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Abstract

A certified binary is a value together with a proof that the value
satisfies a given specification. Existing compilers that generate cer-
tified code have focused on simple memory and control-flow safety
rather than more advanced properties. In this paper, we present
a general framework for explicitly representing complex proposi-
tions and proofs in typed intermediate and assembly languages.
The new framework allows us to reason about certified programs
that involve effects while still maintaining decidable typechecking.
We show how to integrate an entire proof system (the calculus of
inductive constructions) into a compiler intermediate language and
how the intermediate language can undergo complex transforma-
tions (CPS and closure conversion) while preserving proofs rep-
resented in the type system. Our work provides a foundation for
the process of automatically generating certified binaries in a type-
theoretic framework.

1 Introduction

Proof-carrying code (PCC), as pioneered by Necula and Lee [30,
28], allows a code producer to provide a machine-language pro-
gram to a host, along with a formal proof of its safety. The proof
can be mechanically checked by the host; the producer need not be
trusted because a valid proof is incontrovertible evidence of safety.

The PCC framework is general because it can be applied to cer-
tify arbitrary data objects with complex specifications [29, 2]. For
example, the Foundational PCC system [3] can certify any property
expressible in Church’s higher-order logic. Harper et al. [19, 7]
call all these proof-carrying constructs certified binaries (or deliv-
erables [7]). A certified binary is a value (which can be a function,
a data structure, or a combination of both) together with a proof
that the value satisfies a given specification.

Unfortunately, little is known on how to construct or generate
certified binaries. Existing certifying compilers [31, 9] have fo-
cused on simple memory and control-flow safety only. Typed inter-
mediate languages [21] and typed assembly languages [27] are ef-
fective techniques for automatically generating certified code; how-
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ever, none of these type systems can rival the expressiveness of the
actual higher-order logic as used in some PCC systems [3].

In this paper, we present a type-theoretic framework for con-
structing, composing, and reasoning about certified binaries. Our
plan is to use the formulae-as-types principle [23] to represent
propositions and proofs in a general type system, and then to in-
vestigate their relationship with compiler intermediate and assem-
bly languages. We show how to integrate an entire proof system
(the calculus of inductive constructions [34, 11]) into an intermedi-
ate language, and how to define complex transformations (CPS and
closure conversion) of programs in this language so that they pre-
serve proofs represented in the type system. Our paper builds upon
a large body of previous work in the logic and theorem-proving
community (see Barendregt et al. [5, 4] for a good summary), and
makes the following new contributions:

• We show how to design new typed intermediate languages
that are capable of representing and manipulating proposi-
tions and proofs. In particular, we show how to maintain
decidability of typechecking when reasoning about certified
programs that involve effects. This is different from the work
done in the logic community which focuses on strongly nor-
malizing (primitive recursive) programs.

• We maintain a phase distinction between compile-time type-
checking and run-time evaluation. This property is often lost
in the presence of dependent types (which are necessary for
representing proofs in predicate logic). We achieve this by
never having the type language (see Section 3) dependent on
the computation language (see Section 4). Proofs are instead
always represented at the type level using dependent kinds.

• We show how to use propositions to express program invari-
ants and how to use proofs to serve as static capabilities. Fol-
lowing Xi and Pfenning [44], we use singleton types [22]
to support the necessary interaction between the type and
computation languages. We can assign an accurate type to
unchecked vector (or array) access (see Section 4.2). Xi and
Pfenning [44] can achieve the same using constraint check-
ing, but their system does not support arbitrary propositions
and (explicit) proofs, so it is less general than ours.

• We use a single type language to typecheck different com-
piler intermediate languages. This is crucial because it is im-
practical to have separate proof libraries for each intermedi-
ate language. We achieve this by using inductive definitions
to define all types used to classify computation terms. This in
turn nicely fits our work on (fully reflexive) intensional type
analysis [39] into a single system.

• We show how to perform CPS and closure conversion on our
intermediate languages while still preserving proofs repre-



sented in the type system. Existing algorithms [27, 20, 25, 6]
all require that the transformation be performed on the entire
type language. This is impractical because proofs are large
in size; transforming them can alter their meanings and break
the sharing among different languages. We present new tech-
niques that completely solve these problems (Sections 5–6).

• Our type language is a variant of the calculus of inductive
constructions [34, 11]. Following Werner [41], we give rig-
orous proofs for its meta-theoretic properties (subject reduc-
tion, strong normalization, confluence, and consistency of
the underlying logic). We also give the soundness proof for
our sample computation language. See Sections 3–4, the ap-
pendix, and the companion technical report [37] for details.

As far as we know, our work is the first comprehensive study on
how to incorporate higher-order predicate logic (with inductive
terms and predicates) into typed intermediate languages. Our re-
sults are significant because they open up many new exciting pos-
sibilities in the area of type-based language design and compila-
tion. The fact that we can internalize a very expressive logic into
our type system means that formal reasoning traditionally done at
the meta level can now be expressed inside the actual language it-
self. For example, much of the past work on program verification
using Hoare-like logics may now be captured and made explicit in
a typed intermediate language.

From the standpoint of type-based language design, recent
work [21, 44, 13, 15, 40, 39] has produced many specialized,
increasingly complex type systems, each with its own meta-
theoretical proofs, yet it is unclear how they will fit together. We
can hope to replace them with one very general type system whose
meta theory is proved once and for all, and that allows the definition
of specialized type operators via the general mechanism of induc-
tive definitions. For example, inductive definitions subsume and
generalize earlier systems on intensional type analysis [21, 14, 39].

We have started implementing our new type system in the
FLINT compiler [35, 36], but making the implementation realis-
tic still involves solving many remaining problems (e.g., efficient
proof representations). Nevertheless, we believe our current contri-
butions constitute a significant step toward the goal of providing a
practical end-to-end compiler that generates certified binaries.

2 Approach

Our main objectives are to design typed intermediate and low-level
languages that can directly manipulate propositions and proofs, and
then to use them to certify realistic programs. We want our type
system to be simple but general; we also want to support complex
transformations (CPS and closure conversion) that preserve proofs
represented in the type system. In this section, we describe the main
challenges involved in achieving these goals and give a high-level
overview of our main techniques.

Before diving into the details, we first establish a few naming
conventions that we will use in the rest of this paper. Typed inter-
mediate languages are usually structured in the same way as typed
λ-calculi. Figure 1 gives a fragment of a richly typed λ-calculus,
organized into four levels: kind schema (kscm) u, kind κ, type τ ,
and expression (exp) e. If we ignore kind schema and other exten-
sions, this is just the polymorphic λ-calculus Fω [18].

We divide each typed intermediate language into a type sub-
language and a computation sub-language. The type language con-
tains the top three levels. Kind schemas classify kind terms while
kinds classify type terms. We often say that a kind term κ has kind
schema u, or a type term τ has kind κ. We assume all kinds used
to classify type terms have kind schema Kind, and all types used to
classify expressions have kind Ω. Both the function type τ1 → τ2

THE TYPE LANGUAGE:

(kscm) u ::= Kind | . . .
(kind) κ ::= κ1→κ2 | Ω | . . .
(type) τ ::= t | λt :κ. τ | τ1 τ2 | τ1→τ2 | ∀t :κ. τ | . . .

THE COMPUTATION LANGUAGE:

(exp) e ::= x | λx :τ. e | e1 e2 | Λt :κ. e | e[τ ] | . . .

Figure 1: Typed λ-calculi—a skeleton

and the polymorphic type ∀t : κ. τ have kind Ω. Following the
tradition, we sometimes say “a kind κ” to imply that κ has kind
schema Kind, “a type τ” to imply that τ has kind Ω, and “a type
constructor τ” to imply that τ has kind “κ→ · · ·→Ω.” Kind terms
with other kind schemas, or type terms with other kinds are strictly
referred to as “kind terms” or “type terms.”

The computation language contains just the lowest level which
is where we write the actual program. This language will eventu-
ally be compiled into machine code. We often use names such as
computation terms, computation values, and computation functions
to refer to various constructs at this level.

2.1 Representing propositions and proofs

The first step is to represent propositions and proofs for a particular
logic in a type-theoretic setting. The most established technique
is to use the formulae-as-types principle (a.k.a. the Curry-Howard
correspondence) [23] to map propositions and proofs into a typed
λ-calculus. The essential idea, which is inspired by constructive
logic, is to use types (of kind Ω) to represent propositions, and
expressions to represent proofs. A proof of an implication P ⊃Q is
a function object that yields a proof of proposition Q when applied
to a proof of proposition P . A proof of a conjunction P ∧ Q is a
pair (e1, e2) such that e1 is a proof of P and e2 is a proof of Q. A
proof of disjunction P ∨Q is a pair (b, e)—a tagged union—where
b is either 0 or 1 and if b=0, then e is a proof of P ; if b=1 then e
is a proof of Q. There is no proof for the false proposition. A proof
of a universally quantified proposition ∀x∈B.P (x) is a function
that maps every element b of the domain B into a proof of P (b)
where P is a unary predicate on elements of B. Finally, a proof of
an existentially quantified proposition ∃x∈B.P (x) is a pair (b, e)
where b is an element of B and e is a proof of P (b).

Proof-checking in the logic now becomes typechecking in the
corresponding typed λ-calculus. There has been a large body of
work done along this line in the last 30 years; most type-based
proof assistants are based on this fundamental principle. Baren-
dregt et al. [5, 4] give a good survey on previous work in this area.

2.2 Representing certified binaries

Under the type-theoretic setting, a certified binary S is just a pair
(v, e) that consists of:

• a value v of type τ where v could be a function, a data struc-
ture, or any combination of both;

• and a proof e of P (v) where P is a unary predicate on ele-
ments of type τ .

Here e is just an expression with type P (v). The predicate P is a
dependent type constructor with kind τ →Ω. The entire package S
has a dependent strong-sum type Σx :τ.P (x).
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For example, suppose Nat is the domain for natural numbers
and Prime is a unary predicate that asserts an element of Nat as
a prime number, we introduce a type nat representing Nat , and a
type constructor prime (of kind nat→Ω) representing Prime. We
can build a certified prime-number package by pairing a value v
(a natural number) with a proof for the proposition prime(v); the
resulting certified binary has type Σx :nat. prime(x).

Function values can be certified in the same way. Given a func-
tion f that takes a natural number and returns another one as the
result (i.e., f has type nat → nat), in order to show that f always
maps a prime to another prime, we need a proof for the following
proposition:

∀x∈Nat. Prime(x) ⊃ Prime(f(x))

In a typed setting, this universally quantified proposition is repre-
sented as a dependent product type:

Πx :nat. prime(x) → prime(f(x))

The resulting certified binary has type

Σf :nat → nat. Πx :nat. prime(x) → prime(f(x))

Here the type is not only dependent on values but also on function
applications such as f(x), so verifying a certified binary involves
typechecking the proof which in turn requires evaluating the under-
lying function application.

2.3 The problems with dependent types

The above scheme unfortunately fails to work in the context of
typed intermediate (or assembly) languages. There are at least four
problems with dependent types; the third and fourth are present
even in the general context.

First, real programs often involve effects such as assignment,
I/O, or non-termination. Effects interact badly with dependent
types. In our previous example, suppose the function f does not ter-
minate on certain inputs; then clearly, typechecking—which could
involve applying f—would become undecidable. It is possible to
use the effect discipline [38] to force types to be dependent on pure
computation only, but this does not work in some typed λ-calculi;
for example, a “pure” term in Girard’s λU [18] could still diverge.

