
New Generation Computing, 29(2011)3-29
Ohmsha, Ltd. and Springer

Weak Updates and Separation Logic

Gang TAN
Computer Science & Engineering,
Lehigh University
19 Memorial Drive West, Bethlehem,
PA 18015, USA
gtan@cse.lehigh.edu
Zhong SHAO
Department of Computer Science,
Yale University
P.O.Box 208285 New Haven,
CT 06520-8285, USA
Xinyu FENG
School of Computer Science and Technology,
University of Science and Technology of China
166 Ren’ai Road Suzhou Institute for Advanced Study, USTC
Suzhou, Jiangsu 215123, CHINA
Hongxu CAI
Google Inc., 1600 Amphitheatre Parkway
Mountain View, CA 94043, USA

Received 31 March 2010
Revised manuscript received 17 August 2010

Abstract Separation logic provides a simple but powerful technique
for reasoning about low-level imperative programs that use shared data struc-
tures. Unfortunately, separation logic supports only “strong updates,” in
which mutation to a heap location is safe only if a unique reference is owned.
This limits the applicability of separation logic when reasoning about the
interaction between many high-level languages (e.g., ML, Java, C#) and low-
level ones since the high-level languages do not support strong updates. In-
stead, they adopt the discipline of “weak updates,” in which there is a global
“heap type” to enforce the invariant of type-preserving heap updates. We

present SLw, a logic that extends separation logic with reference types and
elegantly reasons about the interaction between strong and weak updates. We
describe a semantic framework for reference types, which is used to prove the

soundness of SLw. Finally, we show how to extend SLw with concurrency.
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§1 Introduction
Reasoning about mutable, aliased heap data structures is essential for

proving properties or checking safety of imperative programs. Two distinct
approaches perform such kind of reasoning: separation logic, and a type-based
approach employed by many high-level programming languages.

Extending Hoare Logic, the seminal work of separation logic12,17) (abbrevi-
ated to SL hereafter) is a powerful framework for proving properties of low-level
imperative programs. Through its separating conjunction operator and frame
rule, SL supports local reasoning about heap updates, storage allocation, and
explicit storage deallocation.

SL supports “strong updates”: as long as a unique reference to a heap
cell is owned, the heap-update rule of SL allows the cell to be updated with any
value:

{(e 7→ −) ∗ p}[e] := e′{(e 7→ e′) ∗ p} (1)

In the above heap-update rule, there is no restriction on the new value e′. Here-
after, we refer to heaps with strong updates as strong heaps. Heap cells in strong
heaps can hold values of different types at different times of program execution.

Most high-level programming languages (e.g., Java, C#, and ML), how-
ever, support only “weak updates.” In this paradigm, programs can perform
only type-preserving heap updates. There is a global “heap type” that tells the
type of every allocated heap location. The contents in a location have to obey
the prescribed type of the location in the heap type, at any time. Managing
heaps with weak updates is a simple and type-safe mechanism for programmers
to access memory. As an example, suppose an ML variable has type “τ ref” (i.e.,
it is a reference to a value of type τ). Then any update through this reference
with a new value of type τ is type safe and does not affect other types, even in
the presence of aliases and complicated points-to relations. Hereafter, we refer
to heaps with weak updates as weak heaps.

This article is concerned with the interaction between strong and weak
updates. Strong-update techniques are more precise and powerful, allowing de-
structive memory updates and explicit deallocation. But aliases and uniqueness
have to be explicitly tracked. Weak-update techniques allow type-safe manage-
ment of memory without tracking aliases, but types of memory cells can never
change. A framework that mixes strong and weak updates enables a trade-off
between precision and scalability.

Such a framework is also useful for reasoning about multilingual programs.
Most real-world programs are developed in multiple programming languages.
Almost all high-level languages provide foreign function interfaces for interfacing
with low-level C code (for example, the OCaml/C FFI, and the Java Native
Interface). Real-world programs consist of a mixture of code in both high-
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level and low-level languages. A runtime state for such a program conceptually
contains a union of a weak heap and a strong heap. The weak heap is managed by
a high-level language (e.g., Java), accepts type-preserving heap updates, and is
garbage-collected. The strong heap is managed by a low-level language, accepts
strong updates, and its heap cells are manually recollected. To check the safety
and correctness of multilingual programs, it is of practical value to have one
framework that accommodates both strong and weak updates.

