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Abstract
Runtime stacks are critical components of any modern software—
they are used to implement powerful control structures such as
function call/return, stack cutting and unwinding, coroutines, and
thread context switch. Stack operations, however, are very hard to
reason about: there are no known formal specifications for certi-
fying C-style setjmp/longjmp, stack cutting and unwinding, or
weak continuations (in C--). In many proof-carrying code (PCC)
systems, return code pointers and exception handlers are treated as
general first-class functions (as in continuation-passing style) even
though both should have more limited scopes.

In this paper we show that stack-based control abstractions fol-
low a much simpler pattern than general first-class code point-
ers. We present a simple but flexible Hoare-style framework for
modular verification of assembly code with all kinds of stack-
based control abstractions, including function call/return, tail call,
setjmp/longjmp, weak continuation, stack cutting, stack un-
winding, multi-return function call, coroutines, and thread context
switch. Instead of presenting a specific logic for each control struc-
ture, we develop all reasoning systems as instances of a generic
framework. This allows program modules and their proofs devel-
oped in different PCC systems to be linked together. Our system is
fully mechanized. We give the complete soundness proof and a full
verification of several examples in the Coq proof assistant.
Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; D.2.4 [Software Engineering]: Software/Program Verifica-
tion — correctness proofs, formal methods
General Terms Languages, Verification
Keywords Assembly Code Verification, Modularity, Stack-Based
Control Abstractions, Proof-Carrying Code

1. Introduction
Runtime stacks are critical components of any modern software—
they are used to implement powerful control structures such as pro-
cedure call/return, tail call [34, 8], C-style setjmp/longjmp [20],
stack cutting and unwinding (for handling exceptions) [7, 12, 30],
coroutines [10], and thread context switch [15]. Correct implemen-
tation of these constructs is of utmost importance to the safety and
reliability of many software systems.
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0 f:
1 addiu $sp, $sp, -32 ;allocate stack frame
2 sw $fp, 32($sp) ;save old $fp
3 addiu $fp, $sp, 32 ;set new $fp
4 sw $ra, -4($fp) ;save $ra
5 jal h ;call h
6 ct: lw $ra, -4($fp) ;restore $ra
7 lw $fp, 0($fp) ;restore $fp
8 addiu $sp, $sp, 32 ;deallocate frame
9 jr $ra ;return
10 h:
11 jr $ra ;return

Figure 1. Stack-Based Function Call/Return

Stack-based controls, however, can be unsafe and error-prone.
For example, both stack cutting and longjmp allow cutting across
a chain of stack frames and returning immediately from a deeply
nested function call. If not done carefully, it can invoke an ob-
solete longjmp or a dead weak continuation [30]). Neither C
nor C-- [30] provides any formal specifications for certifying
setjmp/longjmp, stack cutting and unwinding, or weak continua-
tions. In Java virtual machine and Microsoft’s .NET IL, operations
on native C stacks are not managed so they must be trusted.

Stack operations are very hard to reason about because they
involve subtle low-level invariants: both return code pointers and
exception handlers should have restricted scopes, yet they are often
stored in memory or passed in registers—making it difficult to track
their lifetime. For instance, the following C program is compiled
into the MIPS assembly code shown in Figure 1:

void f(){ | void h(){
h(); | return;
return; | }

} |

Before calling function h, the caller f first saves its return code
pointer (in $ra) on the stack; the instruction jal h loads the return
address (the label ct) in $ra, and jumps to the label h; when h
returns, the control jumps back to the label ct, where f restores its
return code pointer and stack pointers and jumps back to its caller’s
code. The challenge is to formalize and capture the invariant that ct
does not outlive f even though it can escape into other functions.

Many proof-carrying code (PCC) systems [3, 14, 29] support
stack-based controls by using continuation-passing style (CPS) [2].
CPS treats return addresses or exception handlers as first-class code
pointers. Under CPS, the code following ct (lines 6-9) is treated
not as a part of function f but as a separate new function; when h is
called, the continuation function ct is passed as an extra argument
in $ra which is then called at the end of function h. CPS makes type-
checking easier but it is still hard to describe the above invariant
about f and ct. Indeed, none of the existing PCC systems [26,
27, 9, 3, 14] have successfully certified setjmp/longjmp, weak



Stack-Based Reasoning Definition &
Control Abstraction System Formalization
function call/return SCAP SEC 4
tail call optimization [34, 8] SCAP SEC 4.3
exception: stack unwinding [30] SCAP-I SEC 5.1

EUCAP TR [13]
exception: stack cutting [30] SCAP-II SEC 5.2

ECAP TR [13]
multi-return function call [32] SCAP-II SEC 5.2
weak continuation [30] SCAP-II SEC 5.2
setjmp/longjmp [20] SCAP-II SEC 5.3
coroutines [10] CAP-CR SEC 6.1
coroutines + function call [10] SCAP-CR SEC 6.2
threads [15] FCCAP TR [13]

Table 1. A Summary of Supported Control Abstractions

continuations, and general stack cutting and unwinding (see Sec 8
and Sec 2.1 for an in-depth discussion about the related work).

In this paper we describe a formal system that can expose and
validate the invariants of stack-based control abstractions. We show
that return pointers (or exception handlers) are much more disci-
plined than general first-class code pointers. A return pointer is al-
ways associated with some logical control stack whose validity can
be established statically. A function can cut to any return pointer if
it can establish the validity of its associated logical control stack.

More specifically, we present a simple but flexible Hoare-style
framework for modular verification of assembly code with all kinds
of stack-based control abstractions (see Table 1). Instead of pre-
senting a specific logic for each construct, we develop all reasoning
systems as instances of a generic framework. This allows program
modules and their proofs developed in different PCC systems to be
linked together. Our system is fully mechanized. We give the com-
plete soundness proof and a full verification of several examples in
the Coq proof assistant [35]. Our paper builds upon previous work
on program verification but makes the following new contributions:

• As far as we know, our paper is the first to successfully
formalize and verify sophisticated stack operations such as
setjmp/longjmp, weak continuations, and general stack cut-
ting. We verify raw assembly implementation so there is no loss
of efficiency or additional runtime check. Our interface is sim-
ple, general, yet modular (so a library only needs to be verified
once). Our framework is sound: a program certified using our
system is free of unchecked runtime errors [20, 30].

• We have also done a thorough study of common stack-based
control abstractions in the literatures (see Table 1; due to the
space limit, several constructs are treated in a companion tech-
nical report [13]). For each construct, we formalize its invari-
ants and show how to certify its implementation. As an im-
portant advantage, all these systems are instances of a generic
framework; in fact, the inference rules for each system are just
derived lemmas in the base framework, so programs certified in
different PCC systems can be linked together [13].

• Our SCAP system (Sec 4) is interesting and novel in its own
right. Instead of treating return pointers as first-class code point-
ers (which require “impredicative types” [23, 29]), SCAP speci-
fies the invariant at each program point using a pair of a precon-
dition and a “local” guarantee (which states the obligation that
the current function must fulfill before it can return or throw an
exception). These guarantees, when chained together, is used
to specify the logical control stack. SCAP is also orthogonal to
the recent work on XCAP [29]: it can apply the same syntactic
technique [29] to certify general first-class code pointers.

• Our certified framework is also very flexible. A logical control
stack specifies a chain of valid return pointers, but it imposes
no restriction on where we store these pointers. Because all
invariants are specified as state predicates or state relations, we
can support any physical stack layout and calling conventions.

In the rest of this paper, we first review common stack-based con-
trols and summarize our main approach (Sec 2). We then define our
machine platform and a generic Hoare-style framework (Sec 3). We
present our SCAP system for certifying function call/return and
show how to extend it to support different control abstractions in
Table 1 (Sec 4–7 and the companion TR [13] ). Finally we discuss
implementation and related work, and then conclude.

2. Background and Related Work
Before giving an overview of our approach, we first survey com-
mon stack-based control abstractions in the literatures:

• Function call/return follow a strict “last-in, first-out” pattern:
the callee always returns to the point where it was most recently
called. Similar concepts include the JVM subroutines [22],
which are used to compile the “try-finally” block in Java.

• The tail call optimization is commonly used in compiler im-
plementation: if a function call occurs at the end of the current
function, the callee will reuse the current stack frame and return
directly to the caller of the current function.

• Exceptions, stack unwinding, and stack cutting. When an excep-
tion is raised, the control flow is transferred to the point at which
the exception is handled. There are mainly two strategies for im-
plementing exceptions (on stacks) [30]. Stack unwinding walks
the stack one frame at a time until the handler is reached; in-
termediate frames contain a default handler that restores values
of callee-save registers and re-raises the exception; a function
always returns to the activation of its immediate caller. Stack
cutting sets the stack pointer and the program counter directly
to the handler which may be contained in a frame deep on the
stack; intermediate frames are skipped over.

• Weak continuations and setjmp/longjmp. C-- uses weak contin-
uations [30] to support different implementation strategies for
exceptions. A weak continuation is similar to the first-class con-
tinuation except that it can only be defined inside a procedure
and cannot outlive the activation of the enclosing procedure. C
uses setjmp/longjmp library functions [20] to enable an im-
mediate return from a deeply nested function call, the semantics
of which is similar to weak-continuations (while the implemen-
tation may be more heavyweight). Especially, the function con-
taining the setjmp must not have terminated when a longjmp
is launched. Both C-- and C make no effort to prohibit invoca-
tion of a dead weak continuation or an obsolete longjmp.

• Multi-return function call. Shivers and Fisher [32] proposed
MRLC to allow functions to have multiple return points, whose
expressiveness sits between general CPS and first-order func-
tions. The mechanism is similar to weak continuations, but pro-
posed at a higher abstract level. Multi-return function call sup-
ports pure stack-based implementations.