Even if applying f does not involve any effects, we still have
more serious problems. In a type-preserving compiler, the body
of the function f has to be compiled down to typed low-level lan-
guages. A few compilers perform typed CPS conversion [27], but
in the presence of dependent types, this is a very difficult prob-
lem [6]. Also, typechecking in low-level languages would now re-
quire performing the equivalent of β-reductions on the low-level
(assembly) code; this is awkward and difficult to support cleanly.

Third, it is important to maintain a phase distinction between
compile-time typechecking and run-time evaluation. Having de-
pendent strong-sum and dependent product types makes it harder
to preserve this property. It is also difficult to support first-class
certified binaries.

Finally, it would be nice to support a notion of subset types [10,
32]. A certified binary of type Σx :nat. prime(x) contains a natural
number v and a proof that v is a prime. However, in some cases, we
just want v to belong to a subset type {x :nat | prime(x)}, i.e., v is
a prime number but the proof of this is not together with v; instead,
it can be constructed from the current context.

2.4 Separating the type and computation languages

We solve these problems by making sure that our type language is
never dependent on the computation language. Because the actual

computation term has to be compiled down to assembly code in
any case, it is a bad idea to treat it as part of types. This separation
immediately gives us back the phase-distinction property.

To represent propositions and proofs, we lift everything one
level up: we use kinds to represent propositions, and type terms for
proofs. The domain Nat is represented by a kind Nat; the predicate
Prime is represented by a dependent kind term Prime which maps
a type term of kind Nat into a proposition. A proof for proposition
Prime(n) certifies that the type term n is a prime number.

To maintain decidable typechecking, we insist that the type lan-
guage is strongly normalizing and free of side effects. This is pos-
sible because the type language no longer depends on any runtime
computation. Given a type-level function g of kind Nat→Nat, we
can certify that it always maps a prime to another prime by build-
ing a proof τp for the following proposition, now represented as a
dependent product kind:

Πt :Nat.Prime(t)→Prime(g(t)).

Essentially, we circumvent the problems with dependent types by
replacing them with dependent kinds and by lifting everything (in
the proof language) one level up.

To reason about actual programs, we still have to connect terms
in the type language with those in the computation language. We
follow Xi and Pfenning [44] and use singleton types [22] to relate
computation values to type terms. In the previous example, we in-
troduce a singleton type constructor snat of kind Nat→Ω. Given a
type term n of kind Nat, if a computation value v has type snat(n),
then v denotes the natural number represented by n.

A certified binary for a prime number now contains three parts:
a type term n of kind Nat, a proof for the proposition Prime(n),
and a computation value of type snat(n). We can pack it up into
an existential package and make it a first-class value with type:

∃n :Nat.∃t :Prime(n).snat(n).

Here we use ∃ rather than Σ to emphasize that types and kinds
are no longer dependent on computation terms. Under the erasure
semantics [16], this certified binary is just an integer value of type
snat(n) at run time.

A value v of the subset type (for prime numbers) would simply
have type snat(n) as long as we can construct a proof for Prime(n)
based on the information from the context.

We can also build certified binaries for programs that involve
effects. Returning to our example, assume again that f is a func-
tion in the computation language which may not terminate on some
inputs. Suppose we want to certify that if the input to f is a prime,
and the call to f does return, then the result is also a prime. We can
achieve this in two steps. First, we construct a type-level function
g of kind Nat → Nat to simulate the behavior of f (on all inputs
where f does terminate) and show that f has the following type:

∀n :Nat. snat(n) → snat(g(n))

Here following Figure 1, we use ∀ and → to denote the polymor-
phic and function types for the computation language. The type for
f says that if it takes an integer of type snat(n) as input and does
not loop forever, then it will return an integer of type snat(g(n)).
Second, we construct a proof τp showing that g always maps a
prime to another prime. The certified binary for f now also con-
tains three parts: the type-level function g, the proof τp, and the
computation function f itself. We can pack it into an existential
package with type:

∃g :Nat→Nat. ∃p : (Πt :Nat.Prime(t)→Prime(g(t))).
∀n :Nat. snat(n) → snat(g(n))

Notice this type also contains function applications such as g(n),
but g is a type-level function which is always strongly normalizing,
so typechecking is still decidable.
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2.5 Designing the type language

We can incorporate propositions and proofs into typed intermedi-
ate languages, but designing the actual type language is still a chal-
lenge. For decidable typechecking, the type language should not
depend on the computation language and it must satisfy the usual
meta-theoretical properties (e.g. strong normalization).

But the type language also has to fulfill its usual responsibil-
ities. First, it must provide a set of types (of kind Ω) to classify
the computation terms. A typical compiler intermediate language
supports a large number of basic type constructors (e.g., integer, ar-
ray, record, tagged union, and function). These types may change
their forms during compilation, so different intermediate languages
may have different definitions of Ω; for example, a computation
function at the source level may be turned into CPS-style, or later,
to one whose arguments are machine registers [27]. We also want
to support intensional type analysis [21] which is crucial for type-
checking runtime services [26].

Our solution is to provide a general mechanism of inductive
definitions in our type language and to define each such Ω as an
inductive kind. This was made possible only recently [39] and it
relies on the use of polymorphic kinds. Taking the type language in
Figure 1 as an example, we add kind variables k and polymorphic
kinds Πk :u. κ, and replace Ω and its associated type constructors
with inductive definitions (not shown):

(kscm) u ::= Kind | . . .
(kind) κ ::= κ1→κ2 | k | Πk :u. κ | . . .
(type) τ ::= t | λt :κ. τ | τ1 τ2 | λk :u. τ | τ [κ] | . . .

At the type level, we add kind abstraction λk :u. τ and kind appli-
cation τ [κ]. The kind Ω is now inductively defined as follows (see
Sections 3–4 for more details):

Inductive Ω : Kind := →→ : Ω→Ω→Ω
| ∀∀ : Πk :Kind. (k→Ω)→Ω
...

Here →→ and ∀∀ are two of the constructors (of Ω). The polymorphic
type ∀t : κ. τ is now written as ∀∀[κ] (λt : κ. τ ); the function type
τ1→τ2 is just →→τ1τ2.

Inductive definitions also greatly increase the programming
power of our type language. We can introduce new data objects
(e.g., integers, lists) and define primitive recursive functions, all at
the type level; these in turn are used to help model the behaviors of
the computation terms.

To have the type language double up as a proof language
for higher-order predicate logic, we add dependent product kind
Πt :κ1. κ2, which subsumes the arrow kind κ1 →κ2; we also add
kind-level functions to represent predicates. Thus the type language
naturally becomes the calculus of inductive constructions [34].

2.6 Proof-preserving compilation

Even with a proof system integrated into our intermediate lan-
guages, we still have to make sure that they can be CPS- and
closure-converted down to low-level languages. These transforma-
tions should preserve proofs represented in the type system; in fact,
they should not traverse the proofs at all since doing so is impracti-
cal with large proof libraries.

These challenges are non-trivial but the way we set up our type
system makes it easier to solve them. First, because our type lan-
guage does not depend on the computation language, we do not
have the difficulties involved in CPS-converting dependently typed
λ-calculi [6]. Second, all our intermediate languages share the

same type language thus also the same proof library; this is possible
because the Ω kind (and the associated types) for each intermediate
language is just a regular inductive definition.

Finally, a type-preserving program transformation often re-
quires translating the source types (of the source Ω kind) into the
target types (of the target Ω kind). Existing CPS- and closure-
conversion algorithms [27, 20, 25] all perform such translation at
the meta-level; they have to go through every type term (thus every
proof term in our setting) during the translation, because any type
term may contain a sub-term which has the source Ω kind. In our
framework, the fact that each Ω kind is inductively defined means
that we can internalize and write the type-translation function in-
side our type language itself. This leads to elegant algorithms that
do not traverse any proof terms but still preserve typing and proofs
(see Sections 5–6 for details).

2.7 Putting it all together

A certifying compiler in our framework will have a series of in-
termediate languages, each corresponding to a particular stage in
the compilation process; all will share the same type language. An
intermediate language is now just the type language plus the cor-
responding computation terms, along with the inductive definition
for the corresponding Ω kind. In the rest of this paper, we first give
a formal definition of our type language (which will be named as
TL from now on) in Section 3; we then present a sample computa-
tion language λH in Section 4; we show how λH can be CPS- and
closure-converted into low-level languages in Sections 5–6; finally,
we discuss related work and then conclude.

3 The Type Language TL

Our type language TL resembles the calculus of inductive construc-
tions (CIC) implemented in the Coq proof assistant [24]. This is a
great advantage because Coq is a very mature system and it has
a large set of proof libraries which we can potentially reuse. For
this paper, we decided not to directly use CIC as our type language
for three reasons. First, CIC contains some features designed for
program extraction [33] which are not required in our case (where
proofs are only used as specifications for the computation terms).
Second, as far as we know, there are still no formal studies covering
the entire CIC language. Third, for theoretical purposes, we want
to understand what are the most essential features for modeling cer-
tified binaries.

Motivations Following the discussion in Section 2.5, we orga-
nize TL into the following three levels:

(kscm) u ::= z | Πt :κ. u | Πk :u1. u2 | Kind

(kind) κ ::= k | λt :κ1. κ2 | κ[τ ] | λk :u. κ | κ1 κ2

| Πt :κ1. κ2 | Πk :u. κ | Πz :Kscm. κ

| Ind(k :Kind){�κ} | Elim[κ′, u](τ ){�κ}
(type) τ ::= t | λt :κ. τ | τ1 τ2 | λk :u. τ | τ [κ]

| λz :Kscm. τ | τ [u] | Ctor (i, κ)

| Elim[κ′, κ](τ ′){�τ}
Here kind schemas (kscm) classify kind terms while kinds classify
type terms. There are variables at all three levels: kind-schema
variables z, kind variables k, and type variables t. We have an ex-
ternal constant Kscm classifying all the kind schemas; essentially,
TL has an additional level above kscm, of which Kscm is the sole
member.

A good way to comprehend TL is to look at its five Π con-
structs: there are three at the kind level and two at the kind-schema
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level. We use a few examples to explain why each of them is neces-
sary. Following the tradition, we use arrow terms (e.g., κ1→κ2) as
a syntactic sugar for the non-dependent Π terms (e.g., Πt :κ1. κ2 is
non-dependent if t does not occur free in κ2).

• Kinds Πt : κ1. κ2 and κ1 → κ2 are used to typecheck the
type-level function λt : κ. τ and its application form τ1 τ2.
Assuming Ω and Nat are inductive kinds (defined later) and
Prime is a predicate with kind schema Nat → Kind, we
can write a type term such as λt : Ω. t which has kind
Ω → Ω, a type-level arithmetic function such as plus which
has kind Nat → Nat → Nat, or the universally quantified
proposition in Section 2.2 which is represented as a kind
Πt :Nat.Prime(t)→Prime(g(t)).

• Kinds Πk : u. κ and u → κ are used to typecheck the type-
level kind abstraction λk :u. τ and its application form τ [κ].
As mentioned in Section 2.5, this is needed to support inten-
sional analysis of quantified types [39]. It can also be used to
define logic connectives and constants, e.g.

True : Kind = Πk :Kind. k→k
False : Kind = Πk :Kind. k

True has the polymorphic identity as a proof:

id : True = λk :Kind. λt :k. t

but False is not inhabited (this is essentially the consistency
property of TL which we will show later).

