
A Syntactic Approach to Foundational Proof-Carrying Code∗

Nadeem A. Hamid Zhong Shao Valery Trifonov Stefan Monnier Zhaozhong Ni
Department of Computer Science, Yale University

New Haven, CT 06520-8285, U.S.A.
{hamid-nadeem,shao,trifonov,monnier,ni-zhaozhong}@cs.yale.edu

Abstract

Proof-Carrying Code (PCC) is a general framework for
verifying the safety properties of machine-language pro-
grams. PCC proofs are usually written in a logic extended
with language-specific typing rules. In Foundational Proof-
Carrying Code (FPCC), on the other hand, proofs are con-
structed and verified using strictly the foundations of math-
ematical logic, with no type-specific axioms. FPCC is more
flexible and secure because it is not tied to any particular
type system and it has a smaller trusted base.

Foundational proofs, however, are much harder to con-
struct. Previous efforts on FPCC all required building so-
phisticated semantic models for types. In this paper, we
present a syntactic approach to FPCC that avoids the diffi-
culties of previous work. Under our new scheme, the foun-
dational proof for a typed machine program simply con-
sists of the typing derivation plus the formalized syntactic
soundness proof for the underlying type system. We give
a translation from a typed assembly language into FPCC
and demonstrate the advantages of our new system via an
implementation in the Coq proof assistant.

1. Introduction

Proof-Carrying Code (PCC), as pioneered by Necula and
Lee [17, 15], allows a code producer to provide a machine-
language program to a host along with a formal proof of its
safety. The proof can be mechanically checked by the host
and the producer need not be trusted because a valid proof
is a dependable certificate of safety.

The proofs in Necula’s PCC systems [16, 6] are writ-
ten in a logic extended with many language-specific typing
∗This research is based on work supported in part by DARPA OASIS

grant F30602-99-1-0519, NSF grant CCR-9901011, and NSF ITR grant
CCR-0081590. Any opinions, findings, and conclusions contained in this
document are those of the authors and do not reflect the views of these
agencies.

rules. They can guarantee safety only if there are no bugs
in the verification-condition generator (VCgen), the typing
rules, and the proof checker. The VCgen is fairly large, so
establishing its full correctness is a daunting task. The typ-
ing rules are also error-prone: Leagueet al. [11] recently
discovered a serious bug in the Special J typing rules that
undermines the integrity of the entire PCC-based system.

Foundational Proof-Carrying Code (FPCC) [4, 3] tack-
les these problems by constructing and verifying its proofs
using strictly the foundations of mathematical logic, with
no type-specific axioms. FPCC is more flexible and secure
because it is not tied to any particular type system and has
a smaller trusted base.

Foundational proofs, however, are much harder to con-
struct. Previous efforts on FPCC [4, 8, 1, 5] required con-
structing sophisticated semantic models to reason about
types. For example, to support contravariant recursive
types, Appel and Felty [8] initially decided to model each
type as a partial equivalence relation, but later found that
building the actual foundational proofs would “require
years of effort implementing machine-checked proofs of ba-
sic results in computability theory” [5, page 2]. Appel and
McAllester [5] later proposed an indexed model which sig-
nificantly simplified the proofs but still involves tedious rea-
soning of computation steps. More seriously, none of these
approaches can be easily extended to support mutable fields
and higher-order polymorphism. In fact, the only known
solution to mutable fields was proposed only very recently
by Ahmedet al. [2]—the proposal involves building a hier-
archy of G̈odel numberings and making extensive changes
to semantic models used in existing FPCC systems [4, 5].

In this paper, we present a syntactic approach to FPCC
that avoids all of these difficulties. Under our new scheme,
the foundational proof for a typed machine program simply
consists of the typing derivation plus the syntactic sound-
ness proof (of the underlying type system). Here the typ-
ing derivation can be readily obtained from a type-checker
while the syntactic soundness proof is known to be much

easier to construct than the semantic soundness proof [24].
Our paper makes the following new contributions:

• Foundational proofs are widely perceived as extremely
hard and tedious to construct, partly because existing
efforts [4, 8, 1, 5, 2, 21] on FPCC have all adopted
the semantic approach (which requires building so-
phisticated models from first principles). We show that
this perception is not true: with a syntactic approach,
constructing foundational proofs is much simpler and
more straightforward.

• As far as we know, our work is the first comprehensive
study on how to use a syntactic approach to generate
FPCC. The idea that attaching the soundness proof (for
the underlying type system) can reduce the trusted base
is not new [16, 3], however, none of the existing work
has shown how to use the syntactic proof to build the
foundational proof. In addition, we show in Sections 3
and 4 that näıvely combining existing typed assem-
bly languages (TAL) [14, 13, 25] with their soundness
proofs do not necessarily produce valid FPCC.

• The relationship between TAL [14] and PCC [17] has
never been made precise even though the two are con-
sidered as related approaches for certifying low-level
code. In Section 5 we show how to translate each
well-typed program in a non-trivial TAL into FPCC.
The translation is interesting because it not only shows
the connection between the two but also gives new in-
sights on how to turn the expressive invariants in PCC
into rich typing constructs in TAL.

• We show that the syntactic approach to FPCC can
support recursive types, mutable fields, and first-class
code pointers without using complex constructions re-
quired by the semantic approaches.

• Finally, independent of our results on FPCC, the typed
assembly language presented in Section 4 is interest-
ing on its own. Here our main contribution is a simple
technique for type-checking memory allocation and
for maintaining invariants about the allocation state.

In the rest of this paper, we first give a formal definition of
FPCC (following [3]) in Section 2 and present an overview
of the requirements for constructing foundational proofs in
Section 3. We then formally define our sample typed as-
sembly language (called FTAL) in Section 4. In Sections 5
and 6 we give the detailed translation from FTAL programs
into FPCC and show how to turn FTAL typing derivations
and the (syntactic) soundness proof of FTAL into founda-
tional proofs. Finally we compare our approach with the se-
mantic approach, present other related work, and conclude.

2. Foundational Proof-Carrying Code

Unlike type-specialized PCC, foundational PCC avoids
any commitment to a particular type system. The opera-
tional semantics of machine code as well as the concept of
safety are defined in a suitably expressive logic. The code
producer must provide both the executable code and a proof
in the foundational logic that the code satisfies the safety
condition. All required concepts and proofs must be explic-
itly defined based only on the foundations of mathematics.

2.1. The logic

To encode our safety policies and proofs, we use the cal-
culus of inductive constructions (CiC) [22, 19]. CiC is an
extension of the calculus of constructions (CC) [7], which
is a higher-order typed lambda calculus. CC corresponds to
Church’s higher-order predicate logic via the Curry-Howard
isomorphism [10]. The syntax of CC is:

A,B ::= Set | Type | X | λX :A.B | AB | ΠX :A.B
Theλ term corresponds to the abstraction of the lambda

calculus, and theΠ term is a dependent product type. When
the bound variable does not occur in the body, the product
type is usually abbreviated asA → B. In the terminology
of pure type systems,Set andType are the sorts.

