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Abstract

Type-directed certifying compilation and typed assembly
language (TAL) aim to minimize the trusted computing base
of safe languages by directly type-checking low-level ma-
chine code. However, the safety of TAL still heavily relies on
its safe interaction with the underlying garbage collector.
Based on a recent variant of foundational proof-carrying
code (FPCC), we introduce a general methodology for com-
bining foundational TAL with a certified garbage collector.
We demonstrate the practicality of this approach by link-
ing a typical TAL with a conservative garbage collector.
This includes proving the safety of the collector, the sound-
ness of TAL, and the safe interaction between TAL programs
and the garbage collector. Our work is fully mechanized in
the Coq proof assistant and the certified programs can be
shipped immediately as FPCC packages.

1. Introduction

Type-safe languages such as Java and C# provide several
protection mechanisms for the safe execution of programs.
The implementation of a safe language, on the other hand,
is a complex system with many components which must be
trusted. These unverified components form thetrusted com-
puting base(TCB). Techniques such as type-directed certi-
fying compilation andtyped assembly language(TAL) [21]
reduce the size of the TCB of these type safe languages. By
preserving type information during compilation and directly
type-checking the assembly code, these techniques remove
the compiler from the TCB of a type-safe language.

However, the safety of a TAL system still relies on the
soundness of its type system, the correctness of the type-
checker, and the correct implementation of macro instruc-
tions such asmalloc. Because it is difficult to certify the
implementation offree in the presence of memory alias-
ing, TAL often requires a trusted garbage collector be part
of the memory management run-time.

Some recent research focuses on building type-safe
garbage collectors to remove the collector from the TCB of
a TAL system. Wang and Appel [26] and Monnieret al.[19]
propose to use languages with region-based type systems
and intensional type analysis for type-checking a standard
copying garbage collector [14]. But their approaches work
only with specific GC algorithms and not, for example, with
mark-sweep collectors. The complexity of the type system
may also increase the TCB of their systems.

GTAL [11] uses a linear type system to encode new types
from individual memory words. By building up appropriate
abstractions, GTAL is capable of type-checking a variety of
garbage collection mechanisms. Still, the new features in
the type system result in a large TCB. Also, the metatheory
of GTAL is not mechanized.

Foundational proof-carrying code(FPCC) [1, 9] can
eliminate a large portion of TAL’s TCB by mechanically
proving the soundness of its type system, the correctness of
the type checker, and the safety of the associated garbage
collector in a foundational logic. The minimized TCB con-
tains only the soundness of the foundational logic, the cor-
rectness of its proof checker, and the machine model. The
recently proposed separation logic [24] also provides a pow-
erful approach to reasoning about the safety of garbage col-
lectors, as demonstrated by the work of Birkedalet al. [2].

In this paper we present a new methodology for build-
ing foundational TAL with a certified garbage collector. We
combine the general framework for mutator-collector verifi-
cation by McCreightet al.[17] with the open FPCC system
by Fenget al. [8, 7]. We demonstrate the practicality of
our approach by linking a TAL with a simple conservative
garbage collector [3] in the FPCC setting. This includes
proving the safety of the collector, the soundness of TAL,
and the safe interaction between TAL programs and the col-
lector. Our paper makes the following new contributions:

• As far as we know, the work presented in this pa-
per is the first to successfully link a TAL program
with a garbage collector to generate complete FPCC



packages. The type system of our TAL contains non-
trivial features such as mutable references, recursive
types, and union types, and is capable of typing muta-
ble recursive data structures. The collector we verified
is a conservative variant of a standard stop-the-world
mark-sweep collector [14].

• Although our current paper only shows how to safely
link TAL with a certified conservative collector, our
methodology is general, capable of verifying more
complex situations, such as the TAL type system keep-
ing complex information for an accurate collector or
even an incremental collector with read/write barriers.

• We specify the collector using thestack-based cer-
tified assembly programming(SCAP) framework [8]
extended with separation-logic primitives [24]. Our
specification asserts the machine-level behavior of the
collector and is general enough for various mutator
safety requirements besides type safety. The safety
proof of our collector, which is done using SCAP, is
a nontrivial work by itself.

• The work presented in this paper is fully mechanized
within the Coq proof assistant [5]. Thus, the linked
code of the mutator and collector can immediately be
shipped as an FPCC package with a minimal TCB.
We have also developed various mechanisms in Coq
to simplify proof construction.

In Section 2, we introduce the preliminary knowledge
needed to understand the rest of the paper. In Section 3,
we present our general methodology for building TAL with
certified garbage collection. In Sections 4–6 we apply this
methodology to verify the safe interaction of a TAL with
a conservative collector. We discuss the implementation in
Section 7. Finally, we discuss related work and conclude.

Note that all lemmas and theorems in this paper are me-
chanically proved in Coq. Their detailed proofs are avail-
able on our project web site [16].

2. Basic setting

Before presenting our general methodology we give a
general introduction to the FPCC system that our work uses.
This includes a MIPS32-style [18] abstract machine model
and thelightweight open framework for certified assembly
programming[7] (LOCAP), a program logic for reasoning
about the interaction of two different verification systems.
We also present the embedding of SCAP [8] in LOCAP. As
demonstrated by Fenget al. [8, 7], SCAP is suitable for
certifying system level libraries, and we use it to construct
the safety proof for our garbage collector.