• Kind Πz : Kscm. κ is used to typecheck the type-level kind-
schema abstraction λz : Kscm. τ and its application form
τ [u]. This is not in the core calculus of constructions [11].
We use it in the inductive definition of Ω (see Section 4)
where both the ∀∀Kscm and ∃∃Kscm constructors have kind Πz :
Kscm. (z→Ω)→Ω. These two constructors in turn allow
us to typecheck predicate-polymorphic computation terms,
which occur fairly often since the closure-conversion phase
turns all functions with free predicate variables (e.g, Prime)
into predicate-polymorphic ones.

• Kind schemas Πt : κ. u and κ→u are used to typecheck the
kind-level type abstraction λt :κ1. κ2 and its application form
κ[τ ]. The predicate Prime has kind schema Nat → Kind.
A predicate with kind schema Πt : Nat. Prime(t)→Kind is
only applicable to prime numbers. We can also define e.g. a
binary relation:

LT : Nat→Nat→Kind

so that LT t1 t2 is a proposition asserting that the natural
number represented by t1 is less than that of t2.

• Kind schemas Πk : u1. u2 and u1 → u2 are used to type-
check the kind-level function λk : u. κ and its application
form κ1 κ2. We use it to write higher-order predicates and
logic connectives. For example, the logical negation operator
can be written as follows:

Not : Kind → Kind = λk :Kind. (k→False)

The consistency of TL implies that a proposition and its nega-
tion cannot be both inhabited—otherwise applying the proof
of the second to that of the first would yield a proof of False.

TL also provides a general mechanism of inductive defini-
tions [34]. The term Ind(k : Kind){�κ} introduces an inductive
kind k containing a list of constructors whose kinds are speci-
fied by �κ. Here k must only occur “positively” inside each κi

Inductive Bool : Kind := true : Bool
| false : Bool

Inductive Nat : Kind := zero : Nat
| succ : Nat→Nat

plus : Nat→Nat→Nat

plus(zero) = λt :Nat. t
plus(succ t) = λt′ :Nat. succ ((plus t) t′)

ifez : Nat→ (Πk :Kind. k→ (Nat→k)→k)

ifez(zero) = λk :Kind. λt1 :k. λt2 :Nat→k. t1
ifez(succ t) = λk :Kind. λt1 :k. λt2 :Nat→k. t2 t

le : Nat→Nat→Bool

le(zero) = λt :Nat. true
le(succ t) = λt′ :Nat. ifez t′ Bool false (le t)

lt : Nat→Nat→Bool

lt = λt :Nat. le (succ t)

Cond : Bool→Kind→Kind→Kind

Cond(true) = λk1 :Kind. λk2 :Kind. k1

Cond(false) = λk1 :Kind. λk2 :Kind. k2

Figure 2: Examples of inductive definitions

(see Appendix A for the formal definition of positivity). The term
Ctor (i, κ) refers to the i-th constructor in an inductive kind κ. For
presentation, we will use a more friendly syntax in the rest of this
paper. An inductive kind I = Ind(k :Kind){�κ} will be written as:

Inductive I : Kind := c1 : [I/k]κ1

| c2 : [I/k]κ2
...
| cn : [I/k]κn

We give an explicit name ci to each constructor, so ci is just an
abbreviation of Ctor (i, I). For simplicity, the current version of
TL does not include parameterized inductive kinds, but supporting
them is quite straightforward [41, 34].

TL provides two iterators to support primitive recursion on in-
ductive kinds. The small elimination Elim[κ′, κ](τ ′){�τ} takes a
type term τ ′ of inductive kind κ′, performs the iterative operation
specified by �τ (which contains a branch for each constructor of κ′),
and returns a type term of kind κ[τ′] as the result. The large elimi-
nation Elim[κ′, u](τ ){�κ} takes a type term τ of inductive kind κ′,
performs the iterative operation specified by �κ, and returns a kind
term of kind schema u as the result. These iterators generalize the
Typerec operator used in intensional type analysis [21, 14, 39].

Figure 2 gives a few examples of inductive definitions including
the inductive kinds Bool and Nat and several type-level functions
which we will use in Section 4. The small elimination for Nat
takes the following form Elim[Nat, κ](τ ′){τ1; τ2}. Here, κ is a
dependent kind with kind schema Nat→Kind; τ′ is the argument
which has kind Nat. The term in the zero branch, τ1, has kind
κ[τ ′]. The term in the succ branch, τ2, has kind Nat → κ[τ ′] →
κ[τ ′]. TL uses the ι-reduction to perform the iterator operation.
For example, the two ι-reduction rules for Nat work as follows:

Elim[Nat, κ](zero){τ1; τ2}�ι τ1

Elim[Nat, κ](succ τ ){τ1; τ2}�ι τ2 τ (Elim[Nat, κ](τ ){τ1; τ2})
The general ι-reduction rule is defined formally in Appendix A.
In our examples, we take the liberty of using the pattern-matching
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(sort) s ::= Kind | Kscm | Ext

(var) X ::= z | k | t
(ptm) A, B ::= s | X | λX :A.B | A B | ΠX :A.B

| Ind(X :Kind){ �A} | Ctor (i, A)

| Elim[A′, B′](A){ �B}
Figure 3: Syntax of the type language TL

syntax (as in ML) to express the iterator operations, but they can be
easily converted back to the Elim form.

In Figure 2, plus is a function which calculates the sum of two
natural numbers. The function ifez behaves like a switch statement:
if its argument is zero, it returns a function that selects the first
branch; otherwise, the result takes the second branch and applies
it to the predecessor of the argument. The function le evaluates to
true if its first argument is less than or equal to the second. The
function lt performs the less-than comparison.

The definition of function Cond, which implements a condi-
tional with result at the kind level, uses large elimination on Bool.
It has the form Elim[Bool, u](τ ){κ1; κ2}, where τ is of kind Bool;
both the true and false branches (κ1 and κ2) have kind schema u.

Formalization We want to give a formal semantics to TL and
then reason about its meta-theoretical properties. But the five Π
constructs have many redundancies, so in the rest of this paper, we
will model TL as a pure type system (PTS) [4] extended with in-
ductive definitions. Intuitively, instead of having a separate syntac-
tical category for each level, we collapse all kind schemas u, kind
terms κ, type terms τ , and the external constant Kscm into a single
set of pseudoterms (ptm), denoted as A or B. Similar constructs
can now share typing rules and reduction relations.

Figure 3 gives the syntax of TL, written in PTS style. There is
now only one Π construct (ΠX : A. B), one λ-abstraction (λX :
A. B), and one application form (A B); two iterators for inductive
definitions are also merged into one (Elim[A′, B′](A){ �B}). We
use X and Y to represent generic variables, but we will still use t,
k, and z if the class of a variable is clear from the context.

TL has the following PTS specification which we will use to
derive its typing rules:

S = Kind, Kscm, Ext
A = Kind :Kscm, Kscm :Ext
R = (Kind, Kind), (Kscm, Kind), (Ext, Kind)

(Kind, Kscm), (Kscm, Kscm)

Here S contains the set of sorts used to denote universes. We have
to add the constant Ext to support quantification over Kscm. Our
names for the sorts reflect the fact we lifted everything one level
up; they are related to other systems via the following table:

Systems Notations

TL Kind Kscm Ext
Werner [41] Set Type Ext

Coq/CIC [24] Set,Prop Type(0) Type(1)
Barendregt [4] ∗ � 	

The axioms in the set A denote the relationship between different
sorts; an axiom “s1 : s2” means that s2 classifies s1. The rules in
the set R are used to define well-formed Π constructs, from which
we can deduce the set of well-formed λ-definitions and applica-
tions. For example, the five rules for TL can be related to the five
Π constructs through the following table:

PTS rules\ptm ΠX :A. B λX :A.B A B

(Kind, Kind) Πt :κ1. κ2 λt :κ. τ τ1 τ2

(Kscm, Kind) Πk :u. κ λk :u. τ τ [κ]
(Ext, Kind) Πz :Kscm. κ λz :Kscm. τ τ [u]

(Kind, Kscm) Πt :κ. u λt :κ1. κ2 κ[τ ]

(Kscm, Kscm) Πk :u1. u2 λk :u. κ κ κ′

We define a context ∆ as a list of bindings from variables to pseu-
doterms:

(ctxt) ∆ ::= · | ∆, X :A

The typing judgment for the PTS-style TL now takes the form ∆ 

A : A′ meaning that within context ∆, the pseudoterm A is well-
formed and has A′ as its classifier. We can now write a single
typing rule for all the Π constructs:

∆ 
 A : s1 ∆, X :A 
 B : s2 (s1, s2) ∈ R
∆ 
 ΠX :A. B : s2

(PROD)

Take the rule (Kind, Kscm) as an example. To build a well-formed
term ΠX : A. B, which will be a kind schema (because s2 is
Kscm), we need to show that A is a well-formed kind and B is
a well-formed kind schema assuming X has kind A. We can also
share the typing rules for all the λ-definitions and applications:

∆, X :A 
 B : B′ ∆ 
 ΠX :A. B′ : s

∆ 
 λX :A. B : ΠX :A. B′ (FUN)

∆ 
 A : ΠX :B′. A′ ∆ 
 B : B′

∆ 
 A B : [B/X]A′ (APP)

The reduction relations can also be shared. TL supports the stan-
dard β- and η-reductions (denoted as �β and �η) plus the previ-
ously mentioned ι-reduction (denoted as �ι) on inductive objects
(see Appendix A). We use �β , �η , and �ι to denote the relations
that correspond to the rewriting of subterms using the relations �β ,
�η , and �ι respectively. We use � and � for the unions of the
above relations. We also write =βηι for the reflexive-symmetric-
transitive closure of �.

The complete typing rules for TL and the definitions of all
the reduction relations are given in Appendix A. Following
Werner [41] and Geuvers [17], we have shown that TL satisfies
all the key meta-theoretic properties including subject reduction,
strong normalization, Church-Rosser (and confluence), and consis-
tency of the underlying logic. The detailed proofs for these proper-
ties are given in the companion technical report [37].

4 The Computation Language λH

The language of computations λH for our high-level certified in-
termediate format uses proofs, constructed in the type language, to
verify propositions which ensure the runtime safety of the program.
Furthermore, in comparison with other higher-order typed calculi,
the types assigned to programs can be more refined, since program
invariants expressible in higher-order predicate logic can be rep-
resented in our type language. These more precise types serve as
more complete specifications of the behavior of program compo-
nents, and thus allow the static verification of more programs.

One approach to presenting a language of computations is to
encode its syntax and semantics in a proof system, with the benefit
of obtaining machine-checkable proofs of its properties, e.g. type
safety. This appears to be even more promising for a system with
a type language like CIC, which is more expressive than higher-
order predicate logic: The CIC proofs of some program properties,
embedded as type terms in the program, may not be easily repre-
sentable in meta-logical terms, thus it may be simpler to perform
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(exp) e ::= x | n | tt | ff | f | fix x :A. f | e e′ | e[A]

| 〈X =A, e :A′〉 | open e as 〈X, x〉 in e′

| 〈e0, . . . en−1〉 | sel[A](e, e′) | e aop e′

| e cop e′ | if[A, A′](e, X1. e1, X2. e2)

where n ∈ N

(fun) f ::= λx :A. e | ΛX :A. f

(arith) aop ::= + | . . .
(cmp) cop ::= < | . . .

Figure 4: Syntax of the computation language λH .

all the reasoning in CIC. However our exposition of the language
TL is focused on its use as a type language, and consequently it
does not include all features of CIC. We therefore leave this possi-
bility for future work, and give a standard meta-logical presentation
instead; we address some of the issues related to adequacy in our
discussion of type safety.

