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Abstract. Standard type systems are not sufficiently expressive when applied to
low-level memory-management code. Such code often uses some form of strong
update (i.e. assignments that change the type of the affected location) and needs to
reason about the relative position of objects in memory. We present a novel type
system which, like alias types [20], provides a form of strong update, but with the
advantage that it does not require the aliasing pattern to be statically described. It
also provides operations over sequential memory locations and allows covariant
reference casts. We then show how this new type system can be used to implement
a type-safe stop&copy garbage collector that can properly collect cyclic data-
structures. More specifically, we show how to write a two-generations collector
for a language with mutableref cells.

1 Introduction

As the technology of certifying compilation and proof carrying code [13, 1, 6] has
progressed, the need to ensure the safety of the runtime system has increased. After all,
if you go through the trouble of writing a foundational proof of safety of your code, you
would rather not trust an unverified conservative garbage collector (GC) with your data.
For this reason, it is very important to be able to write a type-safe GC, but the state of
the art in this matter is still completely impractical since they cannot even handle cyclic
data-structures. This paper’s main goals are thus:

– Show that, in order to type-check a GC that can collect cyclic data-structures, the
type system has to provide a form of strong update that can change the type of a
location even if the set of aliases to this location is completely unknown.

– Present a type system that provides such a facility. This type system allows the
programmer to choose any mix of linear or intuitionistic typing of references and
to change this choice over time to adapt it to the current needs.

– Implement the first type-preserving GC that properly collects cycles and the first
generational GC that allows the mutator to use destructive assignment.
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Traditional type systems are not well-suited to reason about type-safety of low-level
memory management such as explicit memory allocation, initialization, deallocation, or
reuse. Existing solutions to these problems either have a very limited applicability or
rely on some form oflinearity constraint. Such constraints tend to be inconvenient and
a lot of work has gone into relaxing them. For example, the alias types system [20]
is able to cleanly handle several of the points above, even in the presence of arbitrary
aliasing, as long as the aliases can be statically tracked by the type system.

The reason why it is challenging to show type-safety of low-level memory man-
agement is that for this kind of code, the line betweentype-safetyandcorrectnessis
blurred: we end up having to prove some non-trivial properties about the code just to
show its type-safety. For example, type-safety of a generational GC depends on the cor-
rect processing of the remembered-set (a data-structure holding the set of pointers from
the old generation to the new).

An alternative approach would be to use Hoare logic [8] to show the correctness of
the low-level code and then provide a type-safe interface to it. But it is not clear how
the two would interact, especially when the low-level code might be spread over a lot
of code, as is the case for the code that maintains the remembered-set in the mutator.
Furthermore as we start to encode more properties into our type systems than basic type-
safety, the difficulties we are seeing here will start to appear for more mundane code
as well. This tendency can already be seen in the Vault project which uses an approach
taken from alias-types to prove other properties of their code than just type-safety.

The present work is thus an attempt to provide a middle ground between Hoare logic
and simple type-systems. Additionally to the above stated goals, we make the following
contributions:

– A language that can seamlessly combine the benefits of traditionalintuitionistic
references andlinear references at the same time.

– We introduce type cast and strong update operations that work in the absence of
any static aliasing information.

– The language also offers the ability to iterate over the objects contained in a se-
quential area of memory.

– We show how the technique described in [16] of using the calculus of inductive
constructions (CiC) as our type language to track other properties than just type-
safety can be used to track properties of state.

Section 2 introduces the problem of cyclic data-structures as well as two type sys-
tems on which our work is built. Section 3 presents the problems that have pushed us
to develop this system. Section 4 describes our new language. Section 5 shows how we
use it to write a generational GC. We then discuss related work a conclude.

2 Background

2.1 Cyclic structures

In the course of writing thecopy routine of a garbage collector, we discovered that al-
though current type systems can handle the case where the graph is acyclic, generalizing
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the code to properly handle cycles proves difficult. After experimenting with various al-
gorithms, it became clear that the problem is more fundamental: current type systems
are unable to type-check generic code that can build arbitrary cyclic data-structures.

To see this, let us look at a classic example, a datatype for doubly-linked lists:

datatype α dlist = Node of α ∗ α dlist ref ∗ α dlist ref

The SML type system allows us to declare this datatype and write functions to manip-
ulate it, but does not offer us any way to create such an object: we need a base case. So
let us take another example, with a base case:

datatype α tree = Node of α | Branch of α tree ref ∗ α tree ref

This time, we can construct such trees since we do have a base case, but only if we
have an object of the proper typeα. More specifically, in order to create a cyclic data-
structure, we always need a base case to start from, even if the data-structure we want to
get in the end does not contain any node of this base case any more. Which means that
a generic routine such as an unpickler or a copying GC needs to be able to construct
from scratch the base case of any type that could be involved in a cyclic data-structure.
In the tree example above, that means creating aNode of α for anyα. Clearly this is
not possible.

OCaml provides special support to build cyclic data-structures such as thedlist ex-
ample above using a construct similar toval rec n = Node(0, n, n). This helps for
specific code, but is of no use for generic code since it only works for pre-determined
cycles, whereas a copying GC simply does not even know when it is creating cycles.

Type systems that can decouple allocation from initialization are key to solving this
problem, but none of the systems developed so far are sufficiently flexible to handle the
case of a generic function such asunpickle. More specifically, none of them know how
to handle the case where the pointer to the allocated objectescapes(i.e. is passed around
and stored at arbitrary locations) before the object is initialized: when we allocate a new
object, we obviously know its one and only alias, but we cannot initialize it because
some of the values might not exist yet, and by the time we are done unpickling the
children such that initialization can take place, there can be any number of aliases and
we do not statically know them because the function is generic.

In order to type-check a practical copying GC, we need a new type system that
is able to update the type (e.g. from uninitialized to initialized) of all the aliases to a
particular object even when those aliases are not statically known.

2.2 Regions

Region-based type systems [18, 3] are the most practical systems offering type-safe
explicit memory management. They provide a solution to the problem of safe deallo-
cation, with a minimum of added constraints. Even though they do not offer any help
when trying to type-check low-level code such as object initialization, their practicality
makes them very attractive as a starting point. The idea behind region calculi is to man-
age memory at the level of regions (groups of objects), to annotate the type of every
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(kinds) κ ::= Ω | R
(regions) ρ ::= r | ν
(types) σ ::= t | int | σ × σ | σ at ρ

| ∀[∆]{Θ}(~σ) → 0

(heap type) Ψ ::= • | Ψ, ν.n 7→ σ
(type env) Γ ::= • | Γ, x :σ
(kind env) ∆ ::= • | ∆, t :κ
(region env) Θ ::= • | Θ, ρ

(values) v ::= x | i | (v, v) | ν.n | λ[∆]{Θ}(Γ).e
(operations) op ::= v | πiv | put[ρ] v | get v
(terms) e ::= v[~σ](~v) | halt v | let x = op in e | set v := v; e

| let r = newrgn in e | freergn ρ; e

Fig. 1.Syntax of a region-based language.

pointer with the region that it references, and to only provide bulk deallocation of a
whole region at a time.