CiC, as its name implies, extends the calculus of con-
structions with inductive definitions. An inductive defi-
nition can be written in a syntax similar to that of ML
datatypes. For example, the following introduces an induc-
tive specification of natural numbers:

Inductive Nat : Set := zero : Nat | succ : Nat→Nat

Inductive definitions may also be parameterized as in the
following definition of polymorphic lists:

Inductive List [t :Set] : Set := nil : List t
| cons : t→List t→List t

The logic also provides elimination constructs for induc-
tive definitions, which combine case analysis with a fix-
point operation. Objects of an inductive type can thus be
iterated over using these constructs. In order for the induc-
tion to be well-founded and for iterators to terminate, a few
constraints are imposed on the shape of inductive defini-
tions. Mutually inductive types are also supported.

CiC has been shown to be strongly normalizing [23],
hence the corresponding logic is consistent. It is supported
by the Coq proof assistant [22], which we use to implement
a prototype system of the results presented in this paper.

In the remainder of this paper, we will use more familiar
mathematical notation to present the statement of proposi-
tions, rather than the strict definition of CiC syntax given in
this section. For example, the application of two terms will
be written asA(B) and inductive definitions will be pre-
sented in BNF format. We will, however, retain theΠ nota-
tion, which can generally be read as a universal quantifier.

2

r ∈ Regnum= { r0, r1, . . . r31 }
w, pc ∈Word = { 0, 1, . . . }
M ∈Mem = Word→Word

R ∈ Regfile = Regnum→Word

S ∈ State = Mem× Regfile×Word

Instr 3 ι ::= add rd, rs, rt | addi rd, rs, w
| movi rd, w | bgt rs, rt, w | jd w | jmp r
| ld rd, rs(w) | st rd(w), rs | illegal

Figure 1. Machine state.

2.2. The machine

The machine is defined by amachine stateand a step
function describing the (deterministic) transition from one
machine state to the next. Figure 1 defines the set of
machine states. To simplify the presentation, we use an
idealized 32-register word-addressed machine with an un-
bounded memory of words of unlimited size. A machine
state is defined as a tuple of a memory, a register set, and a
program counter. The figure shows also the instruction set.
Informally, the instructions have the following effects:

add rd, rs, rt setrd to the sum of the contents ofrs andrt;
addi rd, rs, w setrd to the sum ofw and the contents ofrs;
movi rd, w move an immediate valuew into rd;
bgt rs, rt, w branch to locationw if rs > rt;
jd w unconditional jump to locationw;
jmp r indirect jump to the address in registerr;
ld rd, rs(w) load the contents of locationrs + w into rd;
st rd(w), rs store the contents ofrs into locationrd + w;
illegal put the machine in an infinite loop.

Of course, these instructions are actually encoded as
words (integers) in the machine state. We defineInstr as
an inductive type for reasons of convenience since its con-
structors are much easier to manipulate than encoded in-
struction words. Thus, the step function is decomposed into
a decoding function and the specification of the machine’s
operational semantics. The decoding functionDc, of type
Word→ Instr, decodes a word into the appropriate element
of Instr (non-decodable words will result in anillegal in-
struction); we will omit its exact definition since it is ver-
bose but not interesting. The semantics of instructions is
described by the functionStep shown in Figure 2. This
function is easily defined formally in CiC as an iterator on
theInstr type.

2.3. The safety condition

The safety condition is a predicate expressing the fact
that code will not “go wrong.” We say that a machine state
S is safe if every state it can ever reach satisfies the safety
policy SP:

if Dc(M(pc)) = then Step(M,R, pc) =

add rd, rs, rt (M,R{rd 7→ R(rs) +R(rt)}, pc+1)

addi rd, rs, w (M,R{rd 7→ R(rs) + w}, pc+1)

movi rd, w (M,R{rd 7→ w}, pc+1)

bgt rs, rt, w
(M,R, pc+1), when R(rs) ≤ R(rt)

(M,R,w), when R(rs) > R(rt)

jd w (M,R,w)

jmp r (M,R,R(r))

ld rd, rs(w) (M,R{rd 7→M(R(rs)+w)}, pc+1)

st rd(w), rs (M{R(rd)+w 7→ R(rs)}, R, pc+1)

illegal (M,R, pc)

Figure 2. Machine semantics.

Safe (S) = Πn :Nat.SP (Stepn (S))

For this presentation, we will define a very basic and
simple safety policy which states that the machine is not
stuck on an illegal instruction:

SP (M,R, pc) = (Dc (M (pc)) 6= illegal)

In practice, the safety policy may also include more com-
plex constraints, such as access control on memory regions.

An FPCC code producer must thus supply an initial state
S0 (which includes the machine code of the program), and
a proofA that this state satisfies the safety condition. Via
the Curry-Howard isomorphism,A can be represented by a
term of typeSafe (S0). Thus, the FPCC package is a pair:

F = (S0 : State, A : Safe (S0)).

3. Generating Proofs

The actual proof of safety is organized following the ap-
proach used by Appelet al. [4, 5]. We construct an in-
duction hypothesisInv, also known as the global invariant,
which holds for all states reachable from the initial state and
is strong enough to imply safety. Then, to show that our ini-
tial stateS0 is safe, we provide proofs for the propositions:

Initial Condition: Inv(S0)
Preservation: ΠS :State. Inv(S)→ Inv(Step (S))
Progress: ΠS :State. Inv(S)→SP (S)

These propositions intuitively state that our invariant holds
for the initial state, and for every subsequent state during
the execution. The Progress establishes that whenever the
invariant holds, the safety policy of the machine is also sat-
isfied. Together, these imply that during the execution of the
program the safety policy will never be violated. To prove
the initial state is safe, first we use the Initial Condition and
Preservation, and show by induction that

Πn :Nat. Inv(Stepn (S0)).

ThenSafe (S0) follows directly by Progress.

3

Unlike Appel et al., who construct the invariant by
means of a semantic model of types at the machine level,
our approach is based on the use of type soundness [24]:
We defineInv(S) to mean thatS is “well-formed” syntacti-
cally. The well-formedness property must be preserved by
the step function, and must imply safety; the proofs of these
properties are encoded in the FPCC logic as proof terms for
Preservation and Progress.

In the following sections we show how to derive the no-
tion of well-formedness for a machine state by relating the
state to a type-correctprogram in a typed assembly lan-
guage. The type system of the language defines a set of
inference rules for judgments of the form̀P , meaning that
the programP is well-formed (type-correct). The dynamic
semantics of the language specifies an evaluation relation
7−→ on programs; we use here the term “program” to de-
note not only code but a more general configuration fully
representing a stage of the evaluation.

The central idea of our approach to FPCC is to find
a typed assembly language and a translation relation⇒
between its programs and machine states, such that type-
correct programs are mapped to well-formed states, and the
evaluation relation is related to the step function—that is, if
P ⇒ S andP 7−→ P ′, thenP ′ ⇒ Step (S). If these prop-
erties hold, we can define the invariantInv(S) as simply
stating that there exists a type-correct programP such that
P ⇒ S. Then the formal proofs of progress and preserva-
tion for the type system can be used to construct straightfor-
ward proofs of the corresponding propositions needed for
the safety proof forS0. Further details of the construction
of proof terms are provided in Section 5.