In this section we often use the unqualified “term” to refer to a
computation term (expression) e, with syntax defined in Figure 4.
Most of the constructs are borrowed from standard higher-order
typed calculi. To simplify the exposition we only consider con-
stants representing natural numbers (n is the value representing
n ∈ N) and boolean values (tt and ff). The term-level abstraction
and application are standard; type abstractions and fixed points are
restricted to function values, with the call-by-value semantics in
mind and to simplify the CPS and closure conversions. The type
variable bound by a type abstraction, as well as the one bound by
the open construct for packages of existential type, can have either
a kind or a kind schema. Dually, the type argument in a type ap-
plication, and the witness type term A in the package construction
〈X =A, e :A′〉 can be either a type term or a kind term.

The constructs implementing tuple operations, arithmetic, and
comparisons have nonstandard static semantics, on which we focus
in section 4.1, but their runtime behavior is standard. The branch-
ing construct is parameterized at the type level with a proposition
(which is dependent on the value of the test term) and its proof; the
proof is passed to the executed branch.

Dynamic semantics We present a small step call-by-value op-
erational semantics for λH in the style of Wright and Felleisen [42].
The values are defined as

v ::= n | tt | ff | f | fix x :A.f | 〈X =A, v :A′〉 | 〈v0, . . . vn−1〉
The reduction relation ↪→ is specified by the rules

(λx :A.e) v ↪→ [v/x]e (R-β)

(ΛX :B. f)[A] ↪→ [A/X]f (R-TY-β)

sel[A](〈v0, . . . vn−1〉, m) ↪→ vm (m < n) (R-SEL)

open 〈X ′ =A, v :A′〉 as 〈X, x〉 in e
↪→ [v/x][A/X]e

(R-OPEN)

(fix x :A.f) v ↪→ ([fix x :A.f/x]f) v (R-FIX)

(fix x :A.f)[A′] ↪→ ([fix x :A.f/x]f)[A′] (R-TYFIX)

m +n ↪→ m + n (R-ADD)

m <n ↪→ tt (m < n) (R-LT-T)

m <n ↪→ ff (m ≥ n) (R-LT-F)

if[B, A](tt, X1. e1, X2. e2) ↪→ [A/X1]e1 (R-IF-T)

if[B, A](ff, X1. e1, X2. e2) ↪→ [A/X2]e2 (R-IF-F)

An evaluation context E encodes the call-by-value discipline:

E ::= • | E e | v E | E[A] | 〈X =A, E :A′〉
| open E as 〈X, x〉 in e | open v as 〈X, x〉 in E

| 〈v0, . . . vi, E, ei+2, . . . , en−1〉 | sel[A](E, e)

| sel[A](v, E) | E aop e | v aop E | E cop e

| v cop E | if[A, A′](E, X1. e1, X2. e2)

The notation E{e} stands for the term obtained by replacing the
hole • in E by e. The single step computation �→ relates E{e} to
E{e′} when e ↪→ e′, and �→∗ is its reflexive transitive closure.

As shown the semantics is standard except for some additional
passing of type terms in R-SEL and R-IF-T/F. However an inspec-
tion of the rules shows that types are irrelevant for the evaluation,
hence a type-erasure semantics, in which all type-related operations
and parameters are erased, would be entirely standard.

4.1 Static semantics

The static semantics of λH shows the benefits of using a type lan-
guage as expressive as TL. We can now define the type construc-
tors of λH as constructors of an inductive kind Ω, instead of having
them built into λH . As we will show in Section 5, this property is
crucial for the conversion to CPS, since it makes possible trans-
forming direct-style types to CPS types within the type language.

Inductive Ω : Kind := snat : Nat→Ω
| sbool : Bool→Ω
| →→ : Ω→Ω→Ω
| tup : Nat→ (Nat→Ω)→Ω
| ∀∀Kind : Πk :Kind. (k→Ω)→Ω
| ∃∃Kind : Πk :Kind. (k→Ω)→Ω
| ∀∀Kscm : Πz :Kscm. (z→Ω)→Ω
| ∃∃Kscm : Πz :Kscm. (z→Ω)→Ω

Informally, all well-formed computations have types of kind Ω, in-
cluding singleton types of natural numbers snat A and boolean val-
ues sbool B, as well as function, tuple, polymorphic and existential
types. To improve readability we also define the syntactic sugar

A → B ≡ →→ A B
∀sX :A. B
∃sX :A. B

≡
≡

∀∀s A (λX :A.B)
∃∃s A (λX :A.B)

}
where s ∈ {Kind, Kscm}

and often drop the sort s when s = Kind; e.g. the type void, con-
taining no values, is defined as ∀t :Ω. t ≡ ∀∀Kind Ω (λt :Ω. t).

Using this syntactic sugar we can give a familiar look to many
of the formation rules for λH expressions and functional values.
Figure 5 contains the inference rules for deriving judgments of the
form ∆; Γ 
 e : A, which assign type A to the expression e in a
context ∆ and a type environment Γ defined by

(type env) Γ ::= · | Γ, x :A

We introduce some of the notation used in these rules in the course
of the discussion.

Rules E-NAT, E-TRUE, and E-FALSE assign singleton types to
numeric and boolean constants. For instance the constant 1 has
type snat (succ zero) in any valid environment. In rule E-NAT we
use the meta-function ·̂ to map natural numbers n ∈ N to their
representations as type terms. It is defined inductively by 0̂ = zero

and n̂+1 = succ n̂, so ∆ 
 n̂ : Nat holds for all valid ∆ and
n ∈ N.
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∆ 
 Kind : Kscm
∆ 
 · ok

(TE-MT)

∆ 
 Γ ok ∆ 
 A : Ω

∆ 
 Γ, x :A ok
(TE-EXT)

∆ 
 Γ ok

∆; Γ 
 x : Γ(x)
(E-VAR)

∆ 
 Γ ok

∆; Γ 
 n : snat n̂
(E-NAT)

∆ 
 Γ ok

∆; Γ 
 tt : sbool true
(E-TRUE)

∆ 
 Γ ok

∆; Γ 
 ff : sbool false
(E-FALSE)

∆ 
 A : Ω ∆; Γ, x :A 
 f : A

∆; Γ 
 fix x :A.f : A
(E-FIX)

∆ 
 A : Ω ∆; Γ, x :A 
 e : A′

∆; Γ 
 λx :A. e : A → A′ (E-FUN)

∆; Γ 
 e1 : A → A′ ∆; Γ 
 e2 : A

∆; Γ 
 e1 e2 : A′ (E-APP)

∆ 
 B : s ∆, X :B; Γ 
 f : A

∆; Γ 
 ΛX :B. f : ∀sX :B.A

(
X /∈ ∆
s �= Ext

)
(E-TFUN)

∆; Γ 
 e : ∀sX :B. A′ ∆ 
 A : B

∆; Γ 
 e[A] : [A/X]A′ (s �= Ext) (E-TAPP)

∆ 
 A : B ∆ 
 B : s
∆; Γ 
 e : [A/X]A′

∆; Γ 
 〈X =A, e :A′〉 : ∃sX :B.A′ (s �= Ext)
(E-PACK)

∆; Γ 
 e : ∃sX
′ :B. A ∆ 
 A′ : Ω

∆, X :B; Γ, x : [X/X′]A 
 e′ : A′

∆; Γ 
 open e as 〈X, x〉 in e′ : A′

(
X /∈ ∆
s �= Ext

)
(E-OPEN)

∆; Γ 
 e : snat A ∆; Γ 
 e′ : snat A′

∆; Γ 
 e + e′ : snat (plus A A′)
(E-ADD)

∆; Γ 
 e : snat A ∆; Γ 
 e′ : snat A′

∆; Γ 
 e < e′ : sbool (lt A A′)
(E-LT)

for all i < n ∆; Γ 
 ei : Ai

∆; Γ 
 〈e0, . . . en−1〉
: tup n̂ (nth (A0:: . . . ::An−1::nil))

(E-TUP)

∆; Γ 
 e : tup A′′ B ∆; Γ 
 e′ : snat A′

∆ 
 A : LT A′ A′′

∆; Γ 
 sel[A](e, e′) : B A′
(E-SEL)

∆ 
 B : Bool→Kind ∆; Γ 
 e : sbool A′′

∆ 
 A : B A′′ ∆, X1 :B true; Γ 
 e1 : A′

∆ 
 A′ : Ω ∆, X2 :B false; Γ 
 e2 : A′

∆; Γ 
 if[B, A](e, X1. e1, X2. e2) : A′

(E-IF)

∆; Γ 
 e : A A =βηι A′ ∆ 
 A′ : Ω

∆; Γ 
 e : A′ (E-CONV)

Figure 5: Static semantics of the computation language λH .

Singleton types play a central role in reflecting properties of
values in the type language, where we can reason about them con-
structively. For instance rules E-ADD and E-LT use respectively the
type terms plus and lt (defined in Section 3) to reflect the semantics
of the term operations into the type level via singleton types.

However, if we could only assign singleton types to computa-
tion terms, in a decidable type system we would only be able to
typecheck terminating programs. We regain expressiveness of the
computation language using existential types to hide some of the
too detailed type information. Thus for example one can define the
usual types of all natural numbers and boolean values as

nat : Ω = ∃t :Nat. snat t
bool : Ω = ∃t :Bool. sbool t

For any term e with singleton type snat A the package 〈t= A, e :
snat t〉 has type nat. Since in a type-erasure semantics of λH

all types and operations on them are erased, there is no runtime
overhead for the packaging. For each n ∈ N there is a value
of this type denoted by n̂ ≡ 〈t = n̂, n : snat t〉. Operations on
terms of type nat are derived from operations on terms of singleton
types of the form snat A; for example an addition function of type
nat → nat → nat is defined as the expression

add = λx1 :nat. λx2 :nat.
open x1 as 〈t1, x′1〉 in open x2 as 〈t2, x′2〉 in
〈t=plus t1 t2, x′1 + x′2 : snat t〉

Rule E-TUP assigns to a tuple a type of the form tup A B, in
which the tup constructor is applied to a type A representing the

tuple size, and a function B mapping offsets to the types of the
tuple components. This function is defined in terms of operations
on lists of types:

Inductive List : Kind := nil : List
| cons : Ω→List→List

nth : List→Nat→Ω
nth nil = λt :Nat. void
nth (cons t1 t2) = λt :Nat. ifez t Ω t1 (nth t2)

Thus nth L n̂ reduces to the n-th element of the list L when n is
less than the length of L, and to void otherwise. We also use the
infix form A::A′ ≡ cons A A′. The type of pairs is derived: A ×
A′ ≡ tup 2̂ (nth (A::A′::nil)). Thus for instance ·;· 
 〈42, 7〉 :

snat 4̂2 × snat 7̂ is a valid judgment.
The rules for selection and testing for the less-than relation (the

only comparison we discuss for brevity) refer to the kind term LT
with kind schema Nat→Nat→Kind. Intuitively, LT represents a
binary relation on kind Nat, so LT m̂ n̂ is the kind of type terms
representing proofs of m < n. LT can be thought of as the param-
eterized inductive kind of proofs constructed from instances of the
axioms ∀n ∈ N. 0 < n+1 and ∀m,n ∈ N. m < n ⊃ m+1 < n+1:

Inductive LT : Nat→Nat→Kind
:= ltzs : Πt :Nat. LT zero (succ t)
| ltss : Πt :Nat. Πt′ :Nat. LT t t′→LT (succ t) (succ t′)

To simplify the presentation of our type language, we allowed in-
ductive kinds of kind scheme Kind only. Thus to stay within the
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scope of this paper we actually use a Church encoding of LT (see
Appendix C for details); this is sufficient since proof objects are
never analyzed in λH , so the full power of elimination is not nec-
essary for LT.