• Coroutines and threads involve multiple execution contexts that
exist concurrently. Control can be transferred from one execu-
tion context to another. Implementation of context switch does
not follow the regular function calling convention: it fetches
the return code pointer from the stack of the target coroutine
(thread) and returns to the target instead of its caller.

2.1 Reasoning about Control Abstractions
Traditional Hoare-logic [16] uses the pre- and postcondition as
specifications for programs. Most work on Hoare-logic [4] reasons



ct

L'

L

f:

jal      h

ct:
…

jr       $ra

h:

jr        $ra

address poolproducer

consumer…

…

…

g (S, S')

Figure 2. The Model for Code Pointers

about control structures in higher-level languages and does not
directly reason about return code pointers in their semantics. To
apply traditional Hoare-logic to generate mechanized proofs for
low-level code, we need to first formalize auxiliary variables and
the Invariance rule, which is a non-trivial issue and complicates the
formalization, as shown in pervious work [37, 5]; next, we need to
relate the entry point with the exit point of a function and show the
validity of return code pointers—this is hard at the assembly level
due to the lack of abstractions.

Stata and Abadi [33] also observed two similar challenges for
typechecking Java byte code subroutines. They propose a Hoare-
style type system to reason about subroutine calls (“jsr L”) and
returns (“ret x”). To ensure the return address used by a subroutine
is the one that is most recently pushed onto the stack, they have
to disallow recursive function calls, and require labeling of code to
relate the entry point with the return point of subroutines.

Necula used Hoare triples to specify functions in SAL [26]. He
needs a history H of states, which contains copies of the register
file and the whole memory at the moment of function invocations.
At the return point, the last state is popped up from H and the
relation between that state and the current state is checked. Not
a model of physical stacks, H is used purely for reasoning about
function calls; it complicates the operational semantics of SAL sig-
nificantly. Also, SAL uses a very restrictive physical stack model
where only contiguous stack is supported and general pointer argu-
ments (which may point into the stack) are not allowed.

To overcome the lack of structures in low-level code, many PCC
systems have also used CPS to reason about regular control ab-
stractions, which treats return code pointers (and exception han-
dlers) as first-class code pointers. CPS is a general semantic model
to support all the control abstractions above, but it is hard to use
CPS to characterize the invariants of control stacks for specific
control abstractions (e.g., setjmp/longjmp and weak continua-
tion). CPS-based reasoning also requires specification of continua-
tion pointers using “impredicative types” [23, 29]), which makes
the program specification complex and hard to understand. An-
other issue with CPS-based reasoning is the difficulty to specify
first-class code pointers modularly in logic: because of the circular
references between code pointers and data heap (which may in turn
contains code pointers), it is not clear how to apply existing ap-
proaches [25, 3, 29] to model sophisticated stack-based invariants.

2.2 Our Approach
In this paper we will show that we can support modular reasoning
of stack-based control abstractions without treating them as first-
class code pointers. In our model, when a control transfer occurs,
the pointer for the continuation code is deposited into an abstract
“address pool” (which may be physically stored in memory or
the register file). The code that saves the continuation is called a
“producer”, and the code that uses the continuation later is called
a “consumer”. In case of function calls, as shown in Figure 2, the
caller is the “producer” and the callee is the “consumer”, while the
return address is the continuation pointer.

(Program) P ::= (C,S,I)
(CodeHeap) C ::= {f ; I}∗

(State) S ::= (H,R)
(Heap) H ::= {l ; w}∗

(RegFile) R ::= {r ; w}∗
(Register) r ::= {rk}k∈{0...31}

(Labels) f,l ::= i (nat nums)
(Word) w ::= n (integers)

(InstrSeq) I ::= c;I | j f | jal f,fret | jr rs

(Command) c ::= addu rd ,rs,rt | addiu rd ,rs,w

| beq rs,rt ,f | bgtz rs,f | lw rt ,w(rs)
| subu rd ,rs,rt | sw rt ,w(rs)

Figure 3. Syntax of Target Machine TM

$zero r0 always zero
$at r1 assembler temporary
$v0−$v1 r2−r3 return values
$a0−$a3 r4−r7 arguments
$t0−$t9 r8−r15,r24−r25 temporary (caller saved)
$s0−$s7 r16−r23 callee saved
$k0−$k1 r26−r27 kernel
$gp r28 global pointer
$sp r29 stack pointer
$fp r30 frame pointer
$ra r31 return address

Figure 4. Register Aliases and Usage

The producer is responsible for ensuring that each code pointer
it deposits is a valid one and depositing the code pointer does not
break the invariant of the address pool. The consumer ensures
that the invariant established at its entry point still holds when it
fetches the code pointer from the pool and makes an indirect jump.
The validity of the code pointer is guaranteed by the invariant. To
overcome the lack of abstraction at the assembly level, we use a
guarantee g—a relation over a pair of states—to bridge the gap
between the entry and exit points of the consumer. This approach
avoids maintaining any state history or labeling of code.

The address pool itself is structureless, with each control ab-
straction molding the pool into the needed shape. For functions,
exceptions, weak continuations, etc., the pool takes the form of a
stack; for coroutines and threads it takes the form of a queue or a
queue of stacks (each stack corresponding to a coroutine/thread).
The invariant specified by a control abstraction also restricts how
the pool is used. Function call, for example, restricts the (stack-
shaped) pool to a strict “last-in, first-out” pattern, and makes sure
that all addresses remain constant until they are fetched.

In the rest of this paper, we will describe the invariant for each
control abstraction. We also present a set of lemmas that allow
programmers to verify structureless assembly code with higher-
level abstractions. Before we define these systems, we first present
our generic CAP0 framework. All the systems for specific control
abstractions will be presented as a set of lemmas in CAP0.

3. The CAP0 Framework
In this section, we first present a MIPS-style “untyped” target
machine language (TM) and its operational semantics. Then we
propose a general logic, CAP0, for verifying TM programs. The
generic CAP0 framework will serve as the common basis for the
interoperability of different logics.

3.1 The Target Machine
In Figure 3 we show the definition of a MIPS-style target machine
(TM). A machine state is called a “Program” (P), which consists of



if I= then (C,(H,R),I) 7−→
j f (C,(H,R),C(f)) when f∈dom(C)
jal f,fret (C,(H,R{r31 ;fret}),C(f)) when f∈dom(C)
jr rs (C,(H,R),C(R(rs))) when R(rs)∈dom(C)
beq rs,rt ,f;I′ (C,(H,R),I′) when R(rs) 6=R(rt);

(C,(H,R),C(f)) when R(rs)=R(rt), f∈dom(C)
bgtz rs,f;I′ (C,(H,R),I′) when R(rs)≤0;

(C,(H,R),C(f)) when R(rs)>0, f∈dom(C)
c;I′ (C,Nextc(H,R),I′)

where

if c = then Nextc(H,R) =
addu rd ,rs,rt (H,R{rd ;R(rs)+R(rt)})
addiu rd ,rs,w (H,R{rd ;R(rs)+w})
lw rt ,w(rs) (H,R{rt ;H(R(rs)+w)})

when R(rs)+w ∈ dom(H)
subu rd ,rs,rt (H,R{rd ;R(rs)−R(rt)})
sw rt ,w(rs) (H{R(rs)+w;R(rt)},R)

when R(rs)+w ∈ dom(H)

Figure 5. Operational Semantics of TM

a read-only code heap (C), an updatable state (S), and an instruction
sequence (I). The code heap is a finite partial mapping from code
labels to instruction sequences. The state S contains a data heap (H)
and a register file (R). Each instruction sequence is a basic code
block, i.e., a list of instructions ending with a jump-instruction. We
use an instruction sequence I in P (rather than a program counter)
to represent the basic block that is being executed.

The target machine has 32 registers. Following the MIPS con-
vention, Figure 4 shows the register aliases and usage. All the as-
sembly code shown in the rest of the paper follows this convention.

The instruction set captures the most basic and common MIPS
instructions. Since we do not have a program counter, we change
the syntax of the jal instruction and require that the return address
be explicitly given. The execution of TM programs is modeled as
a small-step transition from one program to another, i.e., P 7−→ P′.
Figure 5 defines the program transition function. The semantics of
most instructions are the same with corresponding MIPS instruc-
tions, except that code labels in jump-instructions (e.g., j f, jr r)
and branch-instructions (e.g., beq rs,rt ,f) are treated as absolute
addresses instead of relative addresses.

3.2 The CAP0 Framework
CAP0 generalizes our previous work on CAP systems [39, 29].
It leaves the program specification unspecified, which can be cus-
tomized to embed different logics into the framework. The sound-
ness of CAP0 is independent of specific forms of program specifi-
cations. The framework supports separate verification of program
modules using different verification logics.

3.2.1 Program Specifications
The verification constructs are defined as follows.

(CdHpSpec) Ψ ::= {f; θ}∗
(CdSpec) θ ::= . . .

(Interp.) a, [[θ ]],〈a〉Ψ ∈ CdHpSpec→State→Prop

To verify a program, the programmer needs to first give a specifica-
tion Ψ of the code heap, which is a finite mapping from code labels
to code specifications θ. To support different verification methodol-
ogy, the CAP0 framework does not enforce the form of θ. Instead, it
requires the programmer to provide an interpretation function [[ ]]
which maps θ to predicates (a) over the code heap specification and
the program state. CAP0 uses the interpretation of code specifica-
tions as its assertion language.

