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Abstract. Proof-Carrying Code (PCC) is a general framework for verifying the
safety properties of machine-language programs. PCC proofs are usually written in
a logic extended with language-specific typing rules; they certify safety but only if
there is no bug in the typing rules. In Foundational Proof-Carrying Code (FPCC), on
the other hand, proofs are constructed and verified using strictly the foundations of
mathematical logic, with no type-specific axioms. FPCC is more flexible and secure
because it is not tied to any particular type system and it has a smaller trusted
base.

Foundational proofs, however, are much harder to construct. Previous efforts on
FPCC all required building sophisticated semantic models for types. Furthermore,
none of them can be easily extended to support mutable fields and higher-order
polymorphism. In this article, we present a syntactic approach to FPCC that avoids
all of these difficulties. Under our new scheme, the foundational proof for a typed
machine program simply consists of the typing derivation plus the formalized syn-
tactic soundness proof for the underlying type system. The former can be readily
obtained from a type-checker while the latter is known to be much easier to construct
than the semantic soundness proofs. We give a translation from a typed assembly
language into FPCC and demonstrate the advantages of our new system via an
implementation in the Coq proof assistant.

Keywords: foundational proof-carrying code, syntactic soundness proof, typed
assembly language

1. Introduction

Proof-Carrying Code (PCC), as pioneered by Necula and Lee [17, 15],
allows a code producer to provide a machine-language program to a
∗ An extended abstract of this paper will appear in the Seventeenth Annual IEEE

Symposium on Logic in Computer Science (LICS’02), July 2002. This research is
based on work supported in part by DARPA OASIS grant F30602-99-1-0519, NSF
grant CCR-9901011, and NSF ITR grant CCR-0081590. Any opinions, findings, and
conclusions contained in this document are those of the authors and do not reflect
the views of these agencies.

c© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

paper.tex; 17/04/2002; 17:39; p.1



2 Hamid et al.

host along with a formal proof of its safety. The proof can be mechani-
cally checked by the host and the producer need not be trusted because
a valid proof is a dependable certificate of safety.

The proofs in Necula’s PCC systems [16, 7] are written in a logic
extended with many language-specific typing rules. They can guarantee
safety only if there are no bugs in the verification-condition generator
(VCgen), the typing rules, and the proof checker. The VCgen is a fairly
large program, so establishing its full correctness is a daunting task. The
typing rules are also error-prone: League et al. [11] recently discovered
a serious bug in the Special J typing rules that would undermine the
integrity of the entire PCC-based system.

Foundational Proof-Carrying Code (FPCC) [5, 3] tackles these prob-
lems by constructing and verifying its proofs using strictly the foun-
dations of mathematical logic, with no type-specific axioms. FPCC is
more flexible and secure because it is not tied to any particular type
system and has a smaller trusted base.

Foundational proofs, however, are much harder to construct. Previ-
ous efforts on FPCC [5, 9, 1, 6] all required constructing sophisticated
semantic models to reason about types. For example, to support con-
travariant recursive types, Appel and Felty [9] initially decided to model
each type as a partial equivalence relation, but later found that building
the actual foundational proofs would “require years of effort implement-
ing machine-checked proofs of basic results in computability theory” [6,
page 2]. Appel and McAllester [6] later proposed an indexed model
which significantly simplified the proofs but still involves tedious rea-
soning of computation steps with each type being defined as a complex
set of indexed values. More seriously, none of these approaches can
be easily extended to support mutable fields and higher-order poly-
morphism. In fact, the only known solution to mutable fields was only
proposed very recently by Ahmed et al. [2]—the proposal involves build-
ing a hierarchy of Gödel numberings and making extensive changes to
semantic models used in existing FPCC systems [5, 6].

In this article, we present a syntactic approach to FPCC that avoids
all of these difficulties. Under our new scheme, the foundational proof
for a typed machine program simply consists of the typing derivation
plus the syntactic soundness proof (of the underlying type system).
Here the typing derivation can be readily obtained from a type-checker
while the syntactic soundness proof is known to be much easier to
construct than the semantic soundness proof [25]. Our article makes
the following new contributions:
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− Foundational proofs are widely perceived as extremely hard and
tedious to construct, partly because existing efforts [5, 9, 1, 6, 2, 21]
on FPCC have all adopted the semantic approach (which requires
building sophisticated models from first principles). We show that
this perception is not true: with a syntactic approach, constructing
foundational proofs is much simpler and more straightforward.

− As far as we know, our work is the first comprehensive study on
how to use the syntactic approach to generate FPCC. The idea that
attaching the soundness proof (for the underlying type system) can
reduce the trusted base is not new [16, 3], however, none of the
existing work has shown how to use the syntactic proof to build the
foundational proof. In addition, we show in Sections 3 and 4 that
näıvely combining existing typed assembly languages (TAL) [14,
13, 26] with their soundness proofs do not necessarily produce
valid FPCC. To make the syntactic approach work, we need to
ensure that a close correspondence can be established between the
TAL and the underlying FPCC machine. This involves developing
a type-system for TAL which is not only sound but which also
enforces the invariants needed for the FPCC safety proofs.

− The relationship between TAL [14] and PCC [17] has never been
made precise even though the two are considered as related ap-
proaches for certifying low-level code. In Section 5 we show how
to translate each well-typed program in a non-trivial TAL into
FPCC. The translation is interesting because it not only shows the
connection between the two but also gives new insights on how to
turn the expressive invariants in PCC into rich typing constructs
in TAL.

− We show that the syntactic approach to FPCC can support re-
cursive types, mutable fields, and first-class code pointers without
using complex constructions required by the semantic approaches.
With our recent results on certified binaries [20] and inductive
definitions of quantified types [23], the syntactic approach offers
a more scalable alternative for compiling high-level richly typed
programs into FPCC.

− Finally, independent of our results on FPCC, the typed assembly
language presented in Section 4 is interesting for its own sake.
Here our main contribution is a simple technique for type-checking
memory allocation and for maintaining invariants about the allo-
cation state.
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In the rest of this article, we first give a formal definition of FPCC (fol-
lowing [3]) in Section 2 and present an overview of the requirements for
constructing foundational proofs in Section 3. We then formally define
our sample typed assembly language (called FTAL) in Section 4. In
Section 5 and 6 we give the detailed translation from FTAL programs
into FPCC and show how to turn FTAL typing derivations and the
(syntactic) soundness proof of FTAL into foundational proofs. Finally
we compare our approach with the semantic approach, present other
related work, and conclude.

2. Foundational Proof-Carrying Code

Unlike type-specialized PCC, foundational PCC avoids any commit-
ment to a particular type system. The operational semantics of machine
code as well as the concept of safety are defined in a suitably expres-
sive logic. The code producer must provide both the executable code
and a proof in the foundational logic that the code satisfies the safety
condition. Both the machine description and the proof must explicitly
define, down to the foundations of mathematics, all required concepts
and prove any needed properties of these concepts.

2.1. The logic

To encode our safety policies and proofs, we use the calculus of induc-
tive constructions (CiC) [22, 19]. CiC is an extension of the calculus
of constructions (CC) [8], which is a higher-order typed lambda calcu-
lus. CC corresponds to Church’s higher-order predicate logic via the
Curry-Howard isomorphism [10]. The syntax of CC is:

A,B ::= Set | Type | X | λX :A.B | A B | ΠX :A.B

The λ term corresponds to the abstraction of the lambda calculus, and
the Π term is a dependent product type. When the bound variable
does not occur in the body, the product type is usually abbreviated as
A→ B. In the terminology of pure type systems, Set and Type are the
sorts.

CiC, as its name implies, extends the calculus of constructions with
inductive definitions. An inductive definition can be written in a syntax
similar to that of ML datatypes. For example, the following introduces
an inductive definition of natural numbers of kind schema Set with two
constructors of the specified kinds:

Inductive Nat : Set := zero : Nat | succ : Nat→Nat
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A Syntactic Approach to Foundational Proof-Carrying Code 5

r ∈ Regnum = { r0, r1, . . . r31 }
w, pc ∈ Word = { 0, 1, . . . }
M ∈ Mem = Word→Word

R ∈ Regfile = Regnum→Word

S ∈ State = Mem× Regfile×Word

Instr 3 ι ::= add rd, rs, rt | addi rd, rs, w | movi rd, w
| bgt rs, rt, w | jd w | jmp r
| ld rd, rs(w) | st rd(w), rs | illegal

Figure 1. Memory, registers, state, and instruction.

Inductive definitions may also be parameterized as in the following
definition of polymorphic lists:

Inductive List [t :Set] : Set := nil : List t
| cons : t→List t→List t

The logic also provides elimination constructs for inductive defini-
tions, which combine case analysis with a fix-point operation. Objects
of an inductive type can thus be iterated over using these constructs.

In order for the induction to be well-founded and for iterators to
terminate, a few constraints are imposed on the shape of inductive
definitions; most importantly, the defined type can only occur positively
in the arguments of its constructors. Mutually inductive types are also
supported.

The calculus of inductive constructions has been shown to be strongly
normalizing [24], hence the corresponding logic is consistent. It is sup-
ported by the Coq proof assistant [22], which we use to implement a
prototype system of the results presented in this article.

In the remainder of this article, we will use more familiar mathe-
matical notation to present the statement of propositions, rather than
the strict definition of CiC syntax given in this section. For example,
the application of two terms will be written as A(B) and inductive
definitions will be presented in BNF format. We will, however, retain
the Π notation, which can generally be read as a universal quantifier.

2.2. The machine

The machine is defined by a machine state and a step function describ-
ing the (deterministic) transition from one machine state to the next.
Figure 1 defines the set of machine states. To simplify the presentation,
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we use an idealized 32-register word-addressed machine with an un-
bounded memory of words of unlimited size. A machine state is defined
as a tuple of a memory, a register set, and a program counter. The figure
shows also the instruction set, Instr. Informally, the instructions have
the following effects:

add rd, rs, rt set register rd to the sum of the contents of rs and rt;
addi rd, rs, w set rd to the sum of w and the contents of rs;
movi rd, w move an immediate value w into rd;
bgt rs, rt, w branch to location w if rs > rt;
jd w unconditional jump to location w;
jmp r indirect jump to the address in register r;
ld rd, rs(w) load the contents of location rs + w into rd;
st rd(w), rs store the contents of rs into location rd + w;
illegal put the machine in an infinite loop.