Since separation logic (SL) supports strong updates, one natural thought
to mix strong and weak updates is to extend SL with types so that assertions can
also describe values in weak heaps. That is, in addition to regular SL assertions,
we add “e 7→ τ ,” which specifies a heap with a single cell and the cell holds a
value of type τ . This scheme, however, would encounter two challenges.

First, when general reference types are allowed in “e 7→ τ ,” care must be
taken to avoid unsoundness. An example demonstrating this point follows:

{(x 7→ 4) ∗ (y 7→ even ref)} [x] := 3 {(x 7→ 3) ∗ (y 7→ even ref)} (2)

The example is an instantiation of the heap-update rule in (1), assuming “e 7→ τ”
is a valid assertion. The precondition states that y points to a heap cell whose
contents are of type “even ref”. If “τ ref” is interpreted as a set of locations
whose contents are of type τ , then the precondition is met on a heap where y
points to x. However, the postcondition will not hold on the new heap after
the update because x will point to an odd number. Therefore, the above rule is
sound only if the model of “even ref” does not permit y to point to x.

The second challenge of adding types to SL is how to prove its soundness
with mixed SL assertions and types. Type systems are usually proved sound
following a syntactic approach,24) where types are treated as syntax. Following
the tradition of Hoare Logic, SL’s soundness is proved through a semantic model,
and SL assertions are interpreted semantically. There is a need to resolve the
differences between syntactic and semantic soundness proofs.

In this article, we propose a hybrid logic, SLw, which mixes SL and a type
system. Although the logic is described in a minimal language and type system,
it makes a solid step toward a framework that reasons about the interaction be-
tween high-level and low-level languages. The most significant technical aspects
of the logic are as follows:

• SLw extends SL with a simple type system. It employs SL for reasoning
about strong updates, and employs the type system for weak updates.
Most interestingly, SLw mixes SL assertions and types. It accommodates
cross-boundary pointers (from weak to strong heaps and vice versa) by
distinguishing between pointers to weak heaps and pointers to strong
heaps through the type system. SLw is presented in Section 2.

• To resolve the differences between syntactic types and semantic assertions,
we propose a semantic model of types. Our model of reference types
follows a fixed-point approach and allows us to define a denotational
model of SLw and prove its soundness. The model of SLw is presented
in Section 3.
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• We extend SLw with concurrency in Section 4. We add an atomic-block
command and a parallel-execution command to the language, extend SLw

with new rules for concurrency, and adjust the semantic model for sound-
ness. The extension to the logic demonstrates an important difference
between weak and strong heaps: weak heaps can be accessed safely with-
out synchronization, while safe access to strong heaps requires synchro-
nization.

A preliminary version of this article was published in the Proceedings
of the Seventh Asian Symposium on Programming Languages and Systems
(APLAS 2009).19) The differences between the conference version and this article
is described as follows. First, we streamlined the presentation and added proofs
to the most important lemmas and theorems. Second, in this article we show
how to extend the syntax and semantics of SLw to accommodate concurrency.
The change to a concurrent setting requires some changes to the original SLw.
For instance, there is a need to treat variables as resources (similar to the way
how memory cells are treated in separation logic). We reuse local variable types
for this purpose.

§2 SLw: Separation Logic With Weak Updates
We next describe SLw, an extension of SL that incorporates reasoning

about weak heaps. In Section 2.1, we describe a minimal language that enables
us to develop SLw. Rules of SLw are presented in Section 2.2 and examples of
using the logic in Section 2.3.

Notation convention. For a map f , we write f [x;y] for a new map that agrees
with f except it maps x to y. For two finite maps f1 and f2, we write f1 ⊥ f2

when their domains are disjoint. The notation f1 ] f2 is the union of f1 and f2

when f1 ⊥ f2, and undefined otherwise. The notation f1 ] f2, implicitly carries
the restriction f1 ⊥ f2. We write f \X for a new map resulting from removing
elements in the set X from the domain of f .

2.1 Language Syntax and Semantics
Figure 1 presents the syntax of the programming language in which we

will develop SLw. The language is the imperative language used by Hoare, 8)

augmented with a set of commands for manipulating heap data structures. It
is similar to the one used in Reynolds’ presentation of SL.17) Informally, the
command “x := [e]” loads the contents at location e into variable x; “[x] := e”
updates the location at x with the value of e; “x := alloc(e)” allocates a new
location, initializes it with the value of e, and assigns the new location to x;

(Command) c ::= · · · | x := [e] | [x] := e | x := alloc(e) | free(e) | c1; c2 | ε
(Expression) e ::= x | v | op(e1, . . . , en)

(Value) v ::= n

Fig. 1 Language Syntax
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“free(e)” deallocates the location e. “c1; c2” is the usual syntax for sequencing
two commands. ε is the empty command, used in the operational semantics to
signal the termination of a program.