Ψ `{a}P (Well-formed Program)

ΨG` C :ΨG (a ΨG S) `{a}I
ΨG `{a}(C,S,I) (PROG)

Ψ` C :Ψ′ (Well-formed Code Heap)

a = [[θ ]] `{〈a〉ΨL}I
ΨL` {f ; I} :{f ; θ} (CDHP)

Ψ1` C1 :Ψ′
1 Ψ2` C2 :Ψ′

2 dom(C1)∩dom(C2) = /0
∀f ∈ dom(Ψ1)∩dom(Ψ2). Ψ1(f) = Ψ2(f)

Ψ1 ∪Ψ2` C1 ∪C2 :Ψ′
1 ∪Ψ′

2
(LINK)

`{a}I (Well-formed Instruction Sequence)

∀Ψ,S. a Ψ S→ [[Ψ(f) ]] Ψ S
`{a} j f

(J)

∀Ψ,H,R. a Ψ (H,R)→ [[Ψ(f) ]] Ψ (H,R{ra;fret})
`{a} jal f,fret

(JAL)

∀Ψ,S. a Ψ S→ [[Ψ(S.R(rs)) ]] Ψ S
`{a} jr rs

(JR)

`{a′}I
∀Ψ,S. a Ψ S→ ((S.R(rs)≤0→ a′ Ψ S)∧

(S.R(rs)>0→ [[Ψ(f) ]] Ψ S))
`{a}bgtz rs,f;I (BGTZ)

c∈{addu,addiu, lw,subu,sw}
∀Ψ,S. a Ψ S→ a′ Ψ (Nextc(S)) `{a′}I

`{a}c;I (SEQ)

Figure 6. Inference Rules for CAP0

To support separate verification of modules, we add an extra
constraint on the arguments of a using the lifting function 〈 〉Ψ,
which says that the specification Ψ of the local module is the
smallest set of code specifications we need to know to verify this
module. The lifting function is defined as follows:

〈a〉Ψ , λΨ′.λS.(Ψ⊆Ψ′)∧a Ψ′ S.

We will give a detailed explanation of CAP0’s support of modular-
ity in the next section.

3.2.2 Inference Rules and Soundness
We use the following judgments to define inference rules:

Ψ ` {a}P (well-formed program)
Ψ ` C :Ψ′ (well-formed code heap)
` {a}I (well-formed instruction sequence)

Figure 6 shows the inference rules of CAP0.
A program is well-formed (the PROG rule) if there exists a

global code heap specification ΨG and an assertion a such that:
• the global code heap C is well-formed with respect to ΨG;
• given ΨG, the current state S satisfies the assertion a; and
• the current instruction sequence I is well-formed.

The CAP0 framework supports separate verification of program
modules. Modules are modeled as small code heaps which contain
at least one code block. The specification of a module contains not
only specifications of the code blocks in the current module, but
also specifications of external code blocks which will be called by
the module. In the judgment Ψ` C :Ψ′, Ψ contains specifications
for imported external code and for code within the module C (to
support recursive functions), while Ψ′ contains specifications for



exported interfaces for other modules. Programmers are required
to first establish the well-formedness of each individual module via
the CDHP rule. Two non-intersecting well-formed modules can then
be linked together via the LINK rule. The PROG rule requires that
all modules be linked into a well-formed global code heap.

In the CDHP rule, the user specification θ (for I) is first mapped
to a predicate over the code heap specification and the program
state, and then lifted by the lifting function parameterized by the
local specification ΨL of this module. Later on, we will see that
none of the instruction rules (e.g., J and JAL) refer to the global
program specification ΨG. Instead, a universally quantified Ψ is
used with the constraint that it must be a superset of ΨL. Such a
constraint is enforced by the lifting function 〈 〉ΨL

.
The well-formedness of instruction sequences ensures that it is

safe to execute I in a machine state satisfying the assertion a. An
instruction sequence beginning with c is safe (rule SEQ) if we can
find an assertion a′ which serves both as the postcondition of c
(that is, a′ holds on the updated machine state after executing c,
as captured by the implication) and as the precondition of the tail
instruction sequence. A direct jump is safe (rule J) if the current
assertion can imply the assertion of the target code block as speci-
fied in Ψ. Rules for other jump and branch instructions are similar
to the J rule. When proving the well-formedness of an instruction
sequence, a programmer’s task includes applying the appropriate
inference rules and finding intermediate assertions such as a′.
Soundness The soundness of CAP0 inference rules with respect
to the operational semantics of TM is established following the
syntactic approach [38] to prove type soundness. We do not require
the specific form of code specifications θ to prove the soundness.

Lemma 3.1 (Progress) If Ψ `{a}P, then there exists a program
P′, such that P 7−→ P′.

Lemma 3.2 (Preservation) If Ψ `{a}P, and P 7−→ P′, then there
exists a′, Ψ `{a′}P′.

Theorem 3.3 (Soundness) If Ψ `{a}P, then for all natural num-
ber n, there exists a program P′ such that P 7−→n P′.

The soundness proof [13] has been formally encoded in Coq.

CAP0 and Previous CAP systems. The CAP0 framework is a
generalization of our previous work on CAP systems [39, 29].
The original CAP [39] does not support separate verification of
program modules. The idea of letting assertions be parameterized
by Ψ and using universally-quantified Ψ in the CAP0 inference
rules, is borrowed from Ni and Shao’s work on XCAP [29]. XCAP
is proposed to reason about general first-class code pointers, where
a special form of assertions (with type State → PropX) is used for
program specifications.

CAP0 generalizes XCAP and leaves the form of program spec-
ifications unspecified. The interpretation function in CAP0, which
is different from the one in XCAP, maps different forms of specifi-
cations to a general form. It is trivial to embed the original CAP in
CAP0 by the following customization and interpretation.

(Assertion) p ∈ State→Prop

(CdSpec) θ ::= p

(Interp.) [[p ]] , λΨ.λS.p S
XCAP and its extension [28] for weak memory update can be
embedded into CAP0 too if we use formulae of type (State →
PropX) to customize the θ in CAP0, and use the interpretation
in XCAP as our interpretation function. TAL [24] may also be
embedded in CAP0 indirectly through XCAP, as shown by Ni and
Shao [28].

f: -{(p, g)}

addiu $sp, $sp, -32

…

jal      h,  ct

ct:
…

jr       $ra

   g S S'

p S
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A jal h ct
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ct: (p2, g2)

(p0, g0)

f:

g1

g2
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Figure 7. The Model for Function Call/Return in SCAP

4. SCAP for Function Call/Return

4.1 Stack-Based Reasoning for Function Call
We present SCAP as an instance of the CAP0 framework. The code
specification θ in CAP0 is instantiated with the SCAP specification,
which is defined as:

(Assertion) p ∈ State→Prop

(Guarantee) g ∈ State→State→Prop

(CdSpec) θ ::= (p,g)

A precondition for an instruction sequence contains a predicate
p specifying the current state, and a guarantee g describing the
relation between the current state and the state at the return point of
the current function (if the function ever returns). Figure 7(a) shows
the meaning of the specification (p,g) for the function f defined in
Figure 1 (Section 1). Note that g may cover multiple instruction
sequences. If a function has multiple return points, g governs all
the traces from the current program point to any return point.

Figure 7(b) illustrates a function call to h from f at point A,
with the return address ct. The specification of h is (p1,g1). Spec-
ifications at A and D are (p0,g0) and (p2,g2) respectively, where g0
governs the code segment A-E and g2 governs D-E.

To ensure that the program behaves correctly, we need to en-
force the following conditions:
• the precondition of function h can be satisfied, i.e.,

∀H,R.p0 (H,R)→ p1 (H,R{$ra ; ct});
• after h returns, f can resume its execution from point D, i.e.,

∀H,R,S′.p0 (H,R)→ g1 (H,R{$ra ; ct}) S′→ p2 S′;
• if the function h and the code segment D-E satisfy their specifi-

cations, the specification for A-E is satisfied, i.e.,
∀H,R,S′,S′′.p0 (H,R)→

g1 (H,R{$ra ; ct}) S′→ g2 S′ S′′→ g0 (H,R) S′′;

• the function h must reinstate the return code pointer when it
returns, i.e., ∀S,S′.g1 S S′→ S.R($ra) = S′.R($ra).

Above conditions are enforced by the CALL rule shown in Figure 8
(ignore the meaning of [[ (p,g) ]] for the time being, which will be
defined later).

To check the well-formedness of an instruction sequence begin-
ning with c, the programmer needs to find an intermediate specifi-
cation (p′,g′), which serves both as the postcondition for c and as
the precondition for the remaining instruction sequence. As shown
in the SCAP-SEQ rule, we check that:
• the remaining instruction sequence is well-formed with regard

to the intermediate specification;
• p′ is satisfied by the resulting state of c; and



f,fret ∈ dom(ΨL) (p′,g′) = ΨL(f) (p′′,g′′) = ΨL(fret)
∀H,R.p (H,R)→ p′ (H,R{$ra;fret})
∀H,R,S′. p (H,R)→ g′ (H,R{$ra;fret}) S′→

(p′′ S′ ∧ (∀S′′. g′′ S′ S′′→ g (H,R) S′′))
∀S,S′.g′ S S′→ S.R($ra) = S′.R($ra)

`{〈[[ (p,g) ]]〉ΨL} jal f,fret
(CALL)

c∈{addu,addiu, lw,subu,sw}
`{〈[[ (p′,g′) ]]〉ΨL}I ∀S.p S→ p′ (Nextc(S))
∀S,S′.p S→ g′ (Nextc(S)) S′→ g S S′

`{〈[[ (p,g) ]]〉ΨL}c;I (SCAP-SEQ)

∀S.p S→ g S S
`{〈[[ (p,g) ]]〉ΨL} jr $ra

(RET)

f ∈ dom(ΨL) (p′,g′) = ΨL(f)
∀S.p S→ p′ S ∀S,S′.p S→ g′ S S′→ g S S′

`{〈[[ (p,g) ]]〉ΨL} j f
(T-CALL)

f ∈ dom(ΨL) (p′′,g′′) = ΨL(f) `{〈[[ (p′,g′) ]]〉ΨL}I
∀S.p S→ S.R(rs)≤ 0→ (p′ S∧ (∀S′.g′ S S′→ g S S′))
∀S.p S→ S.R(rs) > 0→ (p′′ S∧ (∀S′.g′′ S S′→ g S S′))

`{〈[[ (p,g) ]]〉ΨL}bgtz rs,f;I
(SCAP-BGTZ)

Figure 8. SCAP Inference Rules

• if the remaining instruction sequence satisfies its guarantee g′,
the original instruction sequence satisfies g.

