
Modular Verification of Assembly Code with Stack-Based
Control Abstractions

Xinyu Feng† Zhong Shao† Alexander Vaynberg† Sen Xiang‡ Zhaozhong Ni†

†Department of Computer Science ‡Department of Computer Science and Technology
Yale University University of Science and Technology of China

New Haven, CT 06520-8285, U.S.A. Hefei, Anhui 230026, China
{feng, shao, alv, ni-zhaozhong}@cs.yale.edu xiangsen@ustc.edu

Abstract
Runtime stacks are critical components of any modern software—
they are used to implement powerful control structures suchas
function call/return, stack cutting and unwinding, coroutines, and
thread context switch. Stack operations, however, are veryhard to
reason about: there are no known formal specifications for certi-
fying C-stylesetjmp/longjmp, stack cutting and unwinding, or
weak continuations (in C--). In many proof-carrying code (PCC)
systems, return code pointers and exception handlers are treated as
general first-class functions (as in continuation-passingstyle) even
though both should have more limited scopes.

In this paper we show that stack-based control abstractionsfol-
low a much simpler pattern than general first-class code point-
ers. We present a simple but flexible Hoare-style framework for
modular verification of assembly code with all kinds of stack-
based control abstractions, including function call/return, tail call,
setjmp/longjmp, weak continuation, stack cutting, stack un-
winding, multi-return function call, coroutines, and thread context
switch. Instead of presenting a specific logic for each control struc-
ture, we develop all reasoning systems as instances of a generic
framework. This allows program modules and their proofs devel-
oped in different PCC systems to be linked together. Our system is
fully mechanized. We give the complete soundness proof and afull
verification of several examples in the Coq proof assistant.

1. Introduction
Runtime stacks are critical components of any modern software—
they are used to implement powerful control structures suchas pro-
cedure call/return, tail call [34, 8], C-stylesetjmp/longjmp [20],
stack cutting and unwinding (for handling exceptions) [7, 12, 30],
coroutines [10], and thread context switch [15]. Correct implemen-
tation of these constructs is of utmost importance to the safety and
reliability of many software systems.

Stack-based controls, however, can be unsafe and error-prone.
For example, both stack cutting andlongjmp allow cutting across
a chain of stack frames and returning immediately from a deeply
nested function call. If not done carefully, it can invoke anob-
soletelongjmp or a deadweak continuation[30]). Neither C
nor C-- [30] provides any formal specifications for certifying
setjmp/longjmp, stack cutting and unwinding, or weak continua-
tions. In Java virtual machine and Microsoft’s .NET IL, operations
on native C stacks are notmanagedso they must be trusted.

Stack operations are very hard to reason about because they
involve subtle low-level invariants: both return code pointers and
exception handlers should have restricted scopes, yet theyare often
stored in memory or passed in registers—making it difficult to track
their lifetime. For instance, the following C program is compiled
into the MIPS assembly code shown in Figure 1:

0 f:
1 addiu $sp, $sp, -32 ;allocate stack frame
2 sw $fp, 32($sp) ;save old $fp
3 addiu $fp, $sp, 32 ;set new $fp
4 sw $ra, -4($fp) ;save $ra
5 jal h ;call h
6 ct: lw $ra, -4($fp) ;restore $ra
7 lw $fp, 0($fp) ;restore $fp
8 addiu $sp, $sp, 32 ;deallocate frame
9 jr $ra ;return
10 h:
11 jr $ra ;return

Figure 1. Stack-Based Function Call/Return

void f(){ | void h(){
h(); | return;
return; | }

} |

Before calling functionh, the callerf first saves its return code
pointer (in$ra) on the stack; the instructionjal h loads the return
address (the labelct) in $ra, and jumps to the labelh; when h
returns, the control jumps back to the labelct, wheref restores its
return code pointer and stack pointers and jumps back to its caller’s
code. The challenge is to formalize and capture the invariant thatct
does not outlivef even though it can escape into other functions.

Many proof-carrying code (PCC) systems [3, 14, 29] support
stack-based controls by using continuation-passing style(CPS) [2].
CPS treats return addresses or exception handlers as first-class code
pointers. Under CPS, the code followingct (lines 6-9) is treated
not as a part of functionf but as a separate new function; whenh is
called, the continuation functionct is passed as an extra argument
in $ra which is then called at the end of functionh. CPS makes type-
checking easier but it is still hard to describe the above invariant
aboutf and ct. Indeed, none of the existing PCC systems [26,
27, 9, 3, 14] have successfully certifiedsetjmp/longjmp, weak
continuations, and general stack cutting and unwinding (see Sec 10
and Sec 2.1 for an in-depth discussion about the related work).

In this paper we describe a formal system that can expose and
validate the invariants of stack-based control abstractions. We show
that return pointers (or exception handlers) are much more disci-
plined than general first-class code pointers. A return pointer is al-
ways associated with somelogical control stack whose validity can
be established statically. A function can cut to any return pointer if
it can establish the validity of its associated logical control stack.

More specifically, we present a simple but flexible Hoare-style
framework for modular verification of assembly code with allkinds
of stack-based control abstractions (see Table 1). Insteadof pre-
senting a specific logic for each construct, we develop all reasoning
systems as instances of a generic framework. This allows program
modules and their proofs developed in different PCC systemsto be

Stack-Based Reasoning Definition &
Control Abstraction System Formalization
function call/return SCAP SEC 4
tail call optimization [34, 8] SCAP SEC 4.4
exception: stack unwinding [30]SCAP-I SEC 5.1

EUCAP SEC 6.1
exception: stack cutting [30] SCAP-II SEC 5.2

ECAP SEC 6.2
multi-return function call [32] SCAP-II SEC 5.2
weak continuation [30] SCAP-II SEC 5.2
setjmp/longjmp [20] SCAP-II SEC 5.3
coroutines [10] CAP-CR SEC 7.1
coroutines + function call [10] SCAP-CR SEC 7.2
threads [15] FCCAP SEC 8

Table 1. A Summary of Supported Control Abstractions

linked together. Our system is fully mechanized. We give thecom-
plete soundness proof and a full verification of several examples in
the Coq proof assistant [35]. Our paper builds upon previouswork
on program verification but makes the following new contributions:
• As far as we know, our paper is the first to successfully

formalize and verify sophisticated stack operations such as
setjmp/longjmp, weak continuations, and general stack cut-
ting. We verify raw assembly implementation so there is no loss
of efficiency or additional runtime check. Our interface is sim-
ple, general, yet modular (so a library only needs to be verified
once). Our framework is sound: a program certified using our
system is free ofuncheckedruntime errors [20, 30].

• We have also done a thorough study of common stack-based
control abstractions in the literatures (see Table 1). For each
construct, we formalize its invariants and show how to certify its
implementation. As an important advantage, all these systems
are instances of a generic framework; in fact, the inferencerules
for each system are just derived lemmas in the base framework,
so programs certified in different PCC systems can be linked
together.

• Our SCAP system (Sec 4) is interesting and novel in its own
right. Instead of treating return pointers as first-class code point-
ers (which require “impredicative types” [23, 29]), SCAP speci-
fies the invariant at each program point using a pair of a precon-
dition and a “local” guarantee (which states the obligationthat
the current function must fulfill before it can return or throw an
exception). These guarantees, when chained together, is used
to specify the logical control stack. SCAP is also orthogonal to
the recent work on XCAP [29]: it can apply the same syntactic
technique [29] to certify general first-class code pointers.

• Our certified framework is also very flexible. A logical control
stack specifies a chain of valid return pointers, but it imposes
no restriction on where we store these pointers. Because all
invariants are specified as state predicates or state relations, we
can support any physical stack layout and calling conventions.

In the rest of this paper, we first review common stack-based con-
trols and summarize our main approach (Sec 2). We then define our
machine platform and a generic Hoare-style framework (Sec 3). We
present our SCAP system for certifying function call/return and
show how to extend it to support different control abstractions in
Table 1 (Sec 4–9). Finally we discuss implementation and related
work, and then conclude.

2. Background and Related Work
Before giving an overview of our approach, we first survey com-
mon stack-based control abstractions in the literatures:

• Function call/returnfollow a strict “last-in, first-out” pattern:
the callee always returns to the point where it was most recently
called. Similar concepts include the JVMsubroutines[22],
which are used to compile the “try-finally” block in Java.

• The tail call optimization is commonly used in compiler im-
plementation: if a function call occurs at the end of the current
function, the callee will reuse the current stack frame and return
directly to the caller of the current function.

• Exceptions, stack unwinding, and stack cutting.When an excep-
tion is raised, the control flow is transferred to the point atwhich
the exception is handled. There are mainly two strategies for im-
plementing exceptions (on stacks) [30].Stack unwindingwalks
the stack one frame at a time until the handler is reached; in-
termediate frames contain a default handler that restores values
of callee-save registers and re-raises the exception; a function
always returns to the activation of its immediate caller.Stack
cuttingsets the stack pointer and the program counter directly
to the handler which may be contained in a frame deep on the
stack; intermediate frames are skipped over.

• Weak continuations and setjmp/longjmp. C-- uses weak contin-
uations [30] to support different implementation strategies for
exceptions. A weak continuation is similar to the first-class con-
tinuation except that it can only be defined inside a procedure
and cannot outlive the activation of the enclosing procedure. C
usessetjmp/longjmp library functions [20] to enable an im-
mediate return from a deeply nested function call, the semantics
of which is similar to weak-continuations (while the implemen-
tation may be more heavyweight). Especially, the function con-
taining thesetjmp must not have terminated when alongjmp
is launched. Both C-- and C make no effort to prohibit invoca-
tion of a dead weak continuation or an obsoletelongjmp.

• Multi-return function call. Shivers and Fisher [32] proposed
MRLC to allow functions to have multiple return points, whose
expressiveness sits between general CPS and first-order func-
tions. The mechanism is similar to weak continuations, but pro-
posed at a higher abstract level. Multi-return function call sup-
ports pure stack-based implementations.

• Coroutines and threadsinvolve multiple execution contexts that
exist concurrently. Control can be transferred from one execu-
tion context to another. Implementation of context switch does
not follow the regular function calling convention: it fetches
the return code pointer from the stack of the target coroutine
(thread) and returns to the target instead of its caller.

2.1 Reasoning about Control Abstractions
Traditional Hoare-logic [16] uses the pre- and postcondition as
specifications for programs. Most work on Hoare-logic [4] reasons
about control structures in higher-level languages and does not
directly reason about return code pointers in their semantics. To
apply traditional Hoare-logic to generate mechanized proofs for
low-level code, we need to first formalize auxiliary variables and
the Invariance rule, which is a non-trivial issue and complicates the
formalization, as shown in pervious work [38, 5]; next, we need to
relate the entry point with the exit point of a function and show the
validity of return code pointers—this is hard at the assembly level
due to the lack of abstractions.

Stata and Abadi [33] also observed two similar challenges for
typechecking Java byte code subroutines. They propose a Hoare-
style type system to reason about subroutine calls (“jsr L”) and
returns (“ret x”). To ensure the return address used by a subroutine
is the one that is most recently pushed onto the stack, they have
to disallow recursive function calls, and require labelingof code to
relate the entry point with the return point of subroutines.

2

ct

L'

L

f:

jal h

ct:
…

jr $ra

h:

jr $ra

address poolproducer

consumer…

…

…

g (S, S')

Figure 2. The Model for Code Pointers

Necula used Hoare triples to specify functions in SAL [26]. He
needs a historyH of states, which contains copies of the register
file and the whole memory at the moment of function invocations.
At the return point, the last state is popped up fromH and the
relation between that state and the current state is checked. Not
a model of physical stacks,H is used purely for reasoning about
function calls; it complicates the operational semantics of SAL sig-
nificantly. Also, SAL uses a very restrictive physical stackmodel
where only contiguous stack is supported and general pointer argu-
ments (which may point into the stack) are not allowed.

To overcome the lack of structures in low-level code, many PCC
systems have also used CPS to reason about regular control ab-
stractions, which treats return code pointers (and exception han-
dlers) as first-class code pointers. CPS is a general semantic model
to support all the control abstractions above, but it is hardto use
CPS to characterize the invariants of control stacks for specific
control abstractions (e.g.,setjmp/longjmp and weak continua-
tion). CPS-based reasoning also requires specification of continua-
tion pointers using “impredicative types” [23, 29]), whichmakes
the program specification complex and hard to understand. An-
other issue with CPS-based reasoning is the difficulty to specify
first-class code pointers modularly in logic: because of thecircular
references between code pointers and data heap (which may inturn
contains code pointers), it is not clear how to apply existing ap-
proaches [25, 3, 29] to model sophisticated stack-based invariants.

2.2 Our Approach
In this paper we will show that we can support modular reasoning
of stack-based control abstractions without treating themas first-
class code pointers. In our model, when a control transfer occurs,
the pointer for the continuation code is deposited into an abstract
“address pool” (which may be physically stored in memory or
the register file). The code that saves the continuation is called a
“producer”, and the code that uses the continuation later iscalled
a “consumer”. In case of function calls, as shown in Figure 2,the
caller is the “producer” and the callee is the “consumer”, while the
return address is the continuation pointer.

The producer is responsible for ensuring that each code pointer
it deposits is a valid one and depositing the code pointer does not
break theinvariant of the address pool. The consumer ensures
that the invariant established at its entry point still holds when it
fetches the code pointer from the pool and makes an indirect jump.
The validity of the code pointer is guaranteed by the invariant. To
overcome the lack of abstraction at the assembly level, we use a
guaranteeg—a relation over a pair of states—to bridge the gap
between the entry and exit points of the consumer. This approach
avoids maintaining any state history or labeling of code.

The address pool itself is structureless, with each controlab-
straction molding the pool into the needed shape. For functions,
exceptions, weak continuations,etc., the pool takes the form of a
stack; for coroutines and threads it takes the form of a queueor a
queue of stacks (each stack corresponding to a coroutine/thread).
The invariant specified by a control abstraction also restricts how
the pool is used. Function call, for example, restricts the (stack-

(Program) P ::= (C,S,I)

(CodeHeap) C ::= {f ; I}∗

(State) S ::= (H,R)

(Heap) H ::= {l ; w}∗

(RegFile) R ::= {r ; w}∗

(Register) r ::= {rk}
k∈{0...31}

(Labels) f,l ::= i (nat nums)

(Word) w ::= n (integers)

(InstrSeq) I ::= c;I | j f | jal f,fret | jr rs

(Command) c ::= addu rd,rs,rt | addiu rd,rs,w

| beq rs,rt ,f | bgtz rs,f | lw rt ,w(rs)

| subu rd,rs,rt | sw rt ,w(rs)

Figure 3. Syntax of Target Machine TM

$zero r0 always zero
$at r1 assembler temporary
$v0−$v1 r2−r3 return values
$a0−$a3 r4−r7 arguments
$t0−$t9 r8−r15,r24−r25 temporary (caller saved)
$s0−$s7 r16−r23 callee saved
$k0−$k1 r26−r27 kernel
$gp r28 global pointer
$sp r29 stack pointer
$fp r30 frame pointer
$ra r31 return address

Figure 4. Register Aliases and Usage

shaped) pool to a strict “last-in, first-out” pattern, and makes sure
that all addresses remain constant until they are fetched.

In the rest of this paper, we will describe the invariant for each
control abstraction. We also present a set of lemmas that allow
programmers to verify structureless assembly code with higher-
level abstractions. Before we define these systems, we first present
our generic CAP0 framework. All the systems for specific control
abstractions will be presented as a set of lemmas in CAP0.

3. The CAP0 Framework
In this section, we first present a MIPS-style “untyped” target
machine language (TM) and its operational semantics. Then we
propose a general logic, CAP0, for verifying TM programs. The
generic CAP0 framework will serve as the common basis for the
interoperability of different logics.

3.1 The Target Machine
In Figure 3 we show the definition of a MIPS-style target machine
(TM). A machine state is called a “Program” (P), which consists of
a read-only code heap (C), an updatable state (S), and an instruction
sequence (I). The code heap is a finite partial mapping from code
labels to instruction sequences. The stateS contains a data heap (H)
and a register file (R). Each instruction sequence is a basic code
block, i.e.,a list of instructions ending with a jump-instruction. We
use an instruction sequenceI in P (rather than a program counter)
to represent the basic block that is being executed.

The target machine has 32 registers. Following the MIPS con-
vention, Figure 4 shows the register aliases and usage. All the as-
sembly code shown in the rest of the paper follows this convention.

The instruction set captures the most basic and common MIPS
instructions. Since we do not have a program counter, we change
the syntax of thejal instruction and require that the return address
be explicitly given. The execution of TM programs is modeledas
a small-step transition from one program to another,i.e.,P 7−→ P′.
Figure 5 defines the program transition function. The semantics of

3

if I = then(C,(H,R),I) 7−→

j f (C,(H,R),C(f)) whenf∈dom(C)
jal f,fret (C,(H,R{r31;fret}),C(f)) whenf∈dom(C)
jr rs (C,(H,R),C(R(rs))) whenR(rs)∈dom(C)
beq rs,rt ,f;I′ (C,(H,R),I′) whenR(rs) 6=R(rt);

(C,(H,R),C(f)) whenR(rs)=R(rt), f∈dom(C)
bgtz rs,f;I′ (C,(H,R),I′) whenR(rs)≤0;

(C,(H,R),C(f)) whenR(rs)>0, f∈dom(C)
c;I′ (C,Nextc(H,R),I′)

where

if c = thenNextc(H,R) =

addu rd,rs,rt (H,R{rd ;R(rs)+R(rt)})
addiu rd,rs,w (H,R{rd ;R(rs)+w})
lw rt ,w(rs) (H,R{rt ;H(R(rs)+w)})

whenR(rs)+w ∈ dom(H)
subu rd,rs,rt (H,R{rd ;R(rs)−R(rt)})
sw rt ,w(rs) (H{R(rs)+w;R(rt)},R)

whenR(rs)+w ∈ dom(H)

Figure 5. Operational Semantics of TM

most instructions are the same with corresponding MIPS instruc-
tions, except that code labels in jump-instructions (e.g., j f, jr r)
and branch-instructions (e.g.,beq rs,rt ,f) are treated as absolute
addresses instead of relative addresses.

