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Abstract
Self-modifying code (SMC), in this paper, broadly refers to any
program that loads, generates, or mutates code at runtime. It is
widely used in many of the world’s critical software systems to sup-
port runtime code generation and optimization, dynamic loading
and linking, OS boot loader, just-in-time compilation, binary trans-
lation, or dynamic code encryption and obfuscation. Unfortunately,
SMC is also extremely di

�
cult to reason about: existing formal

verification techniques—including Hoare logic and type system—
consistently assume that program code stored in memory is fixed
and immutable; this severely limits their applicability and power.

This paper presents a simple but novel Hoare-logic-like frame-
work that supports modular verification of general von-Neumann
machine code with runtime code manipulation. By dropping the as-
sumption that code memory is fixed and immutable, we are forced
to apply local reasoning and separation logic at the very begin-
ning, and treat program code uniformly as regular data structure.
We address the interaction between separation and code memory
and show how to establish the frame rules for local reasoning even
in the presence of SMC. Our framework is realistic, but designed
to be highly generic, so that it can support assembly code under all
modern CPUs (including both x86 and MIPS). Our system is ex-
pressive and fully mechanized. We prove its soundness in the Coq
proof assistant and demonstrate its power by certifying a series of
realistic examples and applications—all of which can directly run
on the SPIM simulator or any stock x86 hardware.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software� Program Verification—correctness proofs, formal
methods; D.3.1 [Programming Languages]: Formal Definitions
and Theory; F.3.1 [Logics and Meanings of Programs]: Specify-
ing and Verifying and Reasoning about Programs

General Terms Languages, Verification

Keywords self-modifying code, runtime code manipulation, as-
sembly code verification, modular verification, Hoare logic

1. Introduction
Self-modifying code (SMC), in this paper, broadly refers to any
program that purposely loads, generates, or mutates code at run-
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Examples System where
opcode modification GCAP2 Sec 5
control flow modification GCAP2 TR[5]

Common unbounded code rewriting GCAP2 Sec 6.2
Basic runtime code checking GCAP1 TR[5]

Constructs runtime code generation GCAP1 TR[5]
multilevel RCG GCAP1 Sec 4
self-mutating code block GCAP2 TR[5]
mutual modification GCAP2 TR[5]
self-growing code GCAP2 Sec 6.3
polymorphic code GCAP2 TR[5]
code optimization GCAP2� 1 TR[5]

Typical code compression GCAP1 TR[5]
Applications code obfuscation GCAP2 TR[5]

code encryption GCAP1 Sec 6.4
OS boot loaders GCAP1 Sec 6.1
shellcode GCAP1 TR[5]

Table 1. A summary of GCAP-supported applications

time. It is widely used in many of the world’s critical software sys-
tems. For example, runtime code generation and compilation can
improve the performance of operating systems [20] and other ap-
plication programs [19, 13, 29]. Dynamic code optimization can
improve the performance [4, 11] or minimize the code size [7]. Dy-
namic code encryption [27] or obfuscation [15] can support code
protection and tamper-resistant software [3]; they also make it hard
for crackers to debug or decompile the protected binaries. Evolu-
tionary computing systems can use dynamic techniques to support
genetic programming [25]. SMC also arises in applications such
as just-in-time compiler, dynamic loading and linking, OS boot-
loaders, binary translation, and virtual machine monitor.

Unfortunately, SMC is also extremely di
�

cult to reason about:
existing formal verification techniques—including Hoare logic [8,
12] and type system [26, 22]—consistently assume that program
code stored in memory is immutable; this significantly limits their
power and applicability.

In this paper we present a simple but powerful Hoare-logic-
style framework—namely GCAP (i.e., CAP [31] on General von
Neumann machines)—that supports modular verification of gen-
eral machine code with runtime code manipulation. By dropping
the assumption that code memory is fixed and immutable, we are
forced to apply local reasoning and separation logic [14, 28] at the
very beginning, and treat program code uniformly as regular data
structure. Our framework is realistic, but designed to be highly
generic, so that it can support assembly code under all modern
CPUs (including both x86 and MIPS). Our paper makes the fol-
lowing new contributions:

� Our GCAP system is the first formal framework that can suc-
cessfully certify any form of runtime code manipulation—



(Machine) � :: � (Extension � Instr � Ec : Instr � ByteList �
Next : Address � Instr � State � State �
Npc : Address � Instr � State � Address)

(State) � :: � ( ����� )

(Mem) � :: ����� �"!$#�%
(Extension) � :: ��&'&'&

(Address) �(�*)$+ :: ��&'&'& (nat nums)

(Byte) ! :: ��&'&'& (0 & & 255)

(ByteList) !-, :: �.!$��!-,0/1!
(Instr) 2 :: ��&'&'&

(World) 3 :: � ( �$��)$+ )
Figure 1. Definition of target machine GTM

including all the common basic constructs and important ap-
plications given in Table 1 (due to the space limit, we have to
leave many examples in the companion TR [5]).We are the first
to successfully certify a realistic OS boot loader that can di-
rectly boot on stock x86 hardware. All of our MIPS examples
can be directly executed in the SPIM 7.3 simulator[17].� GCAP is the first successful extension of Hoare-style program
logic that treats machine instructions as regular mutable data
structures. A general GCAP assertion can not only specify
the usual precondition for data memory but also can ensure
that code segments are correctly loaded into memory before
execution. We develop the idea of parametric code blocks to
specify and reason about all possible outputs of each self-
modifying program. These results are general and can be easily
applied to other Hoare-style verification systems.� GCAP supports both modular verification [9] and frame rules
for local reasoning [28]. Program modules can be verified
separately and with minimized import interfaces. GCAP pin-
points the precise boundary between non-self-modifying code
groups and those that do manipulate code at runtime. Non-self-
modifying code groups can be certified without any knowledge
about each other’s implementation, yet they can still be safely
linked together with other self-modifying code groups.� GCAP is highly generic in the sense that it is the first attempt
to support di 4 erent machine architectures and instruction sets
in the same framework without modifying any of its inference
rules. This is done by making use of several auxiliary func-
tions that abstract away the machine-specific semantics and by
constructing generic (platform-independent) inference rules for
certifying well-formed code sequences.

In the rest of this paper, we first present our von-Neumann ma-
chine GTM in Section 2. We stage the presentation of GCAP: Sec-
tion 3 presents a Hoare-style program logic for GTM; Section 4
presents a simple extended GCAP1 system for certifying runtime
code loading and generation; Section 5 presents GCAP2 which ex-
tends GCAP1 with general support of SMC. In Section 6 and in the
companion TR [5], we present a large set of certified SMC applica-
tions to demonstrate the power and practicality of our framework.
Our system is fully mechanized—the Coq implementation (includ-
ing the full soundness proof) is available on the web [5].

2. General Target Machine GTM
Our general machine model, namely GTM, is an abstract frame-
work for von Neumann machines. GTM is general because it can be
used to model modern computing architecture such as x86, MIPS,
or PowerPC. Fig 1 shows the essential elements of GTM. An in-

If 576989:<;-6 ( =7>@?78�>BA ) is true, then

( =7>'?78 ) CD�EGF Next HJILK M ( = ) > Npc HNILK M ( = ) O
Figure 2. GTM program execution

stance P of a GTM machine is modeled as a 5-tuple that deter-
mines the machine’s operational semantics.

A machine state = should consist of at least a memory com-
ponent Q , which is a partial map from the memory address to its
stored Byte value. Byte specifies the machine byte which is the min-
imum unit of memory addressing. Note that because the memory
component is a partial map, its domain can be any subset of nat-
ural numbers. R represents other additional components of a state,
which may include register files and disks, etc. No explicit code
heap is involved: all the code is encoded and stored in the memory
and can be accessed just as regular data. Instr specifies the instruc-
tion set, with an encoding function Ec describing how instructions
can be stored in memory as byte sequences. We also introduce an
auxiliary Decode predicate which is defined as follows:576989:<;-6 (( QS>'R ) >UT<>@A ) V Ec( A ) W ( Q [ T ] >UX1X�X1>@Q [ T-Y[ZEc( A ) Z D 1])

In other words, 576989:<;-6 ( =7>UT<>@A ) states that under the state = , certain
consecutive bytes stored starting from memory address T are pre-
cisely the encoding of instruction A .