Suppose the state transition sequence made by the function is
(S0, . . . ,Sn). To show that the function satisfies its guarantee g (i.e.,
g S0 Sn), we enforce the following chain of implication relations:

gn Sn−1 Sn → gn−1 Sn−2 Sn → . . .→ g S0 Sn,

where each gi is the intermediate specification used at each ver-
ification step. Each arrow on the chain is enforced by rules such
as SCAP-SEQ. The head of the chain (i.e., gn Sn−1 Sn) is enforced
by the RET rule (where Sn−1 is the same with Sn since the jump in-
struction does not change the state), therefore we can finally reach
the conclusion of g S0 Sn.

SCAP also supports tail function call, where the callee reuses
the caller’s stack frame and the return code pointer. To make a tail
function call, the caller just directly jumps to the callee’s code. As
shown in the T-CALL rule, we need to check that the guarantee of
the callee matches the guarantee that remains to be fulfilled by the
caller function.

Rules for branch instructions are straightforward. The SCAP-
BGTZ rule is like a combination of the SCAP-SEQ rule and the T-
CALL rule, since the execution may either fall through or jump to
the target code label, depending on whether the condition holds.

Notice that all the code specifications ΨL used in SCAP rules
are the local specifications for the current module. SCAP supports
modular reasoning about function call/return in the sense that caller
and callee can be in different modules and be certified separately.
When specifying the callee function, we do not need any knowl-
edge about the return address $ra in its precondition p. The RET
rule for the instruction “jr $ra” does not have any constraint on
$ra either. Examples in Section 4.3 illustrate how to write program
specifications in SCAP.

4.2 The Stack Invariant
Figure 9 shows a snapshot of the stack of return continuations: the
specification of the current function is (p0,g0), which will return
to its caller at the end; and the caller will return to the caller’s

g0

 g1

g2

g3

jr $ra

p0

p1

p2

p3

.
.

.

A

B

C

Figure 9. The Logical Control Stack

caller. . . The return continuations in the dashed box compose a
logical control stack.

To establish the soundness of the SCAP inference rules, we
need to ensure that when the current function returns at A, $ra
contains a valid code pointer with the specification (p1,g1), and
p1 is satisfied. Similarly we need to ensure that, at return points B
and C, $ra contains valid code pointers with specifications (p2,g2)
and (p3,g3) respectively, and that p2 and p3 are satisfied by then.
Suppose the current state is S0 which satisfies p0, above safety
requirement can be formalized as follows:

g0 S0 S1 →
S1.R($ra) ∈ dom(Ψ)∧Ψ(S1.R($ra)) = (p1,g1)∧p1 S1;

g0 S0 S1 → g1 S1 S2 →
S2.R($ra) ∈ dom(Ψ)∧Ψ(S2.R($ra)) = (p2,g2)∧p2 S2;

g0 S0 S1 → g1 S1 S2 → g2 S2 S3 →
S3.R($ra) ∈ dom(Ψ)∧Ψ(S3.R($ra)) = (p3,g3)∧p3 S3;

. . .

where Ψ is the program specification, and each Si is implicitly
quantified by universal quantification.

Generalizing above safety requirement, we recursively define
the “well-formed control stack with depth n” as follows:

WFST(0,g,S,Ψ) , ¬∃S′. g S S′
WFST(n,g,S,Ψ) ,
∀S′.g S S′→ S′.R($ra) ∈ dom(Ψ)∧p′ S′ ∧WFST(n−1,g′,S′,Ψ)

where (p′,g′) = Ψ(S′.R($ra)).

When the stack has depth 0, we are in the outermost function which
has no return code pointer (the program either “halts” or enters an
infinite loop). In this case, we simply require that there exist no S′
at which the function can return, i.e., ¬∃S′. g S S′.

Then the stack invariant we need to enforce is that, at each
program point with specification (p,g), the program state S must
satisfy p and there exists a well-formed control stack in S. The
invariant is formally defined as:

p S∧∃n.WFST(n,g,S,Ψ).

With the stack invariant, we can “typecheck” the function return
(“jr $ra”) using the very simple RET rule without requiring that $ra
contain a valid code pointer.

SCAP in the CAP Framework. We prove the soundness of SCAP
by showing that SCAP inference rules are provable from the corre-
sponding CAP0 rules, given a proper interpretation function for the
SCAP specifications.



unsigned fact(unsigned n){
return n ? n * fact(n - 1) : 1;

}

(a) regular recursive function

void fact(unsigned *r, unsigned n){
if (n == 0) return;
*r = *r * n;
fact(r, n - 1);

}

(b) tail recursion with pointer arguments

Figure 10. Factorial Functions in C

TRUE , λS.True NoG , λS.λS′.False
Hnid(ls) , ∀l 6∈ ls.[l] = [l]′ Rid(rs) , ∀r ∈ rs, [r] = [r]′

Frm[i] , [[$fp]− i] Frm′[i] , [[$fp]− i]′

gfrm , [$sp]′ = [$sp]+3∧ [$fp]′ = Frm[0]
∧[$ra]′ = Frm[1]∧ [$s0]′ = Frm[2]

Figure 11. Macros for SCAP Examples

In Section 4.1 we instantiated the CAP0 code specification θ
with (p,g) in SCAP, without giving the interpretation function.
Having defined the stack invariant, the interpretation of (p,g) is
simply defined as the invariant:

[[ (p,g) ]] , λΨ.λS. p S ∧∃n.WFST(n,g,S,Ψ).

The proof of SCAP inference rules as lemmas in CAP0 are
presented in Appendix A and encoded in Coq [13].

4.3 Examples
In this section we show how SCAP can be used to support callee-
save registers, optimizations for tail-recursions, and general pointer
arguments in C.

Figure 10 shows two versions of the factorial function imple-
mented in C. The first one is a regular recursive function, while the
second one saves the intermediate result in the address passed as
argument and makes a tail-recursive call.

The compiled assembly code of these two functions is shown
in Figure 12 and 13. In both programs, the label entry points to
the initial code segment where the function fact is called. SCAP
specifications for the code heap are embedded in the code, enclosed
by -{}. Figure 11 shows definitions of macros used in the code
specifications. To simplify the presentation, we use [r] and [l] to
represent values contained in the register r and memory location
l. We also use primed representations [r]′ and [l]′ to represent
values in the resulting state (the second argument) of a guarantee g.
Rid(rs) means all the registers in rs are preserved by the function.
Hnid(ls) means all memory cells except those with addresses in ls

are preserved. Frm[i] represents the ith word on the stack frame.
The specification at the entrance point (labeled by prolog) of

the first function is given as (TRUE,g0) in Figure 12. The precon-
dition defines no constraint on the value of $ra. The guarantee g0
specifies the behavior of the function:
• the return value [$v0] is the factorial of the argument [$a0];
• callee-save registers are not updated; and
• the memory, other than the stack frames, are not updated.

If we use pre-/post-conditions in traditional Hoare-Logic to specify
the function, we have to use auxiliary variables to specify the first
point, and apply the Invariance Rule for the last two points. Using
the guarantee g0 they can be easily expressed.

g0, [$v0]′ = [$a0]! ∧ Rid({$gp,$sp,$fp,$ra,$s0, . . . ,$s7})
∧Hnid({([$sp]−3∗ [$a0]−2), . . . , [$sp]})

g1, [$v0]′ = [$a0]! ∧ Rid({$gp,$s1, . . . ,$s7})∧gfrm
∧Hnid({([$sp]−3∗ [$a0]+1), . . . , [$sp]})

g3, ([$v0]′ = [$v0]∗ [$s0])∧Rid({$gp,$s1, . . . ,$s7})∧gfrm ∧Hnid( /0)
g4, Rid({$gp,$v0,$s1, . . . ,$s7})∧gfrm ∧Hnid( /0)

prolog: -{(TRUE, g0)}
addiu $sp, $sp, -3 ;allocate frame
sw $fp, 3($sp) ;save old $fp
addiu $fp, $sp, 3 ;new $fp
sw $ra, -1($fp) ;save return addr
sw $s0, -2($fp) ;callee-save reg
j fact

fact: -{(TRUE, g1)}
bgtz $a0, nonzero ;n == 0
addiu $v0, $zero, 1 ;return 1
j epilog

nonzero: -{([$a0] > 0, g1)}
addiu $s0, $a0, 0 ;save n
addiu $a0, $a0, -1 ;n--
jal prolog, cont ;fact(n)

cont: -{([$v0] = ([$s0]−1)!, g3)}
multu $v0, $s0, $v0 ;return n*(n-1)!
j epilog

epilog: -{(TRUE, g4)}
lw $s0, -2($fp) ;restore $s0
lw $ra, -1($fp) ;restore $ra
lw $fp, 0($fp) ;restore $fp
addiu $sp, $sp, 3 ;restore $sp
jr $ra ;return

halt: -{(TRUE, NoG)}
j halt

entry: -{(TRUE, NoG)}
addiu $a0, $zero, 6 ;$a0 = 6
jal prolog, halt

Figure 12. SCAP Factorial Example

In the second implementation (in Figure 13), the caller passes
the address of a stack variable to the function fact. The tail
recursion is optimized by reusing the stack frame and making a
direct jump. The precondition p0 requires that stack variable be
initialized to 1 and not be allocated on the unused stack space. The
guarantee g0 is similar to the one for the first version.
Malicious functions cannot be called. It is also interesting to see
how malicious functions are rejected in SCAP. The following code
shows a malicious function which disguises a function call of the
virus code as a return (the more deceptive x86 version is “push
virus; ret”).
ld_vir: -{(p, g)}

addiu $ra, $zero, virus ;fake the ret addr
jr $ra ;disguised func. call

The function ld vir can be verified in SCAP with a proper specifi-
cation of (p,g) (e.g., (TRUE,λS,S′.True)), because the SCAP RET
rule does not check the return address in $ra. However, SCAP will
reject any code trying to call ld vir, because the g cannot satisfy
the premises of the CALL rule.