This method imposes requirements on the design of the
typed assembly language other than just having a sound
type system. For the approach we follow in this pa-
per, if the assembly language has “macro” instructions
(e.g. malloc [14, 13] andnewarray [25], which “expand”
into sequences of several machine instructions), the well-
formedness of the assembly program alone will be insuf-
ficient for the construction of the global invariant. This is
becauseInv must hold for all machine states reachable from
S0. For the intermediate states of the execution of a macro
instruction there are no corresponding well-formed assem-
bly programs. Hence, each one of the assembly instructions
must correspond to exactly one machine instruction. Note
that this exact correspondence of instructions is not neces-
sary in general for the syntactic approach to work, but it
facilitates the definition of the invariant and allows for a
simpler presentation.

4. Featherweight Typed Assembly Language
The source language that we will be compiling to FPCC

is a version of the typed assembly language (TAL) by Mor-
risettet al. [14]. The approach developed in this paper can

(type) τ ::= α | int | ∀[].Γ | 〈τϕ1
1 , . . . , τϕnn 〉

| µα.τ
(init flag) ϕ ::= 0 | 1
(heap ty) Ψ ::= {0 :τ0, . . . ,n :τn}
(alloc pt ty) ρ ::= fresh | used(n)
(regfile ty) Γ ::= {r0 :τ0, . . . , rn :τn, r31 :ρ}

(label) l ::= 0 | 1 | . . .
(user reg) r ::= r0 | r1 | . . . | r30

(all reg) r̂ ::= r | r31

(word val) v ::= l | i | ?τ | fold v as τ

(heap val) h ::= 〈v1, . . . , vn〉 | code[]Γ.I
(heap) H ::= {0 7→ h0, . . . ,n 7→ hn}
(regfile) R ::= {r0 7→ v0, . . . , r31 7→ v31}

(instr) ι ::= add rd, rs, rt | addi rd, rs, i
| alloc rd[~τ] | bgt rs, rt, l | bump i
| fold rd[τ], rs | ld rd, rs(i)
| mov rd, rs | movi rd, i | movl rd, l
| st rd(i), rs | unfold rd, rs

(instr seq) I ::= ι; I | jd l | jmp r

(program) P ::= (H,R, I)

Figure 3. Syntax of FTAL.

be applied to a TAL-like language extended with higher-
order kinds and recursive types. For simplicity, we only
introduce here a subset of such a language, which we call
Featherweight Typed Assembly Language (FTAL). It does
not include polymorphism, existential types, and higher-
order kinds. However, it does support recursive types, mem-
ory allocation, and mutable records (tuples).

For most FTAL instructions it is easy to see there is
a one-to-one mapping to the machine instructions of Sec-
tion 2.2. However, having amalloc “macro instruction”
in FTAL (as in TAL) will not work because it cannot be
mapped to a single machine instruction and will not satisfy
our requirements for generating FPCC proofs, since there
would be no corresponding FTAL state between the ex-
panded machine instructions. (See Section 4.5 for details
on this issue.) Our approach is to make the memory alloca-
tion model explicit and split themalloc instruction into, in
this case, two individual instructions.

4.1. Syntax

We present the syntax of FTAL in Figure 3. As in TAL,
the abstract machine state consists of a heapH, a register
file R, and a sequence of instructionsI. The heap maps la-
belsl to heap valuesh, and the register file maps registers
r̂ to word valuesv. The notationH{l 7→ h} represents a

4

(H,R, I) 7−→ P where
if I = thenP =

add rd, rs, rt; I
′ (H,R{rd 7→ R(rs) +R(rt)}, I ′)

addi rd, rs, i; I
′ (H,R{rd 7→ R(rs) + i}, I ′)

alloc rd[~τ]; I ′ (H ′, R{rd 7→ l}, I ′)
where~τ = τ1, . . . , τn,R(r31) = l,
andH ′ = H{l 7→ 〈?τ1, . . . , ?τn〉}

bgt rs, rt, l; I
′ (H,R, I ′) whenR(rs) ≤ R(rt); and

(H,R, I ′′) whenR(rs) > R(rt)
whereH(l) = code[]Γ.I ′′

bump i; I ′ (H,R{r31 7→ |H|}, I ′)
fold rd[τ], rs; I

′ (H,R{rd 7→ fold R(rs) as τ}, I ′)
jd l (H,R, I ′) whereH(l) = code[]Γ.I ′

jmp r (H,R, I ′) whereH(R(r)) = code[]Γ.I ′

ld rd, rs(i); I
′ (H,R{rd 7→ vi}, I ′) where0 ≤ i < n

H(R(rs)) = 〈v0, . . . , vn−1〉
mov rd, rs; I

′ (H,R{rd 7→ R(rs)}, I ′)
movi rd, i; I

′ (H,R{rd 7→ i}, I ′)
movl rd, l; I

′ (H,R{rd 7→ l}, I ′)
st rd(i), rs; I

′ (H{l 7→ h}, R, I ′) where0 ≤ i < n
R(rd) = l,H(l) = 〈v0, . . . , vn−1〉, and
h=〈v0, . . . , vi−1, R(rs), vi+1, . . . , vn−1〉

unfold rd, rs; I
′ (H,R{rd 7→ v}, I ′)

whereR(rs) = fold v as τ

Figure 4. Operational semantics of FTAL.

heap which mapsl to h, and on all other labels agrees with
H. Similar notation is used for heap types, register files,
and register file types. In (regfile ty), n < 31, and not all
user registers need appear in the type. The notation|H| and
|Ψ| is used to represent the number of labels in the heap
and heap type, respectively. Only tuples and code blocks
are stored in the heap and thus these are the heap values.
Word values include labels (of heap values), integers, recur-
sive data, and junk values which are used by the operational
semantics to represent uninitialized tuple elements.

Our memory model is a simple linear unbounded heap
with an allocation pointer pointing to the heap top, initially
set to the bottom of the heap space. Memory allocation con-
sists of copying the current allocation pointer to a register
using alloc and then adjusting the allocation pointer with
bump. In Section 5.2 we will see how these two instructions
can be directly translated into one FPCC machine instruc-
tion each. One of the general registers,r31, is reserved as
the allocation pointer register, tracking the amount of allo-
cated memory. FTAL instructions will only explicitly refer
to the first 31 “user” registers (r). To meaningfully imple-
ment linear allocation, we need an ordering on memory la-
bels, so we define labels as natural numbers. To determine
whether a label has been allocated, it is compared with|H|.

The types of FTAL are integers, code, tuple types anno-
tated with initialization flags, and recursive types. Opera-

Judgment Meaning

`τ τ is a well-formed type
`Ψ Ψ is a well-formed heap type
`Γ Γ is a well-formed regfile type
`τ1≤τ2 τ1 is a subtype ofτ2
`Γ1⊆Γ2 Γ1 is a regfile subtype ofΓ2

`P P is a well-formed program
`H :Ψ H is a well-formed heap of typeΨ
Ψ `R :Γ R is a well-formed regfile of typeΓ
Ψ ` l :ρ l is a label of allocation statusρ
Ψ `h :τ hval h is a well-formed heap value of typeτ
Ψ `v :τ v is a well-formed word value of typeτ
Ψ `v :τϕ v is a well-formed word value of typeτϕ

Ψ; Γ `I I is a well-formed instruction sequence

Figure 5. Static judgments.

tions on recursive types in FTAL are supported by thefold
and unfold instructions. The remaining instructions (add,
addi, bgt, mov, movi, movl, ld, andst) are equivalent or sim-
ilar to those in the original TAL. A code block is a sequence
of instructions, with specified initial register types. Code
blocks always end with ajmp or jd instruction.