3.2 The CAP0 Framework
CAP0 generalizes our previous work on CAP systems [40, 29].
It leaves the program specification unspecified, which can becus-
tomized to embed different logics into the framework. The sound-
ness of CAP0 is independent of specific forms of program specifi-
cations. The framework supports separate verification of program
modules using different verification logics.

3.2.1 Program Specifications
The verification constructs are defined as follows.

(CdHpSpec) Ψ ::= {f; θ}∗

(CdSpec) θ ::= . . .

(Interp.) a, [[θ]],〈a〉Ψ ∈ CdHpSpec→State→Prop

To verify a program, the programmer needs to first give a specifica-
tion Ψ of the code heap, which is a finite mapping from code labels
to code specificationsθ. To support different verification methodol-
ogy, the CAP0 framework does not enforce the form ofθ. Instead, it
requires the programmer to provide an interpretation function [[]]
which mapsθ to predicates (a) over the code heap specification and
the program state. CAP0 uses the interpretation of code specifica-
tions as its assertion language.

To support separate verification of modules, we add an extra
constraint on the arguments ofa using the lifting function〈 〉Ψ,
which says that the specificationΨ of the local module is the
smallest set of code specifications we need to know to verify this
module. The lifting function is defined as follows:

〈a〉Ψ , λΨ′
.λS.(Ψ ⊆ Ψ′)∧a Ψ′ S.

We will give a detailed explanation of CAP0’s support of modular-
ity in the next section.

3.2.2 Inference Rules and Soundness
We use the following judgments to define inference rules:

Ψ ` {a}P (well-formed program)
Ψ ` C :Ψ′ (well-formed code heap)

` {a}I (well-formed instruction sequence)

Figure 6 shows the inference rules of CAP0.

Ψ `{a}P (Well-formed Program)

ΨG` C :ΨG (a ΨG S) `{a}I

ΨG `{a}(C,S,I)
(PROG)

Ψ` C :Ψ′ (Well-formed Code Heap)

a = [[θ]] `{〈a〉ΨL }I

ΨL` {f ; I} :{f ; θ}
(CDHP)

Ψ1` C1 :Ψ′
1 Ψ2` C2 :Ψ′

2 dom(C1)∩dom(C2) = /0
∀f ∈ dom(Ψ1)∩dom(Ψ2). Ψ1(f) = Ψ2(f)

Ψ1∪Ψ2` C1∪C2 :Ψ′
1∪Ψ′

2
(LINK)

`{a}I (Well-formed Instruction Sequence)

∀Ψ,S. a Ψ S → [[Ψ(f)]] Ψ S

`{a} j f
(J)

∀Ψ,H,R. a Ψ (H,R) → [[Ψ(f)]] Ψ (H,R{ra;fret})

`{a} jal f,fret
(JAL)

∀Ψ,S. a Ψ S → [[Ψ(S.R(rs))]] Ψ S

`{a} jr rs
(JR)

`{a′}I

∀Ψ,S. a Ψ S → ((S.R(rs) 6=S.R(rt) → a′ Ψ S)∧
(S.R(rs)=S.R(rt) → [[Ψ(f)]] Ψ S))

`{a}beq rs,rt ,f;I
(BEQ)

`{a′}I

∀Ψ,S. a Ψ S → ((S.R(rs)≤0→ a′ Ψ S)∧
(S.R(rs)>0→ [[Ψ(f)]] Ψ S))

`{a}bgtz rs,f;I
(BGTZ)

c∈{addu,addiu, lw,subu,sw}
∀Ψ,S. a Ψ S → a′ Ψ (Nextc(S)) `{a′}I

`{a}c;I
(SEQ)

Figure 6. Inference Rules for CAP0

A program is well-formed (thePROG rule) if there exists a
global code heap specificationΨG and an assertiona such that:

• theglobal code heapC is well-formed with respect toΨG;
• givenΨG, the current stateS satisfies the assertiona; and
• the current instruction sequenceI is well-formed.

The CAP0 framework supportsseparate verificationof program
modules. Modules are modeled as small code heaps which contain
at least one code block. The specification of a module contains not
only specifications of the code blocks in the current module,but
also specifications of external code blocks which will be called by
the module. In the judgmentΨ` C :Ψ′, Ψ contains specifications
for imported external code and for code within the moduleC (to
support recursive functions), whileΨ′ contains specifications for
exported interfaces for other modules. Programmers are required
to first establish the well-formedness of each individual module via
theCDHPrule. Two non-intersecting well-formed modules can then
be linked together via theLINK rule. ThePROGrule requires that
all modules be linked into a well-formed global code heap.

In theCDHP rule, the user specificationθ (for I) is first mapped
to a predicate over the code heap specification and the program
state, and then lifted by the lifting function parameterized by the
local specificationΨL of this module. Later on, we will see that
none of the instruction rules (e.g., J and JAL) refer to the global
program specificationΨG. Instead, a universally quantifiedΨ is

4

used with the constraint that it must be a superset ofΨL . Such a
constraint is enforced by the lifting function〈 〉ΨL

.
The well-formedness of instruction sequences ensures thatit is

safe to executeI in a machine state satisfying the assertiona. An
instruction sequence beginning withc is safe (ruleSEQ) if we can
find an assertiona′ which serves both as the postcondition ofc
(that is,a′ holds on the updated machine state after executingc,
as captured by the implication) and as the precondition of the tail
instruction sequence. A direct jump is safe (ruleJ) if the current
assertion can imply the assertion of the target code block asspeci-
fied in Ψ. Rules for other jump and branch instructions are similar
to theJ rule. When proving the well-formedness of an instruction
sequence, a programmer’s task includes applying the appropriate
inference rules and finding intermediate assertions such asa′.

Soundness The soundness of CAP0 inference rules with respect
to the operational semantics of TM is established followingthe
syntactic approach [39] to prove type soundness. We do not require
the specific form of code specificationsθ to prove the soundness.

Lemma 3.1 (Progress)If Ψ `{a}P, then there exists a program
P′, such thatP 7−→ P′.

Lemma 3.2 (Preservation)If Ψ `{a}P, andP 7−→ P′, then there
existsa′, Ψ `{a′}P′.

Theorem 3.3 (Soundness)If Ψ `{a}P, then for all natural num-
bern, there exists a programP′ such thatP 7−→n P′.

We have formally encoded the soundness proof [36] in the Coq
proof assistant.

CAP0 and Previous CAP systems.The CAP0 framework is a
generalization of our previous work on CAP systems [40, 29].
The original CAP [40] does not support separate verificationof
program modules. The idea of letting assertions be parameterized
by Ψ and using universally-quantifiedΨ in the CAP0 inference
rules, is borrowed from Ni and Shao’s work on XCAP [29]. XCAP
is proposed to reason about general first-class code pointers, where
a special form of assertions (with typeState→ PropX) is used for
program specifications.

CAP0 generalizes XCAP and leaves the form of program spec-
ifications unspecified. The interpretation function in CAP0, which
is different from the one in XCAP, maps different forms of specifi-
cations to a general form. It is trivial to embed the originalCAP in
CAP0 by the following customization and interpretation.

(Assertion) p ∈ State→Prop

(CdSpec) θ ::= p

(Interp.) [[p]] , λΨ.λS.p S

XCAP and its extension [28] for weak memory update can be
embedded into CAP0 too if we use formulae of type (State→
PropX) to customize theθ in CAP0, and use the interpretation
in XCAP as our interpretation function. TAL [24] may also be
embedded in CAP0 indirectly through XCAP, as shown by Ni and
Shao [28].

4. SCAP for Function Call/Return

4.1 Stack-Based Reasoning for Function Call
We present SCAP as an instance of the CAP0 framework. The code
specificationθ in CAP0 is instantiated with the SCAP specification,
which is defined as:

(Assertion) p ∈ State→Prop

(Guarantee) g ∈ State→State→Prop

(CdSpec) θ ::= (p,g)

f: -{(p, g)}

addiu $sp, $sp, -32

…

jal h, ct

ct:
…

jr $ra

 g S S'

p S

jr $ra

A jal h ct

E

D
C

h: (p1, g1)
B

ct: (p2, g2)

(p0, g0)

f:

g1

g2
jr $ra

g0

(a) (b)

Figure 7. The Model for Function Call/Return in SCAP

A precondition for an instruction sequence contains a predicate
p specifying the current state, and aguaranteeg describing the
relation between the current state and the state at the return point of
the current function (if the function ever returns). Figure7(a) shows
the meaning of the specification(p,g) for the functionf defined in
Figure 1 (Section 1). Note thatg may cover multiple instruction
sequences. If a function has multiple return points,g governs all
the traces from the current program point to any return point.

Figure 7(b) illustrates a function call toh from f at point A,
with the return addressct. The specification ofh is (p1,g1). Spec-
ifications atA andD are(p0,g0) and(p2,g2) respectively, whereg0
governs the code segmentA-E andg2 governsD-E.

To ensure that the program behaves correctly, we need to en-
force the following conditions:
• the precondition of functionh can be satisfied,i.e.,

∀H,R.p0 (H,R) → p1 (H,R{$ra ; ct});

• afterh returns,f can resume its execution from pointD, i.e.,

∀H,R,S′
.p0 (H,R) → g1 (H,R{$ra ; ct}) S′ → p2 S′;

• if the functionh and the code segmentD-E satisfy their specifi-
cations, the specification forA-E is satisfied,i.e.,

∀H,R,S′,S′′.p0 (H,R) →
g1 (H,R{$ra ; ct}) S′ → g2 S′ S′′ → g0 (H,R) S′′;

• the functionh must reinstate the return code pointer when it
returns,i.e.,∀S,S′.g1 S S′ → S.R($ra) = S′.R($ra).

Above conditions are enforced by theCALL rule shown in Figure 8
(ignore the meaning of[[(p,g)]] for the time being, which will be
defined later).

To check the well-formedness of an instruction sequence begin-
ning withc, the programmer needs to find an intermediate specifi-
cation(p′,g′), which serves both as the postcondition forc and as
the precondition for the remaining instruction sequence. As shown
in theSCAP-SEQrule, we check that:
• the remaining instruction sequence is well-formed with regard

to the intermediate specification;
• p′ is satisfied by the resulting state ofc; and
• if the remaining instruction sequence satisfies its guaranteeg′,

the original instruction sequence satisfiesg.
Suppose the state transition sequence made by the function is

(S0, . . . ,Sn). To show that the function satisfies its guaranteeg (i.e.,
g S0 Sn), we enforce the following chain of implication relations:

gn Sn−1 Sn → gn−1 Sn−2 Sn → . . . → g S0 Sn,

where eachgi is the intermediate specification used at each ver-
ification step. Each arrow on the chain is enforced by rules such
asSCAP-SEQ. The head of the chain (i.e.,gn Sn−1 Sn) is enforced

5

f,fret ∈ dom(ΨL) (p′,g′) = ΨL (f) (p′′,g′′) = ΨL(fret)

∀H,R.p (H,R) → p′ (H,R{$ra;fret})
∀H,R,S′. p (H,R) → g′ (H,R{$ra;fret}) S′ →

(p′′ S′ ∧ (∀S′′. g′′ S′ S′′ → g (H,R) S′′))
∀S,S′.g′ S S′ → S.R($ra) = S′.R($ra)

`{〈[[(p,g)]]〉ΨL } jal f,fret
(CALL)

c∈{addu,addiu, lw,subu,sw}
`{〈[[(p′,g′)]]〉ΨL }I ∀S.p S → p′ (Nextc(S))
∀S,S′.p S → g′ (Nextc(S)) S′ → g S S′

`{〈[[(p,g)]]〉ΨL }c;I
(SCAP-SEQ)

∀S.p S → g S S

`{〈[[(p,g)]]〉ΨL } jr $ra
(RET)

f ∈ dom(ΨL) (p′,g′) = ΨL (f)
∀S.p S → p′ S ∀S,S′.p S → g′ S S′ → g S S′

`{〈[[(p,g)]]〉ΨL } j f
(T-CALL)

f ∈ dom(ΨL) (p′′,g′′) = ΨL (f) `{〈[[(p′,g′)]]〉ΨL }I

∀S.p S → S.R(rs) 6= S.R(rt) → (p′ S∧ (∀S′.g′ S S′ → g S S′))
∀S.p S → S.R(rs) = S.R(rt) → (p′′ S∧ (∀S′.g′′ S S′ → g S S′))

`{〈[[(p,g)]]〉ΨL }beq rs,rt ,f;I
(SCAP-BEQ)

f ∈ dom(ΨL) (p′′,g′′) = ΨL (f) `{〈[[(p′,g′)]]〉ΨL }I

∀S.p S → S.R(rs) ≤ 0→ (p′ S∧ (∀S′.g′ S S′ → g S S′))
∀S.p S → S.R(rs) > 0→ (p′′ S∧ (∀S′.g′′ S S′ → g S S′))

`{〈[[(p,g)]]〉ΨL }bgtz rs,f;I
(SCAP-BGTZ)

Figure 8. SCAP Inference Rules

by theRET rule (whereSn−1 is the same withSn since the jump in-
struction does not change the state), therefore we can finally reach
the conclusion ofg S0 Sn.

SCAP also supports tail function call, where the callee reuses
the caller’s stack frame and the return code pointer. To makea tail
function call, the caller just directly jumps to the callee’s code. As
shown in theT-CALL rule, we need to check that the guarantee of
the callee matches the guarantee that remains to be fulfilledby the
caller function.

Rules for branch instructions are straightforward. TheSCAP-
BGTZ rule is like a combination of theSCAP-SEQ rule and theT-
CALL rule, since the execution may either fall through or jump to
the target code label, depending on whether the condition holds.

Notice that all the code specificationsΨL used in SCAP rules
are thelocal specifications for the current module. SCAP supports
modular reasoning about function call/return in the sense that caller
and callee can be in different modules and be certified separately.
When specifying the callee function, we do not need any knowl-
edge about the return address$ra in its preconditionp. The RET

rule for the instruction “jr $ra” does not have any constraint on
$ra either. Examples in Section 4.4 illustrate how to write program
specifications in SCAP.

4.2 The Stack Invariant
Figure 9 shows a snapshot of the stack of return continuations: the
specification of the current function is(p0,g0), which will return
to its caller at the end; and the caller will return to the caller’s
caller. . . The return continuations in the dashed box compose a
logical control stack.

To establish the soundness of the SCAP inference rules, we
need to ensure that when the current function returns atA, $ra
contains a valid code pointer with the specification(p1,g1), and

g0

 g1

g2

g3

jr $ra

p0

p1

p2

p3

.
.

.

A

B

C

Figure 9. The Logical Control Stack

p1 is satisfied. Similarly we need to ensure that, at return points B
andC, $ra contains valid code pointers with specifications(p2,g2)
and(p3,g3) respectively, and thatp2 andp3 are satisfied by then.
Suppose the current state isS0 which satisfiesp0, above safety
requirement can be formalized as follows:

g0 S0 S1 →
S1.R($ra) ∈ dom(Ψ)∧Ψ(S1.R($ra)) = (p1,g1)∧p1 S1;

g0 S0 S1 → g1 S1 S2 →
S2.R($ra) ∈ dom(Ψ)∧Ψ(S2.R($ra)) = (p2,g2)∧p2 S2;

g0 S0 S1 → g1 S1 S2 → g2 S2 S3 →
S3.R($ra) ∈ dom(Ψ)∧Ψ(S3.R($ra)) = (p3,g3)∧p3 S3;

. . .

where Ψ is the program specification, and eachSi is implicitly
quantified by universal quantification.

Generalizing above safety requirement, we recursively define
the “well-formed control stack with depthn” as follows:

WFST(0,g,S,Ψ) , ¬∃S′. g S S′

WFST(n,g,S,Ψ) ,
∀S′.g S S′ → S′.R($ra) ∈ dom(Ψ)∧p′ S′ ∧WFST(n−1,g′,S′,Ψ)

where(p′,g′) = Ψ(S′
.R($ra)).

When the stack has depth 0, we are in the outermost function which
has no return code pointer (the program either “halts” or enters an
infinite loop). In this case, we simply require that there exist noS′

at which the function can return,i.e.,¬∃S′. g S S′.
Then the stack invariant we need to enforce is that,at each

program point with specification(p,g), the program stateS must
satisfyp and there exists a well-formed control stack inS. The
invariant is formally defined as:

p S∧∃n.WFST(n,g,S,Ψ).

Note here we do not care about the actual depth of the control stack.
To prove the soundness of SCAP, we need to prove that the in-

variant holds at every step of program execution. The stack invari-
ant essentially explains why we can have such a simpleRET rule,
which “typechecks” the “jr $ra” instruction without requiring that
$ra contain a valid code pointer.

4.3 SCAP in the CAP Framework
We prove the soundness of SCAP by showing that SCAP inference
rules are provable from the corresponding CAP0 rules, givena
proper interpretation function for the SCAP specifications.