Figure 1 shows how such a language might look like:put[ρ] v allocatesv in region
ρ; get v dereferencesv; newrgn creates a new region andfreergn deallocates it;ν.n is
a pointer to thenth object in regionν created byput and has typeσ at ν if the object
referenced has typeσ (i.e. Ψ(ν.n) = σ). Functions have type∀[∆]{Θ}(~σ) → 0; they
are fully closed and we use continuation passing style, so they never return (hence the
→ 0 in the type);∆ is the list of type (and region) parameters;Θ lists the regions that
need to be live at the time of the call; and~σ lists the type of the value parameters. A
function callv[~σ](~v) passes types~σ and values~v to functionv. 1

Here is a sample function that creates a cyclic node of thetree datatype presented
previously, assuming the language has been extended with support for datatypes:

mktree[r, t]{r}(x : t, k : ∀[r, t]{r}((tree t) at r) → 0)
= let n = put[r] (Node x) in

set n := Branch n n; k[r, t](n)

The function is parameterized over typet and regionr and expects an argumentx of
type t (which is only used temporarily to create the dummyNode) and a continuation
argumentk. The put operation does the allocation while theset operation does the
initialization. The (omitted) kind ofr is R and the kind oft is Ω. If k’s type had{} in
place of{r}, it would force us to deallocate the regionr before calling it and it would
maken into a dangling pointer, which is allowed because liveness of the region is only
needed and checked when dereferencing withget.

2.3 Alias types

The alias-types system [17, 20] was developed precisely to handle low-level code such
as object initialization, memory reuse, and safe deallocation at the object level. To do
that, the type of pointers is changed to carry no information about the type of the refer-
enced object. Instead, the type of a pointer is just the location it is pointing to, so it does

1 Region calculi are not necessarily using fully closed functions and continuation passing style
like we do here, but a direct-style presentation is more complex, as is the correct treatment of
closure allocation.
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(kinds) κ ::= Ω | Heap | Loc
(locations) ρ ::= r | ν
(types) σ ::= t | int | ν

| ∀[∆]{Θ}(~σ) → 0

(type env) Γ ::= • | Γ, x :σ
(kind env) ∆ ::= • | ∆, t :κ
(mem env) Θ ::= • | Θ, ρ 7→(σ, ..., σ)

(values) v ::= x | i | ν | λ[∆]{Θ}(Γ).e
(operations) op ::= v | πiv
(terms) e ::= v[~σ](~v) | halt v | let x = op in e | set πiv := v; e

| let (r, x) = new n in e | free ρ; e

Fig. 2.Syntax of an alias-types language.

not need to change when the location’s type or liveness changes. While it provides a lot
of power when dealing with low-level code, it relies on an amount of static information
which is rarely available in general and definitely not available in our copying GC.

Figure 2 shows the syntax of a very simple alias-types language. It can be thought
of as a region-based language where the pointers can only point to regions rather than
to objects inside them and where regions have been turned into tuples.put andget have
disappeared and the environmentΨ mapping locations to their types has been merged
into Θ. When dereferencing a pointer of typeρ, we thus have to check the liveness and
the type of the corresponding location by looking upρ in Θ. let (r, x) = new n in e
allocates a new object of sizen and returns the location as both a valuex and a typer.
We could also have done this for regions so as to distinguish between the region type
and the region value passed toput at runtime, but we conflated the two for simplicity.

Here is a sample code that takes a value of typet and creates an infinite list of this
element (a 1-element circular list):

mklist [ε, t]{ε}(x : t, k :∀[ε, t, r]{ε, r 7→ (t, r)}(r) → 0)
= let (r, n) = new 2 in

set π0n := x; set π1n := n; k[ε, t, r](n)

The argumentε has kindHeap and means that the function accepts an arbitrary
heap as input, whereas the type of the continuationk shows that the returned heap isε
extended with a circular node at locationr. Sincenew only knows about the size of the
object, it can only do allocation and the type at locationr is originally set to(int, int)
and is then incrementally updated by eachset operation to(t, int) and then(t, r).

The ability to update a location’s type is the key power of alias-types. But for that it
relies crucially on the fact that the type system should be able to keep track of pointer
values. In particular, the types need to statically but precisely describe the shape of the
heap. Witness the fact in the above example that the type of the circular list is not just
list t but instead explicitly describes a 1-element cycle and thus disallows any other
shape. The type language of [20] is much richer than what we show here, but that does
not help when the shape of the heap is simply not known statically.
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2.4 Calculus of constructions

The calculus of inductive constructions (CiC) [14] that we use as our type language is
an extension of the calculus of constructions (CC) [2], which is a higher-order typed
logic. CC can encode Church’s higher-order predicate logic via the Curry-Howard iso-
morphism [9]. Understanding the details of this language is not necessary for this paper.
Suffice it to say that it is a powerful typedλ-calculus whereλ-terms have types of the
form Πx :ϕ. ϕ which subsume both the usual arrow and the universal quantifier. Its in-
ductive definitions are like datatypes, with elimination constructs which combine case
analysis with a fixpoint operation. To know a bit more about CiC, see the appendix A.

3 Motivating example

The simple type-preserving GCs developed until now have a few important limitations.
The most important one is that cyclic garbage is not properly collected. Another lim-
itation is that generational collectors do not allow the mutator (i.e. the code that uses
the GC) to create references from the old region to the young via destructive assign-
ment. We want to lift those two restrictions, since they make those type-preserving GCs
impractical.

3.1 Simple type-preserving GC

The basic idea of a type-preserving GC, proposed by Wang and Appel [22], is to layer
a stop&copy collector on top of a region calculus, where the whole heap is placed in
a single region and where thecopy function copies the heap from thefrom region to a
newto region and then frees thefrom region.

Because the type of the heap contains region annotations which will necessarily
be different before copying than after, thecopy function cannot just be of typet → t
but instead has to be of the formMF (t) → MT (t) wheret represents what should
be preserved while theM type function annotates it with details that the mutator does
not care about. Furthermore, in order to work correctly, thecopy routine might require
things like tag bits, mark bits or in case of generational GC it will need to make sure the
mutator obeyed the generation barriers and provides a correct remembered set. All those
added constraints will need to be somehow encoded inM sincecopy has obviously no
control overt.