Program execution is modeled as a small-step transition relation
between two Worlds (i.e., \]CD�E^\`_ ), where a world \ is just a
state plus a program counter ?78 that indicates the next instruction to
be executed. The definition of this transition relation is formalized
in Fig 2. Next and Npc are two functions that define the behavior of
all available instructions. When instruction A located at address ?78 is
executed at state = , Next HNILK M ( = ) is the resulting state and Npc HJILK M ( = )
is the resulting program counter. Note that Next could be a partial
function (since memory is partial) while Npc is always total.

To make a step, a certain number of bytes starting from ?78 are
fetched out and decoded into an instruction, which is then executed
following the Next and Npc functions. There will be no transition if
Next is undefined on a given state. As expected, if there is no valid
transition from a world, the execution gets stuck.

To make program execution deterministic, the following condi-
tion should be satisfied:a =7>UT<>@A 1 >@A 2 X'5	6<89:<;-6 ( =7>�T<>BA 1) bc5	6<89:<;-6 ( =7>�T<>BA 2) D9EdA 1 WeA 2
In other words, Ec should be prefix-free: under no circumstances
should the encoding of one instruction be a prefix of the encoding of
another one. Instruction encodings on real machines follow regular
patterns (e.g., the actual value for each operand is extracted from
certain bits). These properties are critical when involving operand-
modifying instructions. Appel et al [2, 21] gave a more specific
decoding relation and an in-depth analysis.

The definitions of the Next and Npc functions should also guar-
antee the following property: if (( Qf>'R ) >'?78 ) CD9E (( QS_B>'Rg_ ) >@?78�_ ) andQS_h_ is a memory whose domain does not overlap with those of Q
and Q _ , then (( Q"ijQ _h_ >'R ) >'?78 ) CD�E (( Q _ icQ _h_ >'R _ ) >@?78 _ ). In other
words, adding extra memory does not a 4 ect the execution process
of the original world.

MIPS specialization. The MIPS machine P MIPS is built as an
instance of the GTM framework (Fig 3). In P MIPS, the machine
state consists of a ( QS>'k ) pair, where k is a register file, defined
as a map from each of the 31 registers to a stored value. $0 is not
included in the register set since it always stores constant zero and
is immutable according to MIPS convention. A machine Word is the
composition of four Bytes. To achieve interaction between registers
and memory, two operators — l�m n 1 and l�m n 4 — are defined (details
omitted here) to do type conversion between Word and Value.



(State) � :: � ( �e��o )

(RegFile) o p Register � Value

(Register) q :: � $1 /$&�&'&r/ $31

(Value) i �'s�t$u 1 :: ��&'&'& (int nums)

(Word) t$�'s i u 4 :: �.!$��!$��!$�*!
(Instr) 2 :: � nop / li q d � i / add q d �vq s �vq t / addi q t ��q s � i/ mul q d �vq s �vq t / lw q t � i( q s) / sw q t � i( q s)/ la q d �@�w/ j �x/ jr q s / beq q s �vq t � i / jal �

Figure 3. P MIPS data types

Ec( 2 ) y.&'&'&v�
if 2�� then Next z�{B| } ( ����o ) �
jal � ( �e��o � $31 �~)$+�� 4 # )
nop ( �e��o )
li q d � i � la q d � i ( �e��o��hq d � i # )
add q d �vq s �vq t ( �e��o��hq d �`o ( q s) �-o ( q t) # )
addi q t �vq s � i ( �e��o��hq t �~o ( q s) � i # )
mul q d �vq s �vq t ( �e��o��hq d �`o ( q s) �-o ( q t) # )
lw q t � i( q s) ( �e��o��hq t ��s�� ( � ) �@&�&'&���� ( ��� 3) u 1 # )

if ����o ( q s) � i p dom( � )
sw q t � i( q s) ( �e�v�(�'&'&'&��@��� 3 ��s�o ( q t ) u 4 #v�*o )

if ����o ( q s) � i p dom( � )
Otherwise ( �e�*o )

and
if 2(� then Npc z�{1| } ( �e�*o ) �
j � �
jr q s o ( q s)

beq q s �vq t � i ��� �� )$+�� i when o ( q s) ��o ( q t) �)$+�� 4 when o ( q s) ��o ( q t)
jal � �
Otherwise )$+��7/Ec( 2 ) /
Figure 4. P MIPS operational semantics

(Word) t :: �c!$��!
(State) � :: � ( �e�*o���� )

(RegFile) o :: ���*q 16 �"t$# %�� �*q s �"t$# %
(Disk) � :: ��� l ��!$# %

(Word Regs) q 16 :: �.q AX /�q BX /�q CX /�q DX /�q S I /�q DI /�q BP /�q S P

(Byte Regs) q 8 :: �.q AH /1q AL /1q BH /1q BL /1q CH /Bq CL /1q DH /1q DL
(S egment Regs) q s :: �.q DS /�q ES /�q S S

(Instr) 2 :: � movw t$�vq 16 / movw q 16 �vq S / movb !$�vq 8/ jmp !�/ jmpl t$��t�/ int !�/L&'&'&
Figure 5. P x86 data types

The set of instructions Instr is minimal and it contains only
the basic MIPS instructions, but extensions can be easily made.P MIPS supports direct jump, indirect jump, and jump-and-link
( �<�<� ) instructions. It also provides relative addressing for branch
instructions (e.g. beq � s >@� t > i), but for clarity we will continue using
code labels to represent the branching targets in our examples.

The Ec function follows the o
�

cial MIPS documentation and is
omitted. Interested readers can read our Coq implementation. Fig 4
gives the definitions of Next and Npc. It is easy to see that these
functions indeed satisfy the requirements we mentioned earilier.

x86 (16-bit) specialization. In Fig 5, we show our x86 machine,P x86, as an instance of GTM. The specification of P x86 is a
restriction of the real x86 architecture. However, it is adequate for
certification of interesting examples such as OS boot loaders.

Ec( 2 ) y.&'&'&��
if 2(� then Next z�{B| } ( ����o���� ) �
movw t$�vq 16 ( �e��o��hq 16 �~t$#v�*� )
movw q 16 �vq S ( �e��o��hq S �~o ( q 16) #v�*� )
movb !$�vq 8 ( �e��o��hq 8 �~!$#v�*� )
jmp ! ( �e��o ��� )
jmpl t 1 ��t 2 ( �e��o��*� )
int ! BIOS Call ! ( �e��o��*� )&'&'& &'&�&

and
if 2(� then Npc z�{1| } ( �e�*o ) �
jmp ! )$+�� 2 �g!
jmpl t 1 ��t 2 t 1 � 16 �0t 2
Non-jmp instructions )$+���/Ec( 2 ) /&�&'& &'&'&
Figure 6. P x86 operational semantics

Call 0x13 (disk operations) (id � 0x13)
Command 0x02 (disk read) ( o ( q AH ) � 0x02)

Parameters
Count ��o ( q AL) Cylinder ��o ( q CH )
Sector ��o ( q CL) Head ��o ( q DH )
Disk Id ��o ( q DL) Bytes � Count � 512
Src � (Sector � 1) � 512
Dest ��o ( q ES ) � 16 �0o ( q BX )

Conditions
Cylinder � 0 Head � 0
Disk Id � 0x80 Sector � 63

E � ect���9����� Dest � i �~� (S rc � i) # (0 � i � Bytes)o � ��o �*q AH � 0 # � � ���
Figure 7. Subset of P x86 BIOS operations
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Figure 8. Ø�Ù7Ú9Ø$Û<Ü�ÝLÞ : Opcode modification

In order to certify a boot loader, we augment the P x86 state
to include a disk. Everything else that is machine specific has no
e 4 ect on the GTM specification. Operations on the 8-bit registers
are done via their corresponding 16-bit registers (see TR [5] for
more detail). To use the disk, P x86 needs to call a firmware such
as BIOS, which we treat as a black box with proper formal specifi-
cations (Fig 7). We define the BIOS call as a primitive operation in
the semantics. In this paper, we only define a BIOS command for
disk read, as it is needed for our boot loader. Since we did not want
to present a complex definition of the disk, we assume our disk has
only one cylinder, one side, and 63 sectors.