In Section 4.1 we instantiated the CAP0 code specificationθ
with (p,g) in SCAP, without giving the interpretation function.
Having defined the stack invariant, the interpretation of(p,g) is

6

unsigned fact(unsigned n){
return n ? n * fact(n - 1) : 1;

}

(a) regular recursive function

void fact(unsigned *r, unsigned n){
if (n == 0) return;
*r = *r * n;
fact(r, n - 1);

}

(b) tail recursion with pointer arguments

Figure 10. Factorial Functions in C

TRUE , λS.True NoG , λS.λS′.False
Hnid(ls) , ∀l 6∈ ls.[l] = [l]′ Rid(rs) , ∀r ∈ rs, [r] = [r]′

Frm[i] , [[$fp]− i] Frm′[i] , [[$fp]− i]′

gfrm , [$sp]′ = [$sp]+3∧ [$fp]′ = Frm[0]
∧[$ra]′ = Frm[1]∧ [$s0]′ = Frm[2]

Figure 11. Macros for SCAP Examples

simply defined as the invariant:

[[(p,g)]] , λΨ.λS. p S ∧∃n.WFST(n,g,S,Ψ).

The proof of SCAP inference rules as lemmas in CAP0 are
presented in Appendix A and encoded in Coq [36].

4.4 Examples
In this section we show how SCAP can be used to support callee-
save registers, optimizations for tail-recursions, and general pointer
arguments in C.

Figure 10 shows two versions of the factorial function imple-
mented in C. The first one is a regular recursive function, while the
second one saves the intermediate result in the address passed as
argument and makes a tail-recursive call.

The compiled assembly code of these two functions is shown
in Figure 12 and 13. In both programs, the labelentry points to
the initial code segment where the functionfact is called. SCAP
specifications for the code heap are embedded in the code, enclosed
by -{}. Figure 11 shows definitions of macros used in the code
specifications. To simplify the presentation, we use[r] and [l] to
represent values contained in the registerr and memory location
l. We also use primed representations[r]′ and [l]′ to represent
values in the resulting state (the second argument) of a guaranteeg.
Rid(rs) means all the registers inrs are preserved by the function.
Hnid(ls) means all memory cellsexceptthose with addresses inls
are preserved.Frm[i] represents theith word on the stack frame.

The specification at the entrance point (labeled byprolog) of
the first function is given as(TRUE,g0) in Figure 12. The precon-
dition defines no constraint on the value of$ra. The guaranteeg0
specifies the behavior of the function:
• the return value[$v0] is the factorial of the argument[$a0];
• callee-save registers are not updated; and
• the memory, other than the stack frames, are not updated.

If we use pre-/post-conditions in traditional Hoare-Logicto specify
the function, we have to use auxiliary variables to specify the first
point, and apply the Invariance Rule for the last two points.Using
the guaranteeg0 they can be easily expressed.

In the second implementation (in Figure 13), the caller passes
the address of astack variableto the functionfact. The tail
recursion is optimized by reusing the stack frame and makinga

g0, [$v0]′ = [$a0]! ∧ Rid({$gp,$sp,$fp,$ra,$s0, . . . ,$s7})
∧Hnid({([$sp]−3∗ [$a0]−2), . . . , [$sp]})

g1, [$v0]′ = [$a0]! ∧ Rid({$gp,$s1, . . . ,$s7})∧gfrm
∧Hnid({([$sp]−3∗ [$a0]+1), . . . , [$sp]})

g3, ([$v0]′ = [$v0]∗ [$s0])∧Rid({$gp,$s1, . . . ,$s7})∧gfrm ∧Hnid(/0)

g4, Rid({$gp,$v0,$s1, . . . ,$s7})∧gfrm ∧Hnid(/0)

prolog: -{(TRUE, g0)}
addiu $sp, $sp, -3 ;allocate frame
sw $fp, 3($sp) ;save old $fp
addiu $fp, $sp, 3 ;new $fp
sw $ra, -1($fp) ;save return addr
sw $s0, -2($fp) ;callee-save reg
j fact

fact: -{(TRUE, g1)}
bgtz $a0, nonzero ;n == 0
addiu $v0, $zero, 1 ;return 1
j epilog

nonzero: -{([$a0] > 0, g1)}
addiu $s0, $a0, 0 ;save n
addiu $a0, $a0, -1 ;n--
jal prolog, cont ;fact(n)

cont: -{([$v0] = ([$s0]−1)!, g3)}
multu $v0, $s0, $v0 ;return n*(n-1)!
j epilog

epilog: -{(TRUE, g4)}
lw $s0, -2($fp) ;restore $s0
lw $ra, -1($fp) ;restore $ra
lw $fp, 0($fp) ;restore $fp
addiu $sp, $sp, 3 ;restore $sp
jr $ra ;return

halt: -{(TRUE, NoG)}
j halt

entry: -{(TRUE, NoG)}
addiu $a0, $zero, 6 ;$a0 = 6
jal prolog, halt

Figure 12. SCAP Factorial Example

direct jump. The preconditionp0 requires that stack variable be
initialized to 1 and not be allocated on the unused stack space. The
guaranteeg0 is similar to the one for the first version.
Malicious functions cannot be called. It is also interesting to see
how malicious functions are rejected in SCAP. The followingcode
shows a malicious function which disguises a function call of the
virus code as a return (the more deceptive x86 version is “push
virus; ret”).
ld_vir: -{(p, g)}

addiu $ra, $zero, virus ;fake the ret addr
jr $ra ;disguised func. call

The functionld vir can be verified in SCAP with a proper specifi-
cation of(p,g) (e.g.,(TRUE,λS,S′

.True)), because the SCAPRET
rule does not check the return address in$ra. However, SCAP will
reject any code trying to callld vir, because theg cannot satisfy
the premises of theCALL rule.

5. Generalizations of SCAP
The methodology for SCAP scales well to multi-return function
calls and weak continuations. In this section, we will generalize
the SCAP system in two steps. By a simple relaxation of theCALL
rule, we get system SCAP-I to support function calls with multiple
return addresses (with the restriction that a function mustreturn
to its immediate caller). We can use SCAP-I to certify the stack-

7

p0 , [[$a0]] = 1∧ [$a0] 6∈ {([$sp]−2), . . . , [$sp]}

g0 , [[$a0]]′ = [$a1]! ∧ Rid({$gp,$sp,$fp,$ra,$a0,$s0, . . . ,$s7})
∧Hnid({[$sp]−2, . . . , [$sp], [$a0]})

p1 , [$a0] 6∈ {([$sp]+1), . . . ,([$sp]+3)}

g1 , ([[$a0]]′ = [[$a0]]∗ [$a1]!)∧Rid({$gp,$a0,$s1, . . . ,$s7})
∧gfrm ∧Hnid({[$a0]})

g3 , Rid({$gp,$a0,$s1, . . . ,$s7})∧gfrm ∧Hnid(/0)

prolog: -{(p0, g0)}
addiu $sp, $sp, -3 ;allocate frame
sw $fp, 3($sp) ;save old $fp
addiu $fp, $sp, 3 ;new $fp
sw $ra, -1($fp) ;save return addr
sw $s0, -2($fp) ;callee-save reg
j fact

fact: -{(p1, g1)}
bgtz $a1, nonzero ;if n == 0 continue
j epilog

nonzero: -{(p1∧ [$a1] > 0, g1)}
lw $s0, 0($a0) ;intermediate result
multu $s0, $s0, $a1 ;*r * n
sw $s0, 0($a0) ;*r = *r * n
addiu $a1, $a1, -1 ;n--
j fact ;tail call

epilog: -{(TRUE, g3)}
lw $s0, -2($fp) ;restore $s0
lw $ra, -1($fp) ;restore $ra
lw $fp, 0($fp) ;restore $fp
addiu $sp, $sp, 3 ;restore $sp
jr $ra ;return

halt: -{(TRUE, NoG)}
j halt

entry -{(TRUE, NoG)}
addiu $sp, $sp, -1 ;allocate a slot
addiu $a0, $sp, 1 ;
addiu $s0, $zero, 1 ;$s0 = 1
sw $s0, 0($a0) ;initialize
addiu $a1, $zero, 6 ;$a1 = 6
jal prolog, halt

Figure 13. SCAP Implementation of Tail Recursion

rev(bits32 x){ cmp(bits32 x){
cmp(x) also returns to k; if (x = 0)
return 0; return <0/1>;

else
continuation k: return <1/1>;
return 1; }

}

Figure 14. C-- Code with Multi-Return Address

unwinding-based implementation for exceptions. We then combine
the relaxed call rule with the support for tail function calland get a
more general system, namely SCAP-II. SCAP-II can certify weak
continuations,setjmp/longjmp and the full-blown MRLC [32].

5.1 SCAP-I
In SCAP, a function call is ajal f,fret instruction (equivalent to
addiu $ra,$zero,fret; j f). The callee can only return tofret, forced
by the constraint∀S,S′. g′ S S′ → S.R($ra) = S′.R($ra) in the
CALL rule. To allow the callee to return to multiple locations, we
simply remove that constraint. Also, since we no longer force a
single return address, there is no need to set$ra at the call site,

gfrm, [$sp]′ = [$sp]+2∧ [$fp]′ = Frm[0]∧ [$ra]′ = Frm[1]

g0 , ([$a0] = 0→ [$v0]′ = 1)∧ ([$a0] 6= 0→ [$v0]′ = 0)
∧Rid({$gp,$sp,$fp,$ra,$s0, . . . ,$s7})
∧Hnid({[$sp]−1, [$sp]})

p1 , [$ra] = ct1∧ [$a1] = k

g1 , ([$a0] = 0→ [$v0]′ = 1)∧ ([$a0] 6= 0→ [$v0]′ = 0)
∧Rid({$gp,$s0, . . . ,$s7})∧gfrm ∧Hnid(/0)

p2 , TRUE
g2 , [$v0]′ = 0∧Rid({$gp,$s0, . . . ,$s7})∧gfrm ∧Hnid(/0)

p3 , TRUE
g3 , [$v0]′ = 1∧Rid({$gp,$s0, . . . ,$s7})∧gfrm ∧Hnid(/0)

g5 , ([$a0] = 0→ [$ra]′ = [$a1])∧ ([$a0] 6= 0→ [$ra]′ = [$ra])
∧Rid({$gp,$sp,$fp,$s0, . . . ,$s7})∧Hnid(/0)

rev: -{(TRUE, g0)}
addiu $sp, $sp, -2 ;allocate frame
sw $fp, 2($sp) ;save old $fp
addiu $fp, $sp, 2 ;new $fp
sw $ra, -1($fp) ;save old $ra
addiu $ra, $zero, ct1 ;ret cont 1
addiu $a1, $zero, k ;ret cont 0
-{(p1, g1)}
j cmp ;call cmp with k

ct1: -{(p2, g2)}
addiu $v0, $zero, 0 ;$v0 = 0
j epilog

k: -{(p3, g3)}
addiu $v0, $zero, 1 ;$v0 = 1
j epilog

epilog: -{(p4, g4)}
lw $ra, -1($fp) ;restore $ra
lw $fp, 0($fp) ;restore $ra
addiu $sp, $sp, 2 ;restore $sp
jr $ra ;return

cmp: -{(TRUE, g5)}
beq $a0, $zero, eqz
jr $ra ;return <1/1>

eqz: -{(p6, g6)}
addu $ra, $zero, $a1 ;return <0/1>
jr $ra

Figure 15. Example for Multi-Return Function Call

reducing the calling instruction toj f. The resulting rule becomes

∀S. p S → p′ S f ∈ dom(ΨL) (p′,g′) = ΨL(f)
∀S,S′. p S → g′ S S′ →

S′.R($ra) ∈ dom(ΨL)∧p′′ S′ ∧ (∀S′′. g′′ S′ S′′ → g S S′′)
where(p′′,g′′) = ΨL (S

′.R($ra))

`{〈[[(p,g)]]〉ΨL } j f
(CALL -I)

This rules does not specify how the return address is going tobe
passed into the function. Instead, we only require that$ra contain a
code pointer specified inΨL at the return stateS′, which is provable
based on the knowledge ofp andg′. This allows SCAP-I to certify
any convention for multi-return function call.

The CALL -I rule is also a lemma provable from theJ rule of
CAP0, using the same interpretation as the one for SCAP. The rest
of SCAP-I inference rules are the same with those in SCAP. For
instance, we can also use theT-CALL rule when we use “j f” to
make a tail call.

SCAP-I can certify the compiled C-- code with stack unwind-
ing. C-- uses the primitive “return <n/m>” to allow a function to
return to thenth of m return continuations defined in the caller. A
normal return is written as “return <m/m>”, while n being less

8

rev(bits32 x){ cmp0(bits32 x, bits32 k){
cmp0(x, k) also cuts to k; cmp1(x, k);
return 0; }

continuation k: cmp1(bits32 x, bits32 k){
return 1; if (x == 0) cut to k;

} return;
}

Figure 16. C-- Code with Weak-Continuations

thanm means an “abnormal” return. Correspondingly, at the call
cite, the caller put the annotation such as “also returns to k0,
k1”, where continuationsk0 andk1 are defined in the same func-
tion as the call site.

In Figure 14 we show a simple C-- program which returns 1 if
the argument is 0 and returns 0 otherwise. We illustrate in Figure 15
how to use SCAP-I to certify the compiled code. The precondition
of therev function is simply set toTRUE, while g0 specifies the
relationship between the argument[$a0] and the return value[$v0],
and the preservation of callee save registers and memory except for
the space for the stack frame. The precondition for thecmp function
is TRUE, and the guaranteeg5 says that the function returns to
different addresses under different conditions.

At the point wherecmp is called, we need to specify in the pre-
conditionp1 that both return addresses are valid code labels (i.e.,
ct1 andk). The guaranteeg1 specifies the behavior of the remain-
ing code under two different conditions, while(p2,g2) and(p3,g3)
specify the two different return continuations. Interested readers
can check that the specifications satisfy the constraint enforced by
the CALL -I rule. Specifications for other code blocks are straight-
forward and are omitted here.

5.2 SCAP-II for Weak Continuations
The weak continuation construct in C-- allows a function to return
to any activation on the control stack. Since we use the guarantee
g to represent the behavior of a function, we need to understand
what happens to the intermediate activations on the stack that are
“skipped”: are theirg’s discarded or fulfilled?

In SCAP-II, we enforce that the callee must fulfill the remaining
behavior of its caller before it can “skip” its caller and return to an
activation deeper on the control stack. From the caller’s point of
view, it made atail call to the callee.

∀S. p S → p′ S f ∈ dom(ΨL) (p′,g′) = ΨL (f)
∀S,S′. p S → g′ S S′ →

(g S S′ ∨
S′.R($ra) ∈ dom(ΨL)∧p′′ S′ ∧ (∀S′′. g′′ S′ S′′ → g S S′′))

where(p′′,g′′) = ΨL (S
′
.R($ra))

`{〈[[(p,g)]]〉ΨL } j f
(CALL -II)

In the CALL -II rule, we further relax the second premise of
the CALL -I rule and provide an option of either returning to the
return point of the caller or satisfying the caller’s remaining g and
therefore being able to return to the caller’s caller. This requirement
automatically forms arbitrary length chains that allow thereturn to
go arbitrarily far in the stack. Also notice that theCALL -II rule is
simply a combination of theCALL -I rule and theT-CALL in SCAP
for tail call.

We also relax SCAP’s definition of “well-formed stack” and
allow dismissal of multiple stack frames at the return point. Using
the new predicateWFST′ defined in Figure 18 in the interpretation
function for(p,g), we can derive theCALL -II rule as a lemma. The
rest of SCAP-II inference rules are the same with those in SCAP.
When a function jumps to a weak continuation, we use the same
rule as theRET rule in SCAP, as shown below. Here we use a new
nameJWC(jump to weak continuations) to show that$ra contains a

p0 , TRUE
g0 , ([$a0] = 0→ [$v0]′ = 1)∧ ([$a0] 6= 0→ [$v0]′ = 0)∧

∧Rid({$gp,$sp,$fp,$ra,$s0, . . . ,$s7})
∧Hnid({[$sp]−3, . . . , [$sp]})

p1 , [$ra] = ct∧ [$a1] = k∧ [$a2] = [$fp]∧ [$a3] = [$sp]

g1 , ([$a0] = 0→ [$v0]′ = 1)∧ ([$a0] 6= 0→ [$v0]′ = 0)∧
∧Rid({$gp,$s0, . . . ,$s7})∧Hnid({[$sp]−1, [$sp]})∧gfrm

gc , ([$a0] = 0→ [$ra]′ = [$a1]∧ [$fp]′ = [$a2]∧ [$sp]′ = [$a3]
∧Rid({$gp,$s0, . . . ,$s7}))

∧([$a0] 6= 0→ Rid({$gp,$sp,$fp,$ra,$s0, . . . ,$s7})

p4 , TRUE
g4 , gc∧Hnid({[$sp]−1, [$sp]})

p5 , TRUE
g5 , gc∧Hnid(/0)

rev: -{(p0, g0)}
addiu $sp, $sp, -2 ;allocate frame
sw $fp, 2($sp) ;save old $fp
addiu $fp, $sp, 2 ;new $fp
sw $ra, -1($fp) ;save $ra
addiu $a1, $zero, k ;set cut cont
addiu $a2, $fp, 0 ;save $fp
addiu $a3, $sp, 0 ;save $sp
addiu $ra, $zero, ct ;set ret cont
-{(p1, g1)}
j cmp0 ;call cmp0

ct: -{(p2, g2)}
addiu $v0, $zero, 0 ;return 0
j epilog

k: -{(p3, g3)}
addiu $v0, $zero, 1 ;return 1
j epilog

cmp0: -{(p4, g4)}
addiu $sp, $sp, -2 ;allocate frame
sw $fp, 2($sp) ;save old $fp
addiu $fp, $sp, 2 ;new $fp
sw $ra, -1($fp) ;save $ra
addiu $ra, $zero, epilog
j cmp1 ;call cmp1

cmp1: -{(p5, g5)}
beq $a0, $zero, cutto ;if ($a0==0) cut
jr $ra ;else return

cutto: -{(p6, g6)}
addiu $ra, $a1, 0 ;set $ra to k
addiu $fp, $a2, 0 ;restore k’s $fp
addiu $sp, $a3, 0 ;restore k’s $sp
jr $ra ;goto k

epilog: -{(p7, g7)}
lw $ra, -1($fp) ;restore $ra
lw $fp, 0($fp) ;restore $fp
addiu $sp, $sp, 2 ;restore $sp
jr $ra ;return

Figure 17. Example for Weak Continuation

WFST′(0,g,S,Ψ) , ¬∃S′. g S S′

WFST′(n,g,S,Ψ) ,
∀S′.g S S′ →

S′.R($ra) ∈ dom(Ψ)∧p′ S′ ∧∃m< n. WFST′(m,g′,S′,Ψ)
where(p′,g′) = Ψ(S′.R($ra)).