Both the machine model and the program logic are for-
malized within a mechanized meta-logic, theCalculus of

(Prog) P ::= (C,S, I)
(CdHeap) C ::= {f ; I}∗

(State) S ::= (H, R)
(Heap) H ::= {l ; w}∗

(RFile) R ::= {r ; w}∗

(Reg) r ::= {rk}k∈{0...31}

(Wd,Lab) w, f ::= 0 | 1 | 2 | . . .
(Address) l ::= 0 | 4 | 8 | . . .
(ISeq) I ::= c; I | beq rs, rt, f; I

| bne rs, rt, f; I

| j f | jal f, fret | jr rs
(Comm) c ::= addu rd, rs, rt | addiu rd, rs, w

| subu rd, rs, rt | srl rd, rs, 1
| sltu rd, rs, rt | andi rd, rs, 7
| lw rd, w(rs) | sw rs, w(rd)

Figure 1. Abstract machine syntax

Inductive Construction(CiC) [23], as implemented in the
Coq proof assistant [5]. CiC is a higher-order predicate
logic extended with inductive definitions. The CiC terms
in this paper are written using standard logical notation. We
let Prop be the universe of all logical propositions andSet
be the universe of all computational terms.

2.1. Abstract machine

Figure 1 gives the syntax of our abstract machine. A pro-
gramP is a triple of a code heapC, a machine stateS and
an instruction sequenceI. A code heapC is a partial map
from code labelsf to instruction sequencesI. A machine
stateS contains a data heapH and a register fileR. A data
heapH is a partial map from 4-byte aligned addressesl to
word valuesw, while a register fileR is a map from registers
r to word values, withr0 always mapped to 0. A command
c is a non-control-flow instruction such as a register add or
a heap load. An instruction sequenceI, or code block, is a
series of commands and branches followed by an uncondi-
tional jump instruction. For simplicity, we separate the code
heapC from the mutable data heapH. Also, we use an in-
struction sequence instead of the standardpc register. This
results in the additional return addressfret in the jump and
link instructionjal f, fret. By expanding this instruction
to the MIPS instruction pairjal f andj fret, all our certi-
fied code [16] can directly run on the SPIM simulator [15].

Following [18], we give the small step operational se-
mantics of the abstract machine in Figure 2. We writeX(z)
for the value bound toz in the mapX , andX{z ; v} for
the map obtained by updating the binding ofz to v in X .
Note that for alw/sw command, if the source address is not
in the domain of the heap, the next state is undefined. The
next step of a program is undefined if it jumps to an invalid
label or the next state of its first command is undefined.



if I = then(C, (H, R), I) 7−→

j f if f ∈ dom(C), (C, (H, R), C(f))

jal f, fret if f ∈ dom(C),
(C, (H, R{r31 ; fret}), C(f))

jr rs if R(rs) ∈ dom(C),
(C, (H, R), C(R(rs)))

beq rs, rt, f; I
′ if R(rs) 6= R(rt), (C, (H, R), I′),

else iff ∈ dom(C), (C, (H, R), C(f))

bne rs, rt, f; I
′ if R(rs) = R(rt), (C, (H, R), I′),

else iff ∈ dom(C), (C, (H, R), C(f))

c; I
′ if Nextc((H, R)) = S

′, (C, S′, I
′)

if c = thenNextc(H, R)=

addu rd, rs, rt (H, R{rd ; R(rs) + R(rt)})
addiu rd, rs, w (H, R{rd ; R(rs) + w})
subu rd, rs, rt (H, R{rd ; R(rs) − R(rt)})
srl rd, rs, 1 (H, R{rd ; R(rs)/2})
sltu rd, rs, rt (H, R{rd ; k})

if R(rs) < R(rt), k = 1, elsek = 0

andi rd, rs, 7 (H, R{rd ; R(rs) mod 8})
lw rd, w(rs) if (R(rs) + w) ∈ dom(H),

(H, R{rd ; H(R(rs) + w)})
sw rs, w(rd) if (R(rd) + w) ∈ dom(H),

(H{R(rd) + w ; R(rs)}, R)

Figure 2. Abstract machine semantics

2.2. Program logic

The readers may view LOCAP as a simplified OCAP [7],
or an extended CAP0 [8]. We use it to embed two verifica-
tion systems, namely TAL and SCAP. As listed in Figure 3,
the specification of a code block is given byθ. This may be
a state predicate in Hoare logic [12], a register file type in
TAL, or anything else. LOCAP is a simplification of OCAP
because there are only two kinds of code block specifica-
tions, so the language dictionary of OCAP is not needed. A
code heap specificationΨ is a set of (f, θ) pairs. Therefore,
a code block may have more than one kind of specification
in Ψ. We utilize this property to specify the GC interface for
TAL. The interpretation function[[ ]] translatesθ into a pred-
icatea over the environmentΨ and the machine state, to
allow a to specify the code pointers (labels of code blocks)
in Ψ. Bothθ and[[ ]] will be instantiated for TAL and SCAP
in our following discussion. Finally,⇒ is the implication
relation on assertions and a lifted assertion〈a〉Ψ combines
a with all the information inΨ.

We show the LOCAP inference rules in Figure 4. A
well-formed program is a well-formed code heap with an
appropriate initial state. A code heapC is well-formed with
respect toΨ if each pair inΨ corresponds to a well-formed
code block inC. Interested readers may find the detailed
explanation of the rules in [7], but this is not required for
understanding the rest of the paper.