Of course, these instructions are actually encoded as words (integers)
in the machine state. We define Instr as an inductive type for reasons of
convenience since its constructors are much easier to manipulate than
encoded instruction words. Thus, the step function is decomposed into
a decoding function and the specification of the machine’s operational
semantics. The decoding function Dc, of type Word → Instr, decodes
a word into the appropriate element of Instr (non-decodable words
will result in an illegal instruction); we will omit its exact definition
since it is verbose but not interesting. The semantics of instructions
is described by the function Step shown in Figure 2. This function is
easily defined formally in CiC as an iterator on the Instr type.

2.3. The safety condition

The safety condition is a predicate expressing the fact that code will
not “go wrong.” We say that a program (or, machine state S) is safe if
every state it can ever reach satisfies the safety policy SP:

Safe (S) = Πn :Nat.SP (Stepn (S))

For this presentation, we will define a very basic and simple safety pol-
icy which states that the machine is not stuck on an illegal instruction:

SP (M,R, pc) = (Dc (M (pc)) 6= illegal)

In practice, the safety policy may also include more complex con-
straints, such as access controls on regions of memory.

An FPCC code producer must thus supply an initial state, S0 (which
includes the machine code of the program), and a proof A that this state
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if Dc(M(pc)) = then Step(M,R, pc) =

add rd, rs, rt (M,R{rd 7→ R(rs) +R(rt)}, pc+1)

addi rd, rs, w (M,R{rd 7→ R(rs) + w}, pc+1)

movi rd, w (M,R{rd 7→ w}, pc+1)

bgt rs, rt, w
(M,R, pc+1), when R(rs) ≤ R(rt)
(M,R,w), when R(rs) > R(rt)

jd w (M,R,w)

jmp r (M,R,R(r))

ld rd, rs(w) (M,R{rd 7→M(R(rs)+w)}, pc+1)

st rd(w), rs (M{R(rd)+w 7→ R(rs)}, R, pc+1)

illegal (M,R, pc)

Figure 2. Machine semantics.

satisfies the safety condition. Via the Curry-Howard isomorphism, A
can be represented by a term of type Safe (S0). Thus the FPCC package
is a pair:

F = (S0 : State, A : Safe (S0))

3. Generating Proofs

The actual proof of safety is organized following the approach used
by Appel et al. [5, 6]. We construct an induction hypothesis Inv, also
known as the global invariant, which holds for all states reachable from
the initial state and is strong enough to imply safety. Thus, to show
that our initial state S0 is safe, we provide proofs for the propositions:

Initial Condition: Inv (S0)

Preservation: ΠS :State. Inv (S)→Inv (Step (S))

Progress: ΠS :State. Inv (S)→SP (S)

These propositions intuitively state that our invariant holds for the
initial state, and for every subsequent state during the execution. The
Progress establishes that whenever the invariant holds, the safety policy
of the machine is also satisfied. Together, these imply that during the
execution of the program, the safety policy will never be violated. To
prove the initial state is safe, first we use the Initial Condition and the
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Preservation, and show by induction that

Πn :Nat. Inv (Stepn (S0)).

Then Safe (S0) follows directly by Progress.
Unlike Appel et al., who construct the invariant by means of a

semantic model of types at the machine level, our approach is based
on the use of type soundness [25]: We define Inv (S) to mean that
S is “well-formed” syntactically. The well-formedness property must
be preserved by the step function, and must imply safety; the proofs
of these properties are encoded in the FPCC logic as proof terms for
Preservation and Progress.

In the following sections we show how to derive the notion of well-
formedness for a machine state by relating the state to a type-correct
program in a typed assembly language. The type system of the language
defines a set of inference rules for judgments of the form `P , meaning
that the program P is well-formed (type-correct). The dynamic seman-
tics of the language specifies an evaluation relation 7−→ on programs;
we use here the term “program” to denote not only code but a more
general configuration fully representing a stage of the evaluation. The
syntactic approach to proving soundness of a type system involves
proving progress (if `P , then P is not stuck, i.e., there exists P ′ such
that P 7−→ P ′) and preservation (if `P and P 7−→ P ′, then `P ′).

The central idea of our approach to FPCC is to find a typed as-
sembly language and a translation relation ⇒ between its programs
and machine states, such that type-correct programs are mapped to
well-formed states, and the evaluation relation is related to the step
function—that is, if P ⇒ S and P 7−→ P ′, then P ′ ⇒ Step (S). If these
properties hold, we can define the invariant Inv (S) as simply stating
that there exists a type-correct program P such that P ⇒ S. Then
the proofs of progress and preservation for the type system (encoded in
the FPCC logic) can be used to construct straightforward proofs of the
corresponding propositions needed for the safety proof for S0. Further
details of the construction of proof terms are provided in Section 5.

This method imposes requirements on the design of the typed as-
sembly language other than just having a sound type system. For the
approach we follow in this article, if the assembly language has “macro”
instructions (e.g. malloc [14, 13] and newarray [26], which “expand”
into sequences of several machine instructions), the well-formedness of
the assembly program alone will be insufficient for the construction
of the global invariant. This is because Inv must hold for all machine
states reachable from S0. For the intermediate states of the execution of
a macro instruction, there are no corresponding well-formed assembly
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A Syntactic Approach to Foundational Proof-Carrying Code 9

programs. Hence each one of the assembly instructions must correspond
to exactly one machine instruction. Note, however, that this exact cor-
respondence of instructions is not necessary in general for the syntactic
approach to work, but it facilitates the definition of the invariant and
allows for a simpler presentation.

4. Featherweight Typed Assembly Language

The source language that we will be compiling to FPCC is a version
of the typed assembly language (TAL) by Morrisett et al. [14]. The
approach developed in this article can be applied to a TAL-like language
extended with higher-order kinds and recursive types. For simplicity
of presentation, we only introduce here a subset of such a language,
which we call the Featherweight Typed Assembly Language (FTAL).
It does not include polymorphism, existential types, and higher-order
kinds. However, it does support recursive types, memory allocation,
and mutable records (tuples).

The syntactic approach to FPCC as we present it here requires that
for each machine state and each state transition, there be a correspond-
ing FTAL program and transition. For most FTAL instructions it is
easy to see there is a one-to-one mapping to the machine instructions
of Section 2.2. However, having a malloc “macro instruction” in FTAL

(as in TAL) will not work because it cannot be mapped to a single
machine instruction and will not satisfy our requirements for generat-
ing FPCC proofs, since there would be no corresponding FTAL state
between the expanded machine instructions. (See Section 4.6 for details
on this issue.) Our approach is to make the memory allocation model
explicit and split the malloc instruction into, in this case, two individual
instructions.

4.1. Syntax

We present the syntax of FTAL in Figure 3. As in TAL, the abstract
machine state consists of a heap H, a register file R, and a sequence
of instructions I. The heap maps labels l to heap values h, and the
register file maps registers r̂ to word values v. We use {} for an empty
heap. The notation H{l 7→ h} represents a heap which maps l to h,
and on all other labels agrees with H. Similar notation is used for heap
types, register files, and register file types. In (regfile ty), n < 31, and
not all user registers need appear in the type. The notation |H| and |Ψ|
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(type) τ ::= α | int | ∀[].Γ | 〈τϕ1
1 , . . . , τϕnn 〉 | µα.τ

(init flag) ϕ ::= 0 | 1

(heap ty) Ψ ::= {0 :τ0, . . . ,n :τn}
(alloc pt ty) ρ ::= fresh | used(n)

(regfile ty) Γ ::= {r0 :τ0, . . . , rn :τn, r31 :ρ}

(label) l ::= 0 | 1 | . . .
(user reg) r ::= r0 | r1 | . . . | r30
(all reg) r̂ ::= r | r31

(word val) v ::= l | i | ?τ | fold v as τ

(heap val) h ::= 〈v1, . . . , vn〉 | code[]Γ.I

(heap) H ::= {0 7→ h0, . . . ,n 7→ hn}
(regfile) R ::= {r0 7→ v0, . . . , r31 7→ v31}

(instr) ι ::= add rd, rs, rt | addi rd, rs, i | alloc rd[~τ ]
| bgt rs, rt, l | bump i | fold rd[τ ], rs
| ld rd, rs(i) | mov rd, rs | movi rd, i
| movl rd, l | st rd(i), rs | unfold rd, rs

(instr seq) I ::= ι; I | jd l | jmp r

(program) P ::= (H,R, I)

Figure 3. Syntax of FTAL

is used to represent the number of labels in the heap and heap type,
respectively.

Only tuples and code blocks are stored in the heap and thus these are
the heap values. Word values include labels (of heap values), integers,
recursive data, and junk values which are used by the operational
semantics to represent uninitialized tuple elements. The distinction
between word values and small values in TAL is eliminated in FTAL

by expanding the instruction set. Thus, for example, there are now
two instructions for addition, one taking a register (add) and the other
using an immediate value (addi) as the third operand.

Our memory model is a simple linear unbounded heap with an allo-
cation pointer pointing to the heap top, initially set to the bottom of
the heap space. Memory allocation consists of copying the current allo-
cation pointer to a register using alloc and then adjusting the allocation
pointer with bump. In Section 5.2 we will see how these two instructions
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A Syntactic Approach to Foundational Proof-Carrying Code 11

can be directly translated into one FPCC machine instruction each.
One of the general registers, r31, is reserved as the allocation pointer
register, tracking the amount of allocated memory. FTAL instructions
will only explicitly refer to the first 31 “user” registers (r). To make
sure that each alloc is properly followed by a corresponding bump, the
allocation pointer register is given a special allocation status type, ρ,
rather than a normal type. Since there are two steps for allocation,
there are naturally two allocation status types, fresh and used(n). To
meaningfully implement linear allocation, we need an ordering on mem-
ory labels, so we define labels as natural numbers. Whether a label is
allocated in H can be easily determined by comparing it with |H|.