A Taste of SMC We give a sample piece of self-modifying code
(i.e., Ø�Ù7Ú9Ø$Û<Ü�ÝLÞ ) in Fig 8. The example is written in P MIPS syntax.



We use line numbers to indicate the location of each instruction in
memory. It seems that this program will copy the value of register
$4 to register $2 and then call ß	�<��à . But it could jump to theá Ø$Ûrâ�ã<ä subroutine first which will overwrite the àr�$å<æ-Ü$à code
with the new instruction addi $2 > $2 > 1. So the actual result of this
program can vary: if k ($2) çÓk ($4), the program copies the value
of $4 to $2; otherwise, the program simply adds $2 by 1.

Even such a simple program cannot be handled by any existing
verification frameworks since none of them allow code to be mu-
tated at anytime. General SMCs are even more challenging: they
are di

�
cult to understand and reason about because the actual pro-

gram itself is changing during the execution—it is di
�

cult to figure
out the program’s control and data flow.

3. Hoare-Style Reasoning under GTM
Hoare-style reasoning has always been done over programs with
separate code memory. In this section we want to eliminate such re-
striction. To reason about GTM programs, we formalize the syntax
and the operational semantics of GTM inside a mechanized meta
logic. For this paper we will use the calculus of inductive construc-
tions (CiC) [30] as our meta logic. Our implementation is done us-
ing Coq [30] but all our results also apply to other proof assistants.

We will use the following syntax to denote terms and predicates
in the meta logic:

(Term) A > B :: W Set Z Prop Z Type Z x ZËè x : A X B Z A BZ A E B Z ind. def. Z£X1X1X
(Prop) p > q :: W True Z False ZJé p Z p b q Z p ê q Z p E qZ a x : A X p ZNë x : A X p Z£X�X1X

The program safety predicate can be defined as follows:

Safenn( \ ) Víìrî �$ï76 if n W 0ë	\�_BXv\ðCD$Ed\�_(b Safenn ñ 1( \�_ ) if n ò 0

Safe( \ ) V a
n : ó	��à�X Safenn(\ )

Safenn states that the machine is safe to execute n steps from a
world, while Safe describes that the world is safe to run forever.

Invariant-based method [16] is a common technique for proving
safety properties of programs.

Definition 3.1 An invariant is a predicate, namely Inv, defined
over machine worlds, such that the following holds:� a \ÏX Inv(\ ) D$Eôë	\ _ X (\õCD�Ed\ _ ) (Progress)� a \ÏX Inv(\ ) b (\õCD�Eö\ _ ) D$E Inv( \ _ ) (Preservation)

The existence of an invariant immediately implies program safety,
as shown by the following theorem.

Theorem 3.2 If Inv is an invariant then
a \~X Inv( \ ) E Safe(\ ).

Traditional Hoare-style reasoning over assembly programs
(e.g., CAP [31]) is illustrated in Fig 9. Program code is assumed
to be stored in a static code heap separated from the main mem-
ory. A code heap can be divided into di 4 erent code blocks (i.e.
consecutive instruction sequences) which serve as basic certify-
ing units. A precondition is assigned to every code block, whereas
no postcondition shows up since we often use CPS (continuation
passing style) to reason about low-level programs. Di 4 erent blocks
can be independently verified then linked together to form a global
invariant and complete the verification.

Here we present a Hoare-logic-based system GCAP0 for GTM.
Developing a Hoare logic for GTM is not trivial. Firstly, unify-
ing di 4 erent types of instructions (especially between regular com-
mand and control transfer instruction) without loss of usability re-

����

����

����

���

���

���

��������� �����	
��� ������
��
��

���

���

���

Figure 9. Hoare-style reasoning of assembly code

(CodeBlock) ÷ :: WøT : ù
(InstrSeq) ù :: WÓA ; ù[Z�A

(CodeHeap) ú :: W¹ûBTwüýùLþvÿ
(Assertion) ��� State E Prop

(ProgSpec)
� � Address � Assertion

Figure 10. Auxiliary constructs and specifications

������_ÅV a =�X ( ��=�E���_@= ) �	�
�$_ V a =�X ( � =����$_'= )é� V·è	=�XBé� = �0b�� _ V·è	=�X��c=�b�� _ =
�0ê��$_ÓV·è	=�X��c=�ê���_@= � E
�$_ V·è	=�X��c=�E���_'=a

x X��GV·è	=�X a x X ( � = ) ë x X��^V·è	=�X'ë x X ( �c= )

����� _ V·è ( Q 0 >'k ) XBë7QS>'Q _ X'Q 0 W�Q�� Q _ b�� ( QS>@k ) b�� _ ( Q _ >'k )

where ���-� � y�� � � � and dom( � ) � dom( � � ) ���
Figure 11. Assertion operators

quires an intrinsic understanding of the relation between instruc-
tions and program specifications. Secondly, code is easily guaran-
teed to be immutable in an abstract machine that separates code
heap as an individual component, which GTM is di 4 erent from.
Surprisingly, the same immutability can be enforced in the infer-
ence rules using a simple separation conjunction borrowed from
separation logic [14, 28].

Specification language. Our specification language is defined in
Fig 10. A code block ÷ is a syntactic unit that represents a sequenceù of instructions, beginning at specific memory address T . Note that
in CAP, we usually insist that jump instructions can only appear
at the end of a code block. This is no longer required in our new
system so the division of code blocks is much more flexible.

The code heap ú is a collection of code blocks that do not over-
lap, represented by a finite mapping from addresses to instruction
sequences. Thus a code block can also be understood as a singleton
code heap. To support Hoare-style reasoning, assertions are defined
as predicates over GTM machine states (i.e., via “shallow embed-
ding”). A program specification

�
is a partial function which maps

a memory address to its corresponding assertion, with the intention
to represent the precondition of each code block. Thus,

�
only has

entries at each location that indicates the beginning of a code block.
Fig 11 defines an implication relation and a equivalence relation

between two assertions ( � ) and also lifts all the standard logical
operators to the assertion level. Note the di 4 erence between ��E
�9_



!�� � ( � : ! ) yf��� �� " �9&$#&%�+('*)+% ( �9�'�(�*2 ) if !-��2" �9&$#&%�+('*)+% ( �9�'�(�*2 ) , ( !�� � ( ���7/Ec( 2 ) / : ! � ) � ) if !-��2 ; ! �!�� � ( - ) y	.	�0p dom( - ) &h!�� � ( � : - ( � ))
( / 1 � / 2)( � ) y ������ �����

/ 1( � ) if �0p dom( / 1) 0 dom( / 2)/ 2( � ) if �0p dom( / 2) 0 dom( / 1)/ 1( � ) 12/ 2( f ) if �0p dom( / 1) � dom( / 2)

Figure 12. Predefined functions

/43�3 (Well-formed World)

/536- : / ( 7 � ( !�� � ( - ) ,0!�� � ( )$+ : ! )) �8/53$�97�# )$+ : !/43 ( �$��)$+ )
(:�; < = )

/43�- : / � (Well-formed Code Heap)

/ 1 3>- 1 : / �1 / 2 36- 2 : / �2 dom( - 1) � dom( - 2) �?�
/ 1 � / 2 36- 1 � - 2 : / �1 � / �2 (@BA C(D - E )

/539�F7�#v� : !/53 ��� �G!@# : �v���H7�# ( E�I J : )
/439�F7�#LK (Well-formed Code Block)

/53$�97 � # ( ���7/Ec( 2 ) / ) : ! / � ������/Ec( 2 ) /'�M7 � #N39�F7�#�� : 2/439�F7�#v� : 2 ; ! ( OQPSR )

.-�<&97 �w�T/ (Npc U | } ( � )) (Next U | } ( � ))

/43$�97�#v� : 2 ( A C+OWVS; )

Figure 13. Inference rules for GCAP0

and �	�X�$_ : the former is an assertion, while the latter is a propo-
sition! We also define standard separation logic primitives [14, 28]
as assertion operators. The separating conjunction ( � ) of two asser-
tions holds if they can be satisfied on two separating memory ar-
eas (the register file can be shared). Separating implication, empty
heap, or singleton heap can also be defined directly in our meta
logic.