A good way to look at it is thatt is a high-level, GC-oblivious type of the heap,
while MF (t) is the low-level representation with all the added details necessary for
the correct functioning of the GC. The two will generally not be of the same kind;t
might for example correspond to the type used in the high-level source language of the
mutator code.

The simplest case is a bare-bones stop&copy GC with a source language that only
supports integers and pairs.M might then look like the following, whereR is the current
region holding the heap:

MR(int) ⇒ int
MR(τ1 × τ2) ⇒ (MR(τ1)×MR(τ2)) at R
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In the case of a 2-generation collector, the heap will be spread over 2 regions:Y for
the nursery andO for the old generation.M will now have to enforce that there cannot
be any pointer back fromO to Y by only allowing(MO,Y (τ1)×MO,Y (τ2)) at Y and
(MO,O(τ1)×MO,O(τ2)) at O:

MO,A(int) ⇒ int
MO,A(τ1 × τ2) ⇒ ∃r∈{O,A}.(MO,r(τ1)×MO,r(τ2)) at r

In this definition,A is expected to be either equal toO or Y depending on whether
pointers toY are allowed at this place.

3.2 Generational collection

We want to create a simple yet usable type-preserving generational GC. In order to be
usable, it needs to be able to properly handle cycles in the heap and it needs to allow
the mutator to use destructive assignment, even if that means creating pointers back
from the old generation to the nursery. The traditional way to deal with such pointers
is to keep track of all of them in aremembered-set, but for simplicity, we will restrict
mutability to ref-cells, as is done in SML, and place all those ref-cells in a separate
region which will thus play the role of a degenerate remembered-set.

Compared to the situations outlined in the previous section, the heap is now spread
over three regions:Y for the nursery,O for the old generation andR for the ref-cells.
So that the collection ofY can take place without having to scanO, we need to make
sure that there is no pointer fromO to Y . I.e. pointers fromY andR can point to any
of Y , O or R but pointers fromO can only point toO or R. Our M type function
which maps high-level types to their low-level representation will again have to enforce
this constraint. If our high-level types include integers, ref-cells and pairs,M could be
defined as follows:

MY,R,O,A(int) ⇒ int
MY,R,O,A(ref τ) ⇒ MY,R,O,Y (τ) at R
MY,R,O,A(τ1 × τ2) ⇒ ∃r∈{O,A}.(MY,R,O,r(τ1)×MY,R,O,r(τ2)) at r

HereA is expected to be either equal toO or toY andMY,R,O,A(τ1× τ2) is the type of
a pair that can be allocated either inO or in A and whose children (and grand-children,
etc...) might also refer additionally toR or toY .

The GC code that copies objects from the nurseryY to the old spaceO takes the type
of the heapt, the regionsY , O, andR, and the heap itselfh :MY,R,O,Y (t) as well as a
continuationk. It first copies everything reachable from the rooth (but only withinY ) to
O. Then scans all the ref-cells, considered as extra roots, and copies anything reachable
from them as well. Finally, it freesY and creates a new nursery before returning to the
continuationk. It could look like the following:

GC [t :Ωτ ]{Y,R, O}(h :MY,R,O,Y (t), k : . . . )
= let h = copy[t, Y,R,O](h) in

let t′, x = first R in
let = redirect[t′, Y,R,O](x) in
freergn Y ; let Y = newrgn in k[Y,R, O](h)
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where thecopy function should simply do a generic deep copy, but only within the
bounds ofY and theredirect function should scan theR region, redirecting any pointer
to theY region to a copy of that object inO. The type of the new root pointerh returned
by copy can be described asMY,R,O,O(t).

In order to be able to freeY at the end of the collection, we need to keep track
somewhere at the type-level of the fact that pointers inR that have been redirected can
only point toO or toR but not toY any more. Indeed, as the redirection is taking place
the type ofh keeps changing gradually until the end when it becomes equivalent to
MO,R,O,O(t) and thus independent fromY . If b is the boundary between what has been
redirected and what has not, then we can writeh :CY,R,O,O,b(t) whereC is defined as:

CY,R,O,A,b(int) ⇒ int
CY,R,O,A,b(ref τ) ⇒ let r = if (before b) O Y in CY,R,O,r,b(τ) at R
CY,R,O,A,b(τ1 × τ2) ⇒ ∃r∈{O,A}.(CY,R,O,r,b(τ1)× CY,R,O,r,b(τ2)) at r

This is almost the same as the previousM , except for the addedb parameter and the case
of ref where the object reachable from the ref-cell will have either typeCY,R,O,O,b(τ)
or CY,R,O,Y,b(τ) depending on whether they have been redirected or not.

The above presentation is sloppy and simplistic but already requires unusual fea-
tures from the language:

– Thebefore b test in the definition ofCY,R,O,A,b(ref τ) obviously needs to know not
just the region in which the object is located but its actual location, which implies
that object locations need to be reflected in the pointer type.

– The new operationfirst (as well asifnext which will be needed insideredirect), that
allows the code to scan the regionR, should return both a new pointerx and a new
typet′ wherex is expected to be of typeCY,R,O,Y,b(t′). But this is only safe if we
know that all objects in the relevant section have a type of the formCY,R,O,Y,b(τ).

– Since the type ofh, indexed by the boundaryb keeps changing as the boundary
moves, we need to be able to update its type when the assignmentx := copy[..](..)
moves the boundary, even though we do not know anything about the aliasing rela-
tionship betweenx andh.

The exact same three issues appear when trying to write a Cheney-style stop&copy
GC where theto region is used as a queue and needs to be scanned and redirected in
very similar ways.

4 Typed regions

Our new system of typed regions solves all of those problems. It can be thought of as
a hybrid between alias-types and the calculus of capabilities [3] supplemented with the
calculus of inductive constructions (CiC), similarly toλH [16]. Where alias-types rely
on alinear map of live locations’ types and the calculus of capabilities relies on a linear
set of live regions, we rely on a linear map of regions’ types.