An expression is either a variable x, a value v, or an operator op with
a list of operands. We assume there is an infinite number of variables. All
values, including heap locations, are natural numbers. Treating heap locations as
natural numbers allows address arithmetic (i.e., adding a number to a location).
We sometimes write ` for a heap location, but it is just a number.

Figure 2 presents the formal operational semantics of the language. A
state consists of a store s (a map from variables to values), a heap h (a map
from locations to values), and a command. Commands bring one state to another
state and their semantics is formally defined by a step relation −→ . We write
−→∗ for the reflexive and transitive closure of −→ .

A state may step to a wrong state. For instance, a state whose next
instruction to execute is [x] := e goes to a wrong state when its store does not
contain one of the variables in {x}∪ fvar(e) or the value of x is not in the domain
of its heap.

(State) σ ::= (s, h, c)
(Store) s ::= {x1 ; v1, . . . , xn ; vn}
(Heap) h ::= {`1 ; v1, . . . , `n ; vn}

s(e) = ` ∈ dom(h)

(s, h, x := [e]) −→ (s[x;h(`)], h, ε)

{x} ∪ fvar(e) 6⊆ dom(s) or s(e) 6∈ dom(h)

(s, h, x := [e]) −→ wrong

s(x) = ` ∈ dom(h)

(s, h, [x] := e) −→ (s, h[`;s(e)], ε)

{x} ∪ fvar(e) 6⊆ dom(s) or s(x) 6∈ dom(h)

(s, h, [x] := e) −→ wrong

` 6∈ dom(h)

(s, h, x := alloc(e)) −→ (s[x;`], h ] {` ; s(e)}, ε)
{x} ∪ fvar(e) 6⊆ dom(s)

(s, h, x := alloc(e)) −→ wrong

s(e) = ` ∈ dom(h)

(s, h, free(e)) −→ (s, h \ {`}, ε)
fvar(e) 6⊆ dom(s) or s(e) 6∈ dom(h)

(s, h, free(e)) −→ wrong

(s, h, c1) −→ (s′, h′, c′1)

(s, h, c1; c2) −→ (s′, h′, c′1; c2) (s, h, ε; c2) −→ (s, h, c2)

(s, h, c1) −→ wrong

(s, h, c1; c2) −→ wrong

where s(e) =

8
<
:

s(x) when e = x and x ∈ dom(s)
v when e = v
op(s(e1), . . . , s(en)) when e = op(e1, . . . , en)

Fig. 2 Operational Semantics
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2.2 The Logic SLw

Figure 3 presents assertions and types used in SLw. Assertions in SLw

include all formulas in predicate calculus (not shown in the figure), and all SL
formulas. The only additional assertion form in SLw is {e : τ}, which denotes
that e has type τ (the semantics is formally defined in Section 3).

(Assertion) p ::= · · · | emp | e1 7→ e2 | p1 ∗ p2 | p1 −∗p2 | e : τ
(Type) τ ::= int | wref τ

(HeapType) Ψ ::= {`1 : τ1, . . . , `n : τn}
(LocalVarType) Γ ::= {x1 : τ1, . . . , xn : τn}

Fig. 3 Assertions and Types

SLw is equipped with a simple type system for tracking weak-heap lo-
cations. Although the type system does not include many types in high-level
languages, by including reference types it is already sufficient to show interest-
ing interactions between strong and weak heaps. Reference types are the most
common types when high-level languages interoperate with low-level languages
because most data across language boundaries are passed by references.

Type int is for all numbers and it is essentially a top type since all values in
SLw are natural numbers. Type “wref τ” is for locations in a weak heap, but not
in a strong heap. We have removed the ref type in the APLAS version.19) The
ref type was the type for heap locations. But since in this paper locations are
treated as natural numbers, it is safe to remove ref and give int to heap locations.
A heap type Ψ tells the type of every location in a weak heap; mathematically,
it is a finite map from locations to types. Given a heap type Ψ, location ` has
type “wref τ” if Ψ(`) equals τ . A local variable type, Γ, tells the type of local
variables.