In the component selection construct sel[A](e, e′) the type A
represents a proof that the value of the subscript e′ is less than the
size of the tuple e. In rule E-SEL this condition is expressed as
an application of the type term LT. Due to the consistency of the
logic represented in the type language, only the existence and not
the structure of the proof object A is important. Since its existence
is ensured statically in a well-formed expression, A would be elim-
inated in a type-erasure semantics.

The branching construct if[B, A](e, X1. e1, X2. e2) takes a
type term A representing a proof of the proposition encoded as ei-
ther B true or B false, depending on the value of e. The proof is
passed to the appropriate branch in its bound type variable (X1 or
X2). The correspondence between the value of e and the kind of
A is again established through a singleton type. Note that unlike
Xi and Harper [43] we allow imprecise information flow into the
branches by not restricting B false to be the negation of B true. In
particular this makes possible the encoding of the usual oblivious
(in proof-passing sense) if using B = λt :Bool. True.

4.2 Example: bound check elimination

A simple example of the generation, propagation, and use of proofs
in λH is a function which computes the sum of the components of
any vector of naturals. Let us first introduce some auxiliary types
and functions. The type assigned to a homogeneous tuple (vector)
of n terms of type A is βηι-convertible to the form vec n̂ A for

vec : Nat→Ω→Ω

vec = λt :Nat. λt′ :Ω. tup t (nth (repeat t t′))

where
repeat : Nat→Ω→List
repeat zero = λt′ :Ω. nil
repeat (succ t) = λt′ :Ω. t′::(repeat t) t′

Then we can define a term which sums the elements of a vector
with a given length as follows:

sumVec : ∀t :Nat. snat t → vec t nat → nat
≡ Λt :Nat. λn : snat t. λv :vec t nat.

(fix loop :nat → nat → nat.
λi :nat. λsum :nat.

open i as 〈t′, i′〉 in
if[LTOrTrue t′ t, ltPrf t′ t]

(i′ < n,

t1. loop (add i 1̂)
(add sum (sel[t1](v, i

′))),
t2 . sum)) 0̂ 0̂

where

LTOrTrue : Nat→Nat→Bool→Kind
LTOrTrue = λt1 :Nat. λt2 :Nat. λt :Bool. Cond t (LT t1 t2)True

and ltPrf of kind Πt′ : Nat. Πt : Nat. LTOrTrue t′ t (lt t′ t) is a
type term defined in Appendix C.

The comparison i′ < n, used in this example as a loop termina-
tion test, checks whether the index i′ is smaller than the vector size
n. If it is, the adequacy of the type term lt with respect to the less-
than relation ensures that the type term ltPrf t′ t represents a proof
of the corresponding proposition at the type level, namely LT t′ t.
This proof is then bound to t1 in the first branch of the if, and the
sel construct uses it to verify that the i′-th element of v exists, thus
avoiding a second test. The type safety of λH (Theorem 1) guaran-

tees that implementations of sel need not check the subscript at run-
time. Since the proof t2 is ignored in the “else” branch, ltPrf t′ t
is defined to reduce to the trivial proof of True when the value of i′

is not less than that of n.
The usual vector type, which keeps the length packaged with

the content, is

vector : Ω→Ω = λt :Ω.∃t′ :Nat. snat t′ × vec t′ t.

Now we can write a wrapper function for sumVec with the standard
type vector nat → nat; we leave the details to the reader.

4.3 Type safety

The type safety of λH is a corollary of its properties of progress
and subject reduction. A pivoting element in proving progress
(Lemma 4 in Appendix B) is the connection between the existence
of a proof (type) term of kind LT m̂ n̂, provided by rule E-SEL, and
the existence of a (meta-logical) proof of the side condition m<n,
required by rule R-SEL. Similarly, subject reduction (Lemma 5 in
Appendix B) in the cases of R-ADD and R-LT-T/F relies on the
adequate representation of addition and comparison by plus and lt.

Lemma 1 (Adequacy of the TL representation of arithmetic)

1. For all m, n ∈ N, plus m̂ n̂ =βηι m̂+n.

2. For all m, n ∈ N, lt m̂ n̂ =βηι true if and only if m < n.

3. For all m, n ∈ N, m < n if and only if there exists a type A
such that · 
 A : LT m̂ n̂.

Proof sketch (3) For the forward direction it suffices to observe
that the structure of the meta-logical proof of m < n (in terms
of the above axioms of ordering) can be directly reflected in a type
term of kind LT m̂ n̂. The inverse direction is shown by examining
the structure of closed type terms of this kind in normal form. �

Theorem 1 (Safety of λH) If ·;·
 e : A, then either e �→∗ v and
·;·
 v : A, or e diverges (i.e., for each e′, if e �→∗ e′, then there
exists e′′ such that e′ �→ e′′).
Proof sketch Follows from Lemmas 4 and 5 (Appendix B). �

Since CIC and TL are more expressive than higher-order predi-
cate logic, adequacy of the representations of meta-proofs does not
hold in general; in particular, the ability to eliminate inductive kinds
in TL allows analysis of proof derivations to be used in proof con-
struction, a technique not employed in standard meta-reasoning.
This issue does not arise for first-order proof representations like
LT (where no constructors have parameters of a function kind), and
we do not expect it to be a concern in practice. In cases when it does
arise, it could be resolved by using the underlying consistent logic
of CIC instead of the meta-logic; for instance in our presentation
the question of adequacy is raised because the operational seman-
tics of λH is defined in meta-logical terms, but this question would
be moot if λH and its semantics were defined as CIC terms. To
eliminate the interaction with the meta-logic, this approach should
be applied all the way down to the hardware specification (as done
in some PCC system [3]); we plan to pursue this in the future.

5 CPS Conversion

In this section we show how to perform CPS conversion on λH

while still preserving proofs represented in the type system. This
stage transforms all unconditional control transfers, including func-
tion invocation and return, to function calls and gives explicit
names to all intermediate computations. The basics of our ap-
proach, i.e. the target language and the transformation of types, are
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shown in this section. The static semantics of the target language
and the transformation of terms are given in Appendix D.

We call the target calculus for this phase λK , with syntax:

(val) v ::= x | n | tt | ff | 〈X =A, v :A′〉 | 〈v0, . . . vn−1〉
| fix x′[X1 :A1, . . . Xn :An](x :A). e

(exp) e ::= v[A1, . . . An](v′) | let x = v in e

| let 〈X, x〉 = open v in e | let x = sel[A](v, v′) in e

| let x = v aop v′ in e | let x = v cop v′ in e

| if[A,A′](v, X1. e1, X2. e2)

Expressions in λK consist of a series of let bindings followed by a
function application or a conditional branch. There is only one ab-
straction mechanism, fix, which combines type and value abstrac-
tion. Multiple arguments may be passed by packing them in a tuple.

λK shares the TL type language with λH . The types for λK

all have kind ΩK which, as in λH , is an inductive kind defined
in TL. The ΩK kind has all the constructors of Ω plus one more
(func). Since functions in CPS do not return values, the function
type constructor of ΩK has a different kind:

→→ : ΩK →ΩK

We use the more conventional syntax A→⊥ for →→ A. The new
constructor func forms the types of function values:

func : ΩK →ΩK

Every function value is implicitly associated with a closure envi-
ronment (for all the free variables), so the func constructor is useful
in the closure-conversion phase (see Section 6).

Typed CPS conversion involves translating both types and com-
putation terms. Existing algorithms [20, 27] require traversing and
transforming every term in the type language (which would include
all the proofs in our setting). This is impractical because proofs are
large in size, and transforming them can alter their meanings and
break the sharing among different intermediate languages.

To see the actual problem, let us convert the λH expression
〈X = A, e : B〉 to CPS, assuming that it has type ∃X : A′. B. We
use Ktyp to denote the meta-level translation function for the type
language and Kexp for the computation language. Under existing
algorithms, the translation also transforms the witness A:

Kexp[[〈X =A, e :B〉 ]] =
λk :Ktyp[[∃X :A′. B ]].

Kexp[[e ]] (λx :Ktyp[[ [A/X]B ]].
k 〈X =Ktyp[[A ]], x :Ktyp[[B ]]〉)

Here we CPS-convert e and apply it to a continuation, which puts
the result of its evaluation in a package and hands it to the return
continuation k. With proper definition of Ktyp and assuming that
Ktyp[[X ]] = X on all variables X , we can show that the two types
Ktyp[[ [A/X]B ]] and [Ktyp[[A ]]/X](Ktyp[[B ]]) are equivalent (under
=βηι). Thus the translation preserves typing.

But we do not want to touch the witness A, so the translation
function should be defined as follows:

Kexp[[〈X =A, e :B〉 ]] =
λk :Ktyp[[∃X :A′. B ]].

Kexp[[e ]] (λx :Ktyp[[ [A/X]B ]].
k 〈X =A, x :Ktyp[[B ]]〉)

To preserve typing, we have to make sure that the two types
Ktyp[[ [A/X]B ]] and [A/X](Ktyp[[B ]]) are equivalent. This seems
impossible to achieve if Ktyp is defined at the meta level.

Our solution is to internalize the definition of Ktyp in our type
language. We replace Ktyp by a type function K of kind Ω→ΩK .

For readability, we use the pattern-matching syntax, but it can be
easily coded using the Elim construct.

K (snat t) = snat t
K (sbool t) = sbool t
K (t1 → t2) = func ((K(t1) × Kc(t2))→⊥)
K (tup t1 t2) = tup t1 (λt :Nat. K(t2 t))
K (∀∀Kind k t) = func (∀∀Kind k (λt1 :k. Kc(t t1)→⊥))
K (∃∃Kind k t) = ∃∃Kind k (λt1 :k. K(t t1))
K (∀∀Kscm z t) = func (∀∀Kscm z (λk :z. Kc(t k)→⊥))
K (∃∃Kscm z t) = ∃∃Kscm z (λk :z. K(t k))

Kc ≡ λt :Ω. func (K(t)→⊥)

The definition of K is in the spirit of the interp function of Crary
and Weirich [14]. However interp cannot be used in defining a sim-
ilar CPS conversion, because its domain does not cover (nor is there
an injection to it from) all types appearing in type annotations. In
λH these types are in the inductive kind Ω and can be analyzed by
K. We can now prove K ([A/X]B) =βηι [A/X](K (B)) by first
reducing B to the normal form B′. Clearly, K ([A/X]B) =βηι

K ([A/X]B′) and [A/X](K (B′)) =βηι [A/X](K (B)). We
then prove K ([A/X]B′) =βηι [A/X](K (B′)) by induction over
the structure of the normal form B′. The complete CPS-conversion
algorithm is given in Appendix D.

6 Closure Conversion

In this section we address the issue of how to make closures explicit
for all the CPS terms in λK . This stage rewrites all functions so that
they contain no free variables. Any variables that appear free in a
function value are packaged in an environment, which together with
the closed code of the function form a closure. When a function is
applied, the closed code and the environment are extracted from
the closure and then the closed code is called with the environment
as an additional parameter. Again, the basics of our approach are
shown in this section and more details are given in Appendix E.