(CdSpec) θ ::= · · · | · · ·
(ChSpec) Ψ ::= {(l, θ)}∗

(Assert) a ∈ ChSpec → State → Prop
(Interp) [[ ]] ∈ CdSpec → Assert

a ⇒ a′
def
= ∀Ψ,S. a Ψ S → a′ Ψ S

Ψ ⊆ Ψ′ def
= ∀(f, θ). (f, θ) ∈ Ψ → (f, θ) ∈ Ψ′

〈a〉Ψ′

def
= λΨ,S. Ψ′ ⊆ Ψ ∧ a Ψ S

Figure 3. LOCAP specification constructs

Ψ ⊢ P (Well-formed Program)

Ψ ⊢ C : Ψ (a Ψ S) ⊢ {a} I

Ψ ⊢ (C, S, I)
(PROG)

Ψ ⊢ C : Ψ′ (Well-formed Code Heap)

⊢ {〈[[θ]]〉Ψ} C(f) ∀(f, θ) ∈ Ψ′

Ψ ⊢ C : Ψ′
(CDHP)

⊢ {a} I (Well-formed Instruction Sequence)

a ⇒ λΨ, S. ∃θ. (f, θ) ∈ Ψ ∧ [[θ]] Ψ S

⊢ {a} j f
(J)

a ⇒ λΨ, (H, R). ∃θ.
(R(rs), θ) ∈ Ψ ∧ [[θ]] Ψ (H, R)

⊢ {a} jr rs
(JR)

a ⇒ λΨ, (H, R). ∃θ.
(f, θ) ∈ Ψ ∧ [[θ]] Ψ (H, R{r31 ; fret})

⊢ {a} jal f, fret
(JAL)

⊢ {a′} I a ⇒ λΨ,S. a′ Ψ Nextc(S)

⊢ {a} c; I
(SEQ)

Figure 4. LOCAP inference rules (excerpt)

The weakening lemma states that if a code block is well-
formed with somea′, it is also well-formed with a stronger
assertiona, and the proof of a well-formed code block can
be lifted from a localΨ to a globalΨ′.

Lemma 1 (Weakening).
1. If a ⇒ a′ and⊢ {a′} I, then:⊢ {a} I;
2. If Ψ ⊆ Ψ′ and⊢ {〈a〉Ψ} I, then:⊢ {〈a〉Ψ′} I.

The soundness-correctness theorem of the CAP system
ensures that a well-formed program will run forever without
reaching any undefined steps in Figure 2, and the partial
correctness of the program against its specification holds.

Theorem 1 (Soundness-Correctness).
If Ψ ⊢ (C, S, I), for all natural number n there exists
a (C, S′, I′), such that(C, S, I) 7−→n (C, S′, I′); and if
(C, S′, I′) 7−→ (C, S′′, C(f)), then there exists aθ, such
that(f, θ) ∈ Ψ and[[θ]] Ψ S′′.



(SPred) p, q ∈ State → Prop
(Guar) g ∈ State → State → Prop
(CdSpec) θ ::= (p, g)

wfst(0, q,Ψ)
def
= ∀(H, R). q (H, R) →

∃Γ. (R(r31), Γ) ∈ Ψ ∧ [[Γ]]TAL Ψ (H, R)

wfst(n + 1, q,Ψ)
def
= ∀(H, R). q (H, R) →

∃p, g. (R(r31), (p, g)) ∈ Ψ ∧ p (H, R)∧
wfst(n, g (H, R), Ψ)

[[(p, g)]]SCAP
def
= λΨ, S. p S ∧ ∃n. wfst(n, g S, Ψ)

Ψ ⊢SCAP {(p, g)} I
def
= ⊢ {〈[[(p, g)]]SCAP〉Ψ} I

Ψ ⊢SCAP {(p, g)} I (Well-formed Instruction Sequence Lemmas)

(f, (p′, g′)) ∈ Ψ (fret, (p
′′, g′′)) ∈ Ψ

∀(H, R). p (H, R) → p′ (H, R{r31 ; fret})∧
∀S

′. g′ (H, R{r31 ; fret}) S
′ →

p′′
S
′ ∧ ∀S

′′. g′′
S
′
S
′′ → g (H, R) S

′′

∀(H, R), (H′, R′).
g′ (H, R) (H′, R′) → R(r31) = R

′(r31)

Ψ ⊢SCAP {(p, g)} jal f, fret
(CALL)

∀S. p S → g S S

Ψ ⊢SCAP {(p, g)} jr r31
(RETURN)

Figure 5. SCAP in LOCAP

Embedding of SCAP. Following [7], we show the embed-
ding of SCAP in LOCAP in Figure 5. An SCAP code speci-
fication is a pair consisting of a preconditionp and a guaran-
teeg. Herep resembles a precondition in Hoare logic while
g relates the current state to the return state (of the current
procedure). A guaranteeg at the entry of a procedure can
be used to assert its safety guarantee, as we will see later.

The SCAP interpretation[[(p, g)]]SCAP asserts that the
whole machine state satisfiesp, and there is a well-formed
control stack somewhere in the state. The abstract stack
predicatewfst(n, g S, Ψ) generally asserts that the current
function can return to the label stored inr31 in the re-
turn state. n is the number of stack frames. Whenn is
0, the caller of the SCAP function must be a TAL program.
A set of lemmas is also proved for building well-formed
code blocks with SCAP code specifications. A detailed
knowledge ofwfst and the lemmas is not needed for under-
standing the rest of the paper; interested readers may refer
to [8, 7] for their explanations.