Figure 4 presents typing rules for expressions, which are unsurprising.
Notice that the typing rule for “wref τ” requires that the location ` is in the
domain of the heap type Ψ and Ψ(`) has to be the same as τ . This rule and the
later weak-update rule enforce type-preserving updates on weak heaps.

Ψ, Γ ` e : τ

x ∈ dom(Γ)

Ψ, Γ ` x : Γ(x)
Ψ, Γ ` n : int

Ψ(`) = τ

Ψ, Γ ` ` : wref τ

∀i ∈ [1..n]. Ψ, Γ ` ei : int

Ψ, Γ ` op(e1, . . . , en) : int

Fig. 4 Typing Rules for Expressions

The following schematic diagram helps to understand the relationship
between weak heaps, strong heaps, local variables, assertions and various kinds
of types in SLw:
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As shown in the diagram, SLw conceptually divides a heap into a weak
heap hw and a strong heap hs. The weak heap is specified by a heap type Ψ,
and the strong heap by SL formula p. Pointers to weak-heap cells (in solid lines)
have type “wref τ .” Pointers to strong heap cells (in dotted lines) can have only
type int.

Figures 5, 6, and 7 present inference rules for checking commands. These

Ψ ` {Γ.p} c {Γ′.p′}

x ∈ dom(Γ) Ψ, Γ ` e : int Ψ, Γ ` e′ : τ

Ψ ` {Γ.(e 7→ e′)} x := [e] {Γ[x;τ ].x = e′ ∧ (e 7→ x)} (s-load)

where x 6∈ fvar(e) ∪ fvar(e′)

Ψ, Γ ` x : int fvar(e) ⊆ dom(Γ)

Ψ ` {Γ.(x 7→ −)} [x] := e {Γ.(x 7→ e)} (s-update)

{x} ∪ fvar(e) ⊆ dom(Γ)

Ψ ` {Γ.emp} x := alloc(e) {Γ[x; int].(x 7→ e)} (s-alloc)

where x 6∈ fvar(e)

Ψ, Γ ` e : int

Ψ ` {Γ.(e 7→ −)} free(e) {Γ.emp} (s-free)

Fig. 5 Rules for Heap-manipulating Commands in the World of
Strong Heaps

Ψ ` {Γ.p} c {Γ′.p′}

x ∈ dom(Γ) Ψ, Γ ` e : wref τ

Ψ ` {Γ.emp} x := [e] {Γ[x;τ ].emp} (w-load)

Ψ, Γ ` x : wref τ Ψ, Γ ` e : τ

Ψ ` {Γ.emp} [x] := e {Γ.emp} (w-update)

x ∈ dom(Γ) Ψ, Γ ` e : τ

Ψ ` {Γ.emp} x := alloc(e) {Γ[x;wref τ ].emp} (w-alloc)

Fig. 6 Rules for Heap-manipulating Commands in the World of Weak
Heaps
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rules use the judgment Ψ ` {Γ.p} c {Γ′.p′}. In this judgment, Ψ, Γ and p are
preconditions and specify conditions on the weak heap, local variables, and the
strong heap respectively. Postconditions are Γ′ and p′; they specify conditions on
local variables and the strong heap of the state after executing c. Readers may
wonder why there is no postcondition specification of the weak heap. As common
in mutable-reference type systems, the implicit semantics of the judgment is that
there exists an extended heap type Ψ′ ⊇ Ψ and the weak heap of the poststate
should satisfy Ψ′. In terms of type checking, the particular Ψ′ does not matter.
The formal semantics of the judgment will be presented in Section 3.

In anticipation of the development for concurrency, rules for commands
treat variables as resources. They satisfy the following lemma:

Lemma 2.1
If Ψ ` {Γ.p} c {Γ′.p′}, then fvar(c) ⊆ dom(Γ), and dom(Γ) = dom(Γ′).

That is, all variables read and written by c should be in the domain of the local-
variable type Γ and Γ has the same domain as Γ′. This is the reason why the
s-load rule requires x ∈ dom(Γ). It also implicitly requires fvar(e) ⊆ dom(Γ),
which is implied by the assumption Ψ,Γ ` e : int. As another note, Γ.p is
equivalent to false when fvar(p) 6⊆ dom(Γ) (this is evident from the semantics of
Γ.p in Section 3).

Rules for commands are divided into two groups. One group is for the
world of strong heaps (in Fig. 5), and another for the world of weak heaps (in
Fig. 6). The rules for strong heaps are almost the same as the corresponding
ones in standard SL, except that they also update Γ when necessary.