Operations on recursive types in FTAL are supported by the fold
and unfold instructions. The remaining instructions (add, addi, bgt,
mov, movi, movl, ld, and st) are equivalent or similar to those in the
original TAL. A code block is a sequence of instructions, with spec-
ified initial register types. Code blocks always end with a jmp or jd
instruction.

4.2. Dynamic semantics

The operational semantics of FTAL is presented in Figure 4. Most
of the instructions have an intuitively clear meaning. The ld and st in-
structions load from and store to a tuple in the heap using the specified
index. The instruction bgt rs, rt, l tests whether the value in rs is larger
than that in rt, and if so, transfers control to the code block at l.

In order to allocate a tuple in the heap, first the alloc instruction
is used to copy the current heap allocation pointer to rd and allocate
the desired size in the heap. Before the next allocation, the alloca-
tion pointer needs to be adjusted. This is achieved using the bump
instruction, which sets the allocation pointer to the next unused region
of the heap, as described earlier. (The i argument is not used by the
operational semantics.) Since we assume a linear allocation method,
unused regions of the heap are simply all those beyond the currently
allocated data.

The fold instruction annotates the value of rs with the recursive
type and moves it into rd. The unfold instruction extracts the value
from the recursive package in rs into rd. (Note that the fold and unfold
instructions of FTAL—as in TAL—are not no-ops but copy a value
from one register to another.)
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(H,R, I) 7−→ P where
if I = then P =

add rd, rs, rt; I ′ (H,R{rd 7→ R(rs) +R(rt)}, I ′)
addi rd, rs, i; I ′ (H,R{rd 7→ R(rs) + i}, I ′)
alloc rd[~τ ]; I ′ (H ′, R{rd 7→ l}, I ′)

where ~τ = τ1, . . . , τn, R(r31) = l,
and H ′ = H{l 7→ 〈?τ1, . . . , ?τn〉}

bgt rs, rt, l; I ′ (H,R, I ′) when R(rs) ≤ R(rt); and
(H,R, I ′′) when R(rs) > R(rt)
where H(l) = code[]Γ.I ′′

bump i; I ′ (H,R{r31 7→ |H|}, I ′)
fold rd[τ ], rs; I ′ (H,R{rd 7→ fold R(rs) as τ}, I ′)
jd l (H,R, I ′) where H(l) = code[]Γ.I ′

jmp r (H,R, I ′) where H(R(r)) = code[]Γ.I ′

ld rd, rs(i); I ′ (H,R{rd 7→ vi}, I ′) where 0 ≤ i < n

H(R(rs)) = 〈v0, . . . , vn−1〉
mov rd, rs; I ′ (H,R{rd 7→ R(rs)}, I ′)
movi rd, i; I ′ (H,R{rd 7→ i}, I ′)
movl rd, l; I ′ (H,R{rd 7→ l}, I ′)
st rd(i), rs; I ′ (H{l 7→ h}, R, I ′) where 0 ≤ i < n

R(rd) = l, H(l) = 〈v0, . . . , vn−1〉, and
h=〈v0, . . . , vi−1, R(rs), vi+1, . . . , vn−1〉

unfold rd, rs; I ′ (H,R{rd 7→ v}, I ′)
where R(rs) = fold v as τ

Figure 4. Operational semantics of FTAL

4.3. Static semantics

The primary judgment of the static semantics is that of the well-
formedness of a program. That in turn depends on judgments of the
well-formedness of the heap, heap type, register file, register file type,
and instruction sequence. The various typing judgments are summa-
rized in Figure 5.

The complete rules of the FTAL static semantics are given in Fig-
ures 6 to 8.
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A Syntactic Approach to Foundational Proof-Carrying Code 13

Judgment Meaning

`τ τ is a well-formed type
`Ψ Ψ is a well-formed heap type
`Γ Γ is a well-formed regfile type
`τ1≤τ2 τ1 is a subtype of τ2

`Γ1⊆Γ2 Γ1 is a regfile subtype of Γ2

`P P is a well-formed program
`H :Ψ H is a well-formed heap of type Ψ
Ψ `R :Γ R is a well-formed regfile of type Γ
Ψ ` l :ρ l is a label of allocation status ρ
Ψ `h :τ hval h is a well-formed heap value of type τ
Ψ `v :τ v is a well-formed word value of type τ
Ψ `v :τϕ v is a well-formed word value of type τϕ

Ψ; Γ `I I is a well-formed instruction sequence

Figure 5. Static judgments

Subtyping is used for two purposes: one to allow a code block to
be called when the current register file type is more detailed than
needed, and the other to be able to type-check the initialization of
an uninitialized tuple element as described below.

The top-level well-formedness rules are shown in Figure 8. To have a
well-formed program, the heap and register file must be well-formed in
some appropriate environments, as must be the current instruction se-
quence. Additionally, the current instruction sequence must be present
in the heap. The notation I ⊆ I ′ means that I is a suffix of I ′. For a
heap to be well-formed the domain of the heap type must be the same
as that of the heap, and each heap value must be well-formed. However,
the type of a well-formed register file need only specify a subset of the
registers in its domain.

To type-check heap allocation and the load and store operations,
we follow TAL by introducing initialization flags in the type of tuples.
When a tuple is newly allocated on the heap, all the elements are
flagged with 0. A store operation will set the flag of the appropriate
element to 1. Thus, a load operation is only well-formed if the flagged
type of the element being accessed is set to 1. Because the type system
only approximately tracks the initialization of tuple elements, we use
subtyping to allow initialized tuple elements to be treated as if they
were not initialized.
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`τ `Ψ `Γ `τ1≤τ2 `Γ1⊆Γ2

FTV (τ) = ∅
`τ (type)

`τi (1≤ i≤n)
`{0 :τ0, . . . ,n :τn}

(htype)

`τi (1≤ i≤n) n < 31
`{r0 :τ0, . . . , rn :τn, r31 :ρ}

(rftype)

`τ
`τ≤τ (reflex)

`τ1≤τ2 `τ2≤τ3
`τ1≤τ3

(trans)

`τi (1≤ i≤n)

`〈τϕ1
1 , . . . , τ

ϕi−1
i−1 , τ1

i , τ
ϕi+1
i+1 , . . . , τϕnn 〉≤〈τ

ϕ1
1 , . . . , τ

ϕi−1
i−1 , τ0

i , τ
ϕi+1
i+1 , . . . , τϕnn 〉

(0-1)

`τi (m≥n) (0≤ i≤m)
`{r0 :τ0, . . . , rm :τm, r31 :ρ}⊆{r0 :τ0, . . . , rn :τn, r31 :ρ}

(weaken)

Ψ `h :τ hval Ψ `v :τ Ψ ` l :ρ Ψ `v :τϕ

Ψ `vi :τϕii (1≤ i≤n)
Ψ `〈v1, . . . , vn〉 :〈τϕ1

1 , . . . , τϕnn 〉 hval
(tuple)

`Γ Ψ; Γ `I
Ψ `code[]Γ.I :∀[].Γ hval

(code)

Ψ ` i : int
(int)

Ψ `v :τ [µα.τ/α]
Ψ ` fold v as µα.τ :µα.τ

(fold)
`Ψ(l)≤τ
Ψ ` l :τ (label)

l= |Ψ|
Ψ ` l : fresh

(fresh)

l= |Ψ|−1 Ψ ` l :〈τϕ1
1 , . . . , τϕnn 〉

Ψ ` l :used(n)
(used)

Ψ `v :τ
Ψ `v :τϕ

(init)
`τ

Ψ ?̀τ :τ0
(uninit)

Figure 6. Well-formedness of FTAL types, heap and word values

The special allocation register is typed using a new judgment of
allocation status:

l= |Ψ|
Ψ ` l : fresh

(fresh)

l= |Ψ|−1 Ψ ` l :〈τϕ1
1 , . . . , τϕnn 〉

Ψ ` l :used(n)
(used)

In the first typing rule, a label whose value is equivalent to the
size of the heap type must necessarily be unallocated, i.e. fresh. When
allocation takes place, then the allocation register may temporarily be
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Ψ; Γ `I

Γ(rs)= int Γ(rt)= int Ψ; Γ{rd : int} `I
Ψ; Γ `add rd, rs, rt; I

(add)

Γ(rs)= int Ψ; Γ{rd : int} `I
Ψ; Γ `addi rd, rs, i; I

(addi)

`τi Ψ; Γ{rd :〈τ0
1 , . . . , τ

0
n 〉}{r31 :used(n)} `I

Ψ; Γ{r31 : fresh} `alloc rd[τ1, . . . , τn]; I
(alloc)

Ψ; Γ{r31 : fresh} `I
Ψ; Γ{r31 :used(n)} `bump n; I

(bump)

Γ(rs)= int Γ(rt)= int Ψ(l)=∀[].Γ′ `Γ⊆Γ′ Ψ; Γ `I
Ψ; Γ `bgt rs, rt, l; I

(bgt)

Ψ; Γ{rd :Γ(rs)} `I
Ψ; Γ `mov rd, rs; I

(mov)
Ψ; Γ{rd : int} `I

Ψ; Γ `movi rd, i; I
(movi)

Ψ; Γ{rd :τ} `I `Ψ(l)≤τ
Ψ; Γ `movl rd, l; I

(movl)

Γ(rs) = 〈τϕ0
0 , . . . , τ

ϕi−1
i−1 , τ1

i , τ
ϕi+1
i+1 , . . . , τ

ϕn−1
n−1 〉

Ψ; Γ{rd :τi} `I (0 ≤ i < n)
Ψ; Γ ` ld rd, rs(i); I

(ld)

Γ(rs)=τi Γ(rd)=〈τϕ0
0 , . . . , τ

ϕn−1
n−1 〉

Ψ; Γ{rd :〈τϕ0
0 , . . . , τ

ϕi−1
i−1 , τ1

i , τ
ϕi+1
i+1 , . . . , τ

ϕn−1
n−1 〉} `I

(0≤ i<n)
Ψ; Γ `st rd(i), rs; I

(st)