In a typical region calculus, the type of the object reachable from a pointer (its
target) is entirely given by the type of the pointer. In contrast, in the alias-types system,
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(kinds) κ ::= Ω | R κ | κ → κ
(regions) ρ ::= r | ν
(types) σ, ϕ, τ ::= t | int | σ × σ | τ at ρ.n

| ∀[∆]{Θ}(~σ) → 0

(heap type) Ψ ::= • | Ψ, ν.n 7→ τ
(type env) Γ ::= • | Γ, x :σ
(kind env) ∆ ::= • | ∆, t :κ
(region env) Θ ::= • | Θ, ρ 7→(ϕ, n)

(values) v ::= x | i | (v, v) | ν.n | λ[∆]{Θ}(Γ).e
(operations) op ::= v | πiv | put[ρ, τ ] v | get v

(terms) e ::= v[~ϕ](~v) | halt v | let x = op in e | set v
ϕ
:= v; e

| let r = newrgn ϕ in e | freergn ρ; e

Fig. 3.Syntax of the core of our language.

the type of the pointer does not provide any direct information about the type of the
target; instead, the target’s type is kept in a linearly managedtype mapindexed by the
pointer’s type, which is the singleton type holding the object’s location. Our new type
system mixes the two, such that the pointer’s type holds both the location and some
information (called theintended type) about the object to which it points, while the
remaining information is kept in a map of regions’ types. The type of a region is a
function that maps an object’s location and its intended type to its actual type.

4.1 Overview

The syntax of a trimmed down version of our language, shown in Fig. 3, looks like the
simple region calculus presented before, except for the following differences:

– The region environmentΘ now contains not only a list of live regions, but a map
from live regions to their typeϕ and sizen.

– Pointer types have the formτ at ρ.n rather than justσ at ρ, wheren is the offset
inside the region. Such a pointer does not point to an object of typeτ . Instead, we
force an indirection through the regions’ type such that the target’s type isΘ(ρ) n τ .
Think of τ as theintended typeof the location whileΘ(ρ) maps those intended
types to their actual value at any particular time.

– The region kind now takes a parameterκ. If ρ : R κ, then the region’s type will be
of kind Nat → κ → Ω and the termτ in τ at ρ.n will have to have kindκ.

– Just as before, a valueν.n has type(Ψ(ν.n)) at ν.n butΨ(ν.n) can now be of any
kind rather than onlyΩ.

– put takes an additional parameterτ and returns a pointer of typeτ at ρ.n after
checking thatv :Θ(ρ) n τ .

– set is now a strong update: it changes the type of the location toϕ which has kind
κ → Ω. This type needs to be provided because there are many valid choices and
they are not all equivalent.

– newrgn now takes a parameterϕ which is the initial type of the region.

A region’s typeΘ(ρ) which ignores the location parametern corresponds to a clas-
sical intuitionistic region system where aliases cannot be distinguished; pointer types
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will then typically be of the form∃n.τ at ρ.n since static tracking ofn is unnecessary.
On the other hand, if the type ignores theτ parameter, then it enjoys properties more
like those of linear systems such as alias-types: you have to statically keep track of the
exact locationn, you can abstract away the intended type by using∃t.t at ρ.n, and you
can change the type of a location without any regard to its previous use. The strength
of our system resides in the fact that we can choose at any point from a continuum of
options between those two extremes.

As mentioned, this system solves the three problems we have encountered when
trying to code our generational GC: Thebefore b test can simply compareb to the offset
n of the pointer since it is now carried in its type; Since all objects in a region have a type
of the formΘ(ρ) n t, setting the region’s type to something likeC makes sure thatfirst
indeed returns a pointer to an object of typeC(t); Finally, sinceΘ is managed linearly
and since all memory accesses have to look up the target’s type inΘ, we can globally
update the type of objects when we move the boundary by updating the corresponding
type inΘ.

4.2 The language

The syntax of the full language is shown in Fig. 4. The language uses continuation
passing style and fully closed functions.sortandptmtogether form the pure type system
corresponding to CiC. All our types are actually terms of this language andΩ is actually
defined as an inductive definition in CiC.M,Ψ,Γ,∆,Θ are environments used in the
typing rules.

The region spec stored in the region environmentΘ is either the type of the region
together with its size(ϕ, n) or the set of regions for which this region can be an alias.
This is used when it is not statically known into which region a reference will point, in
which case, the reference will have type∃r∈~ρ.τ at r.n.

Values can be integers, pairs ((v, v) :σ × σ), references (ν.n : τ at ν.n), existential
packages (〈ϕ, v〉 :∃t :κ.σ), region existential packages (〈ρ, v〉 :∃r∈~ρ.σ) and functions.
The terms do the following:

πiv: select from a tuple.
put[ρ, τ ] v: allocate an objectv in regionρ.
get v: return the object pointed to byv.
cast[P ] v: safely change the type ofv according to proofP .
v[~ϕ](~v): make a tail-call to functionv.
halt v: halt the machine.
let x :σ = op in e: bind variablex as you would expect.
set v

ϕ
:= v; e: do a strong update.ϕ describes the new type of the location.

let r = newrgn ϕ in e: allocate a new region of typeϕ.
freergn ρ; e: free the regionρ.
cast[P ] ρ 7→ ϕ; e: safely change the type of regionρ to ϕ, with proofP .
let 〈t, x〉 = open v in e: unpack the existentialv into t andx.
let 〈r, x〉 = openrgn v in e: unpack the region existentialv into r andx.
iffirst ρ (x, t . e) (e): test whetherρ is empty and selects the corresponding branch. If

non-empty,x is bound to a pointer to the first object andt to its type.
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(sort) s ::= Kind | Kscm | Ext
(ptm) ϕ, τ, κ, P ::= s | x | λx :ϕ. ϕ | ϕ ϕ | Πx :ϕ. ϕ

| Ind(x :ϕ){~ϕ} | Ctor (i, ϕ) | Elim[ϕ, ϕ](ϕ){~ϕ}

(memory) M ::= • | M, ν.n 7→ v
(heap type) Ψ ::= • | Ψ, ν.n 7→ τ
(type env) Γ ::= • | Γ, x :σ
(kind env) ∆ ::= • | ∆, t :κ
(region env) Θ ::= • | Θ, ρ 7→θ
(region spec) θ ::= (ϕ, n) | ~ρ

(regions) ρ :R κ ::= r | ν
(types) σ :Ω ::= int | σ × σ | τ at ρ.n | ∃t :κ.σ | ∃r∈~ρ.σ | ∀[∆]{Θ}(~σ) → 0

(values) v ::= x | i | (v, v) | ν.n | 〈ϕ, v〉 | 〈ρ, v〉 | λ[∆]{Θ}(Γ).e
(operations) op ::= v | πiv | put[ρ, τ ] v | get v | cast[P ] v

(terms) e ::= v[~ϕ](~v) | halt v | let x :σ = op in e | set v
ϕ
:= v; e

| let r = newrgn ϕ in e | freergn ρ; e | cast[P ] ρ 7→ ϕ; e
| let 〈t, x〉 = open v in e | let 〈r, x〉 = openrgn v in e
| iffirst ρ (x, t . e) (e) | ifnext v+i (x, t . e) (e)

Fig. 4.Syntax of the language

ifnext v+i (x, t . e) (e): similarly, give a pointer to the next object pastv, if any. i is
the size of the object pointed to byv and thus skipped by the operation.