5. Generalizations of SCAP
The methodology for SCAP scales well to multi-return function
calls and weak continuations. In this section, we will generalize
the SCAP system in two steps. By a simple relaxation of the CALL



p0 , [[$a0]] = 1∧ [$a0] 6∈ {([$sp]−2), . . . , [$sp]}
g0 , [[$a0]]′ = [$a1]! ∧ Rid({$gp,$sp,$fp,$ra,$a0,$s0, . . . ,$s7})

∧Hnid({[$sp]−2, . . . , [$sp], [$a0]})
p1 , [$a0] 6∈ {([$sp]+1), . . . ,([$sp]+3)}
g1 , ([[$a0]]′ = [[$a0]]∗ [$a1]!)∧Rid({$gp,$a0,$s1, . . . ,$s7})

∧gfrm ∧Hnid({[$a0]})
g3 , Rid({$gp,$a0,$s1, . . . ,$s7})∧gfrm ∧Hnid( /0)

prolog: -{(p0, g0)}
addiu $sp, $sp, -3 ;allocate frame
sw $fp, 3($sp) ;save old $fp
addiu $fp, $sp, 3 ;new $fp
sw $ra, -1($fp) ;save return addr
sw $s0, -2($fp) ;callee-save reg
j fact

fact: -{(p1, g1)}
bgtz $a1, nonzero ;if n == 0 continue
j epilog

nonzero: -{(p1 ∧ [$a1] > 0, g1)}
lw $s0, 0($a0) ;intermediate result
multu $s0, $s0, $a1 ;*r * n
sw $s0, 0($a0) ;*r = *r * n
addiu $a1, $a1, -1 ;n--
j fact ;tail call

epilog: -{(TRUE, g3)}
lw $s0, -2($fp) ;restore $s0
lw $ra, -1($fp) ;restore $ra
lw $fp, 0($fp) ;restore $fp
addiu $sp, $sp, 3 ;restore $sp
jr $ra ;return

halt: -{(TRUE, NoG)}
j halt

entry -{(TRUE, NoG)}
addiu $sp, $sp, -1 ;allocate a slot
addiu $a0, $sp, 1 ;
addiu $s0, $zero, 1 ;$s0 = 1
sw $s0, 0($a0) ;initialize
addiu $a1, $zero, 6 ;$a1 = 6
jal prolog, halt

Figure 13. SCAP Implementation of Tail Recursion

rule, we get system SCAP-I to support function calls with multiple
return addresses (with the restriction that a function must return
to its immediate caller). We can use SCAP-I to certify the stack-
unwinding-based implementation for exceptions. We then combine
the relaxed call rule with the support for tail function call and get a
more general system, namely SCAP-II. SCAP-II can certify weak
continuations, setjmp/longjmp and the full-blown MRLC [32].

5.1 SCAP-I
In SCAP, a function call is a jal f,fret instruction (equivalent to
addiu $ra,$zero,fret ; j f). The callee can only return to fret , forced
by the constraint ∀S,S′. g′ S S′ → S.R($ra) = S′.R($ra) in the
CALL rule. To allow the callee to return to multiple locations, we
simply remove that constraint. Also, since we no longer force a
single return address, there is no need to set $ra at the call site,
reducing the calling instruction to j f. The resulting rule becomes

∀S. p S→ p′ S f ∈ dom(ΨL) (p′,g′) = ΨL(f)
∀S,S′. p S→ g′ S S′→

S′.R($ra) ∈ dom(ΨL)∧p′′ S′ ∧ (∀S′′. g′′ S′ S′′→ g S S′′)
where (p′′,g′′) = ΨL(S′.R($ra))

`{〈[[ (p,g) ]]〉ΨL} j f
(CALL-I)

This rules does not specify how the return address is going to be

passed into the function. Instead, we only require that $ra contain a
code pointer specified in ΨL at the return state S′, which is provable
based on the knowledge of p and g′. This allows SCAP-I to certify
any convention for multi-return function call.

The CALL-I rule is also a lemma provable from the J rule of
CAP0, using the same interpretation as the one for SCAP. The rest
of SCAP-I inference rules are the same with those in SCAP. For
instance, we can also use the T-CALL rule when we use “j f” to
make a tail call.

5.2 SCAP-II for Weak Continuations
The weak continuation construct in C-- allows a function to return
to any activation on the control stack. Since we use the guarantee
g to represent the behavior of a function, we need to understand
what happens to the intermediate activations on the stack that are
“skipped”: are their g’s discarded or fulfilled?

In SCAP-II, we enforce that the callee must fulfill the remaining
behavior of its caller before it can “skip” its caller and return to an
activation deeper on the control stack. From the caller’s point of
view, it made a tail call to the callee.

∀S. p S→ p′ S f ∈ dom(ΨL) (p′,g′) = ΨL(f)
∀S,S′. p S→ g′ S S′→

(g S S′ ∨
S′.R($ra) ∈ dom(ΨL)∧p′′ S′ ∧ (∀S′′. g′′ S′ S′′→ g S S′′))

where (p′′,g′′) = ΨL(S′.R($ra))
`{〈[[ (p,g) ]]〉ΨL} j f

(CALL-II)

In the CALL-II rule, we further relax the second premise of
the CALL-I rule and provide an option of either returning to the
return point of the caller or satisfying the caller’s remaining g and
therefore being able to return to the caller’s caller. This requirement
automatically forms arbitrary length chains that allow the return to
go arbitrarily far in the stack. Also notice that the CALL-II rule is
simply a combination of the CALL-I rule and the T-CALL in SCAP
for tail call.

We also relax SCAP’s definition of “well-formed stack” and al-
low dismissal of multiple stack frames at the return point. Using the
new predicate WFST′ defined below in the interpretation function
for (p,g), we can derive the CALL-II rule as a lemma.

WFST′(0,g,S,Ψ) , ¬∃S′. g S S′
WFST′(n,g,S,Ψ) ,
∀S′.g S S′→

S′.R($ra) ∈ dom(Ψ)∧p′ S′ ∧∃m < n. WFST′(m,g′,S′,Ψ)
where (p′,g′) = Ψ(S′.R($ra)).

[[ (p,g) ]] , λΨ.λS.p S ∧∃n.WFST′(n,g,S,Ψ)

The rest of SCAP-II inference rules are the same with those in
SCAP, which are all provable based on the new interpretation.

In the next section, we show how to use SCAP-II to reason about
setjmp/longjmp. More examples with stack unwinding and stack
cutting are presented in [13].

5.3 Example: setjmp/longjmp
setjmp and longjmp are two functions in the C library that are
used to perform non-local jumps. They are used as follows: a
setjmp is called to save the current state of the program into a
data structure (i.e., jmp buf). That state contains the current stack
pointer, all callee-save registers, the code pointer to the next in-
struction, and everything else prescribed by the architecture. Then
when called with such a structure, longjmp restores every part of
the saved state, and then jumps to the stored code pointer.

These functions in C are not considered safe. setjmp does not
save closures, and thus the behavior of longjmp is undefined if
the function calling the corresponding setjmp has returned. The



pbuf(x) , {x 7→ , . . . ,x+11 7→ }
gbuf(x) , ([x]′ = [$s0])∧ . . .∧ ([x+7]′ = [$s7])∧ ([x+8]′ = [$fp])∧

([x+9]′ = [$sp])∧ ([x+10]′ = [$gp])∧ ([x+11]′ = [$ra])
g′buf(x) , ([$s0]′ = [x])∧ . . .∧ ([$s7]′ = [x+7])∧ ([$fp]′ = [x+8])∧

([$sp]′ = [x+9])∧ ([$gp]′ = [x+10])∧ ([$ra]′ = [x+11])
p0 , pbuf([$a0])∗TRUE
g0 , ([$v0]′ = 0)∧Rid({$ra,$sp,$fp,$gp,$a0,$s0, . . . ,$s7})

∧gbuf([$a0])∧Hnid({[$a0], . . . , [$a0]+11})
p1 , (pbuf([$a0])∗TRUE)∧ [$a1] 6= 0
g1 , ([$v0]′ = [$a1])∧g′buf([$a0])∧Hnid( /0)

setjmp: -{(p0, g0)}
sw $s0, 0($a0) ;save callee-saves
...
sw $s7, 7($a0)
sw $fp, 8($a0) ;frame pointer
sw $sp, 9($a0) ;stack pointer
sw $gp, 10($a0) ;global pointer
sw $ra, 11($a0) ;old $ra
addiu $v0, $zero, 0 ;return value
jr $ra

longjmp: -{(p1, g1)}
lw $s0, 0($a0) ;restore callee-saves
...
lw $s7, 7($a0)
lw $fp, 8($a0) ;restore $fp
lw $sp, 9($a0) ;restore $sp
lw $gp, 10($a0) ;restore $gp
lw $ra, 11($a0) ;restore $ra
addu $v0, $zero, $a1 ;return value
jr $ra ;jump to restored $ra

Figure 14. Implementation for setjmp/longjmp

jmp_buf env; /* env is a global variable */

int rev(int x){ void cmp0(int x){
if (setjmp(env) == 0){ cmp1(x);

cmp0(x); }
return 0;

}else{ void cmp1(int x){
return 1; if (x == 0)

} longjmp(env, 1);
} }

Figure 15. C Program Using setjmp/longjmp

control flow abstraction provided by setjmp/longjmp is very
similar to weak continuations and can be reasoned using SCAP-II.