Fig 12 defines a few important macros: Y[ZN\ ( ÷ ) holds if ÷ is
stored properly in the memory of the current state; Y]ZN\ ( ú ) holds if
all code blocks in the code heap ú are properly stored. The union
of two program specifications is just the disjunction of the two
corresponding assertions at each address.

Inference rules. Fig 13 presents the inference rules of GCAP0.
We give three sets of judgments (from local to global): well-formed
code block, well-formed code heap, and well-formed world.

Intuitively, a code block is well-formed (
�_^ û��rþh÷ ) i 4 , starting

from a state satisfying its precondition � , the code block is safe to
execute until it jumps to a location in a state satisfying the spec-
ification

�
. The well-formedness of a single instruction (rule `Fa -bdcfe ) directly follows this understanding. Inductively, to validate

the well-formedness of a code block beginning with A under pre-
condition � (rule bdg�h ), we should find an intermediate assertion�$_ serving simultaneously as the precondition of the tail code se-
quence, and the postcondition of A . In the second premise of bdg�h ,
since our syntax does not have a postcondition, � _ is directly fed
into the accompanied specification.

Note that for a well-formed code block, even though we have
added an extra entry to the program specification

�
when we

validate each individual instruction, the
�

used for validating each
code block and the tail code sequence remains the same.

We can instantiate the `Fa bdcfe and bdg�h rules on each instruction
if necessary. For example, specializing `Fa b(c�e over the direct jump

(j T9_ ) results in the following rule:

��� �
( T9_ )�i^ û��rþ�T : j T _ ( j )

Specializing bdg�h over the add instruction makes�k^ û��$_�þ�T-Y 4: ù � i�ûBT-Y 4 ül�$_Uþ ^ û��rþ�T : add � d >@� s >B� t�i^ û��-þ�T : add � d >@� s >@� t; ù
which via `9a bdcfe can be further reduced into�i^ û��$_�þ�T-Y 4: ùa

( QS>'k ) X�� ( QS>@k ) E��$_ ( Qf>'kwû�� d üök ( � s) Y�k ( � t) þ )�i^ û��rþ�T : add � d >@� s >B� t; ù ( m*n+n )

Another interesting case is the conditional jump instructions,
such as beq, which can be instantiated from rule bdg�h as�i^ û��$_1þ ( T-Y 4) : ù a

( QS>@k ) X�� ( QS>'k ) E (( k ( � s) W�k ( � t) E�
( T-Y i) ( QS>@k )) b ( k ( � s) ç�k ( � t) E�� _ ( QS>@k )))�i^ û��rþ�T : beq � s >@� t > i; ù ( o pdq )

The instantiated rules are straightforward to understand and
convenient to use. Most importantly, they can be automatically
generated directly from the operational semantics for GTM.

The well-formedness of a code heap (
�r^ ú :

� _ ) states that
given

� _ specifying the preconditions of each code block of ú , all
the code in ú can be safely executed with respect to specification

�
.

Here the domain of ú and
� _ should always be the same. The sft>uwv

rule casts a code block into a corresponding well-formed singleton
code heap, and the xN`Fazy - s rule merges two disjoint well-formed
code heaps into a larger one.

A world is well-formed with respect to a global specification
�

(the v e>{�| rule), if� the entire code heap is well-formed with respect to
�

;� the code heap and the current code block is properly stored;� A precondition � is satisfied, separately from the code section;� the instruction sequence is well-formed under � .

The v e>{�| rule also shows how we use separation conjunction to
ensure that the whole code heap is indeed in the memory and
always immutable; because assertion � cannot refer to the memory
region occupied by ú , and the memory domain never grow during
the execution of a program, the whole reasoning process below the
top level never involves the code heap region. This guarantees that
no code-modification can happen during the program execution.

To verify the safety and correctness of a program, one needs to
first establish the well-formedness of each code block. All the code
blocks are linked together progressively, resulting in a well-formed
global code heap where the two accompanied specifications must
match. Finally, the v e>{�| rule is used to prove the safety of the
initial world for the program.

Soundness and frame rules. The soundness of GCAP0 guaran-
tees that any well-formed world is safe to execute. Establishing a
well-formed world is equivalent to an invariant-based proof of pro-
gram correctness: the accompanied specification

�
corresponds to

a global invariant that the current world satisfies.

Theorem 3.3 (Soundness of GCAP0) If
�i^ \ , then Safe(\ ).

Detailed formal proofs can be found in our TR [5]. The fol-
lowing lemma (a.k.a., the frame rule) captures the essence of local
reasoning for separation logic:

Lemma 3.4
�k^ û��rþh÷

( è�T-X � ( T ) ���$_ ) ^ û��}���$_Ëþh÷ ( ~��&m(�zp - o�� �N� � )

where �$_ is independent of every register modified by ÷ .



/53£3 (Well-formed World)

/�3 ( - �F/ ) - �&� -
( 7 � ( !�� � ( - � ) ,0!�� � ( )$+ : ! ))) � / � 39�F7�# )$+ : !.r�gp dom( / � ) & ( / � ( � ) � ( !�� � ( - � ) ,�!�� � ( )$+ : ! )) �k/ ( � ))/53 ( �$��)$+ ) (:�; < = - = )

/53 ( -Å�F/ � ) (Well-formed Code Specification)

/ 1 3 ( - 1 �F/0�1) / 2 3 ( - 2 �F/��2) dom( - 1) � dom( - 2) �?�
/ 1 � / 2 3 ( - 1 � - 2 �F/ �1 � / �2)

( @�A C(D - = )

/53>- : /��/ � !�� � ( - ) 3 ( - �$/ � � !�� � ( - ))
(@BA ��V )

Figure 14. Inference rules for GCAP1

Note that the correctness of this rule relies on the condition we gave
in Sec 2 (incorporating extra memory does not a 4 ect the program
execution), as also pointed out by Reynolds [28].

With the � e��>�	g - �]x { s�y rule, one can extend a locally certified
code block with an extra assertion, given the requirement that this
assertion holds separately in conjunction with the original assertion
as well as the specification. Frame rules at di 4 erent levels will be
used as the main tool to divide code and data to solve the SMC issue
later. All the derived rules and the soundness proof have been fully
mechanized in Coq [5] and will be used freely in our examples.

4. Certifying Runtime Code Generation
GCAP1 is a simple extension of GCAP0 to support runtime code
generation. In the top v e>{z| rule for GCAP0, the precondition � for
the current code block must not specify memory regions occupied
by the code heap, and all the code must be stored in the memory and
remain immutable during the whole execution process. In the case
of runtime code generation, this requirement has to be relaxed since
the entire code may not be in the memory at the very beginning—
some can be generated dynamically!

Inference rules. GCAP1 borrows the same definition of well-
formed code heaps and well-formed code blocks as in GCAP0: they
use the same set of inference rules (see Fig 13). To support runtime
code generation, we change the top rule and insert an extra layer
of judgments called well-formed code specification (see Fig 14)
between well-formed world and well-formed code heap.

If “well-formed code heap” is a static reasoning layer, “well-
formed code specification” is more like a dynamic one. Inside
an assertion for a well-formed code heap, no information about
program code is included, since it is implicitly guaranteed by the
code immutability property. For a well-formed code specification,
on the other hand, all information about the required program code
should be provided in the precondition for all code blocks.