Γ(rs) = τ [µα.τ/α] Ψ; Γ{rd :µα.τ} `I
Ψ; Γ ` fold rd[µα.τ ], rs; I

(fold-i)

Γ(rs) = µα.τ Ψ; Γ{rd :τ [µα.τ/α]} `I
Ψ; Γ `unfold rd, rs; I

(unfold)

Ψ(l)=∀[].Γ′ `Γ⊆Γ′

Ψ; Γ ` jd l
(jd)

Γ(r)=∀[].Γ′ `Γ⊆Γ′

Ψ; Γ ` jmp r
(jmp)

Figure 7. Well-formedness of FTAL instruction sequences
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`P `H :Ψ Ψ `R :Γ

`H :Ψ Ψ `R :Γ Ψ; Γ `I
∃l ∈ Dom(H).H(l)=code[]Γ′.I ′ and I ⊆ I ′

`(H,R, I)
(prog)

`Ψ |Ψ|= |H| Ψ `H(l) :Ψ(l) hval (0≤ l< |H|)
`H :Ψ

(heap)

Ψ `R(ri) :τi (0≤ i≤n) Ψ `R(r31) :ρ
∀r ∈ Dom(R)−{r31}.if R(r) = l then l < |Ψ|

Ψ `R :{r0 :τ0, . . . , rn :τn, r31 :ρ}
(reg)

Figure 8. Well-formedness of FTAL programs, heaps, and register files

pointing to the newly allocated memory, and thus will have alloca-
tion status used(n) where n is the length of the allocated tuple. The
assignment of allocation status interacts with the two novel FTAL

instructions, alloc and bump, as shown in their typing rules:

`τi Ψ; Γ{rd :〈τ0
1 , . . . , τ

0
n 〉}{r31 :used(n)} `I

Ψ; Γ{r31 : fresh} `alloc rd[τ1, . . . , τn]; I
(alloc)

Ψ; Γ{r31 : fresh} `I
Ψ; Γ{r31 :used(n)} `bump n; I

(bump)

For an alloc instruction to be well-typed, the allocation register, r31,
must be in the fresh status, since otherwise, as can be seen from the op-
erational semantics, the previously allocated data will be overwritten.
After the alloc instruction, the remainder of the instruction sequence is
checked with the status of r31 changed to used(n). No further allocation
can take place until a bump n instruction is encountered, which resets
the status to fresh, corresponding again to the update in the operational
semantics. (The need for the n argument will become clear later when
translating FTAL to the actual machine instructions.)

4.4. Examples

In this section, we give a few examples of FTAL programs to demon-
strate that such a language (eventually extended with polymorphism
and existentials) provides features which make it suitable for compiling
high-level languages such as Java, ML, or Safe C.
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Our first example is the calculation of a Fibonacci number in Fig-
ure 9. The C-like program at the top of the figure can be compiled to the
FTAL code below it. The code segments fib, fib loop and fib return form
a function, written in CPS, which calculates the Fibonacci number with
index given in r1, and then passes control to the continuation function
given in r30. The main block calls fib to calculate F10 and passes the
address of the halt block as its continuation. fib initializes the loop
variables and then jumps into the loop code segment fib loop, which
jumps to fib return when the calculation is done.

The second example, in Figure 10, demonstrates how to use recursive
types and memory allocation to handle classes and objects. Class c
has no data fields and only one method f, which takes an object of
class c and invokes its method f. In the main program, an object of
class c is created and its method f is called with the object itself as
argument. The program will end up in an infinite recursive call to c.f.
In FTAL, an object of class c is represented as a recursive tuple type
whose only element is a code block with an only argument of the object
type c. The code block at label c f uses the unfold and ld instructions
to extract the argument object’s own method f, and then jumps to it.
The constructor for c, inlined in the main code block, uses the alloc and
bump instructions to allocate heap space for a tuple, then initializes its
method f with the label c f, and folds the tuple into an object using
the fold instruction. Similarly to c f, the main code block then extracts
method f from the newly created object and jumps to it.

4.5. Soundness

In order to produce the necessary FPCC proofs as described in Sec-
tion 3, we must encode the complete semantics of FTAL in CiC along
with its proof of soundness, which will be used in defining and proving
the FPCC propositions. The critical theorems for the soundness of
FTAL are the usual progress and preservation lemmas:

Theorem 1 (Progress)
If `P , then there exists P ′ such that P 7−→ P ′.

Theorem 2 (Preservation)
If `P and P 7−→ P ′, then `P ′.

As usual, several intermediate lemmas are used to prove these two
theorems, all of which can be formally encoded and proved in the Coq
proof assistant.
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void fib (n:int) { // "Safe C" code

int a=1, b=1;
for (int i=2; i++; i<=n) {
int c = a + b; a = b; b = c

}
return a

}
int main () {
return fib(10)

}

P = (H, {}, I) // FTAL code

H = fib: code[]{r1:int, r30:∀[]{r1:int}}.
mov r3, r1;
movi r1, 1;
movi r2, 1;
movi r4, 2;
jd fib_loop

fib_loop: code[]{r1:int, r2:int, r3:int, r4:int,
r30:∀[]{r1:int}}.

bgt r4, r3, fib_return;
add r5, r1, r2;
mov r1, r2;
mov r2, r5;
addi r4, r4, 1;
jd fib_loop

fib_return: code[]{r1:int, r30:∀[]{r1:int}}.
jmp r30

halt: code[]{r1:int}.
jd halt

main: code[]{}.
I

I = movi r1, 10;
movl r30, halt;
jd fib

Figure 9. FTAL Example: Fibonacci Numbers

The most important of these lemmas are given below. Their encod-
ing in Coq is described in Section 6.

Lemma 1 (Register File Update)

1. If Ψ `R :Γ and Ψ `v :τ then Ψ `R{r 7→ v} :Γ{r :τ}.
2. If Ψ `R :Γ and Ψ ` l :ρ then Ψ `R{r31 7→ l} :Γ{r31 :ρ}.
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class c { // "Safe C++" code

void f (c x) { x.f(x) }
}
void main () {
c x = new c;
x.f(x)

}

P = (H, {}, I) // FTAL code

c = µα.<∀[]{r1:α}>
H = c_f: code[]{r1:c}.

unfold r2, r1;
ld r2, r2(0);
jmp r2

main: code[]{}.
I

I = alloc r1 [∀[]{r1:c}];
bump 1;
movl r2, c_f;
st r1(0), r2;
fold r1[c], r1;
unfold r2, r1;
ld r2, r2(0);
jmp r2

Figure 10. FTAL Example: Mini-Object

Lemma 2 (Canonical Word Forms) If `H :Ψ and Ψ `v :τ then:

1. if τ= int then v= i;

2. if τ=∀[].Γ then v= l and H(l)=code[]Γ.I;

3. if τ=〈τϕ1
1 , . . . , τϕnn 〉 then v= l;

4. if τ=µα.τ ′ then v= fold v′ as τ .

Lemma 3 (Canonical Register Word Forms) If Ψ `R :Γ and
Γ(r)=τ then:

1. R(r)=v;

2. if τ= int then R(r)= i;

3. if τ=〈τϕ1
1 , . . . , τϕnn 〉 then R(r)= l.

Lemma 4 (Canonical Heap Forms) If Ψ `h :τ hval then:
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1. if τ=∀[].Γ then h=code[]Γ.I and Ψ; Γ `I;

2. if τ=〈τϕ1
1 , . . . , τϕnn 〉 then h=〈v1, . . . , vn〉 and Ψ `vi :τiϕi .

Lemma 5 (Register File Weakening) If `Γ1⊆Γ2 and Ψ `R :Γ1

then Ψ `R :Γ2.

Lemma 6 (Heap Extension) If `H :Ψ, l = |H| (thus,
l 6∈ Dom(H)), and `τ , then:

1. `Ψ{l :τ};
2. if Ψ `v :τ ′ then Ψ{l :τ} `v :τ ′;

3. if Ψ `v :τϕ then Ψ{l :τ} `v :τϕ;

4. if Ψ; Γ `I then Ψ{l :τ}; Γ `I;

5. if Ψ `R :Γ{r31 : fresh} then Ψ{l :τ} `R :Γ{r31 :used(n)};
6. if Ψ `h :τ ′ hval then Ψ{l :τ} `h :τ ′ hval;

7. if Ψ{l :τ} `h :τ hval then `H{l 7→ h} :Ψ{l :τ}.

Lemma 7 (Heap Update) If `H :Ψ and `τ≤Ψ(l) then:

1. `Ψ{l :τ};
2. if Ψ `v :τ ′ then Ψ{l :τ} `v :τ ′;

3. if Ψ `v :τϕ then Ψ{l :τ} `v :τϕ;

4. if Ψ; Γ `I then Ψ{l :τ}; Γ `I;

5. if Ψ `R :Γ then Ψ{l :τ} `R :Γ;

6. if Ψ `h :τ ′ hval then Ψ{l :τ} `h :τ ′ hval;

7. if Ψ{l :τ} `h :τ hval then `H{l 7→ h} :Ψ{l :τ}.

Now that we have an assembly language with a sound type system,
we are ready to show how to generate proof-carrying code from a well-
typed FTAL program.

4.6. Designing TAL for FPCC

We have designed a novel FTAL language for our presentation in this
article which corresponds closely to the underlying machine defined in
Section 2.2. As will become clear in the next section, every well-formed
FTAL state can be mapped to a safe machine state, and this property
is used to produce a safety proof for the machine state.
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For safety policies which need to enforce complex constraints on
every machine state or step, such a one-to-one mapping can be very im-
portant. In general, however, this strict correspondence is not necessary
for our syntactic approach to work. For example, if we wished to retain
“macro” instructions in the FTAL language, our FPCC Preservation
might be modified to

ΠS :State. Inv (S)→∃n :Nat. Inv (Step(n+1) (S))

stating that starting from a state satisfying the global invariant, the
machine will eventually (after one or more steps) reach another state
satisfying the invariant.

Also, when introducing polymorphism or existentials into the FTAL

language, there will be certain FTAL operations (e.g. type application)
which do not correspond to any run-time machine instructions at all.
In this case, the FTAL operation would correspond to a “cast” in the
FPCC proof for the machine state.