3. The general methodology

Our basic idea comes from the analysis in Section 2.2: if
we are able to prove that the client program is well-formed
using a TAL-style type system, and that the collector is
well-formed using SCAP, then we can link the client with
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Figure 6. TAL and GC steps

the collector to form a well-formed complete code heap in
LOCAP. Following Theorem 1, the code in a well-formed
code heap will run safely forever from a correct initial state.
This is exactly what we want, as it implies the safe inter-
action of the TAL program and the garbage collector. This
leads to the following steps to combine foundational TAL
with certified garbage collection:

Certifying the collector. We prove the well-formedness of
the collector with SCAP specifications. For each collector
routine with the specification(p, g), assertionp should in-
clude all of the information required by the collector rou-
tine, whileg should capture its basic safety guarantee.

Embedding of TAL. We get a foundational TAL by em-
bedding its type system in LOCAP (much like how we em-
bed SCAP in LOCAP in Section 2.2). The soundness of
TAL follows directly from the soundness of LOCAP. The
type system of TAL must also reflect our choice of collector
in that it must contain enough information to meet the re-
quirements of the SCAP specifications of the collector rou-
tines.

Collector interface compatibility. We must also provide
the TAL specifications for the collector routines to type-
check the TAL client codes. Therefore in the code heap
specification of the global code heap (which contains both
the client and the collector), we have both the SCAP and
TAL specifications for the collector interface. For each col-
lector interface, we supply the missing proof required by the
CDHP rule using Lemma 1, if the interpretation of its TAL
specification implies the interpretation of its SCAP one.

In the rest of this section, we discuss several general as-
pects of embedding TAL into LOCAP with respect to vari-
ous garbage collectors.

3.1. Typed assembly language in LOCAP

The register file typeΓ of the original TAL [21] is a nat-
ural candidate for the TAL instantiation of the LOCAP code



mark_field(val) {

if (val < ST || val >= ED) return;

if (val mod 8 != 0) return;

if (markbit(val) == BLACK) return;

markbit(val) = BLACK; stack_push(val);

}

gc() {

mark_field(root1);

...

mark_field(rootn);

while(!stack_empty()){

ptr = stack_pop();

mark_field(ptr->first);

mark_field(ptr->second);

}

for(addr = ST; addr < ED; addr ++)

if (markbit(addr) == WHITE){

addr->first = freeptr; freeptr = addr;

} else markbit(addr) = WHITE;

}

alloc() {

if (freeptr == NULL) gc();

if (freeptr == NULL) loop();

l = freeptr; freeptr = freeptr->first;

return l;

}

Figure 7. A conservative collector

specificationθ, and its interpretation[[ ]]TAL , as shown bel-
low, is a variant of the one used in [7].

[[Γ]]TAL
def
= λΨ, (H, R). ∃HT.

Ψ ⊢TAL (HT, R) : Γ ∧ gc inv((H, R), HT)

The interpretation allows us to partition the state, reason-
ing about TAL code as though it were running on a virtual
heapHT provided by the collector. Both the TAL state typ-
ing rules and the collector invariant depend on the collector
used. With an precise collector,Ψ ⊢TAL (HT, R) : Γ must
contain pointer information for each heap object, while with
a conservative collector this is not necessary. Thegc inv in-
variants of various precise collectors are described in [17].

The invariantΨ ⊢TAL (HT, R) : Γ corresponds to the
well-formed state relation of the original TAL, but with ad-
ditional information required by the collector routines to
correctly trace the live objects inHT. The garbage collec-
tor representation invariantgc inv((H, R), HT) specifies the
collector’s data structures in(H, R) and their relationship
with the virtual heapHT accessed by TAL clients.

In addition, the TAL instruction sequence lemmas,
which correspond to the instruction typing rules of the orig-
inal TAL, must ensure that the invariants of[[Γ]]TAL hold at
any step in the execution of a well-formed instruction se-
quence proved with these lemmas, as shown in Figure 6.
That is, the execution of TAL code preserves state well-
formedness, and never breaks the collector’s invariant.

null ::= 0
st, ed ::= 8 | 16 | 24 | . . .

ptrs
def
= {l | (l mod 8 = 0) ∧ (st ≤ l < ed)}

vptr(l)
def
= l ∈ ptrs

roots
def
= {r17, r18, r31, r0}

vptr(l)

reach(H, l, l)
(REFL)

vptr(l) vptr(l′) reach(H, l′′, l′)
H(l) = l′′ ∨ H(l + 4) = l′′

reach(H, l, l′)
(NEXT)

rchrts((H, R), l)
def
= ∃r ∈ roots. reach(H, R(r), l)

Figure 8. Pointer validity and reachability

On the other hand, to prove collector interface compat-
ibility, we must show that the successful execution of each
collector routine also preserves these invariants, as shown in
Figure 6. That is, for each collector routine, its guaranteeg
satisfies the following relation, whereΓ andΓ′ are defined
by the behavior of this routine.

∀Ψ,S, S′. g S S
′ → [[Γ]]TAL Ψ S → [[Γ′]]TAL Ψ S

′

Next we will present a case study that demonstrates the
practicality and effectiveness of our methodology.