The rules for weak heaps are the ones that one would usually find in

Ψ ` {Γ.p} c1 {Γ′.p′} Ψ ` {Γ′.p′} c2 {Γ′′.p′′}
Ψ ` {Γ.p} c1; c2 {Γ′′.p′′}

(seq)

Ψ ` {Γ.emp} ε {Γ.emp} (emp)

Ψ ` {Γ.p} c {Γ′.p′}
Ψ ` {(Γ.p) ∗ (Γ1.p1)} c {(Γ′.p′) ∗ (Γ1.p1)} (frame)

where no variable occurring free in p1 is modified by c

Ψ ` {Γ1.p1} c {Γ2.p2}
` {Γ′1.p′1} ⇒ {Γ1.p1} ` {Γ2.p2} ⇒ {Γ′2.p′2}

Ψ ` {Γ′1.p′1} c {Γ′2.p′2}
(weakening)

` {Γ.p} ⇒ {Γ′.p′}

` {Γ.p} ⇒ {Γ.
`
p ∧ (x : Γ(x))

´}
(w1) ` p⇒ p′

` {Γ.p} ⇒ {Γ.p′} (w2)

Fig. 7 Sequencing, Frame, and Weakening Rules (Rules for assign-
ments, conditional statements, and loops are similar to the
ones in Hoare Logic and are omitted.)
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a type system for mutable-reference types. The weak-update rule w-update
requires the pointer be of type “wref τ ,” and the new value be of type τ . This
rule enforces type-preserving updates. Once these conditions hold, Γ remains
unchanged after the update. Notice in this rule there is no need to understand
separation and aliases as the s-update rule does. The w-alloc rule does not
need to extend the heap type Ψ because Ψ is only a precondition. When proving
the soundness of the rule, we need to find a new Ψ′ that extends Ψ and is also
satisfied by the new weak heap after the allocation. Finally, there is no rule for
free(e) in the world of weak heaps. Weak heaps should be garbage-collected.∗1

Figure 7 presents additional rules. In the frame rule, the notation
(Γ.p) ∗ (Γ′.p′) stands for Γ ] Γ′.(p ∗ p′). Rule w1 converts type information
in Γ to information in assertion p. This is useful since information in Γ might be
overwritten due to assignments to variables. One of examples in later sections
will show the use of this rule. Rule w2 uses the premise ` p⇒ p′; any formula
that is valid according to the semantics of ` p⇒ p′ is acceptable (the semantics
is defined in Sec. 3).

Figure 8 presents a rule that shows the interaction between weak and
strong heaps. The command “εs2w(x)” is the empty command with a type
annotation. It instructs the type checker to transform the ownership of the cell
referenced by x in the strong heap to the weak heap. Notice that there is no rule
for converting a location from the weak heap to the strong heap; this is similar
to deallocation in weak heaps and requires the help of garbage collectors.

Ψ, Γ ` x : int Ψ, Γ ` e : τ

Ψ ` {Γ.(x 7→ e)} εs2w(x) {Γ[x;wref τ ].emp} (s2w)

Fig. 8 A Rule for Converting a Location from the Strong Heap to
the Weak Heap

2.3 Examples
We now show a few examples that demonstrate the use of SLw. In these

examples, we assume an additional type even for even integers and an obvious
rule for the even type.

n is an even number
Ψ,Γ ` n : even

For clarity, we will also annotate the allocation instruction to indicate
whether the allocation happens in the strong heap or in the weak heap. We
write x := allocs(e) for a strong-heap allocation. We write x := allocw,τ (e) for a
weak-heap allocation, and the intended type for e is τ . These annotations guide
the type checking of SLw.
∗1 We do not formally consider the interaction between garbage collectors and weak heaps.

When considering a garbage collector, SLw has to build in an extra level of indirection
for cross-boundary references from strong heaps to weak heaps as objects in weak heaps
may get moved (this is how the JNI implements Java references in native code). We leave
this as future work.
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The first example shows how the counterexample in the introduction (for-
mula (2) on page 5) plays out in SLw. The following program first initializes
the heap to a form such that y points to a location of type “wref even” and x
points to 4, and then performs a heap update through x. The whole program
is checkable in SLw with respect to any heap type (remember the heap type
specifies the initial weak heap). Below we also include conditions of the form
“Γ.p” between instructions.