Another reason why näıvely using existing typed assembly languages
will not necessarily help in producing FPCC is that the type system
must be designed to enforce appropriate invariants. There are require-
ments in the typing rules of FTAL which are not critical for FTAL

soundness but are necessary when translating FTAL to FPCC as de-
scribed in the next section. An example of this is the requirement in the
(reg) rule (Figure 8) that all labels in registers be within the domain
of the heap (including those registers that are not specified in the type
of the register file and hence not accessible by well-formed code). This
condition is crucial in proving the properties discussed in Section 5.3.

5. Translating FTAL to FPCC

As outlined in Section 2.3, an FPCC package provides an initial state,
S0, and a proof that the state satisfies the safety policy. In the next few
subsections, we show how to translate an FTAL program into a ma-
chine state and how to use the FTAL type system to generate proofs of
the FPCC Preservation and Progress propositions, which imply safety.

5.1. From FTAL to machine state

FTAL programs are compiled to machine code by (1) defining a layout
for the memory, which maps heap values of the program to memory
addresses, (2) translating FTAL instructions to machine instructions,
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and (3) choosing the appropriate program counter and register values.
The layout must ensure that there are no overlaps between the images
of tuples and code sequences in the memory. Our choice of the FTAL

instruction set allows us to translate every FTAL instruction into one
machine instruction word.

We will express the correspondence between an FTAL program and
a machine state by a family of translation relations upon the various
syntactic categories. The forms of these relations are:

Relation Correspondence

(H,R, I)⇒ (M,R, pc) FTAL program to machine state
L ` H ⇒M FTAL heap to memory
L ` R⇒ R register files
L ` I ⇒s M [i..j] sequence of instructions to

memory layout
L ` ι⇒i w instruction translation
L ` h⇒

h
M [i..j] heap value to memory layout

L ` v ⇒w w word value to machine word

An important step in the translation is flattening the FTAL heap
into the machine memory. To support this, we define a Layout function
of type Heap→ Label→Word which, given an FTAL heap, returns a
mapping from labels to memory addresses. (In the relations above, L
is this Layout function applied to the heap.) For our current purpose,
we define

Layout ({}) (l′) = 0

Layout (H{l 7→ h}) (l′) =
{
w + size (h), if l < l′

w, otherwise,
where w = Layout (H) (l′)

where size (h) is the size of the heap value h (n for an n-tuple, for a code
block – the length of the instruction sequence). This Layout function
maps labels to addresses starting at 0 and forces the translation ⇒
to lay out FTAL heap values compactly, consecutively, and with no
overlapping (due to the implicit constraint that the labels in the heap
appear in descending order). Additionally, the first unused label (whose
value equals the size of the heap) is mapped to the first unused address.
These properties of the Layout function are useful later on in proving
Preservation and Progress.

Recall that the machine memory is modeled as a function, Word→
Word, so M(w) denotes the memory word at address w. The judgments
L ` I ⇒s M [i..j] and L ` h⇒

h
M [i..j] state that a sequence of instruc-
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tions and a heap value (either a tuple or a code block), respectively,
translate to a series of consecutive words in memory M from address i
to address j.

The translation relations are defined by a set of inference rules,
given in Figure 11. The rules are straightforward and operate purely
on the syntax of FTAL programs. Note that FTAL type annotations
are discarded in the translation (for example, in the fold instruction),
and label word values are mapped to memory words using the layout
function. Each FTAL heap value corresponds to a sequence of words
in memory. A heap translates to a memory if every heap value in the
heap translates to the appropriate sequence of memory words. Registers
translate directly between FTAL and the machine. An FTAL program
corresponds to a machine state if the translation relation holds on the
heap and register file, and if the current instruction sequence is at
some location in the memory. Since in a well-typed FTAL program the
current instruction sequence must also be present in the heap, we can
always translate it to a known program counter. Notice that the FTAL
alloc and bump instructions correspond to machine move and addition
instructions, respectively, using the register reserved for allocation, r31.

The translation relation as presented in Figure 11 is also not de-
terministic with respect to the unused and uninitialized parts of the
memory and to the positioning of the program counter. However, it is
straightforward on the basis of its definition to develop a determinis-
tic function which translates an FTAL program into a machine state
for which the translation relation described above holds. In the next
section, we will show how this initial translation is used to provide the
Initial Condition FPCC proof.

5.2. The global invariant

As discussed in Section 3, in addition to translating the FTAL program
to an initial machine state S0, we must define the invariant Inv, which
holds during the execution of a machine program, and provide proofs
of:
Initial Condition: Inv (S0)

Preservation: ΠS :State. Inv (S)→Inv (Step (S))

Progress: ΠS :State. Inv (S)→SP (S)

The invariant simply has to ensure that the machine state at each
step corresponds to a well-typed FTAL program, which will allow us to
use the formalized versions of the proofs of the progress and preserva-
tion lemmas for FTAL to generate formal proofs of the corresponding
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Word Values

L ` l⇒w L(l) L ` i⇒w i
for any w
L `?τ ⇒w w

L ` v ⇒w w

L ` fold v as τ ⇒w w

Instructions

L ` add rd, rs, rt⇒i
add rd, rs, rt

L ` addi rd, rs, i ⇒i
addi rd, rs, i

L ` alloc rd[~τ ] ⇒
i
addi rd, r31, 0

L ` bump i ⇒
i
addi r31, r31, i

L ` fold rd[τ ], rs ⇒i
addi rd, rs, 0

L ` unfold rd, rs ⇒i
addi rd, rs, 0

L ` ld rd, rs(i) ⇒
i
ld rd, rs(i)

L ` st rd(i), rs ⇒
i
st rd(i), rs

L ` mov rd, rs ⇒
i
addi rd, rs, 0

L ` movi rd, i ⇒
i
movi rd, i

L ` movl rd, l
′ ⇒

i
movi rd, L(l′)

L ` bgt rs, rt, l ⇒i
bgt rs, rt, L(l)

Instruction Sequences

L ` ι⇒
i

Dc(M(i)) L ` I ⇒s M [(i+ 1)..j]
L ` ι; I ⇒s M [i..j]

Dc(M(i)) = jd (L(l′))
L ` jd l′ ⇒s M [i..i]

Dc(M(i)) = jmp r

L ` jmp r ⇒s M [i..i]

Heap Values

L ` vi ⇒w M(j + i) for 0 ≤ i ≤ n
L ` 〈vo, . . . , vn〉 ⇒h

M [j..(j + n)]
L ` I ⇒s M [i..j]

L ` code []Γ.I ⇒
h
M [i..j]

Heap, Register File, Program

L ` H(l)⇒
h
M [L(l)..L(l+1)−1] for 0 ≤ l < |H|

L ` H ⇒M

L ` R(r̂)⇒w R(r)

L ` R⇒ R

Layout(H) ` H ⇒M
Layout(H) ` R⇒ R

Layout(H) ` I ⇒s M [pc..pc+ |I| − 1],
where ∃l ∈ Dom(H).(H(l) = code []Γ.I ′, I ⊆ I ′, and

pc = Layout(H)(l) + |I ′| − |I|)
(H,R, I)⇒ (M,R, pc)

Figure 11. Relating FTAL programs to machine states
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properties of the invariant. Since the definition of Inv requires us to
state that an FTAL program is well-typed, it must be expressed not
just in terms of FTAL programs, but of their typing derivations:

Inv(S) = ∃P : program. ∃D : (`P ). P ⇒ S

where the type annotation `P in the quantification on D introduces
D as a proof term for the judgment `P .

The proof of the initial condition can now be obtained directly in the
process of translating an initial well-formed FTAL program to machine
state as described in Section 5.1. It remains, therefore, to prove the two
lemmas.

5.3. The Preservation and Progress properties

Progress in our case is easy to prove: since the invariant states that
there exists a well-typed FTAL program which translates to the current
state, it is obvious by examination of the translation rules that such an
FTAL program will never translate to a state in which the program
counter points to an illegal instruction.

The remaining proof term, for Preservation, is thus the most in-
volved of the generated FPCC proofs. It is obtained in the following
way:

Given a program P and a typing derivation for `P , we know by
FTAL progress that there exists a program P ′ such that P 7−→ P ′.
Furthermore, by FTAL preservation, we know that `P ′. Now, the
premise of our FPCC Preservation theorem provides us with a ma-
chine state S such that P ⇒ S, and we need to show that there exists
another well-typed program that translates to Step (S). The semantics
of FTAL has been set up so that this well-typed program is exactly
P ′. It remains now for us to prove that indeed P ′ ⇒ Step (S), as
diagrammed in Figure 12.

Essentially, we need to show that the FTAL evaluation relation
corresponds to the machine’s step function. This is proved by induction
on the typing derivation of `P . For each possible case, we use inversion
on the structure of P , the FTAL evaluation relation, the translation
relation, and the machine Step function to gain the necessary informa-
tion about the structure of P ′, S, and Step (S). Many of the cases of
this proof are fairly straightforward.

Let us briefly consider one of the interesting cases of the Preservation
proof, which is when the current instruction is alloc. Corresponding to
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`P
(translate)

+3

(evaluate)

��

S

(S
tep)

��

`P ′
translate ?

+3__________ __________ Step (S)

Figure 12. Relationship between FTAL evaluation and machine semantics

the diagram in Figure 12, we have the following setup:

P = (H,R, alloc rd[τ1, . . . , τn]; I)
P ′ = (H ′, R′, I)
S = (M,R, pc)

Step (S) = (M,R
′
, (pc+ 1))

where H ′, R′, and R
′ can be determined by the operational semantics

of FTAL and the definition of the Step function (Figure 2).
We now need to prove that P ′ is related to Step (S) by the trans-

lation. First, we know by the properties of the layout function that
applying it to an extended heap maintains the mapping of all the
existing labels in the old heap. Now, the FTAL heap is updated after
evaluation but the memory stays the same after the step. However,
since the update to the heap is only with uninitialized values which
can be translated to any word, the translation will still hold on the un-
changed memory. Thus, we can show that the updated heap translates
to the unaltered memory. Then, relating the two updated register files
is not difficult, nor is showing that the residual instruction sequence
corresponds to the next program counter value. Well-formedness of P
(i.e. `P ) is used in various steps of this proof, for instance, to reason
that any labels in the registers are within the domain of the heap, hence
the layout function on the updated heap, H ′, preserves the mappings
of existing labels.