4.2. Dynamic semantics

The operational semantics of FTAL is presented in Fig-
ure 4. Most of the instructions have an intuitively clear
meaning. Theld andst instructions load from and store to a
tuple in the heap using the specified index. The instruction
bgt rs, rt, l tests whether the value inrs is larger than that
in rt, and, if so, transfers control to the code block atl.

In order to allocate a tuple in the heap, first thealloc in-
struction is used to copy the current heap allocation pointer
to rd and allocate the desired size in the heap. Before the
next allocation, the allocation pointer needs to be adjusted.
This is achieved using thebump instruction, which sets the
allocation pointer to the next unused region of the heap, as
described earlier. (Thei argument is not used by the op-
erational semantics.) Since we assume a linear allocation
method, unused regions of the heap are simply all those be-
yond the currently allocated data.

The fold instruction annotates the value ofrs with the
recursive type and moves it intord, whileunfold extracts the
value from the recursive package inrs into rd. Note that the
fold andunfold instructions of FTAL (as well as TAL) are
not no-ops but copy a value from one register to another.

4.3. Static semantics

The primary judgment of the static semantics is that of
the well-formedness of a program. That in turn depends on
judgments of the well-formedness of the heap, heap type,

5

`P `H :Ψ Ψ `R :Γ

`H :Ψ Ψ `R :Γ Ψ; Γ `I ∃l ∈ Dom(H).H(l)=code[]Γ′.I ′ andI ⊆ I ′

`(H,R, I)
(PROG)

`Ψ |Ψ|= |H| Ψ `H(l) :Ψ(l) hval (0≤ l< |H|)
`H :Ψ

(HEAP)

Ψ `R(ri) :τi (0≤ i≤n) Ψ `R(r31) :ρ
∀r ∈ Dom(R)−{r31}.if R(r) = l thenl < |Ψ|

Ψ `R :{r0 :τ0, . . . , rn :τn, r31 :ρ}
(REG)

`τ `Ψ `Γ `τ1≤τ2 `Γ1⊆Γ2

FTV (τ) = ∅
`τ (TYPE)

`τi (1≤ i≤n)

`{0 :τ0, . . . , n :τn}
(HTYPE)

`τi (1≤ i≤n) n < 31

`{r0 :τ0, . . . , rn :τn, r31 :ρ}
(RFTYPE)

`τ
`τ≤τ (REFLEX)

`τi (1≤ i≤n)

`〈τϕ1
1 , . . . , τ

ϕi−1
i−1 , τ1

i , τ
ϕi+1
i+1 , . . . , τϕnn 〉≤〈τϕ1

1 , . . . , τ
ϕi−1
i−1 , τ0

i , τ
ϕi+1
i+1 , . . . , τϕnn 〉

(0-1)

`τ1≤τ2 `τ2≤τ3
`τ1≤τ3

(TRANS)
`τi (m≥n) (0≤ i≤m)

`{r0 :τ0, . . . , rm :τm, r31 :ρ}⊆{r0 :τ0, . . . , rn :τn, r31 :ρ}
(WEAKEN)

Ψ `h :τ hval Ψ `v :τ Ψ ` l :ρ Ψ `v :τϕ

Ψ `vi :τϕii (1≤ i≤n)

Ψ `〈v1, . . . , vn〉 :〈τϕ1
1 , . . . , τϕnn 〉 hval

(TUPLE)
`Γ Ψ; Γ `I

Ψ `code[]Γ.I :∀[].Γ hval
(CODE) Ψ ` i : int

(INT)

Ψ `v :τ [µα.τ/α]

Ψ ` fold v as µα.τ :µα.τ
(FOLD)

`Ψ(l)≤τ
Ψ ` l :τ (LABEL)

l= |Ψ|
Ψ ` l : fresh

(FRESH)

l= |Ψ|−1 Ψ ` l :〈τϕ1
1 , . . . , τϕnn 〉

Ψ ` l :used(n)
(USED)

Ψ `v :τ
Ψ `v :τϕ

(INIT)
`τ

Ψ ?̀τ :τ0
(UNINIT)

Figure 6. Static semantics of FTAL.

register file, register file type, and instruction sequence. The
various typing judgments are summarized in Figure 5.

The complete rules of the FTAL static semantics are
given in Figures 6 and 7. To have a well-formed program,
the heap and register file must be well-formed in some ap-
propriate environments, as must be the current instruction
sequence. Additionally, the current instruction sequence
must be present in the heap. The notationI ⊆ I ′ means
that I is a suffix ofI ′. For a heap to be well-formed the
domain of the heap type must be the same as that of the
heap, and each heap value must be well-formed. However,
the type of a well-formed register file need only specify a
subset of the registers in its domain. Subtyping is used for
two purposes: one to allow a code block to be called when
the current register file type is more detailed than needed,
and the other to be able to type-check the initialization of
an uninitialized tuple element as described below.

The special allocation register is typed using a new judg-
ment of allocation status, defined by the two rules (FRESH)
and (USED). In the first typing rule, a label whose value is

equivalent to the size of the heap type must necessarily be
unallocated. When allocation takes place, then the alloca-
tion register temporarily points to the newly allocated mem-
ory, and thus will have allocation statusused(n) wheren is
the length of the allocated tuple. The assignment of alloca-
tion status interacts with the two novel FTAL instructions,
alloc andbump, as shown in their typing rules in Figure 7.
For analloc instruction to be well-typed, the allocation reg-
ister,r31, must be in thefresh status, since otherwise, as can
be seen from the operational semantics, the previously allo-
cated data will be overwritten. After thealloc instruction,
the remainder of the instruction sequence is checked with
the status ofr31 changed toused(n). No further alloca-
tion can take place until abump instruction is encountered,
which resets the status tofresh.