We use the xN`F� c rule to transform a well-formed code heap
into a well-formed code specification by attaching the whole code
information to the specifications on both sides. xN`9azy - | rule has the
same form as xN`9azy - s , except that it works on the dynamic layer.

The new top rule ( v e>{�| - | ) replaces a well-formed code heap
with a well-formed code specification. The initial condition is now
weakened! Only the current (locally immutable) code heap with the
current code block, rather than the whole code heap, is required to
be in the memory. Also, when proving the well-formedness of the
current code block, the current code heap information is stripped
from the global program specification.

Local reasoning. On the dynamic reasoning layer, since code in-
formation is carried with assertions and passed between code mod-
ules all the time, verification of one module usually involves the

The original code:

K 1

������������������ �����������������

¿ ¡9«L�³ ©£¡ ´£Ô�¶�Ì(§J ¤ºÌ(§£¢¦¢£»�§º¢(¡£ª�Ì(§£¢�¡£ � �ª©$« ´(��¶��£¼(¡�¨d�*�*�*�*�*�É¤Î©�¬£¡£ ��$¨��L®�²�´(��¶��]�Ë´JÄf�*�®�² ´(��¶��]�Ë´£Ô�� ¤Õ®N¢�¬Jª(§¦¢�¬fÌ(§J©$« ´(��¶��£¼+�*�*�*�*�*�*�*�É¤Î©�¬£¡£ ��$¨�� Ñ ªÕ´JÄf�®�² ´(��¶�Ä[�Ë´£Ô�� ¤Õ®N¢�¬Jª(§¦¢�¬fÌ(§J+��Ä©£¡ ´JÄÅ¶�Ì�Ì(§J ¤Î´JÄ��¦Ì�Ì(§J©£¡ ´£Ô�¶ ¿ ¡9«L ¤Î´£Ô�� ¿ ¡9«L©$« ´(��¶��£¼+�9¸�µ*�*�*�*�*�É¤Î©�¬£¡£ ��$¨�� Ñ ªÕ´£Ô�� ¢�¬¦´(�Ñ Ì(§J ¤ Ñ × ¿&� ¢�¬S¢(¡£ª�Ì(§£¢Ì(§J�³ $¬ � ¤¦¢�¬ Á�§ºÌ(§J�§£ª(¡£¢(§£ $¬ � ¤¦¢�¬ Á�§ºÌ(§J�§£ª(¡£¢(§£ Ì�Ì(§J�³ $¬ � ¤¦¢�¬ Á�§ºÌ(§J�§£ª(¡£¢(§£ 
The generated code:

K 2

� Ì(§J�³ ®�² ´(��¶��]�Ë´JÄf�Ñ ª ´JÄ
K 3 � Ì�Ì(§J�³ Ñ ª ´£Ô

Figure 15. á å	Ú�æ ÝLÞ : Multilevel runtime code generation

knowledge of code of another (as precondition). Sometimes, such
knowledge is redundant and breaks local reasoning. Fortunately,
a frame rule can be established on the code specification level as
well. We can first locally verify the module, then extend it with the
frame rule so that it can be linked with other modules later.

Lemma 4.1
�k^

( úx> � _ )
( è�T-X � ( T ) ��� )

^
( úx>'è�T-X � _ ( T ) ��� )

(~��&m*�zp - ���Sp � )

where � is independent of any register that is modified by ú .

Proof: By induction over the derivation for
�_^

( úx> � _ ). There are
only two cases: if the final step is done via the x&`Fazy - | rule, the
conclusion follows immediately from the induction hypothesis; if
the final step is via the x&`F� c rule, it must be derived from a well-
formed-code-heap derivation:�

0
^ ú :

� _0 (1)

with
� W·è�T-X � 0( T ) �]Y[ZN\ ( ú ) and

� _ Weè�T-X � _0( T ) �]Y]ZN\ ( ú ); we first
apply the � e��6��g - sft6uzv rule to (1) obtain:

( è�T-X � 0( T ) ��� )
^ ú : è�T-X � _0( T ) ���

and then apply the x&`F� c rule to get the conclusion. �
In particular, by setting the above assertion � to be the knowl-

edge about code not touched by the current module, the code can
be excluded from the local verification.

As a more concrete example, suppose that we have two locally
certified code modules ú 1 and ú 2, where ú 2 is generated by ú 1 at
runtime. We first apply � e��6��g - b v g s to extend ú 2 with assertionY[ZN\ ( ú 1), which reveals the fact that ú 1 does not change during
the whole executing process of ú 2. After this, the xN`Fazy - | rule is
applied to link them together into a well-formed code specification.
We give more examples about GCAP1 in Section 6.

Soundness. The soundness of GCAP1 can be established in the
same way as Theorem 3.3 (see TR [5] for more detail).

Theorem 4.2 (Soundness of GCAP1) If
�i^ \ , then Safe(\ ).

To verify a program that involves run-time code generation, we
first establish the well-formedness of each code module (which
never modifies its own code) using the rules for well-formed code
heap as in GCAP0. We then use the dynamic layer to combine these
code modules together into a global code specification. Finally we
use the new v e>{�| - | rule to establish the initial state and prove the
correctness of the entire program.



Example: Multilevel Runtime Code Generation We use a small
example á å	Ú�æ�ÝLÞ in Fig 15 to demonstrate the usability of GCAP1
on runtime code generation. Our á å	Ú�æ ÝLÞ is already fairly subtle—it
does multilevel RCG, which means that code generated at runtime
may itself generate new code. Multilevel RCG has its practical us-
age [13]. In this example, the code block ÷ 1 can generate ÷ 2 (con-
taining two instructions), which will again generate ÷ 3 (containing
only a single instruction).

The first step is to verify ÷ 1, ÷ 2 and ÷ 3 respectively and locally,
as the following three judgments show:� Ì(§J �M7 2 � !�� � ( K 2) #&3$�97 1 #LK 1� Ì�Ì(§J �M7 3 � !�� � ( K 3) #&3$�97 2 #LK 2� ¿ ¡9«L �M7 1 #&3$�97 3 #LK 3

where7 1 � " �9&F��q( &%��
7 2 � "

( �e��o ) &�o ($9) � ¿ ¡9«L ,�o ($8) � Ec(jr $9) ,0o ($4) � Ì�Ì(§J �
7 3 � "

( �e��o ) &�o ($9) � ¿ ¡9«L
As we see, ÷ 1 has no requirement for its precondition, ÷ 2 simply
requires that proper values are stored in the registers $4, $8, and $9,
while ÷ 3 demands that $9 points to the label á �<â+¡ .

All the three judgments are straightforward to establish, by
means of GCAP1 inference rules (the bdg�h rule and the `9a bdcfe rule).
For example, the pre- and selected intermediate conditions for ÷ 1
are as follows: ¢ " �<&9��q( &%d£¿ ¡9«L�³ ©£¡ ´£Ô�¶�Ì(§J¢ "

( �e�*o ) &�o ($9) � Ì(§J £©$« ´(��¶��£¼(¡�¨d�*�*�*�*�*�®�² ´(��¶��]�Ë´£Ô��¢
(
"

( �e��o ) &�o ($9) � Ì(§J ) � !�� � ( Ì(§J : sw $8 � 0($4)) £©$« ´(��¶��£¼+�*�*�*�*�*�*�*�®�² ´(��¶�Ä[�Ë´£Ô��¢ !�� � ( K 2) £©£¡ ´JÄÅ¶�Ì�Ì(§J©£¡ ´£Ô�¶ ¿ ¡9«L©$« ´(��¶��£¼+�9¸�µ*�*�*�*�*�¢ 7 2 � !�� � ( K 2) £Ñ Ì(§J
The first five instructions generate the body of ÷ 2. Then, regis-

ters are stored with proper values to match ÷ 2’s requirement. No-
tice the three �-â instructions: the encoding for each generated in-
struction are directly specified as immediate value here.