This completes the translation, or compilation, of a well-typed FTAL

program to an FPCC code package. The FTAL program can be shown
to correspond to an initial machine state and that state can be shown
safe (as described in Sections 2.3 and 3) using the proofs of Preservation
and Progress developed here.

paper.tex; 17/04/2002; 17:39; p.26



A Syntactic Approach to Foundational Proof-Carrying Code 27

6. Implementation

An implementation of the syntactic approach presented in this article
consists of an FTAL compiler which generates FPCC packages. An
FPCC package consists of two parts: the initial machine state and
the proof of safety. The proof of safety can be further divided into
two pieces: one is the proof of the Preservation and Progress theorems
and the other is the proof that the initial machine state satisfies the
Initial Condition property. Note that the proofs of Preservation and
Progress do not change for any machine state which has been generated
by compiling an FTAL program. Thus, these properties need only be
proven once and can then be reused for all FPCC packages produced
by this compiler.

In the following sections, we first describe our Coq representation of
the machine and the encoding of FTAL syntax and semantics and
soundness theorems. Next we discuss implementation of the formal
proofs of FPCC Preservation and Progress, which were done interac-
tively using the Coq proof assistant. Then, we describe a compiler which
parses an FTAL program, performs type-checking, and automatically
produces the Coq term representing the typing derivation. This typing
derivation is then used to construct the proof of the Initial Condition
property.

Coq is a proof assistant tool for the calculus of inductive construc-
tions. It provides an interactive interface for constructing formal proofs
in the logic. The Coq syntax for λ-abstraction, λX :A.B, is [X:A]B.
The syntax for dependent products, ΠX :A.B, is (X:A)B and Coq al-
lows for the normal arrow abbreviation of this when the bound variable
does not occur in the body, e.g. A->B. Coq syntax for inductive defini-
tions is exactly that described in Section 2.1. Coq uses the sort Prop
for logical propositions and the sort Set for the type of specifications
(booleans, natural numbers, lists, programs, etc.).

6.1. Encoding machine semantics

The Coq encoding of the machine to which FTAL programs are trans-
lated is very similar to the presentation in Section 2.2. For example,
having defined the registers as an inductive set with 32 constructors,
we then define the memory and register file as being functions and the
state as a triple of memory, register file, and program counter:

Definition Word := nat.
Inductive _Reg : Set := _r0 : _Reg | _r1 : _Reg | ...
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Definition Mem := Word -> Word.
Definition _RegFile := _Reg -> Word.
Definition State := (Mem * (_RegFile * Word)).

The instruction set is then defined as an inductive definition with
appropriate constructors:

Inductive _Instr : Set
:= _add : _Reg -> _Reg -> _Reg -> _Instr
| _addi : _Reg -> _Reg -> Word -> _Instr
| _movi : _Reg -> Word -> _Instr
| _bgt : _Reg -> _Reg -> Word -> _Instr
| _jd : Word -> _Instr
| _jmp : _Reg -> _Instr
| _ld : _Reg -> _Reg -> Word -> _Instr
| _st : _Reg -> Word -> _Reg -> _Instr
| _ill : _Instr.

We next decide on how to encode the instructions above as nat-
ural numbers and write a Coq function which uses the appropriate
arithmetic operations to decode a natural number into an _Instr:

Definition Dc : Word -> _Instr := ...

We are now ready to encode the semantics of the machine as given
in Section 2.2. For updating the register file and memory, we define
auxiliary functions, as in the code below:

Definition updateregfile
: _RegFile -> _Reg -> Word -> _RegFile
:= [R:_RegFile; rd:_Reg; v:Word]

([r:_Reg] if (beq_reg r rd) then v else (R r)).

Definition Step : State -> State
:= [St:State] Cases St of (M, (R, pc)) =>

Cases (Dc (M pc)) of
(_add rd rs rs’)

=> (M, ((updateregfile R rd
(plus (R rs) (R rs’))),

(S pc)))
| (_jd l)

=> (M, (R, l))
| ...
| _ill => St

end
end.
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Finally, we can state the safety policy we wish to enforce and define
what a safe machine state is. The MultiStep function simply applies
the Step function to the given state n times:

Definition SP [S:State]
:= (let (M,T’)=S in

(let (R,PC)=T’ in
~(Dc (M PC))=_ill)).

Definition Safe [S:State]
:= (n:nat)(SP (MultiStep n S)).

6.2. Encoding FTAL syntax

Encoding the FTAL language is a more involved process. We start by
defining each syntactic category as an inductive type. For example, the
FTAL types are encoded as follows:

Definition initflag := bool.

Inductive Omega : Set
:= intty : Omega
| codety : (Map Reg Omega) -> APTy -> Omega
| tupty : (list Omega) -> (list initflag) -> Omega
| recty : (OmegaL (S O)) -> Omega.

The list in the tuple type constructor is the usual definition of a
list, found in the Coq library. Hence, the tuple type constructor takes
as arguments a list of types and a list of initialization flags (booleans).
Map is defined as a list of pairs. The type of a register file (used by
codety) is a map from registers (definition presented below) to types.
We also define a “well-formed Map”, used later, as being a list of pairs
in which the first element of every pair in the list is distinct from all
others.

A well-formed type in the FTAL language will never have free type
variables, but variables may appear in a recursive type. Hence, we
represent the type under the recursive type constructor by a “lifted”
version of Omega which uses deBruijn indices to represent variables.
The parameter of the OmegaL type below tracks the number of free
type variables in the term to ensure the correctness of our substitution
and unfolding functions for recursive types:
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Inductive OmegaL : nat -> Set
:= inttyL : (OmegaL O)
| codetyL : (i:nat) (Map Reg (OmegaL i)) ->

APTy -> (OmegaL i)
| tuptyL : (i:nat) (list (OmegaL i)) ->

(list initflag) -> (OmegaL i)
| rectyL : (i:nat) (OmegaL (S i)) -> (OmegaL i)
| varL : (i:nat) (OmegaL (S i))
| liftL : (i:nat) (OmegaL i) -> (OmegaL (S i)).

Registers are defined as in the machine above. Unlike the presen-
tation in previous sections, we carry the special allocation pointer
separately from the rest of of the register file, hence there are only
31 registers defined for FTAL. The r31 register, or AP below, is simply
a label (which is defined to be a natural number). The special allocation
pointer types are encoded as an inductive definition and the types of
register files and heaps are maps from registers or labels, respectively,
to Omega (the heap type also requires that the map be well-formed, as
defined above):

Inductive Reg : Set := r0 : Reg | r1 : Reg | ...
Definition label := nat.
Definition AP := label. (* alloc. ptr. (r31) *)
Inductive APTy : Set
:= fresh : APTy
| used : nat -> APTy.
Definition RegFileTy := (Map Reg Omega).
Definition HeapTy := (WFMap label Omega).

The remainder of the definitions for FTAL syntax are fairly intuitive
and match closely the presentation in Figure 3, except that r31 and its
type are carried separately as AP and APTy:

Inductive Instr : Set
:= add : Reg -> Reg -> Reg -> Instr
| addi : Reg -> Reg -> int -> Instr
| alloc : Reg -> (list Omega) -> Instr
| bgt : Reg -> Reg -> label -> Instr
| bump : int -> Instr
| fold : Reg -> Omega -> Reg -> Instr
| ld : Reg -> Reg -> int -> Instr
| mov : Reg -> Reg -> Instr
| movi : Reg -> int -> Instr
| movl : Reg -> label -> Instr
| st : Reg -> int -> Reg -> Instr
| unfold : Reg -> Reg -> Instr.
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Inductive InstrSeq : Set
:= iseq : Instr -> InstrSeq -> InstrSeq
| jd : label -> InstrSeq
| jmp : Reg -> InstrSeq.

Inductive WordVal : Set
:= wl : label -> WordVal
| wi : int -> WordVal
| wuninit : Omega -> WordVal
| wfold : WordVal -> Omega -> WordVal.

Inductive HeapVal : Set
:= tuple : (list WordVal) -> HeapVal
| code : RegFileTy -> APTy -> InstrSeq -> HeapVal.

Definition Heap := (WFMap label HeapVal).
Definition RegFile := (Map Reg WordVal).

Definition Program := (Heap * (RegFile * (AP * InstrSeq))).

6.3. Encoding FTAL semantics and soundness

Each judgment form of the dynamic and static semantics can be viewed
as a relation and is also encoded as an inductive definition. For ev-
ery evaluation or typing rule, there is an associated constructor of
the appropriate inductive definition. (This allows us to use Coq’s in-
ductive elimination constructs to perform inversion and induction on
typing derivations.) We show the encoding of several evaluation rules
in Figure 13.

The reglookup and regupdext are to be read as propositions stating
that looking up the value of a given register in a register file (which
is defined a Map) yields the given word value and that updating or
extending the mapping of a register in a register file results in a new
register file, respectively. For the heap (and similarly heap type, which
are both defined as well-formed Maps) the hextend proposition requires
that the label being added to the domain of the heap is not already be-
ing mapped in the heap. The hupdate proposition only holds true when
the label is in fact present in the heap mapping. These propositions are
defined inductively as relations on Maps.

The encodings of the main static judgments are given in Figures 14
and 15.

In order to formally prove the soundness of FTAL as encoded
above, we proceed by first proving the same lemmas that are listed
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in Section 4.5. The statements of these lemmas in Coq, while slightly
verbose, are essentially the same as those listed in the section above. We
generate the proofs of these lemmas interactively using Coq proof “tac-
tics.” The tactics of the proof assistant correspond much to the steps
that would be used in a hand proof, e.g. induction, inversion, rewriting,
application of rules (constructors), etc. We present the statements of a
few of these lemmas in Coq below (Register File Update, the second
case of Canonical Word Forms, and several cases of the Heap Extension
lemma):

Lemma regfile_update

: (HT:HeapTy; R,R’:RegFile; G,G’:(Map Reg Omega))

(rd:Reg; v:WordVal; t:Omega)

(WFRegFile HT R G) ->

(WFWordVal HT v t) ->

(regupdext R rd v R’) ->

(regupdext G rd t G’) ->

(WFRegFile HT R’ G’).