4.4. Soundness

In order to produce the necessary FPCC proofs as de-
scribed in Section 3, we must encode the complete seman-
tics of FTAL in CiC along with its proof of soundness,

6

Ψ; Γ `I

Γ(rs)= int Γ(rt)= int Ψ; Γ{rd : int} `I
Ψ; Γ `add rd, rs, rt; I

(ADD)
Γ(rs)= int Ψ; Γ{rd : int} `I

Ψ; Γ `addi rd, rs, i; I
(ADDI)

`τi Ψ; Γ{rd :〈τ0
1 , . . . , τ

0
n 〉}{r31 :used(n)} `I

Ψ; Γ{r31 : fresh} `alloc rd[τ1, . . . , τn]; I
(ALLOC)

Ψ; Γ{r31 : fresh} `I
Ψ; Γ{r31 :used(n)} `bump n; I

(BUMP)

Γ(rs)= int Γ(rt)= int Ψ(l)=∀[].Γ′ `Γ⊆Γ′ Ψ; Γ `I
Ψ; Γ `bgt rs, rt, l; I

(BGT)

Ψ; Γ{rd :Γ(rs)} `I
Ψ; Γ `mov rd, rs; I

(MOV)
Ψ; Γ{rd : int} `I

Ψ; Γ `movi rd, i; I
(MOVI)

Ψ; Γ{rd :τ} `I `Ψ(l)≤τ
Ψ; Γ `movl rd, l; I

(MOVL)

Γ(rs) = 〈τϕ0
0 , . . . , τ

ϕi−1
i−1 , τ1

i , τ
ϕi+1
i+1 , . . . , τ

ϕn−1
n−1 〉 Ψ; Γ{rd :τi} `I (0 ≤ i < n)

Ψ; Γ ` ld rd, rs(i); I
(LD)

Γ(rs)=τi Γ(rd)=〈τϕ0
0 , . . . , τ

ϕn−1
n−1 〉 Ψ; Γ{rd :〈τϕ0

0 , . . . , τ
ϕi−1
i−1 , τ1

i , τ
ϕi+1
i+1 , . . . , τ

ϕn−1
n−1 〉} `I (0≤ i<n)

Ψ; Γ `st rd(i), rs; I
(ST)

Γ(rs) = τ [µα.τ/α] Ψ; Γ{rd :µα.τ} `I
Ψ; Γ ` fold rd[µα.τ], rs; I

(FOLD-I)
Γ(rs) = µα.τ Ψ; Γ{rd :τ [µα.τ/α]} `I

Ψ; Γ `unfold rd, rs; I
(UNFOLD)

Ψ(l)=∀[].Γ′ `Γ⊆Γ′

Ψ; Γ ` jd l
(JD)

Γ(r)=∀[].Γ′ `Γ⊆Γ′

Ψ; Γ ` jmp r
(JMP)

Figure 7. Well-formedness of FTAL instruction sequences.

which will be used in defining and proving the FPCC propo-
sitions. The critical theorems for the soundness of FTAL
are the usual progress and preservation lemmas:

Theorem 1 (Progress)
If `P , then there existsP ′ such thatP 7−→ P ′.

Theorem 2 (Preservation)
If `P andP 7−→ P ′, then `P ′.

As usual, several intermediate lemmas are used to prove
these two theorems, all of which can be formally encoded
and proved in the Coq proof assistant. (See the companion
technical report [9] for details.)

Now that we have an assembly language with a sound
type system, we are ready to show how to generate proof-
carrying code from a well-typed FTAL program.

4.5. Designing TAL for FPCC

We have designed a novel FTAL language for our pre-
sentation in this paper which corresponds closely to the un-
derlying machine defined in Section 2.2. As will become
clear in the next section, every well-formed FTAL state can
be mapped to a safe machine state, and this property is used
to produce a safety proof for the machine state. For safety

policies which need to enforce complex constraints on ev-
ery machine state or step, such a one-to-one mapping can be
very important. In general, however, this strict correspon-
dence is not necessary for the syntactic approach to work.
For example, if we wished to retain “macro” instructions in
FTAL, our FPCC Preservation might be modified to

ΠS :State. Inv(S)→∃n :Nat. Inv(Step(n+1) (S))
stating that starting from a state satisfying the global invari-
ant, the machine will eventually (after one or more steps)
reach another state satisfying the invariant.

Also, when introducing polymorphism or existentials
into the FTAL language, there will be certain FTAL op-
erations (e.g. type application) which do not correspond to
any run-time machine instructions at all. In this case, the
FTAL operation would correspond to a “cast” in the FPCC
proof for the machine state.

Another reason why naı̈vely using existing typed assem-
bly languages will not necessarily help in producing FPCC
is that the type system must be designed to enforce appro-
priate invariants. There are requirements in the typing rules
of FTAL which are not critical for FTAL soundness but are
necessary when translating FTAL to FPCC as described in
the next section. An example of this is the requirement in
the (REG) rule (Figure 6) that all labels in registers be within

7

the domain of the heap (including those registers that are
not specified in the type of the register file and hence not
accessible by well-formed code anyway). This condition is
crucial in proving the properties discussed in Section 5.3.

5. Translating FTAL to FPCC

As outlined in Section 2.3, an FPCC package provides
an initial state,S0, and a proof that the state satisfies the
safety policy. In the next few subsections, we show how to
translate an FTAL program into a machine state and how to
use the FTAL type system to generate proofs of the FPCC
Preservation and Progress propositions, which imply safety.

5.1. From FTAL to machine state

FTAL programs are compiled to machine code by (1)
defining a layout for the memory which maps heap values
of the program to memory addresses, (2) translating FTAL
instructions to machine instructions, and (3) choosing the
appropriate program counter and register values. We will
express the correspondence between an FTAL program and
a machine state by a family of translation relations upon the
various syntactic categories. The forms of these are:

Relation Correspondence

(H,R, I)⇒ (M,R, pc) FTAL program to machine state
L ` H ⇒M FTAL heap to memory
L ` R⇒ R register files
L ` I ⇒s M [i..j] sequence of instructions to

memory layout
L ` ι⇒i w instruction translation
L ` h⇒h M [i..j] heap value to memory layout
L ` v ⇒w w word value to machine word

Recall that the machine memory is modeled as a func-
tion, Word→ Word, soM(w) denotes the memory word
at addressw. The judgmentsL ` I ⇒s M [i..j] and
L ` h⇒h M [i..j] state that a sequence of instructions and a
heap value, respectively, translate to a series of consecutive
words in memoryM from addressi to addressj.

An important step in the translation is flattening the
FTAL heap into the machine memory. To achieve this, we
define aLayout function of typeHeap→ Label→ Word
which, given an FTAL heap, returns a mapping from la-
bels to memory addresses. (In the relations above,L is this
Layoutfunction applied to the heap.) Thus, we have:

Layout({}) (l′) = 0

Layout(H{l 7→ h}) (l′) =
{
w + size(h), if l < l′

w, otherwise,
where w = Layout(H) (l′)

wheresize(h) is the size of the heap valueh (n for ann-
tuple, and the length of the instruction sequence for a code
block). ThisLayoutfunction maps labels to addresses start-
ing at 0 and forces the translation⇒ to lay out FTAL heap

values compactly, consecutively, and with no overlapping
(due to the implicit constraint that the labels in the heap
appear in descending order). Additionally, the first unused
label (whose value equals the size of the heap) is mapped
to the first unused address. These properties are useful later
on in proving Preservation and Progress.

The translation relations are defined by a set of inference
rules, given in Figure 8. The rules are straightforward and
operate purely on the syntax of FTAL programs. Note that
FTAL type annotations are discarded in the translation (for
example, in thefold instruction), and label word values are
mapped to memory words using the layout function. Each
FTAL heap value corresponds to a sequence of words in
memory. A heap translates to a memory if every heap value
in the heap translates to the appropriate sequence of mem-
ory words. Registers translate directly between FTAL and
the machine. An FTAL program corresponds to a machine
state if the translation relation holds on the heap and reg-
ister file, and if the current instruction sequence is at some
location in the memory. Our choice of the FTAL instruc-
tion set allows us to translate every FTAL instruction into
one machine instruction word. Notice that the FTALalloc
andbump instructions correspond to machine move and ad-
dition instructions, respectively, using the register reserved
for allocation,r31. (It is for this purpose thatbump has ani
argument.)