[[(p,g)]] , λΨ.λS.p S ∧∃n.WFST′(n,g,S,Ψ)

Figure 18. The Interpretation Function for SCAP-II

9

weak continuation pointer instead of the return address in the caller.

∀S.p S → g S S

`{〈[[(p,g)]]〉Ψ} jr $ra
(JWC)

Shivers and Fisher use the “super tail recursive” function call
to implement their MRLC, which is essentially multi-returnfunc-
tion call with stack cutting. The implementation of MRLC canbe
certified using SCAP-II.

In Figure 16, we show a C-- program using weak continuations.
The behavior of the functionrev is similar to the one shown in
Figure 14. If the argument is 0, the functioncmp1 may skip over its
callercmp0 and cut to the stack ofrev.

Figure 17 shows the compiled code and specifications. To sim-
plify the presentation, we pass the weak continuationk (which
contains the return code pointer, the frame pointer and the stack
pointer) via registers$a1-$a3. The specification(p0,g0) for rev
is very similar to the one shown in Figure 15. The specification at
the call site ofcmp0 is (p1,g1). Specifications for functionscmp0
and cmp1 are given as(p4,g4) and (p5,g5), respectively. Notice
that two different conditions are considered ing4 andg5, i.e., the
condition under which that the functions return normally and the
condition under which the functions cut the stack. Specifications
for other code blocks are omitted.

5.3 Example: setjmp/longjmp
setjmp andlongjmp are two functions in the C library that are
used to perform non-local jumps. They are used as follows: a
setjmp is called to save the current state of the program into a
data structure (i.e.,jmp buf). That state contains the current stack
pointer, all callee-save registers, the code pointer to thenext in-
struction, and everything else prescribed by the architecture. Then
when called with such a structure,longjmp restores every part of
the saved state, and then jumps to the stored code pointer.

These functions in C are not considered safe.setjmp does not
save closures, and thus the behavior oflongjmp is undefined if
the function calling the correspondingsetjmp has returned. The
control flow abstraction provided bysetjmp/longjmp is very
similar to weak continuations and can be reasoned using SCAP-II.

The code in Figure 19 shows a simple implementation of
setjmp/longjmp functions and their specifications. Here we bor-
row the separation logic [31] notation, where{l 7→ n} means the
memory cell at addressl contains valuen, while P∗Q specifies two
parts of memory which have disjoint domains and satisfyP andQ
respectively. As shown in [40], separation logic primitives can be
encoded in Coq and embedded in general predicates.

The preconditionp0 of setjmp simply requires that the argu-
ment $a0 point to ajmp buf. It guarantees (g0) that the return
value is 0; values of callee save registers, return code pointers and
some other registers are not changed and they are saved in the
jmp buf; and data heap except thejmp buf is not changed.

Preconditionp1 for longjmp is similar top0, with extra require-
ment that the second argument$a1, which will be the return value,
cannot be 0. The guaranteeg1 says the function returns$a1, recov-
ers register values saved injmp buf (including return code pointers
and stack pointers), and does not change any part of the memory.

In Figure 20 we use a simple C program to illustrate the use of
setjmp/longjmp. The code has the same behavior with the one
shown in Figure 16, except that here we make a non-local jump by
using thesetjmp/longjmp instead of a weak continuation.

Based on our specification ofsetjmp/longjmp, the compiled
code of the C program can be certified using SCAP-II. The assem-
bly code and specifications are presented in Figures 21 and 22. Here
we reuse some macros defined previously in Figures 19 and 11.

pbuf(x) , {x 7→ , . . . ,x+117→ }

gbuf(x) , ([x]′ = [$s0])∧ . . .∧ ([x+7]′ = [$s7])∧ ([x+8]′ = [$fp])∧
([x+9]′ = [$sp])∧ ([x+10]′ = [$gp])∧ ([x+11]′ = [$ra])

g′buf(x) , ([$s0]′ = [x])∧ . . .∧ ([$s7]′ = [x+7])∧ ([$fp]′ = [x+8])∧
([$sp]′ = [x+9])∧ ([$gp]′ = [x+10])∧ ([$ra]′ = [x+11])

p0 , pbuf([$a0])∗TRUE
g0 , ([$v0]′ = 0)∧Rid({$ra,$sp,$fp,$gp,$a0,$s0, . . . ,$s7})

∧gbuf([$a0])∧Hnid({[$a0], . . . , [$a0]+11})
p1 , (pbuf([$a0])∗TRUE)∧ [$a1] 6= 0
g1 , ([$v0]′ = [$a1])∧g′buf([$a0])∧Hnid(/0)

setjmp: -{(p0, g0)}
sw $s0, 0($a0) ;save callee-saves
...
sw $s7, 7($a0)
sw $fp, 8($a0) ;frame pointer
sw $sp, 9($a0) ;stack pointer
sw $gp, 10($a0) ;global pointer
sw $ra, 11($a0) ;old $ra
addiu $v0, $zero, 0 ;return value
jr $ra

longjmp: -{(p1, g1)}
lw $s0, 0($a0) ;restore callee-saves
...
lw $s7, 7($a0)
lw $fp, 8($a0) ;restore $fp
lw $sp, 9($a0) ;restore $sp
lw $gp, 10($a0) ;restore $gp
lw $ra, 11($a0) ;restore $ra
addu $v0, $zero, $a1 ;return value
jr $ra ;jump to restored $ra

Figure 19. Implementation forsetjmp/longjmp

jmp_buf env; /* env is a global variable */

int rev(int x){ void cmp0(int x){
if (setjmp(env) == 0){ cmp1(x);

cmp0(x); }
return 0;

}else{ void cmp1(int x){
return 1; if (x == 0)

} longjmp(env, 1);
} }

Figure 20. C Program Usingsetjmp/longjmp

The preconditionp0 for function rev requires thatenv point
to a block of memory for thejmp buf, and that there be disjoint
memory space for stack frames; while the guaranteeg0 is similar
to the one shown in Figure 17. Specifications for functioncmp0 and
cmp1 are similar to the ones given in Figure 17 too. However, it is
a little tricky to specify the code labeled byct1, which may be
executed twice: the first time after the return fromsetjmp and the
second time after the return fromlongjmp. We need to consider
both cases in the specification(p1,g1).

6. Exceptions
Figure 23 shows a higher-level program with exception. The “try”
block (line 3-6) encloses the code that may raise exceptions, while
the “on error” block (line 9-12) defines an exception handler. If
an exception is raisedwithin thetry block, the remaining code of
of the block is skipped and the control jumps to line 9. Otherwise
code following the block (line 7, 8) is executed and the function
returns. Note that if an exception is raised outside of thetry block
(e.g.,from line 7-8 or 9-12), it will be handled by the closest higher-
level handler (not shown in the code snippet). Raising an exception
is similar to a return, except this return does not go to the previous
function, but rather to the closest exception handler.

10

rev: -{(p0, g0)}
addiu $sp, $sp, -3 ;allocate frame
sw $fp, 3($sp) ;save old $fp
addiu $fp, $sp, 3 ;new $fp
sw $ra, -1($fp) ;save $ra
sw $a0, -2($fp) ;save argument
addiu $a0, $zero, env ;argument for setjmp
addiu $ra, $zero, ct1 ;set ret addr
j setjmp ;setjmp(env)

ct1: -{(p1, g1)}
beq $v0, $zero, ct2 ;if $v0 = 0 goto ct2
addiu $v0, $zero, 1
j epilog ;return 1

ct2: -{(p2, g2)}
lw $a0, -2($fp) ;$a0 = x
addiu $ra, $zero, ct3 ;set ret addr
j cmp0 ;cmp0(x)

ct3: -{(p3, g3)}
addiu $v0, $zero, 0
j epilog ;return 0

cmp0: -{(p4, g4)}
addiu $sp, $sp, -3 ;allocate frame
sw $fp, 3($sp) ;save old $fp
addiu $fp, $sp, 3 ;new $fp
sw $ra, -1($fp) ;save $ra
addiu $ra, $zero, epilog ;set ret addr
j cmp1 ;cmp1(x)

cmp1: -{(p5, g5)}
beq $a0, $zero, cutto ;if ($a0==0) longjmp
jr $ra ;else return

cutto: -{(p6, g6)}
addiu $a0, $zero, env ;$a0 = env
addiu $a1, $zero, 1 ;$a1 = 1
j longjmp ;longjmp(env, 1)

epilog: -{(p7, g7)}
lw $ra, -1($fp) ;restore $ra
lw $fp, 0($fp) ;restore $fp
addiu $sp, $sp, 3 ;restore $sp
jr $ra ;return

Figure 21. TM Code Usingsetjmp/longjmp

There are two stack-based implementation methods for excep-
tions [30]. One, called stack unrolling or stack unwinding,relies on
the fact that each function has an implicit exception handler, which
restores callee-saved registers from the stack and re-raises the ex-
ception. This method requires no extra operations upon entering
a try block, as all the necessary state will be preserved by future
function calls. However, upon raising an exception, the program
will execute each implicit exception handler until the proper one is
reached, meaning that this is a slow operation. The second method,
stack cutting, requires that all callee-saves are stored upon entering
a try block. Then, when an exception is raised, we can simply cut
the stack to the appropriate point, and restore all the callee-saves to
resume computation from the handler.

The SCAP-I system presented in Section 5 supports reasoning
about stack unwinding. SCAP-II supports general weak continua-
tion, therefore it can be used for both stack unwinding and stack
cutting. However, with the emphasis on generality, the abstraction
is too low level for these two systems to be used conveniently.
For instance, in a function that has two possible return points, one
would have to give a guarantee containing a disjunction to show
that only under normal conditions the code will return to first re-

blk(x,y) , {x 7→ ,x+1 7→ , . . . ,y 7→ }

p′buf(x) , {x 7→ [$s0], . . . ,x+11 7→ ct1}

gfrm , ([$sp]′ = [$sp]+3)∧ ([$fp]′ = Frm[0])∧ ([$ra]′ = Frm[1])

gepi , Rid({$gp,$s0, . . . ,$s7})∧gfrm ∧Hnid(/0)

p0 , pbuf(env)∗blk([$sp]−5, [$sp])∗TRUE
g0 , ([$a0] = 0→ [$v0]′ = 1)∧ ([$a0] 6= 0→ [$v0]′ = 0)∧

∧Rid({$gp,$sp,$fp,$ra,$s0, . . . ,$s7})
∧Hnid({[$sp]−5, . . . , [$sp],env, . . . ,env+11})

p1 , p′buf(env)∗blk([$sp]−2, [$sp])∗TRUE
g1 , ([$v0] = 0→ g2)∧ ([$v0] 6= 0→ ([$v0]′ = 1)∧gepi)

p2 , p1
g2 , (Frm[2] = 0→ [$v0]′ = 1)∧ (Frm[2] 6= 0→ [$v0]′ = 0)

∧g′buf(env)∧gfrm ∧Hnid({[$sp]−2, . . . , [$sp]})

p3 , TRUE
g3 , ([$v0]′ = 0)∧gepi

p4 , pbuf(env)∗blk([$sp]−2, [$sp])∗TRUE
g4 , ([$a0] = 0→ g′buf(env)∧ [$v0]′ 6= 0)

∧([$a0] 6= 0→ Rid({$gp,$sp,$fp,$ra,$s0, . . . ,$s7}))
∧Hnid({[$sp]−2, . . . , [$sp]})

p5 , pbuf(env)∗TRUE
g5 , ([$a0] = 0→ g′buf(env)∧ [$v0]′ = 1)

∧([$a0] 6= 0→ Rid({$gp,$sp,$fp,$ra,$s0, . . . ,$s7}))∧Hnid(/0)

p6 , pbuf(env)∗TRUE
g6 , g′buf(env)∧ [$v0]′ = 1∧Hnid(/0)

p7 , TRUE
g7 , ([$v0]′ = [$v0])∧gepi

Figure 22. Specifications for Code in Figure 21

1 void main() {
2 int x;
3 try { // code that may raise exceptions
4 f(20);
5 x=1;
6 }
7 ...
8 return x;
9 on error{ // the exception handler code
10 x=0;
11 return x;
12 };
13 }

14 void f(int x) {
15 if (x<=0)
16 raise error; // raise exception
17 else f(x-1);
18 }

Figure 23. Higher-Level Pseudo Code with Exceptions

turn point, and only under exceptional conditions it will return to
the second point. In this section, we propose two higher-level sys-
tems customized to handle stack unwinding and stack cuttingre-
spectively. Both of these systems provide guarantees specific to
reasoning about exceptions.

6.1 Exception Handling with Stack Unwinding
In this section, we show a specification system that can support
reasoning about exceptions compiled using stack unwinding, which
we refer to as EUCAP. The system is embeddable in CAP0, and
closely follows ideas used in defining SCAP.

6.1.1 EUCAP Inference Rules
Figure 24 shows the model of exception handling using stack un-
winding. One should immediately observe that thetry andcall
are not separate concepts. Both of them are represented by ”call”,
which always sets a new exception handler. Thus in the diagram

11

ret

ret

raise

call f

call f2

A

B

D

E

F

raise

G

C

H

I

(p0,g0,h0) t : (p1,g1,h1)

cont : (p2,g2,h2)

hand : (p3,g3,h3)

Figure 24. The Model for Call/Raise/Return in EUCAP

∀S.p S → p′ S f ∈ dom(ΨL) (p′,g′,h′) = ΨL (f)
∀S.p S → S.R($ra) ∈ dom(ΨL)∧

∀S′.g′ S S′ →
p′′ S′ ∧∀S′′.(g′′ S′ S′′ → g S S′′)∧ (h′′ S′ S′′ → h S S′′)

where(p′′,g′′,h′′) = ΨL (S.R($ra))

∀S.p S → S.R($rh) ∈ dom(ΨL)∧
∀S′.h′ S S′ →

p′′′ S′ ∧∀S′′
.(g′′′ S′ S′′ → g S S′′)∧ (h′′′ S′ S′′ → h S S′′)

where(p′′′,g′′′,h′′′) = ΨL(S.R($rh))

∀S,S′.(g′ S S′ → S.R($ra) = S′.R($ra))
∧(h′ S S′ → S.R($rh) = S′

.R($rh))

`{〈[[(p,g,h)]]〉ΨL } j f
(EU-CALL)

∀S.p S → g S S

`{〈[[(p,g,h)]]〉ΨL } jr $ra
(EU-RET)

∀S.p S → h S S

`{〈[[(p,g,h)]]〉ΨL } jr $rh
(EU-RAISE)

c∈{addu,addiu, lw,subu,sw}
`{〈[[(p′,g′,h′)]]〉ΨL }I ∀S.p S → p′ (Nextc(S))
∀S,S′.p S → (g′ Nextc(S) S′ → g S S′)∧ (h′ Nextc(S) S′ → h S S′)

`{〈[[(p,g,h)]]〉ΨL }c;I
(EU-SEQ)

Figure 25. EUCAP Rules as CAP0 Lemmas

above, one can think ofcall f2 as either a function call or a try
block, which sets D as the return point and F as an exception han-
dler. Thus when at point C, an exception is raised, the execution
jumps to point F, and proceeds to execute from there. The codein
the handler then may finish normally by returning, or may choose
to re-raise the exception by issuingraise. That behavior is not any
different from a regular return point, and that fact is represented in
the diagram by a merging at point H. One can think of point H as
where the try block ends and regular execution resumes.

Given the above diagram, it is very easy to define exceptions.
We define them simply as another return point, and to cleanly spec-
ify these return points separately, we extend SCAP’s specification
language by adding another predicate similar tog. Then the speci-
fication language becomes

(Assertion) p,q,r ∈ State→Prop

(Guarantee) g,h ∈ State→State→Prop

(CdSpec) θ ::= (p,g,h)

[[(p,g,h)]] , λΨ.λS.p S ∧∃n.WFSE(n,g S,h S,Ψ)

WFSE(0,q,r,Ψ) ,¬∃S. q S∨r S

WFSE(n,q,r,Ψ) , ∀S.

(q S →
S.R($ra) ∈ dom(Ψ)∧p′ S∧WFSE(n−1,g′ S,h′ S,Ψ))

∧(r S →
S.R($rh) ∈ dom(Ψ)∧p′′ S∧WFSE(n−1,g′′ S,h′′ S,Ψ))

where(p′,g′,h′) = Ψ(S.R($ra)) and(p′′,g′′,h′′) = Ψ(S.R($rh)).

Figure 26. EUCAP Interpretation

The h guarantee specifies what a function does by the time an
exception is raised. If a function can not raise an exception, then
h can simply be set to∀S,S′.False. This means that this model is
actually the same as multi-return function call (SCAP-I), with g
split into two pieces: one for regular return, another for exceptional
return.