We have decided to manipulate whole objects rather than words and not to split
allocation from initialization. It is easy to change the language to providealloc, load,
andstore instead ofput, get, andset, but the typing rules become more verbose and
so does the code in our examples.

The operational semantics of the language are shown in Fig. 5. The machine state
is define as the 4-tuple(M ; Θ; Ψ; e) whereΘ is only used when checking the size of a
region iniffirst andifnext, andΨ is only used to provide the type of the pointer in those
same two operations. Instead of checking the size inΘ, we could look upM(ν.n) to
see if it exists, which would get us rid ofΘ, but that would move us further away from
a realistic implementation.

The typing rules are given in the appendix, together with statements of type sound-
ness and complete collection properties.

5 Generational collection

As suggested earlier, we will use a simple form of generational collection, so as to side-
step the issue of keeping track of the back references from the old generation to the
nursery. So our source language is restricted to the following types: integers, immutable
pairs, reference cells.
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(M ; Θ;Ψ; ν.n[−→ϕ ](−→v ))

whereM(ν.n) = λ[
−→
t :κ]{Θ′}(−−→x :σ).e

=⇒ (M ; Θ;Ψ; e[~ϕ,~v/~t, ~x])

(M ; Θ;Ψ; let x = v in e) =⇒ (M ; Θ;Ψ; e[v/x])

(M ; Θ;Ψ; let x = πi(v1, v2) in e) =⇒ (M ; Θ;Ψ; e[vi/x])

(M ; Θ, ν 7→(ϕ, n);Ψ;
let x = put[ν, τ ] v in e)

=⇒ (M, ν.n 7→ v; Θ, ν 7→(ϕ, n+1);
Ψ, ν.n 7→ τ ; e[ν.n/x])

(M ; Θ;Ψ; let x = get ν.n in e) =⇒ (M ; Θ; Ψ; e[M(ν.n)/x])

(M ; Θ;Ψ; let x = cast[P ] v in e) =⇒ (M ; Θ;Ψ; e[v/x])

(M ; Θ;Ψ; let 〈t, x〉 = open 〈ϕ, v〉 in e) =⇒ (M ; Θ; Ψ; e[ϕ, v/t, x])

(M ; Θ;Ψ; let 〈r, x〉 = openrgn 〈ν, v〉 in e) =⇒ (M ; Θ;Ψ; e[ν, v/r, x])

(M ; Θ;Ψ; let r = newrgn ϕ in e) =⇒ (M ; Θ, ν 7→ (ϕ, 0);Ψ; e[ν/r])
whereν 6∈ Dom(Θ)

(M ; Θ;Ψ; freergn ν; e) =⇒ (M\ν; Θ\ν; Ψ\ν; e)

(M ; Θ, ν 7→(ϕ′, n);Ψ; cast[P ] ν 7→ ϕ; e) =⇒ (M ; Θ, ν 7→(ϕ, n);Ψ; e)

(M ; Θ, ν 7→(ϕ′, n′);Ψ; set ν.n
ϕ
:= v; e) =⇒ (M, ν.n 7→ v; Θ, ν 7→(upd ϕ′ n ϕ, n′);Ψ; e)

(M ; Θ;Ψ;
iffirst ν (x, t . e1) (e2))

=⇒

{
(M ; Θ;Ψ; e2) if Θ(ν) = (ϕ, 0)

(M ; Θ; Ψ; e1[τ, ν.0/t, x]) whereΨ(ν.0) = τ

(M ; Θ;Ψ;
ifnext ν.n+i (x, t . e1) (e2))

=⇒

{
(M ; Θ; Ψ; e2) if Θ(ν) = (ϕ, n+1)

(M ; Θ;Ψ; e1[τ, ν.n+1/t, x]) whereΨ(ν.n+1) = τ

Fig. 5.Operational semantics of the language.

We will use three regions:O is the old generation,Y is the nursery andR contains
all the ref-cells and only ref-cells. ThusR can act as a degenerate form of remembered
set. We require that pointers fromO can only point toO or R but not toY .

The type of our variables have the shapeMO,R,Y (τ) defined below:

MO,R,A(int) ⇒ int
MO,R,A(ref τ) ⇒ ∃n :Nat.τ at R.n
MO,R,A(τ1 × τ2) ⇒ ∃r∈{O,A}.∃n :Nat.(τ1, τ2) at r.n

The regions’ types while the mutator is running look like:

Y 7→ λn.λ(t1, t2).MO,R,Y (t1)×MO,R,Y (t2)
O 7→ λn.λ(t1, t2).MO,R,O(t1)×MO,R,O(t2)
R 7→ λn.λt.MO,R,Y (t)

and while a collection copying objects fromY to O is in progress and pointers inR are
redirected fromY to O, the type ofR is the following:

R 7→ λn.λt.let r = if m > n then O else Y in MO,R,r(t)

The top-level code of the GC code that copies objects from the nurseryY to the old
spaceO is shown in figure 6. We omit type parameters that are obvious from context
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(* Inductive definition of the source-level types. *)
Inductive Ωτ : Kind := int : Ωτ | ref : Ωτ → Ωτ | pair : Ωτ → Ωτ → Ωτ

(* Mapping types from source-level to low-level. *)
typedef Mo,r,a t = case t of int ⇒ int

| ref t ⇒ ∃n :Nat.t at r.n
| pair t1 t2 ⇒ ∃b∈{o, a}.∃n :Nat.(t1, t2) at b.n

(* Type of a region holding tuples, like o and y. *)
typedef TupRgn o r a = λn.λ(t1, t2).Mo,r,a(t1)×Mo,r,a(t2)

(* Type of a region holding ref cells, during redirection. *)
typedef RefRgn o r y b = λn.λt.let a = if (b > n) o y in Mo,r,a(t)

(* Type of the continuation passed to the GC. *)
typedef gccont = ∀[y :R (Ωτ × Ωτ )]{. . .}(x :Mo,r,y(t)) → 0

(* A deep copy function not shown here. *)
copy : ∀[t :Ωτ , b :Nat, . . .]{. . .}(Mo,r,y(t)) → Mo,r,o(t)

(* Main entry point. h is the root pointer and t is its type. *)
GC [t :Ωτ , . . . ]

{y 7→ (TupRgn o r y, my), o 7→ (TupRgn o r o, mo), r 7→ (λn.λt.Mo,r,y(t), mr)}
(h :Mo,r,y(t), k :gccont)