The translation relation as presented in Figure 8 is also
not deterministic with respect to the unused and uninitial-
ized parts of the memory and to the positioning of the pro-
gram counter. However, it is straightforward on the basis
of its definition to develop a deterministic function which
translates an FTAL program into a machine state for which
the translation relation described above holds. In the next
section, we will show how this initial translation is used to
provide the Initial Condition FPCC proof.

5.2. The global invariant

As discussed in Section 3, in addition to translating the
FTAL program to an initial machine stateS0, we must de-
fine the invariantInv, which holds during the execution of a
machine program, and provide proofs of:
Initial Condition: Inv(S0)
Preservation: ΠS :State. Inv(S)→ Inv(Step (S))
Progress: ΠS :State. Inv(S)→SP (S)

The invariant simply has to ensure that the machine state
at each step corresponds to a well-typed FTAL program,
which will allow us to use the formalized versions of the
proofs of progress and preservation for FTAL to generate
formal proofs of the corresponding properties of the invari-
ant. Since the definition ofInv requires us to state that an
FTAL program is well-typed, it must be expressed not just
in terms of FTAL programs, but of their typing derivations:

Inv(S) = ∃P : program. ∃D : (`P). P ⇒ S

8

WORD VALUES

L ` l⇒w L(l) L ` i⇒w i

for anyw

L `?τ ⇒w w

L ` v ⇒w w

L ` fold v as τ ⇒w w

INSTRUCTIONS

L ` add rd, rs, rt⇒i add rd, rs, rt
L ` addi rd, rs, i ⇒i addi rd, rs, i
L ` alloc rd[~τ] ⇒i addi rd, r31, 0
L ` bump i ⇒i addi r31, r31, i
L ` fold rd[τ], rs ⇒i addi rd, rs, 0
L ` unfold rd, rs ⇒i addi rd, rs, 0
L ` ld rd, rs(i) ⇒i ld rd, rs(i)
L ` st rd(i), rs ⇒i st rd(i), rs
L ` mov rd, rs ⇒i addi rd, rs, 0
L ` movi rd, i ⇒i movi rd, i
L ` movl rd, l

′ ⇒i movi rd, L(l′)
L ` bgt rs, rt, l ⇒i bgt rs, rt, L(l)

INSTRUCTIONSEQUENCES

L ` ι⇒i Dc(M(i)) L ` I ⇒s M [(i+ 1)..j]

L ` ι; I ⇒s M [i..j]

Dc(M(i)) = jd (L(l′))

L ` jd l′ ⇒s M [i..i]

Dc(M(i)) = jmp r

L ` jmp r ⇒s M [i..i]

HEAP VALUES

L ` vi ⇒w M(j + i) for 0 ≤ i ≤ n
L ` 〈vo, . . . , vn〉 ⇒h M [j..(j + n)]

L ` I ⇒s M [i..j]

L ` code []Γ.I ⇒h M [i..j]

HEAP, REGISTERFILE , PROGRAM

L ` H(l)⇒h M [L(l)..L(l+1)−1] for 0 ≤ l < |H|
L ` H ⇒M

L ` R(r̂)⇒w R(r)

L ` R⇒ R

Layout(H) ` H ⇒M

Layout(H) ` R⇒ R
Layout(H) ` I ⇒s M [pc..pc+ |I| − 1],

where ∃l ∈ Dom(H).(H(l) = code []Γ.I ′, I ⊆ I ′, and
pc = Layout(H)(l) + |I ′| − |I|)

(H,R, I)⇒ (M,R, pc)

Figure 8. Relating FTAL programs to machine
states.

`P
(translate) +3

(eva
lu

a
te)

��

S

(S
tep)

��
`P ′

translate?
+3__________ __________ Step (S)

Figure 9. Relationship between FTAL evalua-
tion and machine semantics.

where the type annotatioǹP in the quantification onD
introducesD as a proof term for the judgment̀P .

The proof of the initial condition can now be obtained
directly in the process of translating an initial well-formed
FTAL program to machine state as described in Section 5.1.
It remains, therefore, to prove the two lemmas.

5.3. The Preservation and Progress properties

Progress in our case is easy to prove: since the invariant
states that there exists a well-typed FTAL program which
translates to the current state, it is obvious by examina-
tion of the translation rules that such an FTAL program
will never translate to a state in which the program counter
points to an illegal instruction. The remaining proof term,
for Preservation, is thus the most involved of the generated
FPCC proofs. It is obtained in the following way:

Given a programP and a typing derivation for̀ P , we
know by FTAL progress that there exists a programP ′ such
thatP 7−→ P ′. Furthermore, by FTAL preservation, we
know that`P ′. Now, the premise of our FPCC Preserva-
tion theorem provides us with a machine stateS such that
P ⇒ S, and we need to show that there exists another well-
typed program that translates toStep (S). The semantics
of FTAL has been set up so that this well-typed program
is exactly P ′. It remains now for us to prove that indeed
P ′ ⇒ Step (S), as diagrammed in Figure 9.

Essentially, we need to show that the FTAL evaluation
relation corresponds to the machine’s step function. This is
proved by induction on the typing derivation of`P . For
each possible case, we use inversion on the structure ofP ,
the FTAL evaluation relation, the translation relation, and
the machineStep function to gain the necessary information
about the structure ofP ′, S, andStep (S). Many of the
cases of this proof are fairly straightforward.

Let us briefly consider one of the interesting cases of the
Preservation proof, which is when the current instruction is
alloc. Corresponding to the diagram in Figure 9, we have
the following setup:

9

P = (H,R, alloc rd[τ1, . . . , τn]; I)
P ′ = (H ′, R′, I)
S = (M,R, pc)

Step (S) = (M,R
′
, (pc+ 1))

whereH ′,R′, andR
′
can be determined by the operational

semantics of FTAL and the definition of theStep function.
We now need to prove thatP ′ is related toStep (S) by

the translation. First, we know by the properties of the lay-
out function that applying it to an extended heap maintains
the mapping of all the existing labels in the old heap. Now,
the FTAL heap is updated after evaluation but the memory
stays the same after the step. However, since the update
to the heap is only with uninitialized values which can be
translated to any word, the translation will still hold on the
unchanged memory. Thus, we can show that the updated
heap translates to the unaltered memory. Then, relating the
two updated register files is not difficult, nor is showing that
the residual instruction sequence corresponds to the next
program counter value. Well-formedness ofP (i.e. `P)
is used in various steps of this proof, for instance, to reason
that any labels in the registers are within the domain of the
heap, hence the layout function on the updated heap,H ′,
preserves the mappings of existing labels.

This completes the translation, or compilation, of a well-
typed FTAL program to an FPCC code package. The
FTAL program can be shown to correspond to an initial
machine state and that state can be shown safe using the
proofs of Preservation and Progress developed here.