The rest of the system is just a correction for this split: araise
is simply aret whenh as opposed tog is met. Thecall needs to
check that both predicates are adequate, and the well-formedness
of the stack needs to be altered to allow both predicates to specify
possible return points. The complete set of EUCAP rules is given
in figure 25, and the interpretation function is given in figure 26.

Derivations of EUCAP rules as lemma in the CAP0 framework
can be found in appendix B.

6.1.2 Example
In this section we show an example of how to use EUCAP to certify
a program that implements exceptions using stack unwinding. The
higher level program shown in figure 23 is compiled with stack
unwinding implementation of exceptions to produce assembly code
shown in figure 27.

Labelmain is an entry point into the program. Labelsmain-1
andmain-2 are the normal and exceptional continuations for the
program. Labelf is the entry point of functionf, while f-raise
andf-return are the code blocks responsible for raising an ex-
ception or returning from functionf.

Specifications for each block of code are embedded in the code
right next to the label they specify. To make specification more
readable, we reuse the macros defined before in Figure 11 for
common expressions.

In this example, all jumps tof areEU-CALL instructions, which
always set a new handler. This makes the try block around the call
to f be unnecessary, and thus the try block and the first call to
functionf are merged.x is set to 1 at the normal return point, but
not at the exceptional return point, making that instruction work as
though it is inside a try block, while it is actually outside of the
call. Thus theg for f-ret andh for f-raise simply say that they
restore the previous frame and then jump to their appropriate return
point.

6.2 Exception Handling with Stack Cutting
In this section, we show a specification system that can support
reasoning about exceptions compiled using stack cutting, which we
refer to as ECAP. The system is also embeddable in CAP0, and
closely follows ideas used in defining SCAP.

6.2.1 ECAP Inference Rules
Figure 28 shows multiple workflows through the code containing
exceptions. Functionf does atry, which then callsf2. If f2
succeeds, it then issues a return into the remaining segmentinside
a try (cont). If the entire try block succeeds, thenendtry jumps
to cont2, which finishes the execution of functionf. However, if
an exception is raised inside thetry block, including insidef2,

12

g′′frm, [$sp]′ = [$sp]+3∧ [$rh]′ = Frm[2]∧
[$ra]′ = Frm[1]∧ [$fp]′ = Frm[0]

g0 , Rid({$sp,$fp,$ra,$rh,$gp,$s0, . . . ,$s7})
∧Hnid([$sp]−3∗ [$a0]−3, . . . , [$sp])

h0 , g0∧ [$a0] ≤ 0
h1 , Rid({$gp,$a0,$s0, . . . ,$s7})∧g′′frm ∧Hnid(/0)

g2 , Rid({$gp,$a0,$s0, . . . ,$s7})∧g′′frm ∧Hnid(/0)

main: -{(TRUE,NoG,NoG)}
addiu $a0, $zero, 20 ;20 iterations
addiu $ra, $zero, main-1 ;set return point
addiu $rh, $zero, main-0 ;set handler
j f

main-1: -{(TRUE, NoG, NoG)}
addiu $v0, $zero, 1 ;returnval=1
j halt

main-0: -{(TRUE, NoG, NoG)}
addiu $v0, $zero, 0 ;returnval=0
j halt

f: -{(TRUE, g0, h0)}
addiu $sp, $sp, -3 ;reserve frame
sw $fp, 3($sp) ;save old $fp
addiu $fp, $sp, 3 ;new $fp
sw $ra, -1($fp) ;save $ra
sw $rh, -2($fp) ;save $rh
blez $a0, f-raise ;if x<=0 raise error
addiu $a0, $a0, -1 ;x--
addiu $ra, f-ret, 0 ;set return point
addiu $rh, f-raise, 0 ;set handler
j f

f-raise:-{(TRUE, NoG, h1)}
lw $rh, -2($fp) ;restore $rh
lw $ra, -1($fp) ;restore $ra
lw $fp, 0($fp) ;restore $fp
addiu $sp, $sp, 3 ;restore $sp
jr $rh ;raise

f-ret: -{(TRUE, g2, NoG)}
lw $rh, -2($fp) ;restore $rh
lw $ra, -1($fp) ;restore $ra
lw $fp, 0($fp) ;restore $fp
addiu $sp, $sp, 3 ;restore $sp
jr $ra ;return

halt: -{(TRUE,NoG,NoG)}
j halt

Figure 27. Example of Exceptions Compiled with Unwinding

the program jumps to the handler specified by the try block (hand).
Then both execution paths fromcont2 andhand will eventually
return to the same point, or raise an exception and return to the
same handler.

To be able to certify code with exceptions implemented using
stack cutting, we define ECAP, another instance of CAP0 inspired
by SCAP. The code specification of ECAP are same as those in
EUCAP:

(Assertion) p,q,r ∈ State→Prop

(Guarantee) g,h ∈ State→State→Prop

(CdSpec) θ ::= (p,g,h)

The purpose ofh is exactly the same as its purpose in EUCAP,
namely to specify what needs to happen between the current point
and the point where the exception can be raised.

To ensure correct behavior in all executions, we enforce the
following invariants at the point of entering a try block:

end try

ret

ret

raise

call f

try

call f2

A

B

C

D

E
F

GH

I

K

raise

L

M

N

(p0,g0,h0) t : (p1,g1,h1)

(p2,g2,h2) h : (p3,g3,h3)

cont : (p4,g4,h4)

cont2 : (p5,g5,h5)

hand : (p6,g6,h6)

Figure 28. The Model for Try/Raise/Call/Return in ECAP

∀S.p S → p′ S f ∈ dom(ΨL) (p′,g′,h′) = ΨL (f)
∀S.p S → S.R($ra) ∈ dom(ΨL)∧

∀S′.g′ S S′ →
p′′ S′ ∧∀S′′

.(g′′ S′ S′′ → g S S′′)∧ (h′′ S′ S′′ → h S S′′)
where(p′′,g′′,h′′) = ΨL (S.R($ra))

∀S,S′.p S → h′ S S′ → h S S′ ∀S,S′.g′ S S′ → S.R($ra) = S′.R($ra)

`{〈[[(p,g,h)]]〉ΨL } j f
(E-CALL)

∀S.p S → p′ S f ∈ dom(ΨL) (p′,g′,h′) = ΨL (f)
∀S.p S → S.R($ra) ∈ dom(ΨL)∧

∀S′.g′ S S′ →
p′′ S′ ∧∀S′′.(g′′ S′ S′′ → g S S′′)∧ (h′′ S′ S′′ → h S S′′)

where(p′′,g′′,h′′) = ΨL (S.R($ra))

∀S.p S → S.R($rh) ∈ dom(ΨL)∧
∀S′.h′ S S′ →

p′′′ S′ ∧∀S′′.(g′′′ S′ S′′ → g S S′′)∧ (h′′′ S′ S′′ → h S S′′)
where(p′′′,g′′′,h′′′) = ΨL (S.R($rh))

∀S,S′.(g′ S S′ → S.R($ra) = S′.R($ra))
∧(h′ S S′ → S.R($rh) = S′.R($rh))

`{〈[[(p,g,h)]]〉ΨL } j f
(E-TRY)

∀S.p S → g S S

`{〈[[(p,g,h)]]〉ΨL } jr $ra
(E-RET)

∀S.p S → h S S

`{〈[[(p,g,h)]]〉ΨL } jr $rh
(E-RAISE)

c∈{addu,addiu, lw,subu,sw}
`{〈[[(p′,g′,h′)]]〉ΨL }I ∀S.p S → p′ (Nextc(S))
∀S,S′.p S → (g′ Nextc(S) S′ → g S S′)∧ (h′ Nextc(S) S′ → h S S′)

`{〈[[(p,g,h)]]〉ΨL }c;I
(E-SEQ)

Figure 29. ECAP Rules as CAP0 Lemmas

13

[[(p,g,h)]] , λΨ.λS.p S ∧∃n.WFSC(n,g S,h S,Ψ)

WFSC(0,q,r,Ψ) ,¬∃S. q S∨r S

WFSC(n,q,r,Ψ) , ∀S.

(q S →
S.R($ra) ∈ dom(Ψ)∧p′ S∧WFSC(n−1,g′ S,h′ S,Ψ))

∧(r S →
S.R($rh) ∈ dom(Ψ)∧p′′ S∧∃m< n. WFSC(m,g′′ S,h′′ S,Ψ))

where(p′,g′,h′) = Ψ(S.R($ra)) and(p′′,g′′,h′′) = Ψ(S.R($rh)).

Figure 30. ECAP Interpretation

• the precondition of the try blockt can be satisfied,i.e.,
∀S.p0 S → p1 S (note that entering a try block is done byj t);

• after the try block finishes normally,f can resume execution
beyond the try block (pointH), and the normal behavior (g1) of
the try block (B-G) and the remaining code (H-I) satisfies the
specification ofA-I, i.e.,

∀S,S′.p0 S → g1 S S′ →
p5 S′ ∧ (∀S′′.g5 S′ S′′ → g0 S S′′)∧ (∀S′′.h5 S′ S′′ → h5 S S′′)

• after the try block finishes exceptionally,f can resume execu-
tion starting at the exception handler (pointK), and the excep-
tional behavior (h1) of the try block and the exception handler
(K-L) satisfies the specification ofA-I, i.e.,

∀S,S′.p0 S → h1 S S′ →
p6 S′ ∧ (∀S′′.g6 S′ S′′ → g0 S S′′)∧ (∀S′′.h6 S′ S′′ → h0 S S′′)

The above conditions (in a generalized form) are enforced bythe
E-TRY rule shown in figure 29.

TheE-CALL rule is an extension of theCALL rule of SCAP with
following differences:
• adds an exceptional dual of the continuation’s guarantee satis-

fying the function’s guarantee,i.e.,
∀S,S′.p2 S → g3 S S′ → (∀S′′.h4 S′ S′′ → h2 S S′′).

• the function’s exceptional behavior must satisfy the caller’s
exceptional behavior,i.e.,
∀S,S′.p2 S → h3 S S′ → h2 S S′ .

Returning from the function call or a try block has the same in-
variant as the SCAPRET rule, i.e., the state in which a return is
issued satisfies the predicateg. Raising an exception is a dual of re-
turn, having the same invariant usingh predicate. Well-formedness
of an instruction sequence is similar to theSCAP-SEQ rule, except
it also ensures the chaining of the predicateh.

6.2.2 ECAP in the CAP0 Framework
Just like SCAP, ECAP rules are derivable as lemmas of the CAP0
framework, using the definitions in figures 29 and 30. The inter-
pretation of(p,g,h) is similar to that of(p,g) in SCAP. The new
“well-formed stack” predicate (WFSC) is SCAP’sWFST modi-
fied to deal withh and the non-linear stack workflow of exceptions.
Namely, it adds an additional requirement that at the end of the ex-
ception handler there is a well formed stack of smaller depth(not
just n−1, as in SCAP).

Like WFST, WFSC is recursive, well-founded, and is indepen-
dent of the stack layout, supporting different calling conventions
and exception handling methods.

WFSC predicate uses the$rh register. However, the TM does
not have such a register. This is done for simplicity, and should be
interpreted as any specific memory which can be used to pass a
second return point. In our examples, we take the liberty of making
$rh refer to the otherwise unused registerk1, as well as usingk0
as a pointer to where the handler keeps information necessary to
restore the stack frame.

g′frm, [$sp]′ = [$sp]+2∧ [$fp]′ = Frm[0]∧ [$ra]′ = Frm[1]

grec, [$sp]′ = [$k0]∧ [$fp]′ = [[$k0]]

h4 , Rid({$sp,$fp,$ra,$rh,$gp,$s0, . . . ,$s7,$k0})
∧Hnid({[$sp]−2∗ [$a0]−2, . . . , [$sp]})∧ [$a0]′ ≤ 0

h5 , Rid({$rh,$gp,$s0, . . . ,$s7,$k0})∧grec∧Hnid(/0)

g6 , Rid({$rh,$gp,$s0, . . . ,$s7,$k0})∧g′frm ∧Hnid(/0)

main: -{(TRUE, NoG, NoG)}
addiu $sp, $sp, -1 ;reserve frame
sw $fp, 0($sp) ;record $fp
addiu $k0, $sp, 0 ;set the handler $sp
addiu $rh, $zero, main-0 ;set the handler
addiu $ra, $zero, main-1 ;set try exit point
j try

try: -{(TRUE, g4, h4)}
addiu $a0, $zero, 20 ;x=20
j f ;f(x)

main-1: -{(TRUE, NoG, NoG)}
addiu $v0, $zero, 1
j halt

main-0: -{(TRUE, NoG, NoG)}
addiu $v0, $zero, 0
j halt

f: -{(TRUE, g4, h4)}
addiu $sp, $sp, -2 ;allocate frame
sw $fp, 2($sp) ;save old $fp
addiu $fp, $sp, 2 ;new $fp
sw $ra, -1($fp) ;save $ra
blez $a0, f-raise ;if x<=0 raise error
addiu $a0, $a0, -1 ;x--
addiu $ra, $zero, f-ret ;set return point
j f ;f(x)

f-raise:-{([a0] ≤ 0, NoG, h5)}
addiu $sp, $k0, 0 ;restore handler $sp
lw $fp, 0($sp) ;restore $fp
jr $rh ;raise

f-ret: -{(TRUE, g6, NoG)}
lw $ra, -1($fp) ;restore $ra
lw $fp, 0($fp) ;restore $fp
addiu $sp, $sp, 3 ;restore $sp
jr $ra ;return

halt: -{(TRUE,NoG,NoG)}
j halt

Figure 31. Example of Exceptions Compiled with Cutting

The derivation of ECAP rules as lemmas in the CAP0 frame-
work can be found in appendix C.

6.2.3 Example
In this section we show how ECAP can be used to support excep-
tions using stack cutting.

The higher-level program given in Figure 23 is compiled using
stack cutting, resuling in assembly code in figure 31.

Specifications of code heaps are embedded in the code. We
reuse macros defined before in Figures 11.

In this example, upon entering the try block, the callee-saves
are saved on the stack, with$rh remembering the handler’s label
and$k0 remembering the stack pointer of the main function.$rh
and$k0 are preserved through the calls tof. When the exception is
raised, the stack is recovered through$k0 and convention defined
by grec.

14

void f() { void h() {
int i; int j;
while(true) { while(true) {
i++; j++;
switch; switch;

} }
} }

Figure 32. Higher-level Coroutine Pseudo code

 addu $ry, $zero, $rx
 addiu $rx, $zero, ct
 jr $ry

switch

switch

switch

switch

switch

gt => G1-i

gt => G1-i

Gi <= gt

gt

(p, gt)i

(pt, gt)1-i

(p , gt)i

ct: (p''', gt)1-i

' '

'
'' ''

''
'''

'''

Figure 33. A Simplified Model for Coroutines

7. Reasoning about Coroutines
Figure 32 shows a trivial higher-level program that uses coroutines.
The purpose behind coroutines is to create code that actually con-
sists of two mostly independent code executions that are sequen-
tial, with precisely defined switch points. Examples of suchpro-
grams include producer/consumer programs and simple determin-
istic (round-robin) threads.

In this section, we present variations of SCAP to reason about
coroutines. The system CAP-CR supports separate verification of
coroutines without functions, while SCAP-CR can reason about ar-
bitrary interleaving of coroutine switching and function call/return.
Like SCAP, both systems can be embedded in CAP0.

7.1 Coroutines without Function Call
We first work on a simplified model of coroutines, in which a
coroutine does not make a function call. Figure 33 illustrates the
execution of coroutines. To implement the switch from one routine
to the other, we use two special registers ($rx and$ry) to hold the
code pointers.switch is implemented as follows:

addu $ry, $zero, $rx ;set the target switch addr
addiu $rx, $zero, ct ;save the return addr
jr $ry ;jump to target address

wherect is the code label for the return continuation, as shown in
Figure 33. In concrete implementations,$rx and$ry can be any two
designated registers or even two memory cells.

Specificationsθ for coroutine code are defined as follows:
(Assertion) p ∈ State→Prop

(Guarantee) gt ∈ State→State→Prop

(CdSpec) θ ::= (p,gt)i

wherep specifies the current state,gt describes the behavior of
the code segment from the current program point to the switching
point, and the indexi (0≤ i ≤ 1) represent theith coroutine.

Different than function call, there is a new challenge for separate
verification of coroutine code. Since theswitch is done by an

indirect jump, we do not know to which code segment of the target
coroutine we are jumping to. However, we still need to ensurethat
the target coroutine will switch back to the right place withthe
expected state. To solve this problem, we use the rely-guarantee
method [18] and assign aglobal guaranteeGi for the ith coroutine.
As shown in Figure 33, although we do not know whether we are
jumping to the code segment with guaranteeg′t or the one with
guaranteeg′′′t , we can require that all code segments between two
switch points in coroutine 1− i must satisfyG1−i , that is we require
g′t ⇒ G and g′′′t ⇒ G. Here we use the short handgt ⇒ G for
∀S,S′. gt S S′ → G S S′.

In summary, the specifications of coroutinei consist of(p,gt)i
pairs for each code segment, and a global guaranteeGi that speci-
fies the common behavior for code segments between two consec-
utive switch points.

We use the followingSWITCH rule to type check the indirect
jump for switching.

∀S.p S → gt S S

∀S. p S →
(S.R($rx) ∈ dom(ΨL)∧ (g′t ⇒ Gi)∧
(∀S′. G1−i S S′ → S′.R($ry) = S.R($rx)∧p′ S′))

where(p′,g′t)i = ΨL (S.R($rx))

`{〈[[(p,gt)i]]〉ΨL } jr $ry
(SWITCH)

The SWITCH rule is like a combination of theCALL rule and the
RET rule of SCAP, because from coroutinei’s point of view, the
switch is like a function call, while for coroutine(1− i) it is like a
return. The first premise requires that the coroutinei must finish its
guaranteed behavior before it switches to the coroutine(1− i). The
second premise requires that:
• $rx contain the return code pointer at the switch point, and the

behavior starting from the return code pointer satisfy the global
guaranteeGi ;

• at stateS′, the coroutine(1− i) switch back to the expected
place,i.e.,S′.R($ry) = S.R($rx); and

• when the coroutine(1− i) switches back, the stateS′ satisfy the
preconditionp′ of the return continuation.