The code in Figure 14 shows a simple implementation of
setjmp/longjmp functions and their specifications. Here we bor-
row the separation logic [31] notation, where {l 7→ n} means the
memory cell at address l contains value n, while P∗Q specifies two
parts of memory which have disjoint domains and satisfy P and Q
respectively. As shown in [39], separation logic primitives can be
encoded in Coq and embedded in general predicates.

The precondition p0 of setjmp simply requires that the argu-
ment $a0 point to a jmp buf. It guarantees (g0) that the return
value is 0; values of callee save registers, return code pointers and
some other registers are not changed and they are saved in the
jmp buf; and data heap except the jmp buf is not changed.

Precondition p1 for longjmp is similar to p0, with extra require-
ment that the second argument $a1, which will be the return value,
cannot be 0. The guarantee g1 says the function returns $a1, recov-
ers register values saved in jmp buf (including return code pointers
and stack pointers), and does not change any part of the memory.

In Figure 15 we use a simple C program to illustrate the use of
setjmp/longjmp. The function rev calls setjmp before it calls

rev: -{(p0, g0)}
addiu $sp, $sp, -3 ;allocate frame
sw $fp, 3($sp) ;save old $fp
addiu $fp, $sp, 3 ;new $fp
sw $ra, -1($fp) ;save $ra
sw $a0, -2($fp) ;save argument
addiu $a0, $zero, env ;argument for setjmp
addiu $ra, $zero, ct1 ;set ret addr
j setjmp ;setjmp(env)

ct1: -{(p1, g1)}
beq $v0, $zero, ct2 ;if $v0 = 0 goto ct2
addiu $v0, $zero, 1
j epilog ;return 1

ct2: -{(p2, g2)}
lw $a0, -2($fp) ;$a0 = x
addiu $ra, $zero, ct3 ;set ret addr
j cmp0 ;cmp0(x)

ct3: -{(p3, g3)}
addiu $v0, $zero, 0
j epilog ;return 0

cmp0: -{(p4, g4)}
addiu $sp, $sp, -3 ;allocate frame
sw $fp, 3($sp) ;save old $fp
addiu $fp, $sp, 3 ;new $fp
sw $ra, -1($fp) ;save $ra
addiu $ra, $zero, epilog ;set ret addr
j cmp1 ;cmp1(x)

cmp1: -{(p5, g5)}
beq $a0, $zero, cutto ;if ($a0==0) longjmp
jr $ra ;else return

cutto: -{(p6, g6)}
addiu $a0, $zero, env ;$a0 = env
addiu $a1, $zero, 1 ;$a1 = 1
j longjmp ;longjmp(env, 1)

epilog: -{(p7, g7)}
lw $ra, -1($fp) ;restore $ra
lw $fp, 0($fp) ;restore $fp
addiu $sp, $sp, 3 ;restore $sp
jr $ra ;return

Figure 16. TM Code Using setjmp/longjmp

function cmp0, which in turn calls cmp1. If the argument is 0, the
function cmp1 skips its caller and jumps to the “else” branch of
rev directly, otherwise it returns to its caller. So the behavior of
rev is to return 1 if the argument is 0, and to return 0 otherwise.

Based on our specification of setjmp/longjmp, the compiled
code of the C program can be certified using SCAP-II. The assem-
bly code and specifications are presented in Figures 16 and 17. Here
we reuse some macros defined previously in Figures 14 and 11.

The precondition p0 for function rev requires that env point
to a block of memory for the jmp buf, and that there be disjoint
memory space for stack frames; while the guarantee g0 specifies
the relationship between the argument [$a0] and the return value
[$v0]′, and the preservation of callee-save registers and memory
(except for the space for stack frames). Specifications for function
cmp0 and cmp1 are (p4,g4) and (p5,g5), respectively. Two different
conditions are considered in g4 and g5, i.e., conditions under which
the functions return normally or cut the stack. Also, it is tricky to
specify the code labeled by ct1, which may be reached after the
return from either setjmp or longjmp. We need to consider both
cases in the specification (p1,g1).



blk(x,y) , {x 7→ ,x+1 7→ , . . . ,y 7→ }
p′buf(x) , {x 7→ [$s0], . . . ,x+11 7→ ct1}
gfrm , ([$sp]′ = [$sp]+3)∧ ([$fp]′ = Frm[0])∧ ([$ra]′ = Frm[1])
gepi , Rid({$gp,$s0, . . . ,$s7})∧gfrm ∧Hnid( /0)
p0 , pbuf(env)∗blk([$sp]−5, [$sp])∗TRUE
g0 , ([$a0] = 0→ [$v0]′ = 1)∧ ([$a0] 6= 0→ [$v0]′ = 0)∧

∧Rid({$gp,$sp,$fp,$ra,$s0, . . . ,$s7})
∧Hnid({[$sp]−5, . . . , [$sp],env, . . . ,env+11})

p1 , p′buf(env)∗blk([$sp]−2, [$sp])∗TRUE
g1 , ([$v0] = 0→ g2)∧ ([$v0] 6= 0→ ([$v0]′ = 1)∧gepi)
p2 , p1
g2 , (Frm[2] = 0→ [$v0]′ = 1)∧ (Frm[2] 6= 0→ [$v0]′ = 0)

∧g′buf(env)∧gfrm ∧Hnid({[$sp]−2, . . . , [$sp]})
p3 , TRUE
g3 , ([$v0]′ = 0)∧gepi
p4 , pbuf(env)∗blk([$sp]−2, [$sp])∗TRUE
g4 , ([$a0] = 0→ g′buf(env)∧ [$v0]′ 6= 0)

∧([$a0] 6= 0→ Rid({$gp,$sp,$fp,$ra,$s0, . . . ,$s7}))
∧Hnid({[$sp]−2, . . . , [$sp]})

p5 , pbuf(env)∗TRUE
g5 , ([$a0] = 0→ g′buf(env)∧ [$v0]′ = 1)

∧([$a0] 6= 0→ Rid({$gp,$sp,$fp,$ra,$s0, . . . ,$s7}))∧Hnid( /0)
p6 , pbuf(env)∗TRUE
g6 , g′buf(env)∧ [$v0]′ = 1∧Hnid( /0)
p7 , TRUE
g7 , ([$v0]′ = [$v0])∧gepi

Figure 17. Specifications for Code in Figure 16

void f() { void h() {
int i; int j;
while(true) { while(true) {

i++; j++;
switch; switch;

} }
} }

Figure 18. Higher-level Coroutine Pseudo code

6. Reasoning about Coroutines
Figure 18 shows a trivial higher-level program that uses coroutines.
The purpose behind coroutines is to create code that actually con-
sists of two mostly independent code executions that are sequen-
tial, with precisely defined switch points. Examples of such pro-
grams include producer/consumer programs and simple determin-
istic (round-robin) threads.

In this section, we present variations of SCAP to reason about
coroutines. The system CAP-CR supports separate verification of
coroutines without functions, while SCAP-CR can reason about ar-
bitrary interleaving of coroutine switching and function call/return.
Like SCAP, both systems can be embedded in CAP0.

6.1 Coroutines without Function Call
We first work on a simplified model of coroutines, in which a
coroutine does not make a function call. Figure 19 illustrates the
execution of coroutines. To implement the switch from one routine
to the other, we use two special registers ($rx and $ry) to hold the
code pointers. switch is implemented as follows:

addu $ry, $zero, $rx ;set the target switch addr
addiu $rx, $zero, ct ;save the return addr
jr $ry ;jump to target address

where ct is the code label for the return continuation, as shown in
Figure 19. In concrete implementations, $rx and $ry can be any two
designated registers or even two memory cells.

Specifications θ for coroutine code are defined as follows:

  addu   $ry, $zero, $rx
  addiu  $rx, $zero, ct
  jr         $ry

switch

switch
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switch
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Figure 19. A Simplified Model for Coroutines

(Assertion) p ∈ State→Prop

(Guarantee) gt ∈ State→State→Prop

(CdSpec) θ ::= (p,gt)i

where p specifies the current state, gt describes the behavior of
the code segment from the current program point to the switching
point, and the index i (0≤ i≤ 1) represent the ith coroutine.

Different than function call, there is a new challenge for separate
verification of coroutine code. Since the switch is done by an
indirect jump, we do not know to which code segment of the target
coroutine we are jumping to. However, we still need to ensure that
the target coroutine will switch back to the right place with the
expected state. To solve this problem, we use the rely-guarantee
method [18] and assign a global guarantee Gi for the ith coroutine.
As shown in Figure 19, although we do not know whether we are
jumping to the code segment with guarantee g′t or the one with
guarantee g′′′t , we can require that all code segments between two
switch points in coroutine 1− i must satisfyG1−i, that is we require
g′t ⇒ G and g′′′t ⇒ G. Here we use the short hand gt ⇒ G for
∀S,S′. gt S S′→G S S′.

In summary, the specifications of coroutine i consist of (p,gt)i
pairs for each code segment, and a global guarantee Gi that speci-
fies the common behavior for code segments between two consec-
utive switch points.

We use the following SWITCH rule to type check the indirect
jump for switching.