Lemma can_word_forms_code

: (H:Heap; HT:HeapTy; v:WordVal; G:RegFileTy; T:APTy)

(WFHeap H HT) ->

(WFWordVal HT v (codety G T)) ->

(EX l | v=(wl l) /\ (EX I | (hlookup H l (code G T I)))).

Lemma heap_ext_2

: (H,H’:Heap; HT,HT’:HeapTy; t:Omega; l:label)

(v:WordVal; t’:Omega)

(WFHeap H HT) ->

(hsize H l) ->

(htextend HT l t HT’) ->

(WFWordVal HT v t’) ->

(WFWordVal HT’ v t’).

Lemma heap_ext_4

: (I:InstrSeq)

(H,H’:Heap; HT,HT’:HeapTy; t:Omega; l:label)

(R:RegFileTy; A:APTy)

(WFHeap H HT) ->

(hsize H l) ->

(htextend HT l t HT’) ->

(WFInstrSeq HT R A I) ->

(WFInstrSeq HT’ R A I).

Lemma heap_ext_7

: (H,H’:Heap; HT,HT’:HeapTy; t:Omega; l:label)

(h:HeapVal)

(WFHeap H HT) ->

(hsize H l) ->
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(htextend HT l t HT’) ->

(hextend H l h H’) ->

(WFHeapVal HT’ h t) ->

(WFHeap H’ HT’).

The main theorems for the soundness of FTAL, preservation and
progress, follow from the various lemmas:

Theorem ftal_preserv
: (P,P’:Program) (WFProgram P) -> (Eval P P’) -> (WFProgram P’).

Theorem ftal_progress
: (P:Program) (WFProgram P) -> (EX P’ | (Eval P P’)).

We have now completely formalized the (syntactic) soundness proof
of FTAL. In the next section, we discuss the encoding of the translation
relations between FTAL and the machine, and how FTAL soundness
is used to produce the proofs of the FPCC Preservation and Progress
theorems.

6.4. Encoding FPCC Preservation and Progress

The translation relations (not shown here) are represented as a set of in-
ductive definitions which follow precisely the presentation in Figure 11,
for example,

Inductive TrProgram
: Program -> State -> Prop := ...

The global invariant for FPCC can be defined in terms of the trans-
lation between a well-formed FTAL program and the machine state:

Definition Inv [S:State]
:= (EXT P:Program |

(EXT D:(WFProgram P) |
(TrProgram P S))).

Now we proceed to prove the FPCC Progress theorem:
Theorem Progress : (S:State) (Inv S) -> (SP S).

As mentioned in Section 5.3, the Progress theorem is straightfor-
ward. Using several Coq “Inversion” tactics, we determine that there
exists a well-formed instruction sequence which translates to the pro-
gram counter of the state. Then we perform case analysis on the well-
formed instruction sequence judgment and show that in every pos-
sible case, the program counter of the state must be pointing to a
non-illegal instruction.

Next is the FPCC Preservation theorem, which is more involved to
prove but which follows the discussion in Section 5.3:
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Inductive Eval : Program -> Program -> Prop

:= ev_add

: (H:Heap; R,R’:RegFile; r31:AP; I’:InstrSeq)

(rd,rs,rs’:Reg; rsval,rsval’:int)

(reglookup R rs (wi rsval)) ->

(reglookup R rs’ (wi rsval’)) ->

(regupdext R rd (wi (plus rsval rsval’)) R’) ->

(Eval (H,(R,(r31,(iseq (add rd rs rs’) I’))))

(H,(R’,(r31,I’))))

| ev_alloc

: (H,H’:Heap; R,R’:RegFile; r31:AP; I’:InstrSeq)

(rd:Reg; V:(list Omega))

(regupdext R rd (wl r31) R’) ->

(hextend H r31 (tuple (makeUninitTup V)) H’) ->

(Eval (H, (R, (r31, (iseq (alloc rd V) I’))))

(H’, (R’, (r31, I’))))

| ev_bump

: (H:Heap; R:RegFile; r31:AP; I’:InstrSeq)

(i:int; l:nat)

(hsize H l) ->

(Eval (H, (R, (r31, (iseq (bump i) I’))))

(H, (R, (l, I’))))

| ev_jd

: (H:Heap; R:RegFile; r31:AP)

(l:label; G:RegFileTy; T:APTy; I’:InstrSeq)

(hlookup H l (code G T I’)) ->

(Eval (H, (R, (r31, (jd l))))

(H, (R, (r31, I’))))

| ev_movl

: (H:Heap; R,R’:RegFile; r31:AP; I’:InstrSeq)

(rd:Reg; l:label)

(regupdext R rd (wl l) R’) ->

(Eval (H, (R, (r31, (iseq (movl rd l) I’))))

(H, (R’,(r31, I’))))

| ev_store

: (H,H’:Heap; R:RegFile; r31:AP; I’:InstrSeq)

(rd,rs:Reg; i:int; l:label;

V,V’:(list WordVal); w:WordVal)

(reglookup R rd (wl l)) ->

(reglookup R rs w) ->

(hlookup H l (tuple V)) ->

(updatetuple V i w V’) ->

(hupdate H l (tuple V’) H’) ->

(Eval (H, (R, (r31, (iseq (st rd i rs) I’))))

(H’,(R, (r31, I’))))

| ...

Figure 13. Coq encoding of FTAL dynamic semantics

Theorem Preservation : (S:State) (Inv S) -> (Inv (Step S)).

With these two theorems, we can now prove that a machine state will
be safe if the FPCC Initial Condition property is satisfied:

Theorem Safety : (S:State) (Inv S) -> (Safe S).
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Inductive RegFileSubtype (* register file subtyping: G <= G’ *)

: RegFileTy -> RegFileTy -> Prop

:= weaken

: (G,G’:RegFileTy)

((r:Reg; t:Omega) (reglookup G’ r t) -> (reglookup G r t)) ->

(RegFileSubtype G G’).

Inductive WFWordVal (* well-formed word values: HT |- w : t wval *)

: HeapTy -> WordVal -> Omega -> Prop

:= int_wval : (HT:HeapTy; i:int)(WFWordVal HT (wi i) intty)

| label_wval

: (HT:HeapTy; l:label; t,t’:Omega)

(htlookup HT l t’) ->

(Subtype t’ t) ->

(WFWordVal HT (wl l) t)

| fold_word_wval

: (HT:HeapTy; w:WordVal; t:OmegaR; t’:Omega)

(RUnlift (RUnfold t))=t’ ->

(WFWordVal HT w t’) ->

(WFWordVal HT (wfold w (recty t)) (recty t)).

Inductive WFInstrSeq (* well-formed instruction sequences: HT; G |- I *)

: HeapTy -> RegFileTy -> APTy -> InstrSeq -> Prop

:= s_add

: (HT:HeapTy; G,G’:RegFileTy; T:APTy; I:InstrSeq)

(rd,rs,rs’:Reg)

(reglookup G rs intty) ->

(reglookup G rs’ intty) ->

(regupdext G rd intty G’) ->

(WFInstrSeq HT G’ T I) ->

(WFInstrSeq HT G T (iseq (add rd rs rs’) I))

| s_alloc

: (HT:HeapTy; G,G’:RegFileTy; I:InstrSeq)

(rd:Reg; n:nat; V:(list Omega))

n=(length V) ->

(regupdext G rd (tupty V (makeUninitTupty V)) G’)->

(WFInstrSeq HT G’ (used n) I) ->

(WFInstrSeq HT G fresh (iseq (alloc rd V) I))

| s_jd

: (HT:HeapTy; G,G’:RegFileTy; T:APTy)

(l:label)

(htlookup HT l (codety G’ T)) ->

(RegFileSubtype G G’) ->

(WFInstrSeq HT G T (jd l))

| s_st

: (HT:HeapTy; G,G’:RegFileTy; T:APTy; I:InstrSeq)

(rd,rs:Reg; i:int;

V,V’:(list initflag); Ts:(list Omega); t:Omega)

(reglookup G rd (tupty Ts V)) ->

(reglookup G rs t) ->

(ListNth ? Ts i t) ->

(updatetupty V i V’) ->

(regupdate G rd (tupty Ts V’) G’) ->

(WFInstrSeq HT G’ T I) ->

(WFInstrSeq HT G T (iseq (st rd i rs) I))

| ...

Figure 14. Coq encoding of FTAL static semantics: main definitions (1 of 2)
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Inductive WFHeapVal (* well-formed heap values: HT |- h : t hval *)

: HeapTy -> HeapVal -> Omega -> Prop

:= tuple_wf

: (HT:HeapTy; wl:(list WordVal); tl:(list Omega); il:(list initflag))

(WFWordValinitList HT wl tl il) ->

(WFHeapVal HT (tuple wl) (tupty tl il))

| code_wf

: (HT:HeapTy; G:RegFileTy; I:InstrSeq; T:APTy)

(WFInstrSeq HT G T I) ->

(WFHeapVal HT (code G T I) (codety G T)).

Inductive WFHeap (* well-formed heap *)

: Heap -> HeapTy -> Prop

:= heap_wf

: (H:Heap; HT:HeapTy)

(EX s | (hsize H s) /\

(htsize HT s) /\

((n:label; h:HeapVal) (hlookup H n h) -> (lt n s)) /\

((n:label; t:Omega) (htlookup HT n t) -> (lt n s)) /\

((n:label) (lt n s) -> (EX h | (hlookup H n h))) /\

((n:label) (lt n s) -> (EX t | (htlookup HT n t))) /\

((n:label; h:HeapVal; t:Omega)

(hlookup H n h)->(htlookup HT n t)->(WFHeapVal HT h t)) /\

(OrdHeap H)

) ->

(WFHeap H HT).