The rest inference rules, such as rules for sequential instructions
and direct jumps, are the same with those in SCAP, except that
the g’s in SCAP has been replaced bygt . To derive theSWITCH
rule and other rules as lemmas in CAP0, we use the following
interpretation for(p,gt)i .

[[(p,gt)i]] , λΨ.λS.p S ∧
∀S′.gt S S′ → S′.R($ry) ∈ dom(Ψ)∧p′ S′∧ (g′t ⇒ G1−i)

where(p′,g′t) = Ψ(S′.R($ra))

The interpretation function requires that:
• the current state be valid,i.e.,p S;

• at the switch point$ry will be a valid code pointer in the
coroutine(1− i) with specification(p′,g′t)1−i ;

• the precondition of the label to which we are switching be
satisfied,i.e.,p′ S′; and

• the code to which we are switching will satisfy the coroutine
(1− i)’s global guarantee,i.e.,g′t ⇒ G1−i .

Given the interpretation function, CAP-CR inference rulescan be
proved as lemmas in CAP0.

7.2 Coroutines with Function Calls
In the system CAP-CR, each coroutine does not make function
calls, so we do not have to model stacks. Coroutines with function
calls are trickier to verify because functions called by onecoroutine

15

g'

g't

Gi

g''

G1-i

G1-i

G1-i

(call f)
j f f: (p', g', g'

t
, g'

r
)

i
where g'

r
<= g''

switch

switch

switch

switch

(ret)
jr $ra(p'', g'', g'', g'') i

t

t

t r

(p, g, g
t
, g

r
)
i

(ret)
jr $ra

g''

g

Gi

Figure 34. Model for Coroutines with Function Calls

may switch to another coroutine in the middle. It is harder to
specify the behavior of functions.

In SCAP-CR, we instantiate the code specificationθ in CAP0
as follows:

(Assertion) p ∈ State→Prop

(Guarantee) g,gt ,gr ∈ State→State→Prop

(CdSpec) θ ::= (p,g,gt ,gr)i where(0≤ i ≤ 1)

As in SCAP, the function specification in SCAP-CR contains the
specificationp of the expected input and the behaviorg of the
function. Since a switch may occur within a function, we usegt
as in CAP-CR to specify the code segment from the current point
to the nextswitchpoint, as shown in Figure 34. Also, because the
return point and theswitchpoint may not match, we use an extra
guaranteegr to specify the remaining state transition the current
coroutine needs to make between thereturn point and the next
switchpoint. Intuitively, gr tells the caller of the current function
what the caller needs to do after the function returns so thatit
can fulfill the guaranteed behavior before switching to another
coroutine.1 The switch operation is implemented in the same way
shown in Section 7.1. For each coroutine, we also need a global
guaranteeGi which captures the invariant of the code segments
between any two consecutive switch points.

As shown in Figure 34, we need to enforce the following con-
straints for the function call in SCAP-CR.

• the behaviorg′t satisfies the caller’s guaranteed behaviorgt from
the calling point to the next switch point;

• when the callee returns, the caller’s behaviorg′′t from the return
point to the next switch point satisfies the callee’s expectation
g′r ; and

• the constraints for return code pointers and function behaviors,
as enforced in theCALL rule of SCAP-I.

1 We may not needgr if we require that the global guaranteeG be a
transitive relation,i.e., ∀S,S′,S′′. G S S′ ∧G S′ S′′ → G S S′′. Although
reasonable in a non-deterministic concurrent setting, this constraint onG is
too restrictive for coroutines. We decide to present SCAP-CR in the most
general setting and use an extragr to link the caller and callee.

[[(p,g,gt ,gr)i]] , λΨ.λS. p S∧WFCR(i,g,gt ,gr ,S,Ψ)

WFCR(i,g,gt ,gr ,S,Ψ) ,
∃m.WFCRST(m,g,gr ,S,Ψ)∧
(∀S′

.gt S S′ → S′
.R($ry) ∈ dom(Ψ)∧ (g′t ⇒ G1−i)∧p′ S′∧

∃n.WFCRST(n,g′,g′r ,S
′,Ψ))

where(p′,g′,g′t ,g
′
r)1−i = Ψ(S′.R($ry))

WFCRST(0,g,gr ,S,Ψ) ,¬∃S′. g S S′

WFCRST(n,g,gr ,S,Ψ) ,
∀S′. g S S′ →

S′.R($ra) ∈ dom(Ψ)∧p′ S′ ∧ (g′t ⇒ gr)∧
WFCRST(n−1,g′,g′r ,S

′,Ψ)
where(p′,g′,g′t ,g

′
r)i = Ψ(S′

.R($ra))

Figure 35. The Interpretation Function for SCAP-CR

These constraints are reflected in the followingCR-CALL rule.

(p′,g′,g′t ,g
′
r)i = ΨL (f)

∀S. p S → p′ S ∀S,S′. p S → g′t S S′ → gt S S′

∀S,S′. p S → g′ S S′ →
(S′.R($ra) ∈ dom(ΨL)∧p′′ S′∧

(∀S′′. g′′ S′ S′′ → g S S′′)∧ (∀S′′. g′′t S′ S′′ → g′r S′ S′′))
where(p′′,g′′,g′′t ,gr)i = ΨL (S

′.R($ra))

`{〈[[(p,g,gt ,gr)i]]〉ΨL } j f
(CR-CALL)

The return ruleCR-RET is similar to theRET rule in SCAP, ex-
cept that we also need to ensure that the expected caller’s behavior
gr from the return point to the next switch point satisfies the guar-
anteed behaviorgt .

∀S. p S → g S S ∀S,S′. p S → gr S S′ → gt S S′

`{〈[[(p,g,gt ,gr)i]]〉ΨL } jr $ra
(CR-RET)

TheCR-SWITCH rule is similar to theSWITCH rule in CAP-CR,
but we also need to enforce that the guaranteed behavior of the
function is satisfied,i.e.,G1−i S S′ → g′ S′ S′′ → g S S′′.

∀S. p S → gt S S

∀S. p S →
(S.R($rx) ∈ dom(ΨL)∧ (g′t ⇒ Gi)

(∀S′. G1−i S S′ →
S′.R($ry) = S.R($rx)∧p′ S′ ∧ (∀S′′. g′ S′ S′′ → g S S′′)))

where(p′,g′,g′t ,gr)i = ΨL(S.R($rx))

`{〈[[(p,g,gt ,gr)i]]〉ΨL } jr $ry
(CR-SWITCH)

The following CR-SEQ rule is straightforward, which is simply
a combination of theSEQrules in SCAP and CAP-CR.

`{〈[[(p′,g′,g′t ,gr)i]]〉ΨL }I ∀S. p S → p′ (Nextc(S))
∀S,S′.p S →

(g′ (Nextc(S)) S′ → g S S′)∧ (g′t (Nextc(S)) S′ → gt S S′)

`{〈[[(p,g,gt ,gr)i]]〉ΨL }c;I
(CR-SEQ)

In SCAP-CR, we need to enforce the invariant on two well-
formed control stacks, as we did in SCAP. The interpretationfunc-
tion for the specification(p,g,gt ,gr)i is defined in Figure 35. The
predicateWFCR ensures that:

• there is a well formed control stack for the current coroutine;

• at the switch point,$ry contains a valid code pointer;

• the precondition of the$ry to which we are switching is satisfied
at the switch point,i.e.,p′ S′;

• the code to which we are switching will satisfy the coroutine
(1− i)’s global guarantee,i.e.,g′t ⇒ G1−i ; and

• at the switch point, there is a well-formed control stack in the
coroutine(1− i).

16

cid hd_q

r
2

r
3

r
31

r
2

r
3

r
31

Figure 36. Organization of TCB

(Assertion) p ∈ State→Prop

(Guarantee) g ∈ State→State→Prop

(Assumption) A ∈ RegFile→Heap→Heap→Prop

(Th-Guarant.) ğ,G ∈ RegFile→Heap→Heap→Prop

(CdSpec) θ ::= (p,g) | (p, ğ,A,G)

Figure 37. Code Specifications in Foundational CCAP

The definition of the well-formed control stack is similar tothe
definition of WFST in SCAP, except we also need to ensure that
the caller’s behavior from the return point to the next switch point
actually satisfies the callee’s expected behavior,i.e.,g′t ⇒ gr .

As usual, inference rules in SCAP-CR are provable as CAP0
lemmas based on this interpretation function.

8. Foundational CCAP
In the implementation of thread libraries, the routine for thread
context-switching does not follow the regular calling convention:
it fetches the return code pointer from the target thread’s stack and
returns to the target thread instead of the calling thread. It was
believed [41] that support of general first-class code pointers are
required to reason about the context-switch routine.

In previous work [41, 13], we applied the rely-guarantee method
in to support thread-modular verification of concurrent assembly
code. There threads yield by executing a “yield” pseudo instruction
instead of making a function call to a certified implementation of
a “yield” function, which involves certifying the context-switching
code.

In this section, we show how to use SCAP-like rules to certify
a simple implementation of “yield”, which can be linked in CAP0
with certified user-level CCAP [41] thread code. To simplifythe
presentation, we work on the two-thread version of CCAP. This
work allows us to generate foundational PCC for real concurrent
machine code (instead of code for the abstract CCAP machine).
It also illustrate how different reasoning methodologies can be
interfaced in CAP0.

Figure 36 shows the organization of thread control blocks
(TCBs) in memory. Each TCB contains the saved register file (ex-
ceptr0 andr1) of the thread. The global variablecid contains the
pointer that points to the current thread’s TCB, whilehd q contains
the pointer that points to the thread queue. Since there are always
two threads in the system, only one thread is in the thread queue.

Code specifications are defined in Figure 37. We use two kinds
of specifications: SCAP specification(p,g) for theyield function,
and CCAP specification(p, ğ,A,G) for user thread code. Here
p and g has the same meaning with those in SCAP. The local
guarantee ˘g is used in CCAP to support non-preemptive thread
model. Similar togt in CAP-CR,ğ describes the behavior of code
segments from the current instruction to the next “yield” point. The
assumptionA and global guaranteeG describe the state transition

Q ::= {t ; R}∗

Θ ::= {t ; (p, ğ,A,G)}∗

InDom(Q,Ψ) , ∀ti ∈ dom(Q).Q(ti)($ra) ∈ dom(Ψ)

Ψ{Q} , {t ; θ|Ψ(Q(t)($ra)) = θ}

GetQ(H) , {t ; R′}
wheret = H(hd q), andR′ = H[t]

H[t] , {r0 ; 0,r1 ; ,r2 ; H(t), . . . ,r31 ; H(t+29)}

CurThrd , ∃t.{cid 7→ t,t 7→ , . . . ,t+297→ }

GoodQ , ∃t.{hd q 7→ t,t 7→ , . . . ,t+297→ }

[[(p, ğ,A,G)]] , λΨ.λ(H,R).
∃H1,H2.H1]H2 = H∧
p (H1,R)∧ (CurThrd ∗GoodQ) (H2,R)∧
InDom(Q,Ψ)∧WFTQ(Q,Θ, ğ,(H1,R))
∧NI(Θ{H(cid) ; (p, ğ,A,G)},Q{H(cid) ; R})

whereQ = GetQ(H) andΘ = Ψ{Q}

WFTQ(Q,Θ, ğ,(H,R)) , ∀ti ∈ dom(Θ).
(∀R,H,H′.pi (H,R) → Ai R H H′ → pi (H′,R))
∧(∀H′.ğ R H H′ → pi (H′,Ri))

where(pi , ği ,Ai ,Gi) = Θ(ti), andRi = Q(ti).

NI(Θ,Q) , ∀ti ,t j ∈ dom(Θ).ti 6= t j →
∀H,H′,Gi Ri H H′ → A j R j H H′

where(, ,Ai ,Gi) = Θ(ti),(, ,Ai ,Gi) = Θ(ti),
Ri = Q(ti), andR j = Q(t j)

[[(p,g)]] ,
λΨ.λ(H,R).p (H,R)∧∀H′,R′.g (H,R) (H′,R′) →
∃p′, ğ′,A′,G′.Ψ(R′($ra)) = (p′, ğ′,A′,G′)

∧([[(p′, ğ′,A′,G′)]] Ψ) (H′,R′)

SameQ((H,R),(H′,R′)) ,
GetQ(H){H(cid) ; R} = GetQ(H′){H′(cid) ; R′}

HeapID(g) , ∀R,R′,H0,H1,H
′.

(CurThrd ∗GoodQ) (H1,R) → g (H0]H1,R) (H′,R′) →
∃H′

1.H
′ = H0]H′

1∧ (CurThrd ∗GoodQ) (H′
1,R

′)

Figure 38. Definition of Macros for CCAP

between two “yield” points. For each thread, if state transitions
made by the environment satisfy the assumptionA, the thread’s
transitions will meet its guaranteeG to the environment. TheG
here has the same meaning with the one in CAP-CR. However,
since we save the register file during thread context-switch, register
files are thread-private data. Therefore ˘g, A and G only specify
the relation between a pair of shared data heaps. They are also
parameterized with the current register file. To distinguish them
from the guarantees used in SCAPand CAP-CR, we call ˘g, A and
G in FCCAP “Thread Guarantee”.

Figure 38 shows the predicates and macros used to define in-
terpretations of code specifications.Q is the abstract thread queue,
which maps thread id to its register file saved in its TCB. We use
the pointer to the TCB as the thread id.Θ maps each thread to its
specification. The predicateInDom requires the return code pointer
saved in each TCB be a valid code pointer.Ψ{Q} extracts the spec-
ification for the return code pointer of each thread inQ from Ψ.

GetQ(H) extracts TCBs in the thread queue pointed to byhd q
and returns the abstract queueQ. The predicateCurThrd says
thatcid points to the TCB of the current executing thread, while

17

GoodQ requireshd q point to a list of TCBs. In our case there is
only one TCB in the list.

The interpretation for(p, ğ,A,G) requires the data heap can
be split into two disjoint parts:H1 andH2. H1 is the user thread
heap and satisfiesp which has no knowledge ofH2, while H2
contains TCBs for the current thread and threads in the queue. The
separating conjunctionP∗ Q is borrowed from separation logic,
which saysP and Q hold for disjoint portions of the data heap.
The interpretation function also encodes the invariant enforced in
original CCAP:

• the return code pointer for each thread in the queue is valid;

• when the current thread yields, threads in the queue can take
control from their return code pointers (defined inWFTQ); and

• threads do not interfere with each other (defined inNI).

Interested readers can refer to CCAP [41] for more details.
The interpretation for(p,g) is straightforward. It simply re-

quires that, when the function returns, there be a valid return code
pointer in$ra pointing to the user thread’s code, and that the inter-
pretation of its specification hold.

In our system, theyield instruction in original CCAP is re-
placed with a function call to theyield function. TheYIELD rule
combines the originalYIELD rule in CCAP and theCALL rule in
SCAP, and bridges the system call from CCAP code to SCAP code.

yield,fret ∈ dom(Ψ)
(py,gy) = Ψ(yield) (p,G,A,G) = Ψ(fret)

∀R,H,H′,p (H,R) → A R H H′ → p (H′,R)
∀R,H.p (H,R) → ğ R H H

∀S,S′.gy S S′ → SameQ(S,S′) HeapID(gy)
∀S.(p∗CurThrd ∗GoodQ) S → py S

`{〈[[(p, ğ,A,G)]]〉Ψ} jal yield,fret
(YIELD)

The first two lines show specifications for the functionyield and
the return code pointer. The premise in line 3 says the current thread
can take control after any state transitions satisfyingA. Note that
the register file is not changed during the state transition.Line
4 says the current thread has finished the state transition which
satisfies its guarantee ˘g. These two premises are adapted from the
original YIELD rule in CCAP. The last three premises are similar to
those in theCALL rule of SCAP. The first premise in line 5 requires
that theyield function save the current thread’s register file and
restore the register file for the thread which is scheduled torun. The
predicateHeapID(gy) requires theyield function not touch the
user thread heap. BothSameQ(S,S′) andHeapID(gy) are defined
in Figure 38. The last premise says the precondition of theyield
function holds on the conjunction of the user thread heap andTCBs
for threads.

The Y-RET rule is used foryield to return to the user-level
thread code. It is almost the same with theRET rule in SCAP.

∀S.p S → g S S

`{〈[[(p,g)]]〉Ψ} jr $ra
(Y-RET)

In addition to theYIELD andY-RET rules, for each instruction
we have two rules: the original SCAP rule and the original CCAP
rule. Depending on the place an instruction is used, the correspond-
ing rule is used to verify it.

In Figure 39 we show the TM code foryield, which essentially
implements the context switch routine. The specification isgiven
on the top. Readers can check that it satisfies the premises ofthe
YIELD rule.