{x : int, y : int, z : int}. emp
z := allocw,even(2);

{x : int, y : int, z : wref even}. emp
y := allocs(z);

{x : int, y : int, z : wref even}. (y 7→ z) // by rule (w1)
{x : int, y : int, z : wref even}. (y 7→ z) ∧ {z : wref even} // by rule (w2)
{x : int, y : int, z : wref even}. ∃v. (y 7→ v) ∧ (v : wref even)

z := 0;
{x : int, y : int, z : int}. ∃v. (y 7→ v) ∧ (v : wref even)

x := allocs(4);
{x : int, y : int, z : int}. ∃v. ((y 7→ v) ∧ (v : wref even)) ∗ (x 7→ 4)

[x] := 3
{x : int, y : int, z : int}. ∃v. ((y 7→ v) ∧ (v : wref even)) ∗ (x 7→ 3)

Different from the counterexample, the condition before “[x] := 3” limits where
y can point to. In particular, y cannot point to x because (1) by the type of v,
variable y must point to a weak-heap location; (2) x represents a location in the
strong heap. Therefore, the update through x does not invalidate the type of v.
We could easily construct an example where y indeed points to x. But in that
case the type of v would be int, which would also not be affected by updates
through x.

One of the motivations of SLw is to reason about programs where code in
high-level languages interacts with low-level code. Prior research 6,18) has shown
that the interface code between high-level programs and low-level programs is
error-prone. All kinds of errors may occur. One common kind of errors occurs
when low-level code makes type misuses of references that point to objects in the
weak heap. For instance, in the JNI, types of all references to Java objects are
conflated into one type in native code—jobject. Consequently, there is no static
checking of whether native code uses these Java references in a type-safe way.
Type misuses of these Java references can result in silent memory corruption or
unexpected behavior.

The first example already demonstrates how SLw enables passing pointers
from high-level to low-level code. In the example, the first allocation is on the
weak heap and can be thought of as an operation by high-level code. Then, the
location is passed to the low level by being stored in the strong heap. Unlike
foreign function interfaces where types of cross-boundary references are conflated
into a single type in low-level code, SLw can track the accurate types of those
references and enable type safety.
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The next example demonstrates how low-level code can initialize a data
structure in the strong heap, and then transfer that structure to the weak heap
so that the structure is usable by high-level code.

{x : int, y : int}. emp
x := allocs(4);

{x : int, y : int}. (x 7→ 4)
y := allocs(x);

{x : int, y : int}. (x 7→ 4) ∗ (y 7→ x)
εs2w(x);

{x : wref even, y : int}. (y 7→ x)
εs2w(y)

{x : wref even, y : wref (wref even)}. emp

§3 Soundness of SLw
Soundness of SLw is proved by a semantic approach. We first describe

a semantic model for weak-reference types. Based on this model, semantics of
various concepts in SLw are defined. Every rule in SLw is then proved as a
lemma according to the semantics.

3.1 Modeling Weak-reference Types
Intuitively, a type is a set of values. This suggests that a semantic type

should be a predicate of the metatype “Value → Prop.” However, this idea
would not support weak-reference types. To see why, let us examine a näıve
model where “wref τ” in a heap h would denote a set of locations ` such that
h(`) is of type τ . This simple model is unfortunately unsound, which is illustrated
by the following example:

1. Create a reference of type “wref even,” and let the reference be named x.
2. Copy x to y. By the näıve model, a reference of type “wref even” also has

type “wref int” (because an even number is also an integer). Let “wref int”
be the type of y.

3. Update the reference through y with an odd integer, say 3. As y has the
type “wref int,” updating it with an odd integer is legal.

4. Dereference x. Alas, the dereferencing returns 3, although the type of x
implies a result of an even number!

The problem with the näıve model is that, with aliases, it allows incon-
sistent views of memory. In the foregoing example, x and y have inconsistent
views on the same memory cell. To address this problem, SLw uses a heap type
Ψ to type check a location. This follows the approach of Tofte20) and Harper.7)

An example Ψ is as follows:

Ψ = {`0 : even, `1 : int, `2 : wref even, `3 : wref int} (3)
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A heap type Ψ helps to define two related concepts, informally stated
below (their formal semantic definitions will be presented in a moment):
(i) A location ` is of type “wref τ” if and only if Ψ(`) equals τ .
(ii) A heap h is consistent with Ψ if for every `, the value h(`) has type Ψ(`).

For the example Ψ, condition (ii) means that h(`0) should be an even
number, h(`1) should be an integer, h(`2) should be of type “wref even,” ...