= let h = copy[t, 0, y, r, o](h) in
iffirst r then x, t′ . redirect[t, 0, t′, y, r, o](x, h, k) else GCtail[t, y, r, o](h, k)

(* Code to execute at the end of GC when redirection is done. *)
GCtail [t :Ωτ , . . . ]

{y 7→ (TupRgn o r y, my), o 7→ (TupRgn o r o, mo), r 7→ (RefRgn o r y mr, mr)}
(h :Mo,r,o(t), k :gccont)

= freergn y;
let y = newrgn (λ : (Ωτ × Ωτ ). int) in
cast[. . . ] r 7→ (λn.λt.Mo,r,y(t));
cast[. . . ] y 7→ (TupRgn o r y);
k[y](cast[. . . : Mo,r,o(t) / Mo,r,y(t)] h)

(* Loop through the ref cells, redirecting ptrs from y to o. *)
(* h is the root pointer that we need to pass back to GCtail . *)
(* x is the boundary pointer that sweeps through r. *)
redirect [t :Ωτ , b :Nat, t′ :Ωτ , . . . ]

{y 7→ (TupRgn o r y, my), o 7→ (TupRgn o r o, mo), r 7→ (RefRgn o r y b, mr)}
(x : t at r.b, h :Mo,r,o(t

′), k :gccont)

= set x
Mo,r,o

:= copy[t, b, y, r, o](〈y, get x〉);
cast[. . . ] r 7→ (RefRgn o r y (b+1));
ifnext x+1 then x, t . redirect[t, b+1, t′, y, r, o](x, h, k) else GCtail[t, y, r, o](h)

Fig. 6.Generational GC

and use direct-style rather than continuation passing style where convenient, to make the
code more readable. The code of thecopy function is not shown and requires additions
to our language which are outside the scope of this paper.
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Since the types of regions themselves refer to those regions, there is a circularity
problem when we create a region that prevents us from creating the region with its
proper type. InGCtail we show how to work around this problem usingcast: we first
createY with a dummy type, and then cast it to the desired type (the proof needs to
show that the new type preserves the type of all objects in the region; this is trivial since
the region is empty). The language could allow the type of a new region to refer to
that new region, but that would still not help when creating several regions whose types
refer to each other.

6 Related work

The calculus of capabilities [3] was the first calculus that tried to provide safe explicit
memory deallocation while allowing dangling pointers. The linear handling of our re-
gions was strongly influenced by that work. But they did not attempt to provide any
form of strong update or to solve any of the other problems related to low-level mem-
ory management.

Alias types [17, 20] also have a lot in common. In that work, strong update is the
only form of update available. Separating object initialization from allocation is very
easy, as is explicit deallocation and memory reuse. But the calculus keeps the notion of
location abstract, preventing any reasoning on the relative position of memory objects.
Also the flexibility comes at the cost of requiring a static description of all the possible
aliases of the object being assigned to. This information is often simply not available.

The Vault language [4] takes the work on alias types and tries to both extend it and
give it a surface syntax (so as to enable to programmer to give that needed aliasing
information). In the first paper, they mostly show how to integrate classical intuition-
istic references with alias-types-style statically tracked references. They also show that
tracking references to region objects allows an alias-type system to subsume a region
type system. The main limitation compared to our work is that you have to choose once
and for all whether a reference should be intuitionistic or linear (i.e.tracked).

In the second paper [5] they try to address that limitation by introducing the notions
of adoptionwhich allows the user to make a linear reference intuitionistic, andfocus
which does the converse. The implementation ofadoptionis unclear and seems some-
what incompatible with a low-level language. As forfocus, it allows some of what we
want (such as strong update in the presence of arbitrary aliasing), except for the fact that
the restrictions are much too severe, especially the one that requires the type change to
be limited to the scope of the construct.

In the work on Typed Assembly Language [12], the authors shows a simple way to
handle the problem of separating allocation from object initialization, without resorting
to any form of linearity, but this approach is inherently very limited and does not seem
to lend itself to any other application.

Wang and Appel [21] proposed to build a tracing garbage collector on top of a
region-based calculus, thus providing both type safety and completely automatic mem-
ory management. Their type system does not support existential packages, so they have
to rely on a closure conversion algorithm that represents closures as datatypes [19, 15].
This makes closures transparent, making it easy for the copy function to analyze, but it
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requires whole program analysis and has major drawbacks in the presence of separate
compilation. More importantly, their algorithm does not address the problems linked to
cycles or generations, and only presents an impractical treatment of forwarding point-
ers.

Monnier et al. [10] has shown how to use intensional type analysis [7] to solve the
more serious problems of Wang and Appel’s work and to extend it to deal with a very
primitive form of generational collection, but which does not allow cycles or even any
form of destructive assignment on the part of the mutator.

Shao et al. [16] proposed to use CiC as the type calculus of programming language
so as to be able to manipulate explicit proofs. We reuse their idea with the same purpose
of allowing sophisticated type manipulation and arbitrarycast operations.

7 Conclusion

We have presented a novel type system that offers an unusual flexibility to play with the
typing of memory locations. This type system offers the ability to choose any mix of
linear or intuitionistic typing of references and to change this choice over time to adapt
it to the current needs. It is able to handle strong update of memory locations even in the
presence of unknown aliasing patterns. The reliance on CiC allows very sophisticated
type manipulations.

We have shown how to use it to solve the difficult problem of type checking a
generational garbage collector, including proper handling of cycles and while allowing
the mutator to perform destructive assignment on reference cells. We have also shown
how to use this same type system to encode a stack of activation records inside a region.
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(sort) s ::= Kind | Kscm | Ext
(ptm) ϕ ::= s | x | λx :ϕ. ϕ | ϕ ϕ | Πx :ϕ. ϕ

| Ind(x :ϕ){~ϕ} | Ctor (i, ϕ) | Elim[ϕ, ϕ](ϕ){~ϕ}

Fig. 7.Syntax of the calculus of inductive constructions.

A Calculus of constructions

The syntax of CiC is shown in Fig 7. Theλ term corresponds to the abstraction of theλ-
calculus, and theΠ term is a dependent product type. When the bound variable does not
occur in the body, the product type is usually abbreviated asϕ → ϕ. In the terminology
of pure type systems,Kind, Kscm, andExt are the sorts.