∀S.p S→ gt S S
∀S. p S→

(S.R($rx) ∈ dom(ΨL)∧ (g′t ⇒Gi)∧
(∀S′.G1−i S S′→ S′.R($ry) = S.R($rx)∧p′ S′))

where (p′,g′t)i = ΨL(S.R($rx))
`{〈[[ (p,gt)i ]]〉ΨL} jr $ry

(SWITCH)

The SWITCH rule is like a combination of the CALL rule and the
RET rule of SCAP, because from coroutine i’s point of view, the
switch is like a function call, while for coroutine (1− i) it is like a
return. The first premise requires that the coroutine i must finish its
guaranteed behavior before it switches to the coroutine (1− i). The
second premise requires that:
• $rx contain the return code pointer at the switch point, and the

behavior starting from the return code pointer satisfy the global
guarantee Gi;

• at state S′, the coroutine (1− i) switch back to the expected
place, i.e., S′.R($ry) = S.R($rx); and



g'

g't

Gi

g''

G1-i

G1-i

G1-i

(call f)
j f f: (p', g', g'

t
, g'

r
)

i
where g'

r 
<= g''

switch

switch

switch

switch

(ret)
jr $ra(p'', g'', g'', g'') i

t

t

t r

(p, g, g
t
, g

r
)
i

(ret)
jr $ra

g''

g

Gi

Figure 20. Model for Coroutines with Function Calls

• when the coroutine (1− i) switches back, the state S′ satisfy the
precondition p′ of the return continuation.
The rest inference rules, such as rules for sequential instructions

and direct jumps, are the same with those in SCAP, except that
the g’s in SCAP has been replaced by gt . To derive the SWITCH
rule and other rules as lemmas in CAP0, we use the following
interpretation for (p,gt)i.

[[ (p,gt)i ]] , λΨ.λS.p S ∧
∀S′.gt S S′→ S′.R($ry) ∈ dom(Ψ)∧p′ S′∧ (g′t ⇒G1−i)

where (p′,g′t) = Ψ(S′.R($ra))

The interpretation function requires that:
• the current state be valid, i.e., p S;
• at the switch point $ry will be a valid code pointer in the

coroutine (1− i) with specification (p′,g′t)1−i;
• the precondition of the label to which we are switching be

satisfied, i.e., p′ S′; and
• the code to which we are switching will satisfy the coroutine

(1− i)’s global guarantee, i.e., g′t ⇒G1−i.
Given the interpretation function, CAP-CR inference rules can be
proved as lemmas in CAP0.

6.2 Coroutines with Function Calls
In the system CAP-CR, each coroutine does not make function
calls, so we do not have to model stacks. Coroutines with function
calls are trickier to verify because functions called by one coroutine
may switch to another coroutine in the middle. It is harder to
specify the behavior of functions.

In SCAP-CR, we instantiate the code specification θ in CAP0
as follows:

(Assertion) p ∈ State→Prop

(Guarantee) g,gt ,gr ∈ State→State→Prop

(CdSpec) θ ::= (p,g,gt ,gr)i where (0≤ i≤ 1)

As in SCAP, the function specification in SCAP-CR contains the
specification p of the expected input and the behavior g of the
function. Since a switch may occur within a function, we use gt
as in CAP-CR to specify the code segment from the current point
to the next switch point, as shown in Figure 20. Also, because the
return point and the switch point may not match, we use an extra
guarantee gr to specify the remaining state transition the current
coroutine needs to make between the return point and the next

switch point. Intuitively, gr tells the caller of the current function
what the caller needs to do after the function returns so that it
can fulfill the guaranteed behavior before switching to another
coroutine.1 The switch operation is implemented in the same way
shown in Section 6.1. For each coroutine, we also need a global
guarantee Gi which captures the invariant of the code segments
between any two consecutive switch points.

As shown in Figure 20, we need to enforce the following con-
straints for the function call in SCAP-CR.
• the behavior g′t satisfies the caller’s guaranteed behavior gt from

the calling point to the next switch point;
• when the callee returns, the caller’s behavior g′′t from the return

point to the next switch point satisfies the callee’s expectation
g′r; and

• the constraints for return code pointers and function behaviors,
as enforced in the CALL rule of SCAP-I.

These constraints are reflected in the following CR-CALL rule.
(p′,g′,g′t ,g′r)i = ΨL(f)
∀S. p S→ p′ S ∀S,S′. p S→ g′t S S′→ gt S S′
∀S,S′. p S→ g′ S S′→

(S′.R($ra) ∈ dom(ΨL)∧p′′ S′∧
(∀S′′. g′′ S′ S′′→ g S S′′)∧ (∀S′′. g′′t S′ S′′→ g′r S′ S′′))

where (p′′,g′′,g′′t ,gr)i = ΨL(S′.R($ra))
`{〈[[ (p,g,gt ,gr)i ]]〉ΨL} j f

(CR-CALL)

The return rule CR-RET is similar to the RET rule in SCAP, ex-
cept that we also need to ensure that the expected caller’s behavior
gr from the return point to the next switch point satisfies the guar-
anteed behavior gt .

∀S. p S→ g S S ∀S,S′. p S→ gr S S′→ gt S S′
`{〈[[ (p,g,gt ,gr)i ]]〉ΨL} jr $ra

(CR-RET)

The CR-SWITCH rule is similar to the SWITCH rule in CAP-CR,
but we also need to enforce that the guaranteed behavior of the
function is satisfied, i.e., G1−i S S′→ g′ S′ S′′→ g S S′′.

∀S. p S→ gt S S
∀S. p S→

(S.R($rx) ∈ dom(ΨL)∧ (g′t ⇒Gi)
(∀S′.G1−i S S′→
S′.R($ry) = S.R($rx)∧p′ S′ ∧ (∀S′′. g′ S′ S′′→ g S S′′)))

where (p′,g′,g′t ,gr)i = ΨL(S.R($rx))
`{〈[[ (p,g,gt ,gr)i ]]〉ΨL} jr $ry

(CR-SWITCH)

The following CR-SEQ rule is straightforward, which is simply
a combination of the SEQ rules in SCAP and CAP-CR.

`{〈[[ (p′,g′,g′t ,gr)i ]]〉ΨL}I ∀S. p S→ p′ (Nextc(S))
∀S,S′.p S→

(g′ (Nextc(S)) S′→ g S S′)∧ (g′t (Nextc(S)) S′→ gt S S′)
`{〈[[ (p,g,gt ,gr)i ]]〉ΨL}c;I

(CR-SEQ)

In SCAP-CR, we need to enforce the invariant on two well-
formed control stacks, as we did in SCAP. The interpretation func-
tion for the specification (p,g,gt ,gr)i is defined in Figure 21. The
predicate WFCR ensures that:
• there is a well formed control stack for the current coroutine;
• at the switch point, $ry contains a valid code pointer;

1 We may not need gr if we require that the global guarantee G be a
transitive relation, i.e., ∀S,S′,S′′. G S S′ ∧G S′ S′′ → G S S′′. Although
reasonable in a non-deterministic concurrent setting, this constraint on G is
too restrictive for coroutines. We decide to present SCAP-CR in the most
general setting and use an extra gr to link the caller and callee.



[[ (p,g,gt ,gr)i ]] , λΨ.λS. p S∧WFCR(i,g,gt ,gr,S,Ψ)

WFCR(i,g,gt ,gr,S,Ψ) ,
∃m.WFCRST(m,g,gr,S,Ψ)∧
(∀S′.gt S S′→ S′.R($ry) ∈ dom(Ψ)∧ (g′t ⇒G1−i)∧p′ S′∧

∃n.WFCRST(n,g′,g′r,S′,Ψ))
where (p′,g′,g′t ,g′r)1−i = Ψ(S′.R($ry))

WFCRST(0,g,gr,S,Ψ) , ¬∃S′. g S S′
WFCRST(n,g,gr,S,Ψ) ,

∀S′. g S S′→
S′.R($ra) ∈ dom(Ψ)∧p′ S′ ∧ (g′t ⇒ gr)∧

WFCRST(n−1,g′,g′r,S′,Ψ)
where (p′,g′,g′t ,g′r)i = Ψ(S′.R($ra))

Figure 21. The Interpretation Function for SCAP-CR

• the precondition of the $ry to which we are switching is satisfied
at the switch point, i.e., p′ S′;

• the code to which we are switching will satisfy the coroutine
(1− i)’s global guarantee, i.e., g′t ⇒G1−i; and

• at the switch point, there is a well-formed control stack in the
coroutine (1− i).

The definition of the well-formed control stack is similar to the
definition of WFST in SCAP, except we also need to ensure that
the caller’s behavior from the return point to the next switch point
actually satisfies the callee’s expected behavior, i.e., g′t ⇒ gr.

As usual, inference rules in SCAP-CR are provable as CAP0
lemmas based on this interpretation function.

7. Other Extensions and Implementation
Our methodology for reasoning about stack-based control abstrac-
tions can also be easily applied to specify and reason about excep-
tion handling and threads. Due to space limitation, we only give a
very brief overview of these extensions. Detailed systems are pre-
sented in our companion technical report [13].

Exception handling. Although expressive enough, SCAP-I and
SCAP-II presented in Sec 5 are not convenient to use for reasoning
about exceptions because of their low abstraction level. In the
TR [13], we propose two higher-level systems EUCAP and ECAP
to support stack unwinding and stack cutting. EUCAP and ECAP
allow the programmer to specify the normal behavior and the
exceptional behavior separately, which makes specification and
reasoning easier than in SCAP-I and SCAP-II.

User threads and the thread library. We propose Foundational
CCAP (or FCCAP) to certify both the user code and the implemen-
tation of yield. Unlike previous work for certifying concurrent
assembly code where yield is a primitive pseudo instruction [40],
FCCAP does not use any special instructions and treats yield as a
function call to the certified thread library. Two different logics are
used in FCCAP: we use the rely-guarantee method in CCAP [40]
to certify the user level code, and use SCAP to certify the imple-
mentation of the “yield” function. FCCAP shows how to combine
different PCC logics in the CAP0 framework.

We use the Coq proof assistant [35] and the underlying higher-
order predicate logic for fully mechanized verification of assembly
code. The syntax of the TM is encoded in Coq using inductive
definitions. Operational semantics of TM and the inference rules
of CAP0 are defined as inductive relations. The soundness of the
CAP0 rules is formalized and proved in Coq.

Instead of defining the syntax and semantics of the assertion
language (which is known as the deep embedding approach), we
use CiC, the underlying higher-order logic in Coq, as our assertion

language. This shallow embedding approach greatly reduces the
work load of formulating our logic systems.