Our approach to closure conversion is based on Morrisett et
al. [27], who adopt a type-erasure interpretation of polymorphism.
We use the same idea for existential types. The language that we
use for this phase is called λC with syntax:

(val) v ::= x | n | tt | ff | fix x′[X1 :A1, . . . Xn :An](x :A). e

| v[A] | 〈v0, . . . vn−1〉 | 〈X =A, v :A′〉
(exp) e ::= v v′ | let x = v in e | let x = sel[A](v, v′) in e

| let 〈X, x〉 = open v in e | let x = v aop v′ in e

| let x = v cop v′ in e | if[B, A](v, X1. e1, X2. e2)

λC is similar to λK , the main difference being that type applica-
tion and value application are again separate. Type applications
are values in λC reflecting the fact that they have no runtime ef-
fect in a type-erasure interpretation. We use the same kind of types
ΩK as in λK . We define the transformation of types as a function
Cl :ΩK →ΩK →ΩK , the second argument of which represents the
type of the environment. As in CPS conversion, we write Cl as a
TL function so that the closure-conversion algorithm does not have
to traverse proofs represented in the type system.

Cl (snat t) = λt′ :ΩK . snat t
Cl (sbool t) = λt′ :ΩK . sbool t
Cl (t→⊥) = λt′ :ΩK . (t′ × Cl (t) ⊥)→⊥
Cl (func t) = λt′ :ΩK . ∃t1 :ΩK . (Cl (t) t1 × t1)
Cl (tup t1 t2) = λt′ :ΩK . tup t1 (λt′′ :Nat. Cl (t2 t′′) t′)
Cl (∀∀Kind k t) = λt′ :ΩK . ∀∀Kind k (λt1 :k. Cl (t t1) t′)
Cl (∃∃Kind k t) = λt′ :ΩK . ∃∃Kind k (λt1 :k. Cl (t t1) t′)
Cl (∀∀Kscm z t) = λt′ :ΩK . ∀∀Kind z (λk :z. Cl (t k) t′)
Cl (∃∃Kscm z t) = λt′ :ΩK . ∃∃Kscm z (λk :z.Cl (t k) t′)
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7 Related Work

Our type language is a variant of the calculus of constructions [11]
extended with inductive definitions (with both small and large elim-
ination) [34, 41]. We omitted parameterized inductive kinds and
dependent large elimination to simplify our presentation, however,
all our meta-theoretic proofs carry over to a language that includes
them. We support η-reduction in our language while the official
Coq system does not. The proofs for the properties of TL are
adapted from Geuvers [17] and Werner [41] (which in turn bor-
rows ideas from Altenkirch [1]); the main difference is that our
language has kind-schema variables and a new product formation
rule (Ext, Kind) which are not in Werner’s system.

The Coq proof assistant provides support for extracting pro-
grams from proofs [34]. It separates propositions and sets into
two distinct universes Prop and Set. We do not distinguish be-
tween them because we are not aiming to extract programs from
our proofs, instead, we are using proofs as specifications for our
computation terms.

Burstall and McKinna [7] proposed the notion of deliverables,
which is essentially the same as our notion of certified binaries.
They use dependent strong sums to model each deliverable and give
its categorical semantics. Their work does not support programs
with effects and has all the problems mentioned in Section 2.3.

Xi and Pfenning’s DML [44] is the first language that nicely
combines dependent types with programs that may involve effects.
Our ideas of using singleton types and lifting the level of the proof
language are directly inspired by their work. Xi’s system, however,
does not support arbitrary propositions and explicit proofs. It also
does not define the Ω kind as an inductive definition so it is un-
clear how it interacts with intensional type analysis [39] and how it
preserves proofs during compilation.

We have discussed the relationship between our work and those
on PCC, typed assembly languages, and intensional type analysis
in Section 1. Inductive definitions subsume and generalize earlier
systems on intensional type analysis [21, 14, 39]; the type-analysis
construct in the computation language can be eliminated using the
technique proposed by Crary et al. [16].

Concurrently with our work, Crary and Vanderwaart [12] re-
cently proposed a system called LTT which also aims at adding
explicit proofs to typed intermediate languages. LTT uses Linear
LF [8] as its proof language. It shares some similarities with our
system in that both are using singleton types [44] to circumvent the
problems of dependent types. However, since LF does not have
inductive definitions and the Elim construct, it is unclear how LTT
can support intensional type analysis and type-level primitive recur-
sive functions [15]. In fact, to define Ω as an inductive kind [39],
LTT would have to add proof-kind variables and proof-kind poly-
morphism, which could significantly complicate the meta-theory
of its proof language. LTT requires different type languages for
different intermediate languages; it is unclear whether it can pre-
serve proofs during CPS and closure conversion. The power of
linear reasoning in LTT is desirable for tracking ephemeral prop-
erties that hold only for certain program states; we are working on
adding such support into our framework.

8 Conclusions

We presented a general framework for explicitly representing
propositions and proofs in typed intermediate or assembly lan-
guages. We showed how to integrate an entire proof system into
our type language and how to perform CPS and closure conversion
while still preserving proofs represented in the type system. Our
work is a first step toward the goal of building realistic infrastruc-
ture for certified programming and certifying compilation.

Our type system is fairly concise and simple with respect to the
number of syntactic constructs, yet it is powerful enough to express
all the propositions and proofs in the higher-order predicate logic
(extended with induction principles). In the future, we would like
to use our type system to express advanced program invariants such
as those involved in low-level mutable recursive data structures.

Our type language is not designed around any particular pro-
gramming language. We can use it to typecheck as many different
computation languages as we like; all we need is to define the cor-
responding Ω kind as an inductive definition. We hope to evolve
our framework into a realistic typed common intermediate format.
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A Formalization of TL (Details)

In this appendix we supply the rest of the details involved in the
formalization of our type language TL. Most of our notations and
definitions are directly borrowed from Werner [41]. In addition to
the symbols defined in the syntax, we will also use C to denote
general terms, Y and Z for variables, and I for inductive defini-
tions.

In order to ensure that the interpretation of inductive definitions
remains consistent, and they can be interpreted as terms closed un-
der their introduction rules, we impose positivity constraints on the
constructors of an inductive definition. The positivity constraints
are defined in Definition 2 and 3.

Definition 2 A term A is strictly positive in X if A is either X or
ΠY : B.A′, where A′ is strictly positive in X , X does not occur
free in B, and X �= Y .

Definition 3 A term C is a well-formed constructor kind for X
(written wfcX(C)) if it has one of the following forms:

1. X;

2. ΠY : B. C′, where Y �= X , X is not free in B, and C′ is a
well-formed constructor kind for X; or

3. A → C ′, where A is strictly positive in X and C′ is a well-
formed constructor kind for X .

Note that in the definition of wfcX(C), the second clause covers
the case where C is of the form A → C′, and X does not occur
free in A. Therefore, we only allow the occurrence of X in the
non-dependent case.

In the rest of this paper we often write the well-formed con-
structor kind for X as Π�Y : �B. X . We also denote terms that are
strictly positive in X by Π�Y : �B. X , where X is not free in �B.

Definition 4 Let C be a well-formed constructor kind for X . Then
C is of the form Π�Y : �A. X . If all the Y ’s are t’s, that is, C is of
the form Π�t : �A. X , then we say that C is a small constructor kind
(or just small constructor when there is no ambiguity) and denote it
as small(C).

Our inductive definitions reside in Kind, whereas a small construc-
tor does not make universal quantification over objects of type
Kind. Therefore, an inductive definition with small constructors
is a predicative definition. While dealing with impredicative induc-
tive definitions, we must forbid projections on universes equal to
or bigger than the one inhabited by the definition. In particular, we
restrict large elimination to inductive definitions with only small
constructors.

Next, we define the set of reductions on our terms. The defi-
nition of β- and η-reduction is standard. The ι-reduction defines
primitive recursion over inductive objects.
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Definition 5 Let C be a well-formed constructor kind for X and
let A′, B′, and I be pseudoterms. We define ΦX,I,B′(C, A′) re-
cursively based on the structure of C:

ΦX,I,B′(X, A′) def
= A′

ΦX,I,B′(ΠY :B. C′, A′) def
= λY :B.ΦX,I,B′ (C′, A′ Y )

ΦX,I,B′((Π�Y : �B. X)→C′, A′) def
=

λZ : (Π�Y : �B. I). ΦX,I,B′(C′, A′ Z (λ�Y : �B. B′ (Z �Y )))

Definition 6 The reduction relations on our terms are defined as:

(λX :A. B) A′ �β [A′/X]B
λX :A. (B X) �η B, if X /∈ FV (B)

Elim[I,A′′](Ctor (i, I) �A){ �B} �ι (ΦX,I,B′(Ci, Bi)) �A

where
I = Ind(X :Kind){ �C}

B′ = λY :I. (Elim[I, A′′](Y ){ �B})
By �β , �η, and �ι we denote the relations that correspond to the
rewriting of subterms using the relations �β , �η, and �ι respec-
tively. We use � and � for the unions of the above relations. We
also write =βηι for the reflexive-symmetric-transitive closure of �.

Let us examine the ι-reduction in detail. In Elim[I,A′′](A){ �B},
the term A of type I is being analyzed. The sequence �B contains
the set of branches for Elim, one for each constructor of I . In the
case when Ci = X , which implies that A is of the form Ctor (i, I),
the Elim just selects the Bi branch:

Elim[I, A′′](Ctor (i, I)){�B} �ι Bi

In the case when Ci = Π�Y : �B. X where X does not occur free
in �B, then A must be in the form Ctor (i, I) �A with Ai of type Bi.
None of the arguments are recursive. Therefore, the Elim should
just select the Bi branch and pass the constructor arguments to it.
Accordingly, the reduction yields (by expanding the Φ macro):

Elim[I, A′′](Ctor (i, I) �A){ �B} �ι Bi
�A

The recursive case is the most interesting. For simplicity assume
that the i-th constructor has the form Π�Y : �B′. X → Π �Y ′ : �B′′. X .
Therefore, A is of the form Ctor (i, I) �A with A1 being the re-
cursive component of type Π�Y : �B′. X , and A2 . . . An being non-
recursive. The reduction rule then yields:

Elim[I, A′′](Ctor (i, I) �A){ �B}
�ι Bi A1 (λ�Y : �B′. Elim[I, A′′](A1

�Y ){ �B}) A2 . . . An

The Elim construct selects the Bi branch and passes the arguments
A1,. . ., An, and the result of recursively processing A1. In the
general case, it would process each recursive argument.

Definition 7 defines the Ψ macro which represents the type of
the large Elim branches. Definition 8 defines the ζ macro which
represents the type of the small elimination branches. The different
cases follow from the ι-reduction rule in Definition 6.

Definition 7 Let C be a well-formed constructor kind for X and
let A′ and I be two terms. We define ΨX,I(C, A′) recursively
based on the structure of C:

ΨX,I(X, A′) def
= A′

ΨX,I(ΠY :B. C′, A′) def
= ΠY :B. ΨX,I(C

′, A′)

ΨX,I(A→C ′, A′) def
= [I/X]A→ [A′/X]A→ΨX,I(C

′, A′)

where X is not free in B and A is strictly positive in X .

Definition 8 Let C be a well-formed constructor kind for X and
let A′, I , and B′ be terms. We define ζX,I(C, A′, B′) recursively
based on the structure of C:

ζX,I(X, A′, B′) def
= A′ B′

ζX,I(ΠY :B. C′, A′, B′) def
= ΠY :B. ζX,I(C

′, A′, B′ Y )

ζX,I(Π�Y : �B. X → C′, A′, B′) def
=

ΠZ : (Π�Y : �B. I).Π�Y : �B. (A′ (Z �Y )) → ζX,I(C
′, A′, B′ Z)

where X is not free in B and �B.