The heap type Ψ prevents aliases from having inconsistent views of the
heap. Aliases have to agree on their types because the types have to agree with
the type in Ψ. In particular, the example showing the unsoundness of the näıve
model would not work in the above model because, in step 3 of the example,
y cannot be cast from type “wref even” to “wref int”: type “wref even” implies
that Ψ(y) = even, which is a different type from int.

A subtlety of the above model is the denotation of “wref τ” depends on
the heap type Ψ, but is independent of the heap h. A weak-reference type is
connected to the heap h only indirectly, through the consistency relation between
h and Ψ.

Example 3.1
Let h = {`0 ; 4, `1 ; 3, `2 ; `0, `3 ; `1}. It is consistent with the example
Ψ in (3). To see this, 4 at location `0 is an even number and 3 at location `1
is an integer. At location `2, `0 is of type “wref even” because, by (i), this is
equivalent to Ψ(`0) = even—a true statement. Similarly, the value `1 at location
`3 is of type “wref int.”

Formalizing a set of semantic predicates following (i) and (ii) directly,
however, would encounter difficulties because of a circularity in the model: by
(ii), Ψ is a map from locations to types; by (i), the model of types takes Ψ
as an argument—Ψ is necessary to decide if a location belongs to “wref τ .” If
defined näıvely, the model would result in inconsistent cardinality, as described
by Ahmed.1)

We next propose a fixed-point approach. We rewrite the heap type Ψ as a
recursive equation. After adding Ψ as an argument to types, the example in (3)
becomes:

Ψ = {`0 : even(Ψ), `1 : int(Ψ), `2 : (wref even)(Ψ), `3 : (wref int)(Ψ)} (4)

Notice that Ψ appears on both the left and the right side of the equation.
Once Ψ is written as a recursive equation, it follows that any fixed point of the
following functional is a solution to the equation (4):

λΨ.{`0 : even(Ψ), `1 : int(Ψ), `2 : (wref even)(Ψ), `3 : (wref int)(Ψ)} (5)

To get a fixed point of (5), we follow the indexed model of recursive types
by Appel and McAllester.2) We first introduce some domains:

(SemHeapType) F ∈ Loc ⇀ SemIType
(SemIType) t ∈ SemHeapEnv → Nat → Value → Prop

(SemHeapEnv) φ ∈ Loc ⇀ Nat → Value → Prop
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We use F for a semantic heap type (it is the metatype of the denotation
of heap types, as we will see). It maps locations to indexed types. An impor-
tant point is that from F we can define λφ, `. F(`) φ, which has the metatype
SemHeapEnv → SemHeapEnv. Therefore, a semantic heap type is effectively a
functional similar to the one in (5), and a fixed point of F is of the metatype
SemHeapEnv.

A semantic type t is a predicate over the following arguments: φ is a
semantic heap environment; k is a natural-number index; v is a value. The heap
environment φ ∈ SemHeapEnv is used in our model of WRef(t) to constrain
reference types. The index k comes from the indexed model and is a technical
device that enables us to define the fixed point of a semantic heap type F.

Following the indexed model, we introduce a notion of contractiveness.

Definition 3.1 (Contractiveness)

contractive(F) , ∀` ∈ dom(F). contractive(F(`))
contractive(t) , ∀φ, k, j ≤ k, v. (t φ j v) ↔ (t (approx(k, φ)) j v)
approx(k, φ) , λ`, j, v. j < k ∧ φ l j v.

We define (℘F) = λφ, `. F(`) φ. That is, it turns F into a functional of
type SemHeapEnv → SemHeapEnv.

Theorem 3.1
If contractive(F), then the following µF is the least fixed point∗2 of the functional
(℘F):

µF , λ`, k, v. (℘F)k+1(⊥) ` k v,

where ⊥ = λ`, k, v. false, and (℘F)k+1 applies the functional k + 1 times.

The theorem is proved by following the indexed model of recursive types.2)

The following lemma is an immediate corollary of Theorem 3.1.

Lemma 3.1
For any contractive F, any `, k, v, we have

(
F(`) (µF) k v

) ↔ (
(µF)(`) k v

)

Most of the semantic types ignore the φ argument. For example,

Even , λφ, k, v. ∃u. v = 2× u.

We use capitalized Even to emphasize that it is a predicate, instead of the
syntactic type even. The model of weak-reference types uses the argument φ.