Save , [cid] = [hd q]′∧
[[cid]]′ = [r2]∧ . . .∧ [[cid]+29]′ = [r31]

Restore , [hd q] = [cid]′∧
[r2]′ = [[hd q]]∧ . . .∧ [r31]′ = [[hd q]+29]

HID , ∀l 6∈ {cid,hd q, [cid], . . . , [cid]+29}.[l] = [l]′

py , CurThrd ∗GoodQ ∗TRUE

gy , Save∧Restore∧HID

yield:
lw r1, cid(r0) ;load pointer to current thrd
sw r2, 0(r1) ;save context of cur thrd
sw r3, 1(r1)
...
sw r31, 29(r1)
lw r2, hd_q(r0) ;swap cid & hd_q
sw r2, cid(r0)
sw r1, hd_q(r0)
lw r3, 1(r2) ;resume context of next thrd
...
lw r31, 29(r2)
lw r2, 0(r2)
jr r31

Figure 39. Thread Library Code - Yield

9. Implementation
We use the Coq proof assistant [35] and the underlying higher-order
predicate logic for fully mechanized verification of assembly code.
The syntax of the TM is encoded in Coq using inductive definitions.
Operational semantics of TM and the inference rules of CAP0 are
defined as inductive relations. The soundness of the CAP0 rules is
formalized and proved in Coq.

Instead of defining the syntax and semantics of the assertion
language (which is known as the deep embedding approach), we
use CiC, the underlying higher-order logic in Coq, as our assertion
language. This shallow embedding approach greatly reducesthe
work load of formulating our logic systems.

Our implementation includes around 370 lines of Coq encoding
of TM and its operational semantics, 200 lines encoding of CAP0
rules, and 700 lines of Coq tactics for the soundness proof. We
also encoded in Coq the definition of SCAP inference rules and
their proofs as CAP0 lemmas, which consists of around 900 lines
of Coq inductive definitions and tactics. We have written more than
10 thousand lines of Coq tactics to certify practical programs, in-
cluding themalloc/free library which was first certified in the
original CAP [40]. According to our experience, human smartness
is required to come up with proper program specifications, the dif-
ficulty depending on the property one is interested in and thesub-
tlety of algorithms. Given proper specifications, proof construction
of assembly code is mostly routine work. Some premises of SCAP
rules can be automatically derived after defining lemmas forcom-
mon instructions. For generality, we intentionally avoid specifying
the layout of the physical stack and calling convention in SCAP.
The low abstraction level causes lengthy (but still straightforward)
proof for instructions involving memory operations. The burden of
the programmer can be reduced if we define higher-level lemmas
for specific stack organization. We leave this as the future work.

10. More Related Work and Conclusion
Reasoning about Stacks and Exceptions.Continuing over the
related work discussed in Section 2.1, STAL [23] and its varia-
tions [11, 37] support static type-checking of function call/return
and stack unwinding, but they all treat return code pointersas first-
class code pointers and stacks as “closures”. Introducing a“ ret”
instruction [11] does not change this fact because there thetyp-
ing rule for “ret” requires a valid code pointer on the top of the
stack, which is very different from our SCAPRET rule. Impredica-

18

tive polymorphism has to be used in these systems to abstractover
unused portions of the stack (as a closure), even though onlyreturn
addresses are stored on the stack. Using compound stacks, STAL
can type-check exceptions, but this approach is rather limited. If
multiple exception handlers defined at different depths of the stack
are passed to the callee, the callee has to specify their order on the
stack, which breaks modularity. This problem may be overcome
by using intersection types [11], though it has never been shown.
Moreover, there is no known work certifyingsetjmp/longjmp
and weak continuations using these systems.

Also, unlike STAL, SCAP does not require any built-in stack
structure in the target machine (TM), so it does not need two
sets of instructions for heap and stack operations. As shownin
Figure 13, SCAP can easily support general data pointers into
the stack or heap, which are not supported in STAL. In addition,
SCAP does not enforce any specific stack layout, therefore itcan be
used to support sequential stacks, linked stacks, and heap-allocated
activation records.

Concurrently with our work, Benton [5] proposed a typed pro-
gram logic for a stack-based abstract machine. His instruction se-
quence specification is similar to theg in SCAP. Typing rules in his
system also look similar to SCAP rules. However, to protect return
code pointers, Benton uses a higher-level abstract machinewith
separate data stack and control stack; the latter cannot be touched
by regular instructions exceptcall andret. Benton also uses a pair of
pre- and postcondition as the specification which requires complex
formalization of auxiliary variables.

At higher-level, Berdineet al. [6] showed that function call and
return, exceptions,goto statements and coroutines follow a dis-
cipline of linearly used continuations. The idea is formalized by
typing continuation transformers as linear functions, butno verifi-
cation logic was proposed for reasoning about programs. Follow-
ing the producer/consumer model (in Figure 2), our reasoning has
a flavor of linearity, but it is not clear how our work and linear
continuation-passing relate to each other.

Walkeret al. [1, 17] proposed logical approaches for stack typ-
ing. They used CPS to reason about function calls. Their workfo-
cused on memory management and alias reasoning, while in SCAP
we left the stack layout unspecified. Although the higher-order
predicate logic is general enough to specify memory properties,
substructural logic provides much convenience for memory speci-
fication. Applying their work to provide lemmas for different stack
layouts and calling conventions will be our future work.

Reasoning about First-Class Code Pointers.Ni and Shao [29]
introduce a special syntaxcptr(f,a) in their assertion language to
certify first-class code pointers. To support first-class code pointers
in SCAP, we can extend it in a similar way by usingcptr(f,(p,g)),
which meansf is a function pointer with the specification(p,g).
However, as we mentioned before, return code pointers and ex-
ception handlers have subtly different invariants from general first-
class code pointers. So even with the support of first-class code
pointers, it is still desirable tonot treat regular stack-based con-
trol abstractions as general code pointers. Embedding SCAPand
its extensions into the CAP0 framework allows interoperability
between SCAP and other systems. We can reason about func-
tion call/return, exception handling, and coroutine as before and
then usecptr(f,(p,g)) to reason about unavoidable first-class code
pointers. Another interesting observation is that some seemingly
first-class code pointers, such as threads’ return code pointers
stored in the thread queue, can actually be reasoned using SCAP-
based systems. We need more experience to fully explore the ap-
plicability and the limitations of SCAP.

State Relations as Program Specifications.SCAP is not the first
to use relations between two states as program specifications. The

rely-guarantee method [18], TLA [21], and VDM [19] all use state
relations to specify programs. However, the guaranteeg used in
SCAP is different from those used in previous systems. Generaliz-
ing the idea of local guarantee [41], SCAP usesg to describe the
obligation that the current function must fulfill before it can return,
raise an exception, or switch to other coroutines and threads. No-
tice that at the beginning of a function, ourg matches precisely the
VDM postcondition, but intermediateg’s used in ourSCAP-SEQ
rule differ from the intermediate postconditions used in the sequen-
tial decomposition rule in VDM: the second state specified inour
g’s always refers to the (same) state at the exit point. We use these
intermediateg’s to bridge the gap between the entry and exit points
of functions—this is hard to achieve using VDM’s post conditions.

Yu’s pioneer work [42] on machine code verification can also
support stack-based procedure call and return. His correctness the-
orem for each subroutine resembles our guaranteeg, but it requires
auxiliary logical predicates counting the number of instructions ex-
ecuted between different program points. It is unclear whether their
method can be extended to handle complex stack-based controls as
discussed in our current paper.

Conclusion. We have proposed a new methodology for modular
verification of assembly code with all kinds of stack-based control
abstractions, including function call/return, tail call,weak contin-
uation,setjmp/longjmp, stack cutting, stack unwinding, multi-
return function call, coroutines, and thread context switch. For each
control abstraction, we have formalized its invariants andshowed
how to certify its implementation. All reasoning systems are pro-
posed as instances of the generic CAP0 framework, which allows
programs certified in different PCC systems to be linked together.
Our system is fully mechanized [36]: we give the complete sound-
ness proof and a full verification of several examples in the Coq
proof assistant [35].

References
[1] A. Ahmed and D. Walker. The logical approach to stack typing. In

Proc. of the 2003 ACM SIGPLAN Int’l workshop on Types in Lang.
Design and Impl., pages 74–85. ACM Press, 2003.

[2] A. W. Appel. Compiling with Continuations. Cambridge University
Press, New York, 1992.

[3] A. W. Appel. Foundational proof-carrying code. InSymp. on Logic in
Comp. Sci. (LICS’01), pages 247–258. IEEE Comp. Soc., June 2001.

[4] K. R. Apt. Ten years of Hoare’s logic: A survey – part I.ACM Trans.
on Programming Languages and Systems, 3(4):431–483, 1981.

[5] N. Benton. A typed, compositional logic for a stack-based abstract
machine. InProc. Third Asian Symp. on Prog. Lang. and Sys., LNCS
3780, pages 364–380. Springer-Verlag, November 2005.

[6] J. Berdine, P. O’hearn, U. Reddy, and H. Thielecke. Linear
continuation-passing.Higher Order Symbol. Comput., 15(2-3):181–
208, 2002.

[7] D. Chase. Implementation of exception handling, Part I.The Journal
of C Language Translation, 5(4):229–240, June 1994.

[8] W. D. Clinger. Proper tail recursion and space efficiency. In Proc.
1997 ACM Conf. on Prog. Lang. Design and Impl., pages 174–185,
New York, 1997. ACM Press.

[9] C. Colby, P. Lee, G. Necula, F. Blau, M. Plesko, and K. Cline. A
certifying compiler for Java. InProc. 2000 ACM Conf. on Prog. Lang.
Design and Impl., pages 95–107, New York, 2000. ACM Press.

[10] M. E. Conway. Design of a separable transition-diagramcompiler.
Communications of the ACM, 6(7):396–408, July 1963.

[11] K. Crary. Toward a foundational typed assembly language. Technical
Report CMU-CS-02-196, Carnegie Mellon University, Schoolof
Computer Science, Dec. 2002.

19

[12] S. J. Drew, J. Gough, and J. Ledermann. Implementing zero overhead
exception handling. Technical Report 95-12, Faculty of Information
Technology, Queensland U. of Technology, Brisbane, Australia, 1995.

[13] X. Feng and Z. Shao. Modular verification of concurrent assembly
code with dynamic thread creation and termination. InProc. 2005
ACM SIGPLAN Int’l Conf. on Functional Prog., pages 254–267. ACM
Press, September 2005.

[14] N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. Asyntactic
approach to foundational proof-carrying code. InProc. Seventeenth
Annual IEEE Symposium on Logic In Computer Science (LICS’02),
pages 89–100. IEEE Computer Society, July 2002.

[15] D. R. Hanson.C Interface & Implementations. Add. Wesley, 1997.

[16] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, Oct. 1969.

[17] L. Jia, F. Spalding, D. Walker, and N. Glew. Certifying compilation
for a language with stack allocation. InProc. 20th IEEE Symposium
on Logic in Computer Science, pages 407–416, June 2005.

[18] C. B. Jones. Tentative steps toward a development method for
interfering programs.ACM Trans. on Programming Languages and
Systems, 5(4):596–619, 1983.

[19] C. B. Jones.Systematic software development using VDM. Prentice
Hall International (UK) Ltd., 1986.

[20] B. W. Kernighan and D. M. Ritchie.The C Programming Language
(Second Edition). Prentice Hall, 1988.

[21] L. Lamport. The temporal logic of actions.ACM Trans. on
Programming Languages and Systems, 16(3):872–923, May 1994.

[22] T. Lindholm and F. Yellin. The Java Virtual Machine Specification
(Second Edition). Addison-Wesley, 1999.

[23] G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-based typed
assembly language. InProc. 1998 Int’l Workshop on Types in
Compilation: LNCS Vol 1473, pages 28–52. Springer-Verlag, 1998.

[24] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to
typed assembly language. InProc. 25th ACM Symp. on Principles of
Prog. Lang., pages 85–97. ACM Press, Jan. 1998.

[25] D. A. Naumann. Predicate transformer semantics of a higher-order
imperative language with record subtyping.Science of Computer
Programming, 41(1):1–51, 2001.

[26] G. Necula.Compiling with Proofs. PhD thesis, School of Computer
Science, Carnegie Mellon Univ., Sept. 1998.

[27] G. Necula and P. Lee. The design and implementation of a certifying
compiler. InProc. 1998 ACM Conf. on Prog. Lang. Design and Impl.,
pages 333–344, New York, 1998.

[28] Z. Ni and Z. Shao. A translation from typed assembly languages
to certified assembly programming. Technical report, Dept.of
Computer Science, Yale Univ., New Haven, CT, Nov. 2005.http:
//flint.cs.yale.edu/flint/publications/talcap.html.

[29] Z. Ni and Z. Shao. Certified assembly programming with embedded
code pointers. InProc. 33rd ACM Symp. on Principles of Prog. Lang.,
pages 320–333, Jan. 2006.

[30] N. Ramsey and S. P. Jones. A single intermediate language that
supports multiple implementations of exceptions. InProc. 2000 ACM
Conf. on Prog. Lang. Design and Impl., pages 285–298, 2000.

[31] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. InProc. 17th Annual IEEE Symposium on Logic in
Computer Science, pages 55–74. IEEE Computer Society, 2002.

[32] O. Shivers and D. Fisher. Multi-return function call. In Proc. 2004
ACM SIGPLAN Int’l Conf. on Functional Prog., pages 79–89. ACM
Press, Sept. 2004.

[33] R. Stata and M. Abadi. A type system for java bytecode subroutines.
In Proc. 25th ACM Symp. on Principles of Prog. Lang., pages 149–
160. ACM Press, 1998.

[34] G. L. Steele. Rabbit: a compiler for Scheme. Technical Report
AI-TR-474, MIT, Cambridge, MA, 1978.

[35] The Coq Development Team. The Coq proof assistant reference
manual. The Coq release v8.0, Oct. 2004.

[36] The Flint Group. Coq (v8.0) implementation for the CAP framework
and SCAP.http://flint.cs.yale.edu/publications/sbca.
html, July 2005.

[37] J. C. Vanderwaart and K. Crary. A typed interface for garbage
collection. InProc. 2003 ACM SIGPLAN International Workshop on
Types in Language Design and Implementation, pages 109–122, 2003.

[38] D. von Oheimb. Hoare logic for Java in Isabelle/HOL.Concurrency
and Computation: Practice and Experience, 13(13):1173–1214, 2001.

[39] A. K. Wright and M. Felleisen. A syntactic approach to type
soundness.Information and Computation, 115(1):38–94, 1994.

[40] D. Yu, N. A. Hamid, and Z. Shao. Building certified libraries for PCC:
Dynamic storage allocation. InProc. 2003 European Symposium on
Programming, LNCS Vol. 2618, pages 363–379, 2003.

[41] D. Yu and Z. Shao. Verification of safety properties for concurrent
assembly code. InProc. 2004 ACM SIGPLAN Int’l Conf. on
Functional Prog., pages 175–188, September 2004.

[42] Y. Yu. Automated Proofs of Object Code For A Widely Used
Microprocessor. PhD thesis, University of Texas at Austin, 1992.

A. Soundness of SCAP, SCAP-I and SCAP-II
In this section, we prove the soundness of inference rules inSCAP,
SCAP-I and SCAP-II by showing that they can be derived from
CAP0 rules. We only show the derivation of the most important
rules, i.e., the CALL and RET rules in SCAP, theCALL -I rule
in SCAP-I andCALL -II rule in SCAP-II. Derivations for other
inference rules in each system are similar and omitted here.We
also encoded the derivation of the complete set of SCAP rulesin
the Coq proof assistant, which is available at [36].

Lemma A.1 (Stack Strengthen)For alln, g, g′, S, S′ andΨ, if

WFST(n,g,S,Ψ) and∀S′′
.g′ S′ S′′ → g S S′′

,

we haveWFST(n,g′,S′,Ψ).

Proof. This trivially follows the definition ofWFST. 2

Lemma A.2 (Call) Supposef,fret ∈ dom(ΨL), (p′,g′) = ΨL (f)
and(p′′,g′′) = ΨL (fret). If
1. ∀H,R.p (H,R) → p′ (H,R{$ra;fret});

2. ∀H,R,S′. p (H,R) → g′ (H,R{$ra;fret}) S′ →
(p′′ S′∧ (∀S′′. g′′ S′ S′′ → g (H,R) S′′));

3. ∀S,S′.g′ S S′ → S.R($ra) = S′.R($ra);
we have

∀Ψ,H,R.〈[[(p,g)]]〉ΨL
Ψ (H,R) →

[[Ψ(f)]] Ψ (H,R{$ra;fret}).

(In short, theCALL rule can be derived from theJAL rule).

Proof. Unfolding the definition of the interpretation function, we
know that, given
4. ΨL ⊆ Ψ;

5. p (H,R);

6. WFST(n,g,(H,R),Ψ);
we need to prove
a. p′ (H,R{$ra;fret}); and

b. WFST(n+1,g′,(H,R{$ra;fret}),Ψ);
The proof of a is trivial (by 1 and 5). We focus on the proof of b.

By 4 and the assumption, we know thatf,fret ∈ dom(Ψ), Ψ(f) =
(p′,g′) andΨ(fret) = (p′′,g′′). For allS, if g′ (H,R{$ra;fret}) S,

20

• by 3 we knowS.R($ra) = fret, thereforeS.R($ra) ∈ dom(Ψ);

• by 5 and 2 we knowp′′ S;

• by 5, 2, 6, and Lemma A.1 we knowWFST(n,g′′,S,Ψ).

Then, by the definition ofWFST we get

WFST(n+1,g′,(H,R{$ra;fret}),Ψ). 2

Lemma A.3 (Return) If ∀S.p S → g S S, then for allΨ, H andR,
we have

[[(p,g)]] Ψ (H,R) → [[Ψ(R($ra))]] Ψ (H,R).

That is, theRET rule can be derived from an instantiation of theJR
rule, wherers is instantiated to$ra.