Definition 9 We use ∆|t,k to denote that the environment does not
contain any z variables.

Here are the complete typing rules for TL. The three weakening
rules make sure that all variables are bound to the right classes of
terms in the context. There are no separate context-formation rules;
a context ∆ is well-formed if we can derive the judgment ∆ 

Kind : Kscm (notice we can only add new variables to the context
via the weakening rules).

· 
 Kind : Kscm (AX1)

· 
 Kscm : Ext (AX2)

∆ 
 C : Kind ∆ 
 A : B t /∈ Dom(∆)

∆, t :C 
 A : B
(WEAK1)

∆ 
 C : Kscm ∆ 
 A : B k /∈ Dom(∆)

∆, k :C 
 A : B
(WEAK2)

∆ 
 C : Ext ∆ 
 A : B z /∈ Dom(∆)

∆, z :C 
 A : B
(WEAK3)

∆ 
 Kind : Kscm X ∈ Dom(∆)

∆ 
 X : ∆(X)
(VAR)

∆, X :A 
 B : B′ ∆ 
 ΠX :A. B′ : s

∆ 
 λX :A. B : ΠX :A. B′ (FUN)

∆ 
 A : ΠX :B′. A′ ∆ 
 B : B′

∆ 
 A B : [B/X]A′ (APP)

∆ 
 A : s1 ∆, X :A 
 B : s2 (s1, s2) ∈ R
∆ 
 ΠX :A. B : s2

(PROD)

for all i ∆, X :Kind 
 Ci : Kind wfcX(Ci)

∆ 
 Ind(X :Kind){�C} : Kind
(IND)

∆ 
 I : Kind where I = Ind(X :Kind){�C}
∆ 
 Ctor (i, I) : [I/X]Ci

(CON)

∆ 
 A : I ∆ 
 A′ : I → Kind
for all i ∆ 
 Bi : ζX,I(Ci, A

′, Ctor (i, I))

∆ 
 Elim[I, A′](A){ �B} : A′ A
where I = Ind(X :Kind){�C}

(ELIM)

∆ 
 A : I ∆|t,k 
 A′ : Kscm

for all i small(Ci) ∆ 
 Bi : ΨX,I(Ci, A
′)

∆ 
 Elim[I, A′](A){ �B} : A′

where I = Ind(X :Kind){�C}

(L-ELIM)
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∆ 
 A : B
∆ 
 B′ : s ∆ 
 B : s B =βηι B′

∆ 
 A : B′
(CONV)

Next we state the formal properties of TL. We omit the proofs
due to lack of space and refer the reader to the companion technical
report [37] for the details. Our proofs are mostly adapted from
Werner [41] and Geuvers [17], but we have to add support for kind-
schema variables which is not part of Werner’s system.

Theorem 10 (Subject reduction) If the judgment ∆ 
 A : B is
derivable, and if A � A′ and ∆ � ∆′, then the following are
derivable: ∆ 
 A′ : B and ∆′ 
 A : B.

Theorem 11 (Strong normalization) All well typed terms are
strongly normalizing.

Theorem 12 (Church-Rosser) Let ∆ 
 A : B and ∆ 
 A′ : B
be two derivable judgments. If A =βηι A′, and if A and A′ are in
normal form, then A = A′.

Theorem 13 (Consistency of the logic) There exists no term A
for which · 
 A : False.

B Properties of λH

The proof of the following lemma is by induction on the structure
of typing derivations.

Lemma 2 If ∆, X :B; Γ 
 e : A′ and ∆ 
 A : B, then
∆; Γ 
 [A/X]e : [A/X]A′.

We also need a proposition guaranteeing that equivalence of con-
structor applications implies equivalence of their arguments; it is a
corollary of the confluence of TL (Theorem 12).

Lemma 3 If Ctor (i, I) �A =βηι Ctor (i′, I ′) �A′, then i = i′ and
I =βηι I ′ and �A =βηι

�A′.

Lemma 4 (Progress) If ·;·
 e : A, then either e is a value, or
there exists e′ such that e �→ e′.

Proof sketch By standard techniques [42] using induction on
computation terms. Due to the transitivity of =βηι any derivation of
∆; Γ 
 e : A can be converted to a standard form in which there
is an application of rule E-CONV at its root, whose first premise
ends with an instance of a rule other than E-CONV, all of whose
term derivation premises are in standard form.

We omit the proofs for the cases of standard constructs and the
induction on the structure of evaluation contexts. The interesting
case is that of the dependently typed sel.

If e = sel[A′](v, v′), by inspection of the typing rules the
derivation of ·;·
 e : A in standard form must have an instance of
rule E-SEL in the premise of its root. Hence the subderivation for v
must assign to it a tuple type, and the whole derivation has the form

D
·;·
 v : tup A2 A′′

D′

·;·
 v′ : snat A1

E
· 
 A′ : LT A1 A2

·;·
 sel[A′](v, v′) : A′′ A1

·;·
 sel[A′](v, v′) : A

where A =βηι A′′ A1. By inspection of the typing rules, rules
other than E-CONV assign to all values types which are applications
of constructors of Ω. Since the derivation D is in standard form, it

ends with an E-CONV, in the premise of which another rule assigns
v a type βηι-equivalent to tup A2 A′′. Then by Lemma 3 this type
must be an application of tup, and again by inspection the only
rule which applies is E-TUP, which implies v = 〈v0, . . . vn−1〉,
and the derivation D must have the form

∀i < n
Di

·;·
 vi : A′′
1 î

·;·
 〈v0, . . . vn−1〉 : tup n̂ A′′
1

Also by Lemma 3 A2 =βηι n̂. Similarly the only rule assigning
to a value a type convertible to that in the conclusion of D′ is E-
NAT, hence A1 =βηι m̂ for some m ∈ N, and v′ = m. Then,
by adequacy of LT (Lemma 1(3)), the conclusion of E implies that
m < n. Hence by rule R-SEL e �→ vm. �

Lemma 5 (Subject Reduction) If ·;·
 e : A and e �→ e′, then
·;·
 e′ : A.

Proof sketch Since evaluation contexts bind no variables, it suf-
fices to prove subject reduction for ↪→ and a standard term substi-
tution lemma. We show only some cases of redexes involving sel
and if.

• The derivation for e = sel[A′](〈v0, . . . vn−1〉, m) in stan-
dard form has the shape

∀i < n
Di

·;·
 vi : A′′
1 î

·;·
 〈�v〉 : tup n̂ A′′
1

·;·
 〈�v〉 : tup A2 A′′

D′

·;·
 m : snat m̂

·;·
 m : snat A1

E
· 
 A′ : LT A1 A2

·;·
 sel[A′](〈v0, . . . vn−1〉, m) : A′′ A1

·;·
 sel[A′](〈v0, . . . vn−1〉, m) : A

where A =βηι A′′ A1, A′′
1 =βηι A′′, and A1 =βηι m̂. Since

e �→ e′ only by rule R-SEL, we have m < n and e′ = vm, so
from Dm and A′′

1 m̂ =βηι A′′ m̂ =βηι A′′ A1 =βηι A we
obtain a derivation of ·;·
 e′ : A.

• In the case of if the standard derivation D of

·;·
 if[B, A′](tt, X1. e1, X2. e2) : A

ends with an instance of E-CONV, preceded by an instance of
E-IF. Using the notation from Figure 5, from the premises
of this rule it follows that we have a derivation E of · 

A′ : B A′′, and A′′ =βηι true (since rule E-TRUE assigns
sbool true to tt), hence we have · 
 A′ : B true by CONV.
By Lemma 2 from E and the derivation of X1 : B true; · 

e1 : A (provided as another premise), since X1 is not free in
A (ensured by the premise · 
 A : Ω) we obtain a derivation
of ·;·
 [A′/X1]e1 : A. �

C Example of Proof Construction

Here we show the type term ltPrf which generates the proof of the
proposition LTOrTrue t′ t (lt t′ t), needed in the sumVec exam-
ple in Section 4. We first present a Church encoding of the kind
term LT and its “constructors” ltzs and ltss.

LT : Nat→Nat→Kind
LT = λt :Nat. λt′ :Nat.

ΠR :Nat→Nat→Kind.
(Πt :Nat. R zero (succ t))→
(Πt :Nat. Πt′ :Nat. R t t′→R (succ t) (succ t′))→
R t t′
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ltzs : Πt :Nat. LT zero (succ t)

ltzs = λt :Nat. λR :Nat→Nat→Kind.
λz : (Πt :Nat. R zero (succ t)).
λs : (Πt :Nat. Πt′ :Nat. R t t′→R (succ t) (succ t′)).
z t

ltss : Πt :Nat. Πt′ :Nat. LT t t′→LT (succ t) (succ t′)
ltss = λt :Nat. λt′ :Nat. λp :LT t t′. λR :Nat→Nat→Kind.

λz : (Πt :Nat. R zero (succ t)).
λs : (Πt :Nat. Πt′ :Nat. R t t′→R (succ t) (succ t′)).
s t t′ (p R z s)

Next we define dependent conditionals on kinds Nat and Bool.

dep ifez : Πt :Nat. Πk :Nat→Kind.
k zero→ (Πt′ :Nat. k (succ t′))→k t

dep ifez zero = λk :Nat→Kind. λt1 :k zero.
λt2 : (Πt′ :Nat. k (succ t′)). t1

dep ifez (succ t) = λk :Nat→Kind. λt1 :k zero.
λt2 : (Πt′ :Nat. k (succ t′)). t2 t

dep if : Πt :Bool. Πk :Bool→Kind. k true→k false→k t
dep if true = λk :Bool→Kind. λt1 :k true. λt2 :k false. t1
dep if false = λk :Bool→Kind. λt1 :k true. λt2 :k false. t2

Finally, some abbreviations, and then the proof generator itself.

LTcond : Nat→Nat→Kind
LTcond = λt′ :Nat. λt :Nat. LTOrTrue t′ t (lt t′ t)

LTimp : Nat→Nat→Bool→Kind

LTimp = λt′ :Nat. λt :Nat. λt′′ :Bool.
LTOrTrue t′ t t′′→LTOrTrue (succ t′) (succ t) t′′

ltPrf : Πt′ :Nat. Πt :Nat. LTcond t′ t

ltPrf = λt′ :Nat.
Elim[Nat, λt′1 :Nat. Πt1 :Nat. LTcond t′1 t1](t

′){
λt1 :Nat. dep ifez t1 (LTcond zero) id ltzs;
λt′1 :Nat. λtP : (Πt1 :Nat. LTcond t′1 t1). λt1 :Nat.

dep ifez t1
(LTcond (succ t′1))
id
(λt1 :Nat. dep if (lt t′1 t1)

(LTimp t′1 t1)
(ltss t′1 t1)
(id True)
(tP t1))}

D CPS Conversion (Details)

We start by defining a version of λH using type-annotated terms.
By f̄ and ē we denote the terms without annotations. Type annota-
tions allow us to present the CPS transformation based on syntactic
instead of typing derivations.