Notice that Y[Z+\ ( ÷ 1) has to be satisfied as a precondition of÷ 3 since ÷ 3 points to ÷ 1. However, to achieve modularity we do
not require it in ÷ 3’s local precondition. Instead, we leave this
condition to be added later via our frame rule.

After the three code blocks are locally certified, the sft6uzv rule
and then the xN`9� c rule are respectively applied to each of them,
as illustrated in Fig 16, resulting in three well-formed singleton
code heaps. Afterwards, ÷ 2 and ÷ 3 are linked together and we
apply � e��6��g - b v g s rule to the resulting code heap, so that it can
successfully be linked together with the other code heap, forming
the coherent global well-formed specification (as Fig 16 indicates):

/ G � � ¿ ¡9«L �M7 1 � !�� � ( K 1) � Ì(§J �H7 2 � !�� � ( K 2) � !�� � ( K 1) �Ì�Ì(§J �M7 3 � !�� � ( K 3) � !�� � ( K 1) #
which should satisfy

�
G

^
( úx> � G ) (where ú stands for the entire

code heap).
Now we can finish the last step—applying the v e>{z| - | rule to

the initial world, so that the safety of the whole program is assured.

5. Supporting General SMC
Although GCAP1 is a nice extension to GCAP0, it can hardly be
used to certify general SMC. For example, it cannot verify the
opcode modification example given in Fig 8 at the end of Sec 2.
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Figure 16. á å	Ú�æ ÝLÞ : GCAP1 specification
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Figure 17. Typical Control Flow in GCAP2

(ProgSpec)
� � Address � Assertion

(CodeSpec) ¤i� CodeBlock � Assertion

Figure 18. Assertion language for GCAP2

In fact, GCAP1 will not even allow the same memory region to
contain di 4 erent runtime instructions.

General SMC does not distinguish between code heap and data
heap, therefore poses new challenges: first, at runtime, the instruc-
tions stored at the same memory location may vary from time to
time; second, the control flow is much harder to understand and rep-
resent; third, it is unclear how to divide a self-modifying program
into code blocks so that they can be reasoned about separately.

To tackle these obstacles, we have developed a new verification
system GCAP2 supporting general SMCs. Our system is still built
upon our machine model GTM.

The main idea of GCAP2 is illustrated in Fig 17. Again, the po-
tential runtime code is decomposed into code blocks, representing
the instruction sequences that may possibly be executed. Each code
block is assigned with a precondition, so that it can be certified in-
dividually. Unlike GCAP1, since instructions can be modified, dif-
ferent runtime code blocks may overlap in memory, even share the
same entry location. Hence if a code block contains a jump instruc-
tion to certain memory address (such as to T 1 in Fig 17) at which
several blocks start, it is usually not possible to tell statically which
block it will exactly jump to at runtime. What our system requires
instead is that whenever the program counter reaches this address
(e.g. T 1 in Fig 17), there should exist at least one code block there,
whose precondition is matched. After all the code blocks are cer-



/53�3 (Well-formed World)¥B¦�§ 3 ¦ 7 � ¥�¦}§ 39�F7�# )$+ : !¥�¦}§ 3 ( �9��)$+ ) ( :�; < = )

where
¥B¦}§ y " �(&W¨&!@& ¦ ( � : ! ).

/53 ¦ (Well-formed Code Specification)

/ 1 3 ¦ 1 / 2 3 ¦ 2 dom(
¦

1) � dom(
¦

2) ���/ 1 � / 2 3 ¦ 1 � ¦ 2
(@BA CdD )

.�K�p dom(
¦

) &$/53$� ¦ K #LK/53 ¦ ( E�I J : )
/539�F7�#LK (Well-formed Code Block)

/539�F7 � #����7/Ec( 2 ) / : ! / � �v����/Ec( 2 ) /'�M7 � #&3$�97�#v� : 2/439�F7�#v� : 2 ; ! ( OWP�R )

.-�9&W7 �w� ( #&%�+('*)+% ( �$�@����2 ) ,}/ (Npc U | } ( � )) Next U | } ( � ))

/43$�97�#v� : 2 ( A C+OWVS; )

Figure 19. Inference rules for GCAP2

tified, they can be linked together in a certain way to establish the
correctness of the program.

To support self-modifying features, we relax the requirements
of well-formed code blocks. Specifically, a well-formed code block
now describes an execution sequence of instructions starting at cer-
tain memory address, rather than merely a static instruction se-
quence currently stored in memory. There is no di 4 erence between
these two understandings under the non-self-modifying circum-
stance since the static code always executes as it is, while a funda-
mental di 4 erence could appear under the more general SMC cases.
The new understanding execution code block characterizes better
the real control flow of the program. Our TR discusses more about
the importance of this generalization.

Specification language. The specification language is almost
same as GCAP1, but GCAP2 introduces one new concept called
code specification (denoted as ¤ in Fig 18), which generalizes
the previous code and specification pair to resolve the problem of
having multiple code blocks starting at a single address. A code
specification is a partial function that maps code blocks to their
assertions. When certifying a program, the domain of the global¤ indicates all the code blocks that can show up at runtime, and
the corresponding assertion of a code block describes its global
precondition. The reader should note that though ¤ is a partial
function, it can have an infinite domain (indicating that there might
be an infinite number of possible runtime code blocks).

Inference rules. GCAP2 has three sets of judgements (see Fig 19):
well-formed world, well-formed code spec, and well-formed code
block. The key idea of GCAP2 is to eliminate the well-formed-
code-heap layer in GCAP1 and push the “dynamic reasoning layer”
down inside each code block, even into a single instruction. Inter-
estingly, this makes the rule set of GCAP2 look much like GCAP0
rather than GCAP1.

The inference rules for well-formed code blocks has one tiny but
essential di 4 erence from GCAP0� GCAP1. A well-formed instruc-
tion ( `9a bdcfe ) has one more requirement that the instruction must ac-
tually be in the proper location of memory. Previously in GCAP1,
this is guaranteed by the x&`F� c rule which adds the whole static code
heap into the preconditions; for GCAP2, it is only required that the
current executing instruction be present in memory.

Intuitively, the well-formedness of a code block
�©^ û��-þ�T : ù now

states that if a machine state satisfies assertion � , then ù is the only

possible code sequence to be executed starting from T , until we get
to a program point where the specification

�
can be matched.

The precondition for a non-self-modifying code block ÷ must
now include ÷ itself, i.e. Y]ZN\ ( ÷ ). This extra requirement does not
compromise modularity, since the code is already present and can
be easily moved into the precondition. For dynamic code, the initial
stored code may di 4 er from the code actually being executed.

Note that our generalization does not make the verification more
di
�

cult: as long as the specification and precondition are given,
the well-formedness of a code block can be established in the same
mechanized way as before.

The judgment
�ª^ ¤ (well-formed code specification) is fairly

comparable with the corresponding judgment in GCAP1 if we
notice that the pair ( úx> � ) is just a way to represent a more limited¤ . The rules here basically follow the same idea except that thesft6uzv rule allows universal quantification over code blocks: if every
block in a code specification’s domain is well-formed with respect
to a program specification, then the code specification is well-
formed with respect to the same program specification.

The interpretation operator «£Dw¬ establishes the semantic re-
lation between program specifications and code specifications: it
transforms a code specification to a program specification by unit-
ing the assertions (i.e. doing assertion disjunction) of all blocks
starting at the same address together. In the judgment for well-
formed world (rule v e6{�| ), we use « ¤?¬ as the specification to estab-
lish the well-formed code specification and the current well-formed
code block. We do not need to require the current code block to be
stored in memory (as GCAP1 did) since such requirement will be
specified in the assertion � already.

Soundness and local reasoning. The soundness proof follows
almost the same techniques as in GCAP0.

Theorem 5.1 (Soundness of GCAP2) If
�i^ \ , then Safe(\ ).

Frame rules are still the key idea for supporting local reasoning.
In fact, since we no longer have the static code layer in GCAP2, the
frame rules play a more important role in achieving modularity. For
example, to link two code modules that do not modify each other,
we first use the frame rule to feed the code information of the other
module into each module’s specification and then apply x&`Fazy rule.