6. Implementation

An implementation of the syntactic approach presented
in this paper consists of an FTAL compiler which generates
FPCC packages, made up of two parts: the initial machine
state and the proof of safety. The proof of safety can be fur-
ther divided into two pieces: one is the proof of the Preser-
vation and Progress theorems and the other is the proof
that the initial machine state satisfies the Initial Condition
property. Note that the proofs of Preservation and Progress
(which are built semi-automatically) do not change for any
machine state which has been generated by compiling an
FTAL program. Thus, these properties need only be proven
once and can then be reused.

In order to generate the Initial Condition, we use a com-
piler that takes an FTAL program and compiles it to a
machine state, producing the necessary proofs in the pro-
cess. The structure of this compiler is fairly straightforward:
After parsing an FTAL source file, type-checking is per-
formed. The algorithm for type-checking follows closely
the structure of the inductively defined static semantics in
Coq. (Similarly, the compiler structures for FTAL abstract
syntax mirror the Coq encoding.) Thus, the type-checker,

as it analyzes the FTAL program, simultaneously builds a
Coq term for the proof of well-formedness of the program.

Once type-checking is successfully completed, the com-
piler then translates the FTAL program into a machine
state. Again, this is done in such a manner that a Coq term
representing the machine state and the proof of the relation
between the FTAL program and the machine state can be
generated. Along with the typing derivation term produced
above, we can now construct a proof that the global invari-
ant holds on the initial machine state. This can be composed
with the Preservation and Progress properties to produce a
complete proof of the safety of the machine state as speci-
fied by our safety policy. More details on the Coq encoding
of FTAL and its soundness proofs can be found in the com-
panion technical report [9].

We thus have a complete system which starts with a
typed assembly language program and compiles it into a
FPCC package. Although our current implementation is not
as realistic as [6, 4], the advantages of the syntactic FPCC
approach are still clear. We compare the syntactic and se-
mantic approaches to FPCC in detail in Section 7.

With respect to PCC implementations in general, the two
most practical considerations are the extent of the trusted
computing base (TCB) and the size of the proofs that are
shipped with code. As for the former, the TCB of our syn-
tactic FPCC implementation would consist of the following:
(1) a parser, which converts the state of the raw machine into
the encoding in the logic; (2) the encoding of the machine
step function in the logic, which must accurately capture the
semantics of the real machine (that is, it must be adequate);
and (3) the proof-checker of the logic. The first two will
necessarily exist in any PCC system. For syntactic FPCC,
the proof-checker is smaller and more reliable than that of
existing PCC systems because the logic used is much sim-
pler. In addition, the VCgen is completely eliminated from
the system.

Regarding the proofs that are shipped with syntactic
FPCC packages, note that a large portion of the safety proof
is static—the Progress and Preservation theorems hold re-
gardless of the particular FTAL program from which the
machine state was compiled. Hence, this part of the proof
does not need to be re-supplied (or even re-checked) with
every individual FPCC package. Furthermore, the remain-
ing portion of the proof simply consists of the initial FTAL
program and its typing derivation. The typing derivation can
be easily and quickly generated by either the code producer
or consumer. Thus, if proof size is especially critical, the
only additional information that needs to be supplied with
the initial machine state is the FTAL program itself.

7. Syntactic vs. Semantic FPCC
We have found that the choice between the syntactic

and semantic approaches to generating FPCC involves some

10

trade-offs, which we briefly outline in this section.
In previous work on FPCC [4, 3], type judgments were

assigned a meaning (a semantic truth value). In other words,
each type of the typed assembly language is viewed as a
predicate to be applied to memory, a value, and perhaps
more arguments. The TAL typing rules then become lem-
mas to be proved in this semantic model. In contrast, the
syntactic approach does not attempt to give any meaning
to types or typing rules. The entire typing derivation of
a TAL program is formalized and directly encoded in the
logic. The FPCC safety proof is generated based on the sim-
ilarly formalized soundness proof. Note, however, that un-
like the original PCC systems, the typing rules are not part
of the trusted base—they must be encoded and their sound-
ness proved using only on the foundations of the logic.

The most obvious feature of the syntactic approach to
FPCC is the resulting simplicity of the overall system. The
complexities evident in [3, 5, 1, 2] do not arise in our sys-
tem. For example, in order to support contravariant recur-
sive types, an “indexed” semantic model is necessary, which
complicates the definition of types and requires tedious rea-
soning about steps of computation. A more serious limi-
tation of current semantic approaches to FPCC is the diffi-
culty to model mutable record fields. This is a consequence
of circularity in the definition of a “type” as a predicate on
a state that is a pair of memory and a set of allocated ad-
dresses [3]. A third issue which has yet to be addressed
by that model is supporting a type system with higher-order
kinds. These, and various other difficulties in the semantic
approach, result from attempting to give a meaning to types.

The reason why our approach does not suffer from the
same complexity is that it only needs to give a meaning to
types one step at a time. For example, in a semantic ap-
proach, when trying to show that two mutually-recursive
functionsf andg satisfy the predicates for their function
types, we have the problem that the proof forf needs the
proof for g and vice-versa. Resolving this circularity re-
quires a coinduction principle or forces the use of an “in-
dexed” semantic model. On the other hand, a syntactic
approach will simply provide a typing rule for mutually-
recursive functions. Of course, the soundness proof still
needs to show that the typing rule is meaningful, but it only
needs to do it one step at a time, in which case the circularity
is gone: we do not need to assume anything aboutg in order
to show that the first instruction off can be executed safely.
Only when we reach the call tog need we pay attention to
it, but at that point we do not need to assume anything about
f any more. Another way to look at it is that the “indexing”
is done implicitly, for free, when we combine the progress
and preservation lemmas to get the actual safety proof.

Despite the overall simplicity of the approach to FPCC
given in this paper, it is not without potential technical intri-
cacies. One of the most critical of these is the encoding of

the syntactic typing rules and the soundness proof. In our
prototype Coq “implementation” we have indeed been able
to completely formalize and encode the static and opera-
tional semantics of FTAL, as well as prove the progress and
preservation theorems. Although the encoding is not en-
tirely trivial, it was achieved with reasonable effort. (In par-
ticular, the current implementation of the proofs of FTAL
soundness and the FPCC Preservation and Progress theo-
rems was completed within several months by a single grad-
uate student with no previous experience in Coq or CiC.)
The ability in CiC to perform eliminations on inductive defi-
nitions means that most proofs are quite straightforward and
are proven using an intuitive sequence of steps. The fact
that these proofs are generated interactively (i.e. manually)
is not an issue because it only needs to be done once.

Finally, our approach relies on the availability of a typed
assembly language that is similar to the machine for which
proofs will be generated. It is also necessary that the type
system capture all the invariants needed to prove soundness
of the machine code. In this paper, since we took the inter-
esting step of splitting the conventionalmalloc instruction of
TAL into two separate instructions (alloc andbump), each
of which is directly translated into a single machine instruc-
tion, we needed to refine the type system so that the infor-
mation about the allocation state is correctly maintained in
the invariant during translation. In general, whatever crite-
ria is specified by the safety policy (i.e., in the definition of
SP (S)) will need to be reflected in the type system.

