivalence of sequential programs, this memory model also
captures many sequential optimizations that usually preserve semantic equiva-
lence. We then propose an operational grainless semantics, which allows us to
define data-race-freedom and prove the DRF-guarantee of our relaxed memory
model. We also proved the soundness of CSL in relaxed memory models, using
the grainless semantics as a bridge between CSL and the relaxed semantics.

In our future work, we would like to extend our framework to support partial
barriers. This can be achieved by extend the � relation with transformations
that go beyond partial barriers. It is also interesting to formally verify the cor-
rectness of sequential optimization algorithms in a concurrent setting. Given this
framework, it is sufficient to prove that the algorithms implement a subset of
the � relation.
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