(exp) e ::= ēA

ē ::= x | n | tt | ff | f | fix x :A.f | e e′ | e[A]

| 〈X =A, e :A′〉 | open e as 〈X, x〉 in e′

| 〈e0, . . . en−1〉 | sel[A](e, e′) | e aop e′

| e cop e′ | if[A, A′](e, X1. e1, X2. e2)

(fun) f ::= f̄A

f̄ ::= λx :A.e | ΛX :A. f

The target language λK of the CPS conversion stage has been de-
fined in Section 5. We use the following syntactic sugar to de-
note non-recursive function definitions and value applications in

λK (here x′ is a fresh variable):

λx :A.e≡fix x′[](x :A). e
v v′ ≡ v[](v′)

ΛX1 :A1. . . . ΛXn :An. λx :A.e
≡fix x′[X1 :A1, . . . Xn :An](x :A). e

In the static semantics of λK we use two forms of judgments.
As in λH , the judgment ∆; Γ 
K v : A indicates that the value v
is well formed and of type A in the type and value contexts ∆ and Γ
respectively. Moreover, ∆; Γ 
K e indicates that the expression
e is well formed in ∆ and Γ. In both forms of judgments, we omit
the subscript from 
K when it can be deduced from the context.

The static semantics of λK is specified by the following forma-
tion rules (we omit the rules for environment formation, variables,
constants, tuples, packages, and type conversion on values, which
are the same as in λH):

for all i ∈ {1 . . . n} ∆ 
 Ai : si

∆, X1 :A1 . . . , Xn :An 
 A : Ω
∆, X1 :A1 . . . , Xn :An; Γ, x′ :A′, x :A 
 e

∆; Γ 
 fix x′[X1 :A1, . . . Xn :An](x :A). e : A′

where
A′ = func (∀s1X1 :A1. . . . ∀snXn :An. A→⊥)

(K-FIX)

for all i ∈ {1 . . . n} ∆ 
 Ai : Bi

∆; Γ 
 v′ : func (∀s1X1 :B1. . . . ∀snXn :Bn. A→⊥)
∆; Γ 
 v : [A1/X1] . . . [An/Xn]A

∆; Γ 
 v′[A1, . . . An](v)

(K-APP)

∆; Γ 
 v : A ∆; Γ, x :A 
 e

∆; Γ 
 let x = v in e
(K-VAL)

∆; Γ 
 v : tup A′′ B ∆; Γ 
 v′ : snat A′

∆ 
 A : LT A′ A′′ ∆; Γ, x :B A′ 
 e

∆; Γ 
 let x = sel[A](v, v′) in e

(K-SEL)

∆; Γ 
 v : ∃sY :B. A
∆, X :B; Γ, x : [X/Y ]A 
 e

∆; Γ 
 let 〈X, x〉 = open v in e

(
X /∈ ∆
s �= Ext

)
(K-OPEN)

∆; Γ 
 v : snat A ∆; Γ 
 v′ : snat A′

∆; Γ, x : snat (plus A A′) 
 e

∆; Γ 
 let x = v + v′ in e

(K-ADD)

∆; Γ 
 v : snat A ∆; Γ 
 v′ : snat A′

∆; Γ, x : sbool (lt A A′) 
 e

∆; Γ 
 let x = v < v′ in e

(K-LT)

∆ 
 B : Bool→Kind ∆ 
 A : B A′

∆; Γ 
 v : sbool A′

∆, X1 :B true; Γ 
 e1 ∆, X2 :B false; Γ 
 e2

∆; Γ 
 if[B, A](v, X1. e1, X2. e2)

(K-IF)

Except for the rules K-FIX and K-APP, which must take into ac-
count the presence of func, the static semantics for λK is a natural
consequence of the static semantics for λH .

The definition of the CPS transformation for computation terms
of λH to computation terms of λK is given in Figure 6, where we
use the abbreviations introduced in Section 5.

Proposition 14 (Type Correctness of CPS Conversion)
If ·;·
H e : A, then ·;·
K Kexp[[ ē

A ]] : func (Kc(A)→⊥).
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Kfval[[(λx :A. eB)A→B ]] = λxarg :K(A) × Kc(B).

let x = sel[ltPrf 0̂ 2̂](xarg, 0) in

let k = sel[ltPrf 1̂ 2̂](xarg, 1) in
Kexp[[e

B ]] k
Kfval[[(ΛX :A. fB)∀sX:A. B ]] =

ΛX :A. λk :Kc(B). k (Kfval[[f
B ]])

Kexp[[ ē
A ]] = λk :Kc(A). k (ē)

for ēA one of xA, nsnat n̂ , ttsbool true, ffsbool false

Kexp[[f
A ]] = λk :Kc(A). k (Kfval[[f

A)]]

Kexp[[(fix x :A. fA)A ]] =

λk :Kc(A). k (fix x[](k :Kc(A)). k (Kfval[[f
A ]]))

Kexp[[(e1
A→B e2

A)B ]] = λk :Kc(B).

Kexp[[e1
A→B ]] (λx1 :K(A → B).

Kexp[[e2
A ]] (λx2 :K(A).

x1 〈x2, k〉))
Kexp[[(e

∀∀s A′ B [A])B A ]] = λk :Kc(B A).

Kexp[[e
∀∀s A′ B ]] (λx :K(∀∀s A′ B).

x[A](k))

Kexp[[〈eA0
0 , . . . e

An−1
n−1 〉A ]] = λk :Kc(A).

Kexp[[e
A0
0 ]] (λx0 :K(A0).

...
Kexp[[e

An−1
n−1 ]] (λxn−1 :K(An−1).

k 〈x0, . . . xn−1〉) . . .)

Kexp[[sel[A](e1
tup A′′ B, e2

snat A′
)B A′

]] =

λk :Kc(B A′).Kexp[[e1
tup A′′ B ]] (λx1 :K(tup A′′ B).

Kexp[[e2
snat A′

]] (λx2 :K(snat A′).
let x′ = sel[A](x1, x2) in k x′))

Kexp[[〈X =A, e[A/X]B :B〉A′
]] =

λk :Kc(A
′).Kexp[[e

[A/X]B ]] (λx :K([A/X]B).
k 〈X =A, x :K(B)〉)

Kexp[[(open e1
∃sY:A′. B as 〈X, x〉 in e2

A)A ]] =

λk :Kc(A).Kexp[[e1
∃sY:A′. B ]] (λx1 :K(∃sY :A′. B).

let 〈X, x〉 = open x1 in Kexp[[e2
A ]] k)

Kexp[[(e1
snat A + e2

snat A′
)snat (plus A A′) ]] =

λk :Kc(snat (plus A A′)).Kexp[[e1
snat A ]] (λx1 :K(snat A).

Kexp[[e2
snat A′

]] (λx2 :K(snat A′).
let x′ =x1 +x2 in k x′))

Kexp[[(e1
snat A < e2

snat A′
)sbool (lt A A′) ]] =

λk :Kc(sbool (lt A A′)).Kexp[[e1
snat A ]] (λx1 :K(snat A).

Kexp[[e2
snat A′

]] (λx2 :K(snat A′).
let x′ =x1 <x2 in k x′))

Kexp[[(if[B, A](esbool A′′
, X1. e1

A′
, X2. e2

A′
))A′

]] =

λk :Kc(A
′).Kexp[[e

sbool A′′
]] (λx :K(sbool A′′).

if[B, A](x, X1.Kexp[[e1
A′

]] k, X2.Kexp[[e2
A′

]] k))

Figure 6: CPS conversion: from λH to λK .

E Closure Conversion (Details)

The main difference in the static semantics between λK and λC is
that in the latter the body of a function must not contain free type
or term variables. This is formalized in the rule C-FIX below. The
rules C-TAPP and C-APP corresponding to the separate type and

Cval[[v ]] = v, for v one of x, n, tt, ff

Cval[[〈v0, . . . vn−1〉 ]] = 〈Cval[[v0 ]], . . . Cval[[vn−1 ]]〉
Cval[[〈X =A, v :B〉 ]] = 〈X =A, Cval[[v ]] :Cl (B) ⊥〉
Cval[[fix x′[X1 :A1, . . . Xn :An](x :A). e ]] =

〈X =Aenv, 〈vcode[Y1] . . . [Ym], venv〉 :AX〉
where
AX = A′

X × X
A′

X = ∀s1X1 :A1. . . . ∀snXn :An. (X × Cl (A) ⊥)→⊥
{xA′

0
0 , . . . x

A′
k−1

k−1 } = FV (e) − {x, x′}
{Y B′

1
1 , . . . Y B′

m
m } =

FTV (fix x′[X1 :A1, . . . Xn :An](x :A). e)

Aenv = Cl (tup k̂ (nth (A′
0:: . . . A

′
k−1::nil))) ⊥

venv = 〈x0 . . . xk−1〉
vcode = fix vfix[Y1 :B′

1, . . . Ym :B′
m, X1 :A1, . . . Xn :An]

(xarg :Aenv × Cl (A) ⊥).

let xenv = sel[ltPrf 0̂ 2̂](xarg, 0) in

let x = sel[ltPrf 1̂ 2̂](xarg, 1) in
let x′ = 〈X =Aenv,

〈vfix[Y1] . . . [Ym], xenv〉 :AX〉 in

let x0 = sel[ltPrf 0̂ k̂](xenv, 0) in . . .

let xk−1 = sel[ltPrf k̂ − 1 k̂](xenv, k − 1) in Cexp[[e ]]

Cexp[[v1[A1, . . . An](v2)]] = let 〈Xenv, xarg〉 = open Cval[[v1 ]] in

let xcode = sel[ltPrf 0̂ 2̂](xarg, 0) in

let xenv = sel[ltPrf 1̂ 2̂](xarg, 1) in
xcode[A1] . . . [An] 〈xenv, Cval[[v2 ]]〉

Cexp[[ let x = v in e ]] = let x = Cval[[v ]] in Cexp[[e ]]

Cexp[[ let x = sel[A](v, v′) in e ]] =
let x = sel[A](Cval[[v ]], Cval[[v

′ ]]) in Cexp[[e ]]

Cexp[[ let 〈X, x〉 = open v in e ]] =
let 〈X, x〉 = open Cval[[v ]] in Cexp[[e ]]

Cexp[[ let x = v1 + v2 in e ]] = let x = Cval[[v1 ]] + Cval[[v2 ]] in Cexp[[e ]]

Cexp[[ let x = v1 < v2 in e ]] = let x = Cval[[v1 ]] < Cval[[v2 ]] in Cexp[[e ]]

Cexp[[ if[B, A](v, X1. e1, X2. e2) ]] =
if[B, A](Cval[[v ]], X1. Cexp[[e1 ]], X2. Cexp[[e2 ]])

Figure 7: Closure conversion: from λK to λC .

value application in λC are standard.

for all i < n · 
 Ai : si

·, X1 :A1 . . . , Xn :An 
 A : Ω
·, X1 :A1 . . . , Xn :An; ·, x′ :B, x :A 
 e

∆; Γ 
 fix x′[X1 :A1, . . . Xn :An](x :A). e : B
where B = ∀s1X1 :A1. . . . ∀snXn :An. A→⊥

(C-FIX)

∆; Γ 
 v : ∀sX :A′. B ∆ 
 A : A′

∆; Γ 
 v[A] : [A/X]B
(C-TAPP)

∆; Γ 
 v1 : A→⊥ ∆; Γ 
 v2 : A

∆; Γ 
 v1 v2
(C-APP)

The definition of the closure transformation for the computation
terms of λK is given in Figure 7.

Proposition 15 (Type Correctness of Closure Conversion)
If ·;·
K v : A, then ·;·
C Cval[[v ]] : Cl (A) ⊥.
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