8. Related Work and Conclusion

The original PCC system was designed by Necula and
Lee [17, 15, 16], as discussed in our introduction. In ad-
dition to the general framework laid out in their work, im-
plementation effort on building a certifying compiler has
also been carried out [18, 6]. As also mentioned pre-
viously, however, these existing certifying compilers and
clients are very language-specific and incorporate “built-in”
understanding of a particular type-system into the logic.

Our source language, FTAL, is derived from the typed
assembly language framework designed by Morrisettet
al. [14]. Although, in contrast with PCC, typed assembly
language does not deal with code at the lowest level of the
machine, it is a critical tool which makes automatic genera-
tion of PCC proofs possible—following either the syntactic
or the semantic approach.

Appel and Felty were the first to propose the notion of
foundationalPCC [4, 3]. Work on the semantic approach to
FPCC has been carried out by Appel, Felty, and others [4,
5, 1, 12].

In a recent paper, Shaoet al. [20] showed how to incor-
porate a logic such as CiC into a typed intermediate lan-
guage. Together with the work described in this paper, we

11

can now build an end-to-end compiler that compiles high-
level richly typed programs into FPCC.

Lastly, the syntactic approach to proving type soundness,
an idea which we take advantage of in this paper, was intro-
duced by Wright and Felleisen [24].

This paper presents an approach for producing founda-
tional proof-carrying code based on syntactic soundness
proofs. Starting with a type system for a typed assembly
language, we formally encode its soundness proof and show
a precise correspondence between TAL and the language
of the actual machine. We use this (syntactic) correspon-
dence, along with the proof that the type system enforces
the invariants or constraints of the safety policy, to gener-
ate a package consisting of machine code and its proof of
safety. By avoiding semantic modeling of types as in pre-
vious approaches, our framework for constructing founda-
tional proofs is much simpler and more straightforward.

Acknowledgments

We are grateful to the members of the Coq mailing list
who provided us with help and suggestions in the course
of our encoding FTAL and the translation to FPCC, espe-
cially Yves Bertot, Pierre Casteran, Jean Goubault-Larrecq,
Christine Paulin-Mohring, and Clement Renard. We also
want to thank Peter Lee and anonymous referees for discus-
sions and comments on an earlier version of this paper.

References

[1] A. J. Ahmed. Mutable fields in a semantic model of types.
Talk presented at 2000 PCC Workshop, June 2000.

[2] A. J. Ahmed, A. W. Appel, and R. Virga. A stratified seman-
tics of general references embeddable in higher-order logic
(extended abstract). InProc. 17th IEEE Annual Symposium
on Logic in Computer Science, page (to appear), July 2002.

[3] A. W. Appel. Foundational proof-carrying code. InProc.
16th Annual IEEE Symposium on Logic in Computer Sci-
ence, pages 247–258, June 2001.

[4] A. W. Appel and A. P. Felty. A semantic model of types and
machine instructions for proof-carrying code. InProc. 27th
ACM Symp. on Principles of Prog. Lang., pages 243–253.
ACM Press, 2000.

[5] A. W. Appel and D. McAllester. An indexed model of recur-
sive types for foundational proof-carrying code. Technical
Report CS-TR-629-00, Princeton University, Dept. of Com-
puter Science, Nov. 2000. To appear in TOPLAS.

[6] C. Colby, P. Lee, G. Necula, F. Blau, M. Plesko, and
K. Cline. A certifying compiler for Java. InProc. 2000
ACM Conf. on Prog. Lang. Design and Impl., pages 95–107,
New York, 2000. ACM Press.

[7] T. Coquand and G. Huet. The calculus of constructions.In-
formation and Computation, 76:95–120, 1988.

[8] A. Felty. Semantic models of types and machine instruc-
tions for proof-carrying code. Talk presented at 2000 PCC
Workshop, June 2000.

[9] N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni.
A syntactic approach to foundational proof carrying-code.
Technical Report YALEU/DCS/TR-1224, Dept. of Com-
puter Science, Yale University, New Haven, CT, Jan. 2002.

[10] W. A. Howard. The formulae-as-types notion of construc-
tions. In To H.B.Curry: Essays on Computational Logic,
Lambda Calculus and Formalism. Academic Press, 1980.

[11] C. League, Z. Shao, and V. Trifonov. Precision in prac-
tice: A type-preserving Java compiler. Technical Report
YALEU/DCS/TR-1223, Dept. of Computer Science, Yale
University, New Haven, CT, Jan. 2002.

[12] N. Michael and A. Appel. Machine instruction syntax and
semantics in higher order logic. InProc. 17th International
Conference on Automated Deduction, pages 7–24. Springer-
Verlag, June 2000.

[13] G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-based
typed assembly language. In X. Leroy and A. Ohori, editors,
Proc. 1998 International Workshop on Types in Compila-
tion: LNCS Vol 1473, pages 28–52, Kyoto, Japan, March
1998. Springer-Verlag.

[14] G. Morrisett, D. Walker, K. Crary, and N. Glew. From Sys-
tem F to typed assembly language. InProc. 25th ACM Symp.
on Principles of Prog. Lang., pages 85–97. ACM Press, Jan.
1998.

[15] G. Necula. Proof-carrying code. InProc. 24th ACM Symp.
on Principles of Prog. Lang., pages 106–119, New York,
Jan. 1997. ACM Press.

[16] G. Necula. Compiling with Proofs. PhD thesis, School of
Computer Science, Carnegie Mellon Univ., Sept. 1998.

[17] G. Necula and P. Lee. Safe kernel extensions without run-
time checking. InProc. 2nd USENIX Symp. on Operating
System Design and Impl., pages 229–243, 1996.

[18] G. Necula and P. Lee. The design and implementation of
a certifying compiler. InProc. 1998 ACM Conf. on Prog.
Lang. Design and Impl., pages 333–344, New York, 1998.

[19] C. Paulin-Mohring. Inductive definitions in the system
Coq—rules and properties. In M. Bezem and J. Groote, ed-
itors, Proc. TLCA, volume 664 ofLNCS. Springer-Verlag,
1993.

[20] Z. Shao, B. Saha, V. Trifonov, and N. Papaspyrou. A type
system for certified binaries. InProc. 29th ACM Symp. on
Principles of Prog. Lang., pages 217–232. ACM Press, Jan.
2002.

[21] K. N. Swadi and A. W. Appel. Typed machine lan-
guage and its semantics. Preliminary version available at
www.cs.princeton.edu/˜appel/papers/tml.pdf, July
2001.

[22] The Coq Development Team. The Coq proof assistant refer-
ence manual. The Coq release v7.1, Oct. 2001.

[23] B. Werner.Une Th́eorie des Constructions Inductives. PhD
thesis, A L’Universit́e Paris 7, Paris, France, 1994.

[24] A. K. Wright and M. Felleisen. A syntactic approach to
type soundness.Information and Computation, 115(1):38–
94, 1994.

[25] H. Xi and R. Harper. A dependently typed assembly lan-
guage. InProc. 2001 ACM SIGPLAN Int’l Conf. on Func-
tional Prog., pages 169–180. ACM Press, Sept. 2001.

12