Example: Opcode modification. We can now use GCAP2 to cer-
tify the opcode-modification example given in Fig 8. There are four
runtime code blocks that need to be handled. Fig 20 shows the for-
mal specification for each code block, including both the local ver-
sion and the global version. Note that ÷ 1 and ÷ 2 are overlapping in
memory, so we cannot just use GCAP1 to certify this example.

Locally, we need to make sure that each code block is indeed
stored in memory before it can be executed. To execute ÷ 1 and ÷ 4,
we also require that the memory location at the address ¡rÜ& stores
a proper instruction (which will be loaded later). On the other hand,
since ÷ 4 and ÷ 2 can be executed if and only if the branch occurs atá �-â+¡ , they both have the precondition k ($2) W�k ($4).

After verifying all the code blocks based on their local specifica-
tions, we can apply the frame rule to establish the extended specifi-
cations. As Fig 20 shows, the frame rule is applied to the local judg-
ments of ÷ 2 and ÷ 4, adding Y]ZN\ ( ÷ 3) on their both sides to form the
corresponding global judgments. And for ÷ 1, Y[ZN\ ( ÷ 3) �zY[Z+\ ( ÷ 4)
is added; here the additional Y[ZN\ ( ÷ 4) in the specification entry forß	�<�$à will be weakened out by the xN`Fazy rule (the union of two pro-
gram specifications used in the xN`9azy rule is defined in Fig 12).

Finally, all these judgments are joined together via the xN`Fazy rule
to establish the well-formedness of the global code. This is similar
to how we certify code using GCAP1 in the previous section, except
that the xN`9� c process is no longer required here. The global code
specification is exactly:
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Figure 20. Ø(Ù7Ú9Ø$Û-Ü0ÝLÞ : Code and specification
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which satisfies « ¤ G ¬ ^ ¤ G and ultimately the v e6{�| rule can be suc-
cessfully applied to validate the correctness of Ø�Ù7Ú$Ø$Û-Ü�ÝLÞ . Actually
we have proved not only the type safety of the program but also its
partial correctness, for instance, whenever the program executes to
the line ß	�<��à , the assertion � 3 will always hold.

Parametric code. In SMC, as mentioned earlier, the number of
code blocks we need to certify might be infinite. Thus, it is im-
possible to enumerate and verify them one by one. To resolve this
issue, we introduce auxiliary variable(s) (i.e. parameters) into the
code body, developing parametric code blocks and, correspond-
ingly, parametric code specifications.

Traditional Hoare logic only allows auxiliary variables to appear
in the pre- or post-condition of code sequences. In our new frame-
work, by allowing parameters appearing in the code body and its
assertion at the same time, assertions, code body and specifications
can interact with each other. This make our program logic even
more expressive.

One simplest case of parametric code block is as follows:Æ ³ ©$« ´£µ�¶ kÑ »�¡(©J¢
with the number k as a parameter. It simply represents a family of
code blocks where k ranges over all possible natural numbers.

The code parameters can potentially be anything, e.g., instruc-
tions, code locations, or the operands of some instructions. Taking
a whole code block or a code heap as parameter may allow us to
express and prove more interesting applications.

Certifying parametric code makes use of the universal quantifier
in the rule sft>uwv . In the example above we need to prove the
judgment a

k X ( � k
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Figure 21. º	Ø<Ø$à-�<Ø<�$Û-Ü$å ÝLÞ : Code and specification

where
�

k( ß	�9�$à ) W ( è ( QS>@k ) Xvk ($2) W k), to guarantee that the para-
metric code block is well-formed with respect to the parametric
specification

�
.

Parametric code blocks are not just used in verifying SMC; they
can be used in other circumstances. For example, to prove position
independent code, i.e. code whose function does not depend on the
absolute memory address where it is stored, we can parameterize
the base address of that code to do the certification. Parametric
code can also improve modularity, for example, by abstracting out
certain code modules as parameters.

We will give more examples of parametric code blocks in Sec 6.

Expressiveness. The following important theorem shows the ex-
pressiveness of our GCAP2 system: as long as there exists an in-
variant for the safety of a program, GCAP2 can be used to certify
it with a program specification which is equivalent to the invariant.

Theorem 5.2 (Expressiveness of GCAP2) If Inv is an invariant of
GTM, then there is a

�
, such that for any world ( =�>'?78 ) we have

Inv( =7>@?78 ) »eE ((
�i^

( =7>'?78 )) b (
�

( ?78 ) = )) X
Together with the soundness theorem (Theorem 5.1), we have

showed that there is a correspondence relation between a global
program specification and a global invariant for any program.

It should also come as no surprise that any program certified
under GCAP1 can always be translated into GCAP2. In fact, the
judgments of GCAP1 and GCAP2 have very close connections.
See our TR [5] for more discussions on both issues.

6. More Examples and Applications
We show the certification of a number of representative examples
and applications using GCAP (see Table 1 in Sec 1). Due to the
space limit, we can only give a few of these in this section. More
examples can be found in our TR [5].

6.1 A Certified OS Boot Loader
An OS boot loader is a simple, yet prevalent application of runtime
code loading. It is an artifact of a limited bootstrapping protocol,
but one that continues to exist to this day. The limitation on an
x86 architecture is that the BIOS of the machine will only load the
first 512 bytes of code into main memory for execution. The boot
loader is the code contained in those bytes that will load the rest
of the OS from the disk into main memory, and begin executing
the OS (Fig 22). Therefore certifying a boot loader is an important
piece of a complete OS certification.

To show that we support a real boot loader, we have created one
that runs on the Bochs simulator[18] and on a real x86 machine.
The code (Fig 21) is very simple, it sets up the registers needed to
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Figure 22. A typical boot loader
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Figure 23. ã	â+ºxÝLÞ : Fibonacci number

{$8=1,$2=1,$4=8}
beq  $8, $4, halt
addi $8, $8, 1
add  $10, $9, $2
addi $2, $2, 0
sw   $10, key
j    loop

...

...

loop:
{$8=2,$2=1,$4=8}
beq  $8, $4, halt
addi $8, $8, 1
add  $10, $9, $2
addi $2, $2, 1
sw   $10, key
j    loop

{$8=8,$2=21,$4=8}
beq  $8, $4, halt
addi $8, $8, 1
add  $10, $9, $2
addi $2, $2, 13
sw   $10, key
j    loop

lw   $4, num
lw   $9, key
li   $8, 1
li   $2, 1

main:

{$2=fib(r8)=21}
j    halthalt:

��

���� ����

����

��

loop:

loop:

Figure 24. ãrâ+ºxÝLÞ : Control flow

make a BIOS call to read the hard disk into the correct memory
location, then makes the call to actually read the disk, then jumps
to loaded memory.

The specifications of the boot loader are also simple. � DL W
0x80 makes sure that the number of the disk is given to the boot
loader by the hardware. The value is passed unaltered to the int in-
struction, and is needed for that BIOS call to read from the correct
disk. ½ (512) W Ec(jmp D 2) makes sure that the disk actually con-
tains a kernel with specific code. The code itself is not important,
but the entry point into this code needs to be verifiable under a triv-
ial precondition, namely that the kernel is loaded. The code itself
can be changed. The boot loader proof will not change if the code
changes, as it simply relies on the proof that the kernel code is certi-
fied. The assertion Y[Z+\ ( ÷ 1) just says that boot loader is in memory
when executed.
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Figure 25. ã	â*ºxÝLÞ : Code and specification

6.2 Fibonacci Number and Parametric Code
To demonstrate the usage of parametric code, we construct an ex-
ample ã	â+º ÝLÞ to calculate the Fibonacci function fib(0) W 0 > fib(1) W
1 > fib(i Y 2) W fib(i) Y fib(i Y 1), shown in Fig 23. More specifically,ã	â+ºxÝLÞ will calculate fib( Q ( ¡f¾ á )) which is fib(8) W 21 and store it
into register $2.