4. A certified conservative collector

Like TALx86 [20] and TALT [6], we choose a conser-
vative garbage collector [3]. This kind of collector treats
all values as potential pointers, eliminating the need to keep
complex pointer location information in the TAL type sys-
tem and simplifying the collector interface.

Our collector is a standard stop-the-world mark-sweep
collector [14] and uses the valid pointer check procedure of
the Boehm-Demers-Weiser collector [3]. To simplify the
problem, our collector only allocates heap chunks with a
fixed size of two words. The pseudo code of our collector
is presented in Figure 7.

4.1. The specification interface

We define in Figure 8 the view of the heap that the col-
lector and TAL must agree on. The constant addressnull is
0. The variablesst anded are the lower and upper bounds
of the collector’s allocatable heap, and are aligned at 8, the
size of a heap chunk. Thus, a valuel is a valid pointer
(vptr(l)) only if it falls in the range of the allocatable heap
and points to the start of a heap chunk.

The reachability predicatereach(H, l, l′) is inductively
defined. In the base case, a valid pointer is reachable from



eq(H)
def
= λH

′. H
′ = H

· · ·

gc inv((H, R), HT)
def
= ∃B, F.

sted ok(R) ∧ B ∪ F = ptrs ∧
dom(HT) = {l, l + 4 | l ∈ B} ∧
H  eq(HT) ∗ flst(F, R) ∗ mbits(ptrs, 0) ∗ mstack(∅, R)

chkeq(H, H′, l)
def
= H(l) = H

′(l) ∧ H(l + 4) = H
′(l + 4)

gc step((H, R), (H′, R′))
def
=

(∀l. rchrts((H, R), l) → chkeq(H, H′, l))∧
(∀r ∈ roots. R(r) = R

′(r))

alloc step((H, R), (H′, R′))
def
= ∃l.

l /∈ dom(H) ∧ (l + 4) /∈ dom(H)∧
H

′ = H{l ; −}{l + 4 ; −} ∧ R
′ = R{r18 ; l}

pa

def
= λS. ∃HT. gc inv(S,HT)

ga
def
= λ(H, R), (H′, R′). ∀HT. gc inv((H, R), HT) →

∃H
′
T, H

†
T , R

†. gc inv((H′, R′), H′
T) ∧

gc step((HT, R), (H†
T , R

†)) ∧

alloc step((H†
T , R

†), (H′
T, R

′))

Figure 9. Collector interface specification

itself. In the inductive case,l′ is reachable froml if it is
reachable from the pointers in the heap chunk atl.

We define the collector’s root setroots as the set of reg-
isters used by TAL. For simplicity, we have four registers in
this set, but it would not be difficult make more registers us-
able in TAL. The predicaterchrts(S, l) asserts thatl points
to a live heap chunk in stateS.

4.2. Specification and proof construction

We now present the collector’s safety specification and a
discussion of the construction of the safety proof.

SCAP Specification. Our specification of the collector in-
terface (alloc) includes the preconditionpa and the guar-
anteega, as defined in Figure 9.

The collector’s representation invariantgc inv is defined
using separation logic [24]. We writeH  P if the heap
predicateP , which has the typeHeap → Prop, is valid
with H. H  P ∗ Q is valid if H can be split into two
disjoint subheapsH1 andH2, such that bothH1  P and
H2  Q are valid propositions. The precondition ofalloc,
as defined withgc inv, asserts that:

• The heap boundariesst and ed are stored inR

(sted ok(R)). The set of allocatable pointers (ptrs) is
split into the allocated subsetB and the free subsetF ,
while the allocated subheapHT contains exactly the
heap chunks inB.

(IF lag) ϕ ::= 1 | 0

(WTy) τ ::= α | nul | int

| Γ | 〈τϕ, τϕ〉 | µα.τ | τ ∨ τ
(RfTy) Γ ::= {r ; τ}∗

(CdSpec) θ ::= Γ
(DhSpec) Φ ::= {l ; (τϕ, τϕ)}∗

Ψ ⊢TAL Γ : I
def
= ⊢ {〈[[Γ]]TAL 〉Ψ} I

Ψ ⊢TAL Γ : I (Well-formed Instruction Sequence Lemmas)

(f, Γ′) ∈ Ψ ⊢TAL Γ ≤ Γ′

Ψ ⊢TAL Γ : j f
(J)

(f, Γ′) ∈ Ψ (fret, Γ
′′) ∈ Ψ

⊢TAL Γ{r31 ; Γ′′} ≤ Γ′

Ψ ⊢TAL Γ : jal f, fret
(JAL)

Γ(rs) = τ ⊢TAL τ ≤ τ ′ Ψ ⊢TAL Γ{rd ; τ ′} : I
′

Ψ ⊢TAL Γ : addiu rd, rs, 0; I
′ (MOV)

Ψ(f) = Γ′ Γ(rs) = nul ∨ τ
⊢TAL Γ{rs ; nul} ≤ Γ′ Ψ ⊢TAL Γ{rs ; τ} : I

′

Ψ ⊢TAL Γ : beq rs, r0, f; I
′

(NULL)

Figure 10. TAL in LOCAP

• The global heapH contains the allocated subheapHT,
the free list with the head pointer inR (flst(F, R)), the
mark bits for all the pointers inptrs (mbits(ptrs, 0)),
and the mark stack with the stack pointers stored inR

(mstack(∅, R)).