Proof. Given[[(p,g)]] Ψ (H,R) and our assumption, we know that

1. p (H,R);

2. g (H,R) (H,R); and

3. WFST(n,g,(H,R),Ψ) for somen.

By 2, 3 and the definition ofWFST we know thatn> 0. Therefore,
according to the definition ofWFST, we can prove

4. R($ra) ∈ dom(Ψ);

5. p′ (H,R);

6. WFST(n−1,g′,(H,R),Ψ);

where(p′,g′) = Ψ(R($ra)). By the definition of the interpretation
function, we know[[Ψ(R($ra))]] Ψ (H,R). 2

Lemma A.4 (Call-I) Supposef ∈ dom(ΨL) and(p′,g′) = ΨL (f).
If

1. ∀S. p S → p′ S;

2. ∀S,S′. p S → g′ S S′ →
S′.R($ra)∈ dom(ΨL)∧p′′ S′∧(∀S′′. g′′ S′ S′′ → g S S′′)

where(p′′,g′′) = ΨL (S′.R($ra));

we have

∀Ψ,S.〈[[(p,g)]]〉ΨL
Ψ S → [[Ψ(f)]] Ψ S.

(In short, theCALL -I rule is derivable from theJ rule).

Proof. Unfolding the definition of the interpretation function, we
know that, given

3. ΨL ⊆ Ψ;

4. p S;

5. WFST(n,g,S,Ψ);

we need prove

a. p′ S; and

b. WFST(n+1,g′,S,Ψ);

The proof of a is trivial (by 1 and 4). We focus on the proof of b.

For all S′, if g′ S S′,
• by 4, 2 and 3 we knowS′.R($ra) ∈ dom(Ψ) and (p′′,g′′) =

Ψ(S′.R($ra));

• by 4 and 2 we knowp′′ S′;

• by 4, 2, 5, and Lemma A.1 we knowWFST(n,g′′,S′,Ψ).

Then, by the definition ofWFST we get

WFST(n+1,g′,S,Ψ).

2

Lemma A.5 (Stack Strengthen-II) For alln, g, g′, S, S′ andΨ, if

WFST′(n,g,S,Ψ) and∀S′′
.g′ S′ S′′ → g S S′′

,

we haveWFST′(n,g′,S′,Ψ).

Proof. This trivially follows the definition ofWFST′. 2

Lemma A.6 (Call-II) Supposef∈dom(ΨL) and(p′,g′) = ΨL(f).
If
1. ∀S. p S → p′ S;

2. ∀S,S′
. p S → g′ S S′ →
(g S S′∨
S′.R($ra)∈dom(ΨL)∧p′′ S′∧(∀S′′. g′′ S′ S′′→ gS S′′))

where(p′′,g′′) = ΨL (S′.R($ra));
we have

∀Ψ,S.〈[[(p,g)]]〉ΨL
Ψ S → [[Ψ(f)]] Ψ S,

where we use the interpretation function defined in Section 5.2,
which is different than the one used in Lemma A.4.

Proof. Unfolding the definition of the interpretation function, we
know that, given
3. ΨL ⊆ Ψ;

4. p S;

5. WFST′(n,g,S,Ψ);
we need prove
a. p′ S; and

b. ∃n′. WFST′(n′,g′,S,Ψ);
The proof of a is trivial (by 1 and 4). We focus on the proof of b.

For all S′, by 4 and 2 we know either

g′ S S′ → g S S′
,

or

g′ S S′ →
S′.R($ra) ∈ dom(ΨL)∧p′′ S′∧ (∀S′′. g′′ S′ S′′ → g S S′′).

In the first case, we setn′ to n and getWFST′(n,g′,S,Ψ) from
the Lemma A.5.

In the second case, we setn′ to n+1. The proof ofWFST′(n+
1,g′,S,Ψ) is the same with the proof for Lemma A.4. 2

B. Derivation of EUCAP Inference Rules
Lemma B.1 (EUCAP Stack Strengthen)For all n, p, p′, r, and
Ψ, if WFSE(n,p,r,Ψ) and∀S.p′ S→ p S, we haveWFSE(n,p′,r,Ψ).

Proof. This trivially follows the definition ofWFSE. 2

Lemma B.2 (EUCAP Stack Strengthen’) For all n, p, r, r′, and
Ψ, if WFSE(n,p,r,Ψ) and∀S.r′ S→ r S, we haveWFSE(n,p,r′,Ψ).

Proof. This trivially follows the definition ofWFSE. 2

Lemma B.3 (EUCAP Spec. Strengthen)For all n, p, r, Ψ and
Ψ′, if WFSE(n,p,r,Ψ), an dΨ ⊆ Ψ′, we haveWFSE(n,p,r,Ψ′).

Proof. Induction onn. 2

Lemma B.4 (EU-Call) Supposef ∈ dom(Ψ), (p′,g′,h′) = Ψ(f)).
If
1. ∀H,R.p (H,R) → p′ (H,R)

21

2. ∀H,R,S′.p (H,R) → g′ (H,R) S′ →
R($ra) ∈ dom(Ψ)∧p′′ S′∧

(∀S′′.g′′ S′ S′′ → g (H,R) S′′)∧
(∀S′′.h′′ S′ S′′ → h (H,R) S′′)

where(p′′,g′′,h′′) = Ψ(S′
.R($ra))

3. ∀H,R,S′
.p (H,R) → h′ (H,R) S′ →

R($rh) ∈ dom(Ψ)∧p′′′ S′∧
(∀S′′

.g′′′ S′ S′′ → g (H,R) S′′)∧
(∀S′′

.h′′′ S′ S′′ → h (H,R) S′′)
where(p′′′,g′′′,h′′′) = Ψ(S′

.R($rh))

4. ∀S,S′
.g′ S S′ → S.R($ra) = S′

.R($ra)

5. ∀S,S′
.g′ S S′ → S.R($rh) = S′

.R($rh)

we have
∀Ψ′,H,R.〈[[(p,g,h)]]〉Ψ Ψ′ (H,R) → [[Ψ′(f)]] Ψ′ (H,R)

(In short, theEU-CALL rule is derivable from theJ rule).

Proof. Unfolding the definition of the interpretation function, we
know that, given
6. Ψ ⊆ Ψ′

7. p (H,R)

8. WFSE(n,g (H,R),h (H,R),Ψ′)

we need to prove
a. p′ (H,R)

b. WFSE(n+1,g′ (H,R),h′ (H,R),Ψ′)

The proof of a is trivial (by 1 and 7). We focus on the proof of b.
For all S′, if g′ (H,R) S′,
by 7 and 2 we know:

9. S′
.R($ra) ∈ dom(Ψ′)

10. p′′ S′

11. ∀S′′.g′′ S′ S′′ → g (H,R) S′′

12. ∀S′′.h′′ S′ S′′ → h (H,R) S′′

By lemmas B.1 and B.2, from 8, we know
13. WFSE(n,g′′ S′,h′′ S′,Ψ′)

For all S′, if h′ (H,R) S′,
by 8 and 3 we know:
14. S′.R($rh) ∈ dom(Ψ′)

15. p′′′ S′

16. ∀S′′.g′′′ S′ S′′ → g (H,R) S′′

17. ∀S′′.h′′′ S′ S′′ → h (H,R) S′′

18. WFSE(n,g′′′ S′,h′′′ S′,Ψ′) by lemmas B.1 and B.2
By definition ofWFSE with (9,10,13) and (14,15,18),
WFSE(n+1,g′ (H,R),h′ (H,R),Ψ′) 2

Lemma B.5 (EU-Ret) If ∀S.p S → g S S, then for allΨ, H andR,
we have

[[(p,g,h)]] Ψ (H,R) → [[Ψ(R($ra))]] Ψ (H,R).

That is, theEU-RET rule is derivable from an instantiation of theJR
rule, wherers is instantiated to$ra.

Proof. Unfolding the definition of the interpretation function, we
know that, given
1. p S

2. WFSE(n,g S,h S,Ψ)

we need to prove

a. p′ S

b. ∃m.WFSE(m,g′ S,h′ S,Ψ)

where(p′,g′,h′) = Ψ(R($ra)).

By 1 we knowg S S

Then, eithern = 0 or n > 0. If n = 0, then we know¬∃S′.g S S′.
Therefore, this case is vacuous.
Thenn > 0.
Then by 2, we know
• S.R($ra) ∈ dom(Ψ)

• p′ S

• WFSE(n−1,g′ S,h′ S,Ψ)

where(p′,g′,h′) = Ψ(R($ra)).

By choosing m=n-1, we satisfy both a and b. 2

Lemma B.6 (EU-Raise)If ∀S.p S → h S S, then for allΨ, H and
R, we have

[[(p,g,h)]] Ψ (H,R) → [[Ψ(R($rh))]] Ψ (H,R).

That is, theEU-RAISE rule is derivable from an instantiation of the
JR rule, wherers is instantiated to$rh.

Proof. Unfolding the definition of the interpretation function, we
know that, given
1. p S

2. WFSE(n,g S,h S,Ψ)

we need to prove
a. p′′ S

b. ∃m.WFSE(m,g′′ S,h′′ S,Ψ)

where(p′′,g′′,h′′) = Ψ(R($rh)).

By 1 we knowh S S

Then, eithern = 0 or n > 0. If n = 0, then we know¬∃S′.h S S′.
Therefore, this case is vacuous.
Thenn > 0.
Then by 2, we know
• S.R($rh) ∈ dom(Ψ)

• p′ S

• WFSE(n−1,g′ S,h′ S,Ψ)

where(p′,g′,h′) = Ψ(R($rh)).

By choosing m=n-1, we satisfy both a and b. 2

C. Derivation of ECAP Inference Rules
Lemma C.1 (ECAP Stack Strengthen)For all n, p, p′, r, andΨ,
if WFSC(n,p,r,Ψ) and∀S.p′ S→ p S, we haveWFSC(n,p′,r,Ψ).

Proof. This trivially follows the definition ofWFSC. 2

Lemma C.2 (ECAP Stack Strengthen’)For alln, p, r, r′, andΨ,
if WFSC(n,p,r,Ψ) and∀S.r′ S→ r S, we haveWFSC(n,p,r′,Ψ).

Proof. This trivially follows the definition ofWFSC. 2

Lemma C.3 (ECAP Spec. Strengthen)For all n, p, r, Ψ andΨ′,
if WFSC(n,p,r,Ψ), an dΨ ⊆ Ψ′, we haveWFSC(n,p,r,Ψ′).

Proof. Induction onn. 2

Lemma C.4 (E-Call) Supposef∈ dom(Ψ), (p′,g′,h′) = Ψ(f)). If
1. ∀H,R.p (H,R) → p′ (H,R)

22

2. ∀H,R,S′.p (H,R) → g′ (H,R) S′ →
S′.R($ra) ∈ dom(Ψ)∧p′′ S′∧

(∀S′′.g′′ S′ S′′ → g (H,R) S′′)∧
(∀S′′.h′′ S′ S′′ → h (H,R) S′′)

where(p′′,g′′,h′′) = Ψ(S′
.R($ra))

3. ∀S,S′
.p S → h′ S S′ → h S S′

4. ∀S,S′
.g′ S S′ → S.R($ra) = S′

.R($ra)

we have
∀Ψ′,H,R.

〈[[(p,g,h)]]〉Ψ Ψ′ (H,R) → [[Ψ′(f)]] Ψ′ (H,R)
(In short, theE-CALL rule is derivable from theJ rule).

Proof. Unfolding the definition of the interpretation function, we
know that, given

5. Ψ ⊆ Ψ′

6. p (H,R)

7. WFSC(n,g (H,R),h (H,R),Ψ′)

we need to prove

a. p′ (H,R)

b. WFSC(n+1,g′ (H,R),h′ (H,R),Ψ′)

The proof of a is trivial (by 1). We focus on the proof of b.
For all S′, if g′ (H,R) S′,
by 6 and 2 we know:

8. S′.R($ra) ∈ dom(Ψ′) by 5 and above equality

9. p′′ S′

10. ∀S′′.g′′ S′ S′′ → g (H,R) S′′

11. ∀S′′.h′′ S′ S′′ → h (H,R) S′′

12. WFSC(n,g′′ S′,h′′ S′,Ψ′) by C.1 and C.2

where(p′′,g′′,h′′) = Ψ′(S′.R($ra))

For all S′, if h′ (H,R) S′,
by 3,h (H,R) S′

by 7 we know:

13. S′.R($rh) ∈ dom(Ψ′)

14. p′′ S′

15. ∃m,m< n∧WFSC(m,g′′ S′,h′′ S′,Ψ′)

16. ∃m,m< n+1∧WFSC(m,g′′ S′,h′′ S′,Ψ′) by math

where(p′′,g′′,h′′) = Ψ′(S′.R($rh))

By definition ofWFSC, 12 and 16
WFSC(n+1,g′ (H,R),h′ (H,R),Ψ′) 2

Lemma C.5 (E-Try) Supposef∈dom(Ψ) and(p′,g′,h′) = Ψ(f)).
If

1. ∀H,R.p (H,R) → p′ (H,R)

2. ∀H,R,S′.p (H,R) → g′ (H,R) S′ →
S′.R($ra) ∈ dom(Ψ)∧p′′ S′∧

(∀S′′.g′′ S′ S′′ → g (H,R) S′′)
(∀S′′

.h′′ S′ S′′ → h (H,R) S′′)
where(p′′,g′′,h′′) = Ψ(S′

.R($ra))

3. ∀H,R,S′
,S′′

.p (H,R) → h′ (H,R) S′ →
S′

.R($rh) ∈ dom(Ψ)∧p′′′ S′∧
(g′′′ S′ S′′ → g (H,R) S′′)∧
(h′′′ S′ S′′ → h (H,R) S′′)

where(p′′′,g′′′,h′′′) = Ψ(S′.R($rh))

4. ∀S,S′.g′ S S′ → S.R($ra) = S′.R($ra)

5. ∀S,S′.h′ S S′ → S.R($rh) = S′.R($rh)

we have
∀Ψ′

,H,R.

〈[[(p,g,h)]]〉Ψ Ψ′ (H,R) → [[Ψ′(f)]] Ψ′ (H,R)
(In short, theE-TRY rule is derivable from theJ rule).

Proof. Unfolding the definition of the interpretation function, we
know that, given
6. Ψ ⊆ Ψ′

7. p (H,R)

8. WFSC(n,g (H,R),h (H,R),Ψ′)

we need to prove
a. p′ (H,R)

b. WFSC(n+1,g′ (H,R),h′ (H,R),Ψ′)

The proof of a is trivial (by 1). We focus on the proof of b.
For all S′, if g′ (H,R) S′,
by 7 and 2 we know:
9. S′

.R($ra) ∈ dom(Ψ′)

10. p′ S′

11. ∀S′′.g′ S′ S′′ → g (H,R) S′′

12. ∀S′′.h′ S′ S′′ → h (H,R) S′′

13. WFSC(n,g′ S′
,h′ S′

,Ψ′) by C.1 and C.2
For all S′, if h′ (H,R) S′,
by 4,R($rh) = S′.R($rh)
by 3 we know:
14. S′.R($rh) ∈ dom(Ψ′) by above equality

15. p′′ S

16. ∀S′′.g′′ S′ S′′ → g (H,R) S′′

17. ∀S′′.h′′ S′ S′′ → h (H,R) S′′

18. WFSC(n,g′′ S′,h′′ S′,Ψ′) by C.1 and C.2

19. ∃m.m< n+1∧WFSC(m,g′′ S′,h′′ S′,Ψ′) by m= n.
where(p′′,g′′,h′′) = Ψ′(S′.R($rh))

By definition ofWFSC, 13 and 19,
WFSC(n+1,g′ (H,R),h′ (H,R),Ψ′) 2

Lemma C.6 (E-Ret) If ∀S.p S → g S S , then for allΨ, H andR,
we have

[[(p,g,h)]] Ψ (H,R) → [[Ψ(R($ra))]] Ψ (H,R).

That is, theE-RET rule is derivable from an instantiation of theJR
rule, wherers is instantiated to$ra.

Proof. Unfolding the definition of the interpretation function, we
know that, given
1. p S

2. WFSC(n,g S,h S,Ψ)

we need to prove
a. p′ S

b. ∃m.WFSC(m,g′ S,h′ S,Ψ)

where(p′,g′,h′) = Ψ(R($ra)).

By 1. we knowg S S

Then by 2, we know that eithern = 0 or n > 0. In the first case
¬∃S′.g S S′, but sinceg S S, this case is vacuous.
Thenn > 0, and we know the following:
• S.R($ra) ∈ dom(Ψ)

• p′ S

23

• WFSC(n−1,g′ S,h′ S,Ψ)

where(p′,g′,h′) = Ψ(R($ra)).

By choosing m=n-1, we satisfy both a and b. 2

Lemma C.7 (E-Raise)If ∀S.p S → h S S, then for allΨ, H andR,
we have

[[(p,g,h)]] Ψ (H,R) → [[Ψ(R($rh))]] Ψ (H,R).

That is, theE-RAISE rule is derivable from an instantiation of the
JR rule, wherers is instantiated to$rh.

Proof. Unfolding the definition of the interpretation function, we
know that, given
1. p S

2. WFSC(n,g S,h S,Ψ) for somen.
we need to prove
a. p′′ S

b. ∃l .WFSC(l ,g′′ S,h′′ S,Ψ)

where(p′′,g′′,h′′) = Ψ(R($rh)).

By 1. we knowh S S

Then by 2, we know that eithern = 0 or n > 0. In the first case
¬∃S′.h S S′, but sinceh S S, this case is vacuous.
Thenn > 0, and we know the following:
• S.R($rh) ∈ dom(Ψ)

• p′′ S

• ∃m,m< n∧WFSC(n,g′′ S,h′′ S,Ψ)

where(p′′,g′′,h′′) = Ψ(R($rh)).

By using m as l, we satisfy both a and b. 2

24