Inductive WFRegFile (* well-formed register file *)

: HeapTy -> RegFile -> RegFileTy -> Prop

:= regfile_wf

: (HT:HeapTy; R:RegFile; G:RegFileTy)

((r:Reg; t:Omega)

(reglookup G r t) ->

(EX w | (reglookup R r w) /\ (WFWordVal HT w t))) ->

((r:Reg; v:WordVal; l:label; n:nat)

(reglookup R r v) ->

(stripWV v)=(wl l) ->

(htsize HT n) ->

(lt l n)) ->

(WFRegFile HT R G).

Inductive WFProgram (* well-formed program *)

: Program -> Prop

:= program_wf

: (H:Heap; HT:HeapTy; R:RegFile; G:RegFileTy;

l:AP; t:APTy; I:InstrSeq)

(WFHeap H HT) ->

(WFRegFile HT R G) ->

(WFap HT l t) ->

(WFInstrSeq HT G t I) ->

(EX l | (EX G’ | (EX T’ | (EX I’ | (EX n |

(hlookup H l (code G’ T’ I’)) /\

(ISubDepth I I’ n)))))) ->

(WFProgram (H, (R, (l, I)))).

Figure 15. Coq encoding of FTAL static semantics: main definitions (2 of 2)
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6.5. Generating the Initial Condition

In order to generate the Initial Condition, we use a compiler that takes
an FTAL program and compiles it to a machine state, producing the
necessary proofs in the process. The structure of this compiler is fairly
straightforward: After parsing an FTAL source file, type-checking is
performed. The algorithm for type-checking follows closely the struc-
ture of the inductively defined static semantics in Coq. (Similarly, the
compiler structures for FTAL abstract syntax mirror the Coq encod-
ing.) Thus, the type-checker, as it analyzes the FTAL program, simul-
taneously builds a Coq term representing the proof of well-formedness
of the program. In particular, if P:Program, then the type-checking
phase produces a term, D:(WFProgram P).

Once type-checking is successfully completed, the compiler then
translates the FTAL program into a machine state. Again, this is
done in such a manner that a Coq term representing the machine state
and the proof of the relation between the FTAL program and the
machine state can be generated. That is, for some S:State, a term,
T:(TrProgram P S), is constructed. Along with the typing derivation
term of P produced above, we can now construct a proof that the global
invariant holds on S. This can then be composed with the Safety
theorem of the previous section to produce a complete proof of the
safety of the machine state S, as specified by our safety policy.

6.6. The complete system

We now have a complete system which starts with a typed assembly
language program and compiles it into a FPCC package, consisting of
an initial machine state and a proof of safety. Although our current im-
plementation is not as realistic as [7, 5], the advantages of the syntactic
FPCC approach are still clear. We compare the syntactic and semantic
approaches to FPCC in detail in Section 7.

With respect to PCC implementations in general, the two most
practical considerations are the extent of the trusted computing base
(TCB) and the size of the proofs that are shipped with code. As for
the former, the TCB of our syntactic FPCC implementation would
consist of the following: (1) a parser, which converts the state of the
raw machine into the encoding in the logic; (2) the encoding of the
machine step function in the logic, which must accurately capture the
semantics of the real machine (that is, it must be adequate); and (3)
the proof-checker of the logic. The first two will necessarily exist in any
PCC system. For syntactic FPCC, the proof-checker is smaller and
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more reliable than that of existing PCC systems because the logic used
is much simpler. In addition, the VCgen is completely eliminated from
the system.

Regarding the proofs that are shipped with syntactic FPCC pack-
ages, note that a large portion of the safety proof is static—the Progress
and Preservation theorems hold regardless of the particular FTAL

program from which the machine state was compiled. Hence, this part
of the proof does not need to be re-supplied (or even re-checked) with
every individual FPCC package. Furthermore, the remaining portion
of the proof simply consists of the initial FTAL program and its typing
derivation. The typing derivation can be easily and quickly generated by
either the code producer or consumer. Hence, if proof size is especially
critical, the only additional information that needs to be supplied with
the initial machine state is the FTAL program itself.

7. Syntactic vs. Semantic FPCC

We have found that the choice between the syntactic and semantic
approaches to generating FPCC involves some trade-offs, which we
briefly outline in this section.

In previous work on FPCC [5, 3], type judgments were assigned a
meaning (a semantic truth value). In other words, each type of the
typed assembly language is viewed as a predicate to be applied to
memory, a value, and perhaps more arguments. The TAL typing rules
then become lemmas to be proved in this semantic model. In contrast,
the syntactic approach does not attempt to give any meaning to types
or typing rules. The entire typing derivation of a TAL (or FTAL)
program is formalized and directly encoded in the logic. The FPCC
safety proof is generated based on the similarly formalized soundness
proof for TAL. Note, however, that unlike the original PCC systems, the
typing rules are not part of the trusted base of our system—they must
be encoded and their soundness proved using only on the foundations
of the logic.

The difference discussed in the previous paragraph is clearly exhib-
ited in the nature of the invariants that are generated for the two
approaches. In the semantic approach, the global invariant used to
prove safety, although it may be derived from the type system of a
typed assembly language, actually states properties directly about the
machine state—the contents of registers, memory addresses, and so
on. This approach is very general and the invariant can be used to
express arbitrary properties about the machine. On the other hand,
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the invariant used for the syntactic approach does not prove properties
directly about the machine state. Instead, it simply requires that there
exist a correspondence between the machine state and an assembly
program. The safety and soundness of the assembly language (which is
easier to prove) is used to ensure safety of the machine code.

The most obvious feature of the syntactic approach to FPCC is
the resulting simplicity of the overall system. The complexities evident
in [3, 6, 1, 2] do not arise in our system. For example, in order to
support contravariant recursive types, an “indexed” semantic model
is necessary, which complicates the definition of types and requires
tedious reasoning about steps of computation. A more serious lim-
itation of current semantic approaches to FPCC is the difficulty to
model mutable record fields. This is a consequence of circularity in the
definition of a “type” as a predicate on a state that is a pair of memory
and a set of allocated addresses [3]. A third issue which has yet to be
addressed by the semantic model of types is supporting a type system
with higher-order kinds. These, and various other difficulties in the
semantic approach, result from attempting to give a meaning to types.

The reason why our approach does not suffer from the same com-
plexity is that it only needs to give a meaning to types one step at a
time. For example, in a semantic approach, when trying to show that
two mutually-recursive functions f and g satisfy the predicates for their
function types, we have the problem that the proof for f needs the proof
for g and vice-versa. Resolving this circularity requires a coinduction
principle or forces the use of an “indexed” semantic model. On the
other hand, a syntactic approach will simply provide a typing rule for
mutually-recursive functions. Of course, the soundness proof still needs
to show that the typing rule is meaningful, but it only needs to do it
one step at a time, in which case the circularity is gone: we do not need
to assume anything about g in order to show that the first instruction
of f can be executed safely. Only when we reach the call to g need
we pay attention to it, but at that point we do not need to assume
anything about f any more. Another way to look at it is that the
“indexing” is done implicitly, for free, when we combine the progress
and preservation lemmas to get the actual safety proof.

Despite the overall simplicity of the approach to FPCC given in
this article, it is not without potential technical intricacies. One of
the most critical of these is the encoding of the syntactic typing rules
and the soundness proof. In our prototype Coq “implementation” we
have indeed been able to completely formalize and encode the static
and operational semantics of FTAL, as well as prove the progress and
preservation theorems. Although the encoding is not entirely trivial, it
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was achieved with reasonable effort. (In particular, the current imple-
mentation of the proofs of FTAL soundness and the FPCC Preserva-
tion and Progress theorems was completed within several months by a
single graduate student with no previous experience in Coq or CiC.)
The ability in CiC to perform eliminations on inductive definitions
means that most proofs are quite straightforward and are proven using
an intuitive sequence of steps. The fact that these proofs are generated
interactively (i.e. manually) is not an issue because it only needs to be
done once.

Finally, our approach relies on the availability of a typed assembly
language that is similar to the machine for which proofs will be gener-
ated. It is also necessary that the type system capture all the invariants
needed to prove soundness of the machine code. In this article, we took
the interesting step of splitting the conventional malloc instruction of
TAL into two separate instructions (alloc and bump), each of which is
directly translated into a single machine instruction. We thus needed
to refine the type system so that the information about the allocation
state is correctly maintained in the invariant during translation. In
general, whatever criteria is specified by the safety policy (i.e., in the
definition of SP (S)) will need to be reflected in the type system.

8. Related Work

The original PCC system was designed by Necula and Lee [17, 15, 16],
as discussed in our introduction. In addition to the general framework
laid out in their work, implementation effort on building a certifying
compiler has also been carried out [18, 7]. As also mentioned pre-
viously, however, these existing certifying compilers and clients are
very language-specific and incorporate “built-in” understanding of a
particular type-system into the logic.

Our source language, FTAL, is derived from the typed assembly
language framework designed by Morrisett et al. [14]. Although, in
contrast with PCC, typed assembly language does not deal with code
at the lowest level of the machine, it is a critical tool which makes auto-
matic generation of PCC proofs possible—following either the syntactic
or the semantic approach.

Appel and Felty were the first to propose the notion of foundational
PCC [5, 3]. Work on the semantic approach to FPCC has been carried
out by Appel, Felty, and others [5, 6, 1, 12, 4].

In a recent paper, Shao et al. [20] showed how to incorporate a logic
such as CiC into a typed intermediate language. Together with the work
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described in this article, we can now build an end-to-end compiler that
compiles high-level richly typed programs into FPCC.

Lastly, the syntactic approach to proving type soundness, an idea
which we take advantage of in this article, was introduced by Wright
and Felleisen [25].

9. Conclusion

This article presents an approach for producing foundational proof-
carrying code based on syntactic soundness proofs. Starting with a
type system for a typed assembly language, we formally encode its
soundness proof and show a precise correspondence between TAL and
the language of the actual machine. We use this (syntactic) correspon-
dence, along with the proof that the type system enforces the invariants
or constraints of the safety policy, to generate a package consisting of
machine code and its proof of safety. By avoiding semantic modeling
of types as in previous approaches, our framework for constructing
foundational proofs is much simpler and more straightforward.
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