CiC, as its name implies, extends the calculus of constructions with inductive defini-
tions. An inductive definition can be written in a syntax similar to that of ML datatypes.
For example, the following introduces an inductive definition of polymorphic lists:

Ind(List :Kind → Kind){nil : Πx.List x | cons : Πx.x → List x → List x}

The logic also provides elimination constructs for inductive definitions, which com-
bine case analysis with a fixpoint operation. Objects of an inductive type can thus be
iterated over using these constructs. In order for the induction to be well-founded and
for iterators to terminate, a few constraints are imposed on the shape of inductive defini-
tions; most importantly, the defined type can only occur positively in the arguments of
its constructors.The calculus of inductive constructions has been shown to be strongly
normalizing [23], hence the corresponding logic is consistent.

In the remainder of this paper, we will use more familiar mathematical notation ,
rather than the strict definition of CiC syntax given in this section. For example, induc-
tive definitions will be presented in BNF format. We will, however, retain theΠ nota-
tion, which can generally be read as a universal quantifier.

B Typing rules

The typing rules for the terms of our language are given here in Fig. 9 and 10. Those
rules use the two following auxiliary type functions:

upd ϕ n ϕ′ = λm.λt.if (m = n) (ϕ′ t) (ϕ m t)

size(σ1 × σ2) ⇒ size(σ1) + size(σ2)
size(∃t :κ.σ) ⇒ size(σ)
size(∃r∈~ρ.σ) ⇒ size(σ)
size( ) ⇒ 1

The main judgments are:

– Ψ;∆;Θ; Γ ` v : σ if v has typeσ in the given environment.
– Ψ;∆; Θ; Γ ` e if e is well-formed under the given environment.
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�� ��` ∆ ∆ ` Γ ` Ψ ∆ ` Θ Ψ; Θ ` M

` •
` ∆ ∆ ` t : κ

` ∆, t :κ

∆ ` σi : Ω

∆ ` x0 :σ0, . . . , xn :σn

• ` ϕij : κ • ` νi : R κ

` ν0.0 7→ ϕ00, . . . , νm.n 7→ ϕmn

∆ ` ρi 7→θi

∆ ` ρ0 7→ θ0, . . . , ρn 7→ θn

∆ ` ρ : R κ ∆ ` ρi : R κ

∆ ` ρ 7→~ρ

∆ ` ρ : R κ ∆ ` ϕ : Nat → κ → Ω

∆ ` ρ 7→(ϕ, n)

∀j :0..ni−1 . Ψ; •; •; • ` M(νi.j) : ϕi j (Ψ(νi.j))

Ψ; ν0 7→ (ϕ0, n0), . . . , νn 7→ (ϕn, nn) ` M

Ψ; Θ ` M Ψ; Θ; •; • ` e

` (M ; Θ; Ψ; e)

Fig. 8.Environment formation rules.

– Ψ;∆; Θ; Γ ` v 7→ σ if v points to an object of typeσ.
– σ / σ′ if σ is a subtype ofσ′.
– Θ ` ρ ∈ ~ρ if ρ is indeed one of~ρ.
– Θ ` Θ′ if Θ′ can be used in lieu ofΘ because it contains the same regions with the

same types (but they can differ w.r.t. to region aliases).

The typing rules for environments are given in Fig. 8 together with the definition of
a well-formed machine statè(M ; Θ; Ψ; e).

B.1 Properties of the language

We state here a few lemmas used in the proof of type soundness. The proofs can be
found in the companion technical report [11]. Since our type language is CiC, we know
it is strongly normalizing and confluent.

The proofs of the lemmas below do not present any unusual difficulty, contrary to
what was the case in [10] where thewiden operator introduced a lot of extra trouble.
The substitution lemma for types turned out to be simpler than expected when substi-
tutingν for r in aΘ such as{r 7→ν, ν 7→ . . .}.

One annoyance is thatΨ;∆; Θ; Γ ` v : σ has to be re-proven each timeΘ is
changed. Luckily, reconstructing the new proof is simple sinceΘ is only used in those
rules in order to verify that the witness of a package of type∃r∈~ρ.σ is indeed in~ρ.

Lemma 1 (Subsumption).
If σ / σ′ andΨ;∆;Θ; Γ ` v : σ thenΨ;∆; Θ; Γ ` v : σ′.

Lemma 2 (Deallocation).
If Ψ;∆;Θ; Γ ` e andρ 6∈ Dom(Θ) thenΨ\ρ;∆;Θ; Γ ` e.

Lemma 3 (Substitution).
If Ψ;∆;Θ; Γ ` v : σ then:

– If Ψ;∆; Θ; Γ{x :σ} ` v′ : σ′ thenΨ;∆;Θ; Γ ` v′[v/x] : σ′.
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�� ��Ψ;∆;Θ; Γ ` e

Ψ;∆; Θ; Γ ` v 7→ ∀[−→t :κ]{Θ′}(~σ) → 0

• ` ~σ :
−→
t :κ Θ ` Θ′[~σ/~t] Ψ; ∆; Θ; Γ ` vi : σi[~σ/~t]

Ψ;∆;Θ; Γ ` v[~σ](~v)

Ψ;∆; •; Γ ` v : int
Ψ;∆; •; Γ ` halt v

Ψ; ∆; Θ; Γ ` v : ϕ n τ
Ψ;∆;Θ, ρ 7→(ϕ, n+1); Γ, x :τ at ρ.n ` e

Ψ;∆;Θ, ρ 7→(ϕ, n); Γ ` let x = put[ρ, τ ] v in e

Ψ; ∆;Θ; Γ ` op : σ Ψ;∆; Θ; Γ, x :σ ` e

Ψ;∆;Θ; Γ ` let x :σ = op in e

Ψ; ∆;Θ; Γ ` e

Ψ;∆;Θ, ρ 7→(ϕ, n); Γ ` freergn ρ; e

Ψ;∆;Θ, ρ 7→(ϕ′, n); Γ ` e ∆ ` ρ : R κ
∆ ` P : Πi :0..n−1. Πt :κ. (ϕ i t) / (ϕ′ i t)

Ψ;∆;Θ, ρ 7→(ϕ, n); Γ ` cast[P ] ρ 7→ ϕ′; e

∆ ` ϕ : Nat → κ → Ω
Ψ;∆, r :R κ; Θ, r 7→(ϕ, 0); Γ ` e

Ψ;∆; Θ; Γ ` let r = newrgn ϕ in e

Ψ; ∆;Θ, ρ 7→(ϕ, n); Γ ` v : τ at ρ.m
Ψ;∆;Θ, ρ 7→(ϕ, n); Γ ` v′ : ϕ′ τ size(ϕ′ τ) = size(ϕ m τ)