The guaranteega specifies the situation where a free
chunk is successfully allocated. It simply divides the state
transition ofalloc into a collection phase and an allocation
phase with an auxiliary state(H†

T, R
†), and asserts that:

• The representation invariantgc inv is preserved be-
tween the entry state(H, R) and the return state
(H′, R′), with allocated subheapsHT andH′

T, respec-
tively.

• The collection phase turns(HT, R) into (H†
T, R

†) and
the gc step relation asserts that the live chunks are
equal in the two heaps, while the values of the root
registers are equal in the two register files. The allo-
cation phase turns(H†

T, R
†) into (H′

T, R
′) and theal-

loc step relation asserts thatH′
T has exactly one more

heap chunk thanH†
T, with its pointer stored inR′(r18).

Proof Construction. The verification of the collector in-
volves two main steps. We first form the verification envi-
ronmentΨGC with the SCAP specifications for each labell

in the collector’s code heapCGC. Then for eachl we prove
the CAP well-formedness of the corresponding code block
CGC(l) with the SCAP lemmas in Figure 5. Due to space



⊢TAL ∗ ⊢TAL ∗ ≤ ∗ (Well-formed Type, Subtyping)

ftv(τ ) = ∅

⊢TAL τ
(WORD)

Γ(r) = τ ⊢TAL τ ∀ r ∈ dom(Γ) ⊆ roots

⊢TAL Γ
(RFILE)

Φ(l) = (τϕ0

0
, τϕ4

4
) ⊢TAL τi vptr(l) ∀ l ∈ dom(Φ)

⊢TAL Φ
(HEAP)

Γ(r) = Γ′(r) ∀ r ∈ dom(Γ′)

⊢TAL Γ ≤ Γ′
(SUB)

Γ(r) = µα.τ

⊢TAL Γ ≤ Γ{r ; τ [µα.τ/α]}
(UNFOLD)

Γ(r) = τ [µα.τ/α]

⊢TAL Γ ≤ Γ{r ; µα.τ}
(FOLD) ⊢TAL τϕ ≤ τϕ (REFL)

⊢TAL τ 1 ≤ τ 0
(0-1)

⊢TAL τ ≤ τ ∨ τ ′
(UNIONL)

⊢TAL τ ′ ≤ τ ∨ τ ′
(UNIONR)

⊢TAL nul ≤ int
(NULL -INT)

Ψ;Φ ⊢TAL ∗ : ∗ Ψ ⊢TAL S : Γ (Value, Heap, Rfile, State Typing)

Ψ;Φ ⊢TAL 0 : nul
(NULL)

Ψ;Φ ⊢TAL w : int
(INT) (f, Γ) ∈ Ψ

Ψ;Φ ⊢TAL f : Γ
(CODE)

⊢TAL fst(Φ(l)) ≤ τϕ0

0
⊢TAL snd(Φ(l)) ≤ τϕ4

4

Ψ;Φ ⊢TAL l : 〈τϕ0

0
, τϕ4

4
〉

(TUPLE)
Ψ;Φ ⊢TAL w : τ ⊢TAL τ ≤ τ ′

Ψ;Φ ⊢TAL w : τ ′
(SUBTY)

Ψ;Φ ⊢TAL w : τ [µα.τ/α]

Ψ;Φ ⊢TAL w : µα.τ
(REC)

Ψ;Φ ⊢TAL w : τ

Ψ;Φ ⊢TAL w : τϕ (INIT) Ψ;Φ ⊢TAL w : τ 0
(JUNK)

⊢TAL Φ Φ(l) = (τϕ0

0
, τϕ4

4
) Ψ;Φ ⊢TAL H(l + i) : τϕi

i ∀ l ∈ dom(Φ′)

Ψ;Φ ⊢TAL H : Φ′
(HEAP)

⊢TAL Γ Ψ;Φ ⊢TAL R(r) : Γ(r) ∀ r ∈ dom(Γ)

Ψ;Φ ⊢TAL R : Γ
(RFILE)

Ψ;Φ ⊢TAL H : Φ Ψ;Φ ⊢TAL R : Γ

Ψ ⊢TAL S : Γ
(STATE)

Figure 11. TAL state typing rules

limitations, we omit detailed discussion of the collector’s
proof construction. Interested readers will find the assem-
bly code implementation, SCAP specification and proof of
the collector in [16].

5. A typed assembly language with GC

We show in Figure 10 our definition of TAL types,
which includes code types, mutable reference types, recur-
sive types and union types. We do not include a polymor-
phic code type, as it is orthogonal to our primary concern,
memory management, and this extension should not be hard
for our system.

Our TAL type system is built over the abstract machine
in Section 2.1 and based on the definitions in Section 4.1,
and thus is different from the original TAL [21] in several
ways. Since both the registers and heap cells contain only
word-size values, we use one value typeτ for all values, in-
stead of havingsmall valueandheap valuetypes as in the
original TAL. We also use fixed-sized tuple types to make it
consistent with our collector, which allocates heap chunks

with a size of two words. This does not reduce the expres-
siveness of our type system, since a tuple with arbitrary size
can be encoded into a list of our fixed-sized tuples.

The TAL typing rules listed in Figure 11 are similar to
those of the original TAL. However, we require that the do-
main of a well-formed code heap specification contains only
valid heap pointers, and a well-formed register file type as-
serts only the root register setroots defined in Figure 8.