It looks strange that this is possible since throughout the whole
program, the only instructions that write $2 is the fourth instruction
which assigns 1 to it and the line ¿	Ü9ä which does nothing.

The main trick, of course, comes from the code-modification
instruction on the line next to ¿	Ü9ä . In fact, the third operand of
the addi instruction on the line ¿	Ü9ä alters to the next Fibonacci
number (temporarily calculated and stored in register $10 before
the instruction modification) during every loop. Fig 24 illustrates
the complete execution process.

Since the opcode of the line ¿rÜ9ä would have an unbounded
number of runtime values, we need to seek help from paramet-
ric code blocks. The formal specifications for each code block is
shown in Fig 25. We specify the program using three code blocks,
where the second block—the kernel loop of our program ÷ 2 K k—is a
parametric one. The parameter k appears in the operand of the ¿rÜ9ä
instruction as an argument of the Fibonacci function.

Consider the execution of code block ÷ 2 K k. Before it is exe-
cuted, $9 stores Ec(addi $2 > $2 > 0), and $2 stores fib(k Y 1). There-
fore, the execution of the third instruction addi $10 > $9 > $2 changes
$10 into Ec(addi $2 > $2 > fib(k Y 1))1, so at the end of the loop,
$2 is now fib(k Y 1) Y fib(k) W fib(k Y 2), and ¿	Ü9ä has the instruction
addi $2 > $2 > fib(k Y 1) instead of addi $2 > $2 > fib(k), then the program
continues to the next loop ÷ 2 K k À 1.

The global code specification we finally get is as follows :

¤ÕVÓûv÷ 1 ül� 1 >7÷ 2k ül� 2k Z k � ó	�$à	>�÷ 3 ül� 3 þ (2)

But note that this formulation is just for readability; it is not di-
rectly expressible in our meta logic. To express parameterized code
blocks, we need to use existential quantifiers. The example is in fact
represented as ¤~V è-÷ Xvè	=�X ( ÷ W�÷ 1 b°� 1 = ) ê ( ë k X'÷ W�÷ 2k b°� 2k = ) ê
( ÷ W�÷ 3 bÁ� 3 = ). One can easily see the equivalence between this
definition and (2).

6.3 Self Replication
Combining self-reading code with runtime code generation, we
can produce self-growing program, which keeps replicating itself
forever. This kind of code appears commonly in Core War—a game
where di 4 erent people write assembly programs that attack the
other programs. Our demo code Þ$Ü-��ã<æ<årØN ÝLÞ is shown in Fig 26.

1 To simplify the case, we assume the encoding of addi instruction has a
linear relationship with respect to its numerical operand in this example.
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���main:   la   $8, loop
        la   $9, new
        move $10, $9
loop:   lw   $11, 0($8)
        sw   $11, 0($9)
        addi $8, $8, 4
        addi $9, $9, 4
        bne  $8, $10, loop
        move $10, $9
new:

la ...

Figure 26. Þ$Ü-�$ã<æ9årØNxÝLÞ : Self-growing process
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Figure 27. Þ$Ü<�$ã<æ<årØ+xÝLÞ : Code and specification

After initializing the registers, the code repeatedly duplicates itself
and continue to execute the new copy .

The block starting at �<Ø<Ø�Ù is the code body that keeps being
duplicated. During the execution, this part is copied to the ¡rÜ& lo-
cation. Then the program continues executing from ¡rÜ& , until an-
other code block is duplicated. Note that here we rely on the prop-
erty that instruction encodings for branches use relative addressing,
thus every time our code is duplicated, the target address of the ºf¡rÜ
instruction would change accordingly.

The copying process goes on and on, till the whole available
memory is consumed and, presumably, the program would crash.
However, under our assumption that the memory domain is infinite,
this code never kill itself and thus can be certified.

The specification is shown in Fig 27. The code block ÷ 0 is
certified separately; its precondition merely requires that ÷ 0 itself
matches the memory. All the other code including the original �<Ø9Ø�Ù
body and every generated one are parameterized as a code block
family and certified altogether. In their preconditions, besides the
requirement that the code block matches the memory, there should
exist an integer i ranged between 0 and 5 (both inclusive), such
that the first i instructions have been copied properly, and the three
registers $8, $9, and $10 are stored with proper values respectively.

6.4 Code Encryption
Code encryption—or more accurately, runtime code decryption —
works similarly as runtime code generation, except that the code
generator uses encrypted data located in the same memory region.

A simple encryption and decryption example Ü&¡7Ú�å<ä$Ù-à ÝLÞ adapted
from [27] with its specification is shown in Fig 28. The code block÷}Ã Ä between the labels Ù-æ (inclusive) and Ù-æ-ÜN¡-Û (exclusive) is the
program that is going to be encrypted. In this example, ÷2Ã Ä simply
calculates the sum of 1 and 2 and stores the result 3 into the register
$2, as the precondition of ß	�<�$à indicates.
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Figure 28. Ü&¡7Ú(å<ä9Ù-à ÝËÞ : Code and specification
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      ...

beq  $8, $9, 8
nop
li   $2, 1
li   $3, 2
add  $2, $2, $3
li   $4, 5

      ...

�
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Figure 29. The execution of runtime code decryption

The á �-â+¡ block together with the ÉrØ$å6Ê block are the encryption
routine, which flips all the bits stored between Ù-æ and Ù-æ<Ü&¡-Û , thus
results in a encrypted form. The Û-Ü-Ú�å block and ÉrØ$å�Ë block, on
the other hand, will decrypt the encrypted data and obtaining the
original code. In addition to the requirement that proper values are
stored in the registers $8 to $10, ÉrØ$å6Ê needs the precondition that÷}ÃdÄ is properly stored, while ÉrØ$å�Ë on the contrary needs to make
sure that the flip of ÷}Ã Ä is properly stored (as � 2 describes).

The encryption and the decryption routines are independent and
can be separately executed: one can do the encryption first and store
the encrypted code together with the dynamic decryption program,
so that at the next time the program is loaded, the code can be
decrypted and executed dynamically, as shown in Fig 29.

By making use of parametric code, It is possible to certify this
encrypt-decrypter even without knowledge of the content of ÷ Ã Ä .
That is, we abstract ÷2Ã Ä out as a parameter, and prove the general
property of the main code : given any code block ÷2ÃdÄ , as long as
it can be safely executed under certain precondition, the whole
combined code is safe to execute under the same precondition;
and if ÷}Ã Ä is properly stored before the encryption, it will still be
properly stored after the encryption-decryption cycle. More over,
the combined code behaves just the same as ÷2Ã Ä (meaning that
they are both well-formed with respect to the same precondition
and specification).



7. Related Work and Conclusion
Previous assembly code certification systems (e.g., TAL [22],
FPCC [1, 10], and CAP [31, 24]) all treat code separately from
data memory, so that only immutable code is supported. Appel et
al [2, 21] described a model that treats machine instructions as
data in von Neumann style; they raised the verification of runtime
code generation as an open problem, but did not provide a solu-
tion. TALT [6] also implemented the von Neumann machine model
where code is stored in memory, but it still does not support SMC.

TAL� T [13, 29] is a typed assembly language that provides some
limited capabilities for manipulating code at runtime. TAL� T code
is compiled from Cyclone—a type safe C subset with extra support
for template-based runtime code generation. However, since the
code generation is implemented by specific macro instructions, it
does not support any code modification at runtime.

Otherwise there was actually very little work done on the certi-
fication of self-modifying code in the past. Previous program ver-
ification systems—including Hoare logic, type system, and proof-
carrying code [23]—consistently maintain the assumption that pro-
gram code stored in memory is immutable.

We have developed a simple Hoare-style framework for mod-
ularly verifying general von Neumann machine programs, with
strong support for self-modifying code. By statically specifying and
reasoning about the possible runtime code sequences, we can now
successfully verify arbitrary runtime code modification and� or gen-
eration. Taking a unified view of code and data has given us some
surprising benefits: we can now apply separation logic to support
local reasoning on both program code and regular data structures.
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