Ψ; ∆;Θ, ρ 7→(upd ϕ m ϕ′, n); Γ ` e

Ψ;∆; Θ, ρ 7→(ϕ, n); Γ ` set v
ϕ′
:= v′; e

Ψ; ∆;Θ; Γ ` v : ∃r′∈~ρ.σ ∆ ` ρi : R κ
Ψ;∆, r :R κ; Θ, r 7→~ρ; Γ, x :σ[r/r′] ` e

Ψ;∆;Θ; Γ ` let 〈r, x〉 = openrgn v in e

Ψ; ∆; Θ; Γ ` v : ∃t′ :κ.σ
Ψ;∆, t :κ; Θ; Γ, x :σ[t/t′] ` e

Ψ;∆;Θ; Γ ` let 〈t, x〉 = open v in e

∆ ` ρ : R κ Ψ;∆; Θ, ρ 7→(ϕ, 0); Γ ` e2

Ψ; ∆, t :κ; Θ, ρ 7→(ϕ, n); Γ, x : t at ρ.0 ` e1

Ψ;∆;Θ, ρ 7→(ϕ, n); Γ ` iffirst ρ (x, t . e1) (e2)

Ψ;∆;Θ; Γ ` v 7→ σ i = size σ
Ψ;∆;Θ; Γ ` v : τ at ρ.m Ψ;∆; Θ, ρ 7→(ϕ, m+1); Γ ` e2

∆ ` ρ : R κ Ψ;∆, t :κ; Θ, ρ 7→(ϕ, n); Γ, x : t at ρ.m+1 ` e1

Ψ;∆;Θ, ρ 7→(ϕ, n); Γ ` ifnext v+i (x, t . e1) (e2)

Fig. 9.Static semantics of the language.

– If Ψ;∆; Θ; Γ{x :σ} ` e thenΨ;∆;Θ; Γ ` e[v/x].

If ∆ ` ϕ : κ then:

– If Ψ;∆{t :κ}; Θ; Γ ` v : σ thenΨ;∆[ϕ/t]; Θ[ϕ/t]; Γ[ϕ/t] ` v[ϕ/t] : σ[ϕ/t].
– If Ψ;∆{t :κ}; Θ; Γ ` e thenΨ;∆[ϕ/t]; Θ[ϕ/t]; Γ[ϕ/t] ` e[ϕ/t].

Lemma 4 (Type Preservation).
If ` (M ; Θ; Ψ; e) and(M ; Θ; Ψ; e) =⇒ (M ′; Θ′; Ψ′; e′) then` (M ′; Θ′; Ψ′; e′).
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�� ��Ψ;∆;Θ; Γ ` v : σ

Ψ;∆;Θ; Γ ` n : int Ψ; ∆;Θ; Γ ` x : Γ(x)

Ψ; ∆; Θ; Γ ` vi : σi

Ψ;∆; Θ; Γ ` (v1, v2) : σ1 × σ2

ν.n ∈ Dom(Ψ) ⇒ τ = Ψ(ν.n)

Ψ;∆;Θ; Γ ` ν.n : τ at ν.n

Ψ; ∆;Θ;−−→x :σ ` e

Ψ;∆′; Θ′; Γ ` λ[∆]{Θ}(−−→x :σ).e : ∀[∆]{Θ}(~σ) → 0

∆ ` ϕ : κ Ψ;∆; Θ; Γ ` v : σ[ϕ/t]

Ψ;∆;Θ; Γ ` 〈ϕ, v〉 : ∃t :κ.σ

Ψ;∆; Θ; Γ ` v : σ[ρ/r]
∆ ` ρ : R κ ∆ ` ρi : R κ Θ ` ρ ∈ ~ρ

Ψ;∆; Θ; Γ ` 〈ρ, v〉 : ∃r∈~ρ.σ�� ��Θ ` ρ ∈ ~ρ Ψ;∆;Θ; Γ ` v 7→ σ Ψ;∆;Θ; Γ ` op : σ

ρ ∈ ~ρ

Θ ` ρ ∈ ~ρ

Θ ` ρi ∈ ~ρ′

Θ, ρ 7→~ρ ` ρ ∈ ~ρ′

Θ(ρ) = (ϕ, m)

Θ ` τ at ρ.n 7→ ϕ n τ

Θ ` τ at ρi.n 7→ σ[ρi/ρ]

Θ, ρ 7→~ρ ` τ at ρ.n 7→ σ

Ψ;∆;Θ; Γ ` v : τ at ρ.n Θ ` τ at ρ.n 7→ σ

Ψ;∆;Θ; Γ ` v 7→ σ

Ψ;∆;Θ; Γ ` v 7→ σ

Ψ;∆; Θ; Γ ` get v : σ

Ψ;∆;Θ; Γ ` v : σ1 × σ2

Ψ;∆;Θ; Γ ` πiv : σi

Ψ; ∆;Θ; Γ ` v : σ′ ∆ ` P : σ′ / σ

Ψ;∆; Θ; Γ ` cast[P ] v : σ�� ��Θ `live ρ ∆ ` ~σ : ~t :κ Θ ` Θ′ σ / σ′

Θ, ρ 7→(ϕ, n) `live ρ

Θ `live ρi

Θ, ρ 7→~ρ `live ρ

∆ ` σ : κ ∆ ` ~σ :
−→
t :κ[σ/t]

∆ ` σ, ~σ : t :κ,
−→
t :κ

Θ ` Θ

Θ ` Θ′

Θ, ρ 7→(ϕ, n) ` Θ′, ρ 7→(ϕ, n)

Θ ` Θ′ Θ ` ρ ∈ ~ρ′

Θ ` Θ′, ρ 7→ ~ρ′

Θ ` Θ′

Θ, ρ 7→ ~ρ′ ` Θ′

σ / σ

σ1 / σ′
1 σ2 / σ′

2

σ1 × σ2 / σ′
1 × σ′

2

~ρ ⊂ ~ρ′ σ / σ′

∃r∈~ρ.σ / ∃r∈ ~ρ′.σ′

Fig. 10.Typing values and operations, with auxiliary rules.

Lemma 5 (Progress).
If ` (M ; Θ; Ψ; e) then eithere = halt v or there exists a state(M ′; Θ′; Ψ′; e′) such
that (M ; Θ; Ψ; e) =⇒ (M ′; Θ′; Ψ′; e′).

Lemma 6 (Complete Collection).
If ` (M ; Θ; Ψ; e) and(M ; Θ; Ψ; e) =⇒∗ (M ′; Θ′; Ψ′; e′)
and∀ν.n ∈ Dom(M) . ν ∈ Dom(Θ) then∀ν.n ∈ Dom(M ′) . ν ∈ Dom(Θ′).
In particular, if e′ = halt v thenM ′ = •.
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