As partly listed in Figure 10, our TAL lemmas for CAP
resemble the instruction typing rules of the original TAL.
The definition ofΨ ⊢TAL Γ : I is based on the TAL interpre-
tation[[ ]]TAL in Section 3.1, and the representation invariant
gc inv in Figure 9. Instead of using themallocmacro of the
original TAL, our TAL supports heap allocation by making
a function call to the garbage collector (jal alloc, fret).

The readers should note that there are other possible sets
of TAL lemmas for our type system besides the ones we
used. The choice of these lemmas may also depend on the
actual type-checking algorithm.

A well-formed TAL instruction sequence proved with
the TAL lemmas keeps the invariant that at any step of its



execution the machine state of TAL is well-formed and the
collector’s invariant holds. We follow the soundness proof
of the original TAL to prove that the execution preserves
the TAL state typing relation. The preservation of the col-
lector’s invariant is proved by observing the fact that well-
formed TAL instructions never change the heap’s domain.

5.1. Collector interface compatibility

As the final step, we prove that the SCAP specification
of the collector interface in Figure 9 is compatible with its
TAL specificationΓa, which asserts that the function returns
a pointer to a new heap chunk in registerr18 and that the
types of the other TAL registers are preserved.

Theorem 2 (Collector interface compatibility).
For any code heap specificationΨ and any instantiation of
word value typesτa, τb, τ0 andτ4, we have:

〈[[Γa]]〉Ψ ⇒ 〈[[(pa, ga)]]〉Ψ
where:

Γa

def
= {r17 ; τa, r0 ; τb, r31 ;

{r17 ; τa, r0 ; τb, r18 ; 〈τ 0

0 , τ 0

4 〉}}.

After unfolding the two interpretations, we getpa di-
rectly from 〈[[Γa]]〉Ψ. Then, we instantiate the first pa-
rameter of wfst to 0. From Lemmas 3 and 5, we
know from ga that the return state ofalloc satisfies
〈[[{r17 : τa, r0 : τb, r18 : 〈τ0

0 , τ0
4 〉}]]〉Ψ, as required by the

unfoldedwfst predicate. We list here the most important
lemmas for proving Theorem 2.

Lemma 2 (Heap pruning).
If Ψ; Φ ⊢TAL H : Φ andΨ; Φ ⊢TAL R : Γ, then:
1. Ψ; Φ/(H,R) ⊢TAL H : Φ/(H,R);
2. Ψ; Φ/(H,R) ⊢TAL R : Γ.
whereΦ/S is the data heap specification formed with ex-
actly the live labels in the stateS from Φ.

The proof of Lemma 2 follows the proof of theheap up-
date lemma of the original TAL, but with additional case
analysis to separate root-reachable pointers from the restof
the word values.

Lemma 3 (GC step).
If gc step(S, S′) andΨ ⊢TAL S : Γ, then:Ψ ⊢TAL S′ : Γ.

Lemma 3 is proved using Lemma 2 by observing that
both Ψ ⊢TAL S : Γ andΨ ⊢TAL S′ : Γ can be proved using
the same data heap specificationΦ/S.

Lemma 4 (Heap extension).
If Ψ; Φ ⊢TAL H : Φ, vptr(l), l /∈ dom(H), ⊢TAL τϕ0

0 , and
⊢TAL τϕ4

4 , then:
1. Ψ; Φ′ ⊢TAL R : Γ.
2. If Ψ; Φ ⊢TAL w0 : τϕ0

0 , andΨ; Φ ⊢TAL w4 : τϕ4

4 , then
Ψ; Φ′ ⊢TAL H{l ; w0}{l+ 4 ; w4} : Φ′.

whereΦ′ stands forΦ{l ; (τϕ0

0 , τϕ4

4 )}.

chase(list * i) {

while(i <> NULL){

i = i->next;

i = alloc(0, i);

}

}

Figure 12. An example

Lemma 5 (Allocation step).
If alloc step(S, (H′, R′)), Ψ ⊢TAL S : Γ, ⊢TAL τ0, and
⊢TAL τ4, then:Ψ ⊢TAL (H′, R′) : Γ{r : 〈τ0

0 , τ0
4 〉}.

The proof of Lemma 4 resembles the proof of theheap
extensionlemma of the original TAL. Lemma 5 is trivially
derivable from Lemma 4.

6. An example of linked code

We now give an example to show the safe linking of code
verified in TAL with our collector. The pseudo code of
chase is given in Figure 12, which repeatedly removes a
node from a list and appends a new one. Ifi is not null
initially, the program will surely run out of memory with-
out a collector. We type check the assembly implementation
CC in Figure 13 with the following code heap specification.
The skippedΓs are listed at the corresponding labels in Fig-
ure 13.

ΨC
def
= {(alloc,

{r17 ; list, r0 ; int, r31 ;

{r17 ; list, r0 ; int, r18 ; 〈int0, list0〉}}),
(init, · · · ), (chase, · · · ), (write, · · · ), (ret, · · · )}.