Our implementation includes around 370 lines of Coq encoding
of TM and its operational semantics, 200 lines encoding of CAP0
rules, and 700 lines of Coq tactics for the soundness proof. We
also encoded in Coq the definition of SCAP inference rules and
their proofs as CAP0 lemmas, which consists of around 900 lines
of Coq inductive definitions and tactics. We have written more than
10 thousand lines of Coq tactics to certify practical programs, in-
cluding the malloc/free library which was first certified in the
original CAP [39]. According to our experience, human smartness
is required to come up with proper program specifications, the dif-
ficulty depending on the property one is interested in and the sub-
tlety of algorithms. Given proper specifications, proof construction
of assembly code is mostly routine work. Some premises of SCAP
rules can be automatically derived after defining lemmas for com-
mon instructions. For generality, we intentionally avoid specifying
the layout of the physical stack and calling convention in SCAP.
The low abstraction level causes lengthy (but still straightforward)
proof for instructions involving memory operations. The burden of
the programmer can be reduced if we define higher-level lemmas
for specific stack organization. We leave this as the future work.

8. More Related Work and Conclusion
Reasoning about Stacks and Exceptions. Continuing over the
related work discussed in Section 2.1, STAL [23] and its varia-
tions [11, 36] support static type-checking of function call/return
and stack unwinding, but they all treat return code pointers as first-
class code pointers and stacks as “closures”. Introducing a “ret”
instruction [11] does not change this fact because there the typ-
ing rule for “ret” requires a valid code pointer on the top of the
stack, which is very different from our SCAP RET rule. Impredica-
tive polymorphism has to be used in these systems to abstract over
unused portions of the stack (as a closure), even though only return
addresses are stored on the stack. Using compound stacks, STAL
can type-check exceptions, but this approach is rather limited. If
multiple exception handlers defined at different depths of the stack
are passed to the callee, the callee has to specify their order on the
stack, which breaks modularity. This problem may be overcome
by using intersection types [11], though it has never been shown.
Moreover, there is no known work certifying setjmp/longjmp
and weak continuations using these systems.

Also, unlike STAL, SCAP does not require any built-in stack
structure in the target machine (TM), so it does not need two
sets of instructions for heap and stack operations. As shown in
Figure 13, SCAP can easily support general data pointers into
the stack or heap, which are not supported in STAL. In addition,
SCAP does not enforce any specific stack layout, therefore it can be
used to support sequential stacks, linked stacks, and heap-allocated
activation records.

Concurrently with our work, Benton [5] proposed a typed pro-
gram logic for a stack-based abstract machine. His instruction se-
quence specification is similar to the g in SCAP. Typing rules in his
system also look similar to SCAP rules. However, to protect return
code pointers, Benton uses a higher-level abstract machine with
separate data stack and control stack; the latter cannot be touched
by regular instructions except call and ret. Benton also uses a pair of
pre- and postcondition as the specification which requires complex
formalization of auxiliary variables.

At higher-level, Berdine et al. [6] showed that function call and
return, exceptions, goto statements and coroutines follow a dis-
cipline of linearly used continuations. The idea is formalized by
typing continuation transformers as linear functions, but no verifi-
cation logic was proposed for reasoning about programs. Follow-



ing the producer/consumer model (in Figure 2), our reasoning has
a flavor of linearity, but it is not clear how our work and linear
continuation-passing relate to each other.

Walker et al. [1, 17] proposed logical approaches for stack typ-
ing. They used CPS to reason about function calls. Their work fo-
cused on memory management and alias reasoning, while in SCAP
we left the stack layout unspecified. Although the higher-order
predicate logic is general enough to specify memory properties,
substructural logic provides much convenience for memory speci-
fication. Applying their work to provide lemmas for different stack
layouts and calling conventions will be our future work.

Reasoning about First-Class Code Pointers. Ni and Shao [29]
introduce a special syntax cptr(f,a) in their assertion language to
certify first-class code pointers. To support first-class code pointers
in SCAP, we can extend it in a similar way by using cptr(f,(p,g)),
which means f is a function pointer with the specification (p,g).
However, as we mentioned before, return code pointers and ex-
ception handlers have subtly different invariants from general first-
class code pointers. So even with the support of first-class code
pointers, it is still desirable to not treat regular stack-based con-
trol abstractions as general code pointers. Embedding SCAP and
its extensions into the CAP0 framework allows interoperability
between SCAP and other systems. We can reason about func-
tion call/return, exception handling, and coroutine as before and
then use cptr(f,(p,g)) to reason about unavoidable first-class code
pointers. Another interesting observation is that some seemingly
first-class code pointers, such as threads’ return code pointers
stored in the thread queue, can actually be reasoned using SCAP-
based systems. We need more experience to fully explore the ap-
plicability and the limitations of SCAP.

State Relations as Program Specifications. SCAP is not the first
to use relations between two states as program specifications. The
rely-guarantee method [18], TLA [21], and VDM [19] all use state
relations to specify programs. However, the guarantee g used in
SCAP is different from those used in previous systems. Generaliz-
ing the idea of local guarantee [40], SCAP uses g to describe the
obligation that the current function must fulfill before it can return,
raise an exception, or switch to other coroutines and threads. No-
tice that at the beginning of a function, our g matches precisely the
VDM postcondition, but intermediate g’s used in our SCAP-SEQ
rule differ from the intermediate postconditions used in the sequen-
tial decomposition rule in VDM: the second state specified in our
g’s always refers to the (same) state at the exit point. We use these
intermediate g’s to bridge the gap between the entry and exit points
of functions—this is hard to achieve using VDM’s post conditions.

Yu’s pioneer work [41] on machine code verification can also
support stack-based procedure call and return. His correctness the-
orem for each subroutine resembles our guarantee g, but it requires
auxiliary logical predicates counting the number of instructions ex-
ecuted between different program points. It is unclear whether their
method can be extended to handle complex stack-based controls as
discussed in our current paper.

Conclusion. We have proposed a new methodology for modular
verification of assembly code with all kinds of stack-based control
abstractions, including function call/return, tail call, weak contin-
uation, setjmp/longjmp, stack cutting, stack unwinding, multi-
return function call, coroutines, and thread context switch. For each
control abstraction, we have formalized its invariants and showed
how to certify its implementation. All reasoning systems are pro-
posed as instances of the generic CAP0 framework, which allows
programs certified in different PCC systems to be linked together.
Our system is fully mechanized [13]: we give the complete sound-
ness proof and a full verification of several examples in the Coq
proof assistant [35].
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A. SCAP Rules as Lemmas
In this section, we show how SCAP inference rules can be derived
as lemmas from corresponding CAP0 rules. We only show the

proof of the most interesting rules, i.e., the CALL and RET rules.
Proof for the complete set of SCAP rules are formalized in the Coq
proof assistant, which is available at [13].
Lemma A.1 (Stack Strengthen) For all n, g, g′, S, S′ and Ψ, if

WFST(n,g,S,Ψ) and ∀S′′.g′ S′ S′′→ g S S′′,
we have WFST(n,g′,S′,Ψ).

Proof. This trivially follows the definition of WFST. 2

Lemma A.2 (Call) Suppose f,fret ∈ dom(ΨL), (p′,g′) = ΨL(f)
and (p′′,g′′) = ΨL(fret). If
1. ∀H,R.p (H,R)→ p′ (H,R{$ra;fret});
2. ∀H,R,S′. p (H,R)→ g′ (H,R{$ra;fret}) S′→

(p′′ S′∧ (∀S′′. g′′ S′ S′′→ g (H,R) S′′));
3. ∀S,S′.g′ S S′→ S.R($ra) = S′.R($ra);

we have
∀Ψ,H,R.〈[[ (p,g) ]]〉ΨL

Ψ (H,R)→
[[Ψ(f) ]] Ψ (H,R{$ra;fret}).

(In short, the CALL rule can be derived from the JAL rule).

Proof. Unfolding the definition of the interpretation function, we
know that, given
4. ΨL ⊆Ψ;

5. p (H,R);

6. WFST(n,g,(H,R),Ψ);
we need to prove
a. p′ (H,R{$ra;fret}); and

b. WFST(n+1,g′,(H,R{$ra;fret}),Ψ);
The proof of a is trivial (by 1 and 5). We focus on the proof of b.

By 4 and the assumption, we know that f,fret ∈ dom(Ψ), Ψ(f) =
(p′,g′) and Ψ(fret) = (p′′,g′′). For all S, if g′ (H,R{$ra;fret}) S,
• by 3 we know S.R($ra) = fret , therefore S.R($ra) ∈ dom(Ψ);
• by 5 and 2 we know p′′ S;
• by 5, 2, 6, and Lemma A.1 we know WFST(n,g′′,S,Ψ).

Then, by the definition of WFST we get

WFST(n+1,g′,(H,R{$ra;fret}),Ψ). 2

Lemma A.3 (Return) If ∀S.p S→ g S S, then for all Ψ, H and R,
we have

[[ (p,g) ]] Ψ (H,R)→ [[Ψ(R($ra)) ]] Ψ (H,R).

That is, the RET rule can be derived from an instantiation of the JR
rule, where rs is instantiated to $ra.

Proof. Given [[ (p,g) ]] Ψ (H,R) and our assumption, we know that
1. p (H,R);

2. g (H,R) (H,R); and

3. WFST(n,g,(H,R),Ψ) for some n.
By 2, 3 and the definition of WFST we know that n > 0. Therefore,
according to the definition of WFST, we can prove
4. R($ra) ∈ dom(Ψ);

5. p′ (H,R);

6. WFST(n−1,g′,(H,R),Ψ);
where (p′,g′) = Ψ(R($ra)). By the definition of the interpretation
function, we know [[Ψ(R($ra)) ]] Ψ (H,R). 2