When the instructions pass type checking, for each(l, Γ)
pair inΨC we get the proof that:

⊢ {〈[[Γ]]〉ΨC} CC(l)

From Section 4, we have for each(l, (p, g)) pair in the
collector’s code heap specificationΨGC that:

⊢ {〈[[(p, g)]]〉ΨGC} CGC(l)

We also obtain from Theorem 2 and Lemma 1 that:

⊢ {〈[[(Γa)]]〉ΨGC} CGC(alloc)

We form the global code heapC and its specificationΨ:

C
def
= CC ∪ CGC Ψ

def
= ΨC ∪ ΨGC

With Lemma 1, we have for each(l, θ) pair inΨ that:

⊢ {〈[[Ψ(l)]]〉Ψ} C(l)

Finally, we obtain the well-formedness of the linked
codeC with theCDHP rule in Figure 4.



list
def
= µα.nul ∨ 〈int1, α1〉

init: {r17 ; list, r0 ; int}
j chase # unfold

chase: {r17 ; nul ∨ 〈int1, list1〉, r0 ; int}
beq r17, r0, ret # null elim

{r17 ; 〈int1, list1〉, r0 ; int}
lw r17, 4(r17) # load next

{r17 ; list, r0 ; int}
jal alloc, write

write: {r17 ; list, r18 ; 〈int0, list0〉, r0 ; int}
sw r0, 0(r18) # write val

{r17 ; list, r18 ; 〈int1, list0〉, r0 ; int}
sw r17, 4(r18) # write next

{r17 ; list, r18 ; 〈int1, list1〉, r0 ; int}
addiu r17, r18, 0 # move

{r17 ; nul ∨ 〈int1, list1〉, r18 ; 〈int1, list1〉, r0 ; int}
j chase # sub domain

ret: { }
j ret

Figure 13. An example (assembly)

7. Implementation

Our verification is fully mechanized within Coq [5], an
interactive theorem prover that uses CiC as its underlying
logic, where specifications and proofs are constructed as
types and terms in CiC, respectively. Proof checking in Coq
is thus type checking of terms in CiC, which is easier to im-
plement and more trustworthy. Coq also provides a rich
language for defining both logical and computational con-
structors, with the ability to construct inductive predicates
and well-formed recursive functions. Using this, we build
the abstract machine model and the sound program logics.

The tricky part of the implementation is to obtain the
pruned data heap specificationΦ/S mentioned in Sec-
tion 5.1, which implies that every labell in its domain sat-
isfiesrchrts(S, l). As Φ is a mapping function in theSet
universe, we cannot getΦ/S by a case analysis on the proof
of the decidability ofrchrts(S, l) (if it can be constructed
directly), as this will break the proof-irrelevance axiom that
is commonly accepted. To solve this problem, we define in
theSet universe a well-formed recursive Boolean function
which is equivalent to the predicaterchrts, and obtainΦ/S

by case analysis on the return value of this function.
To simplify the proof construction, we have imple-

mented (in Coq) a verification condition generator (VCGen)
for SCAP and proved its correctness. We have also built var-
ious automated proof tactics such as those involving sepa-
ration logic. This results in a proof which is about1/4 the
size of our first proof and is much easier to follow.

We omit the implementation of a type-checker for TAL,

Lines Component

833 Basic properties and tactics
1941 Abstract machine encoding and lemmas
1263 Finite set library
884 Separation logic library
398 LOCAP

1188 TAL in LOCAP
874 Reachability properties
237 GC Safety for TAL
360 SCAP in LOCAP, VCGen and related tactics
154 Code, specification and proof ofchase

2618 Code, specification and proof of the collector
276 Link upchase and the collector in LOCAP

Figure 14. Proof script size

since it is orthogonal to the main goal of this work. Building
a certified TAL type checker is not hard since it has a very
straight-forward (and decidable) type-checking algorithm.

In Figure 14 we give a breakdown of the size of our
proofs for our foundational TAL with certified GC. For each
component we give the number of non-empty lines of Coq
proof scripts. The work took several man-months (by pro-
grammers who are familiar with the Coq system) to com-
plete. Interested readers can obtain the Coq implementation
from our project web site [16].

8. More related work and conclusion

Much work has been done concerning TAL and garbage
collector safety in addition to those mentioned in Section 1.
TALT [6] considered the impact of garbage collection on
the soundness of its type system and mechanically proved
GC safety assuming a conservative collector, but the type
system interface for the collector is not clearly defined and
it is unclear how their definition of GC safety can be used
to link with a real collector. Vanderwaart and Crary [25]
proposed a type system with an interface for an accurate
garbage collector. But again, this work addresses only the
mutator (TAL) side of GC safety, while our work comple-
ments their work by mechanically proving the safety of both
TAL and the collector, including their interaction.

Earlier work on mechanized verification of garbage col-
lectors (such as [13, 10, 4]) focused mostly on abstract al-
gorithms. Our certified collector, on the other hand, is a real
machine-level implementation with concrete specifications
and it can run directly on real machine. However, our ver-
ification only addresses the safety of the collector, not any
liveness properties.

The work on CAP systems [27, 22, 8, 7] provides a nice
way to build FPCC packages. Our work builds on the CAP0
system in [8] and the OCAP system in [7]. Fenget al. [7]
described linking TAL with a certifiedmalloc function.



Our idea of using interpretation to specify the TAL/collector
interface is borrowed from this work.

We introduce in this paper a general methodology based
on a new variant of FPCC for combining foundational TAL
with a certified garbage collector. We demonstrate the prac-
ticality of this approach by linking a typical TAL with a con-
servative garbage collector. Our work is fully mechanized
in the Coq proof assistant and the certified programs can be
shipped immediately as FPCC packages. In the future we
plan to extend this work by applying our methodology to
link TAL with more complex accurate collectors.
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