Definition 3.2
WRef(t) , λφ, k, `. ∀j < k, v. φ ` j v ↔ t φ j v

∗2 Since F is contractive in the sense that “F(`) φ k w” performs only calls to φ on arguments
smaller than k, it is easy to show by induction that any two fixed points of F are identical;
therefore, the least fixed point of F is also its greatest fixed point.
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In words, a location ` is of type WRef(t) under heap environment φ, if φ(`)
equals t approximately, with index less than k.

Example 3.2
Let F0 = {`0 : Even, `1 : WRef(Even)}. Then “WRef(Even) (µF0) k `0” holds
for any k. To see this, for any j < k and v, we have

(µF0) `0 j v ↔ F0(`0)(µF0)j v ↔ Even (µF0) j v

The first step is by lemma 3.1, and the second is by the definition of F0

at location `0. We can similarly show “WRef(WRef(Even)) (µF0) k `1” holds.

Note that the definition of WRef(t) is more general than the “wref τ” type
in SLw, as τ is syntactically defined, while t can be any (contractive) semantic
predicate.

Heap allocation. We need an additional idea to cope with heap allocation in
the weak heap. Our indexed types take the fixed point of a semantic heap type
F as an argument. But F changes after heap allocation. For example, from

F = {`0 : Even, `1 : WRef(Even)} to F′= {`0 : Even, `1 : WRef(Even), `2 : Even},
after `2 is allocated and initialized with an even number.

After a new heap location is allocated, any value that has type t before
allocation should still have the same type after allocation. This is the mono-
tonicity condition maintained by type systems. To model it semantically, our
idea is to quantify explicitly outside of the model of types over all future seman-
tic heap types and assert that the type in question is true over the fixed point
of any future semantic heap type.

First is a notion of type-preserving heap extension from F to F′:

Definition 3.3
F′ ≥ F , contractive(F′) ∧ contractive(F) ∧
∀` ∈ dom(F ), φ, k, v. F′(`) φ k v ↔ F(`) φ k v

Lemma 3.2
The relation F′ ≥ F is reflexive, anti-symmetric, and transitive (thus a partial
order).

Next, we define the consistency relation between h and F, and also a
relation that states a value v is of type t under F. Both relations quantify over
all future semantic heap types, and require that the type in question be true
over the fixed point of any future semantic heap type.

Definition 3.4
|= h :F , dom(h) ⊆ dom(F) ∧ ∀` ∈ dom(h).F |= h(`) :F(`)
F |= v :t , ∀F′ ≥ F.∀k. t (µF′) k v

With our model, the following theorem for memory operations can be
proved.
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Theorem 3.2

(i) (Read) If |= h :F, and ` ∈ dom(h), and F |= ` :WRef(t), then F |= h(`) :t.
(ii) (Write) If |= h : F, and ` ∈ dom(h), and F |= ` : WRef(t), and F |= v : t,

then |= h[`;v] :F.
(iii) (Allocation) If |= h :F, and F |= v :t, and contractive(t), and ` /∈ dom(F),

then |= h ] {` ; v} :F ] {` ; t}.
Proof
We prove (i) and (iii); the proof of (ii) is similar.

(i) By the definition of F |= h(`) :t, the goal is to prove “t (µF′) k (h(`)),”
for all F′ ≥ F, and k.

By |= h :F and ` ∈ dom(h), we have F |= h(`) :F(`). Unfold its definition
and use the assumption F′ ≥ F, we get “F(`) (µF′) k (h(`)).” With this and the
assumption F′ ≥ F, we derive “F′(`) (µF′) k (h(`))”, which is the same as the
following by Lemma 3.1.

(µF′) ` k (h(`)). (6)

Now by the premise F |= ` : WRef(t), we derive “(WRef(t)) (µF′) (k +
1) `”. By the definition of WRef(t), we further get

∀v. (µF′) ` k v ↔ t (µF′) k v (7)

By (6) and (7), we get “t (µF′) k (h(`)),” which is our goal.

(iii) Let h′ = h ] {` ; v}, and F′ = F ] {` ; t}. To show |= h′ :F′, we
need to show

dom(h′) ⊆ dom(F′), (8)
∀`′ ∈ dom(h′). F′ |= h′(`′) :F′(`′). (9)

(8) is immediate from dom(h) ⊆ dom(F). To prove (9), we show that for all
`′ ∈ dom(h′), for all F′′ ≥ F′, for all k, “F′(`′) (µF′′) k (h′(`′))”. We prove it by
a case analysis of `′.

(a) `′ 6= `. The goal becomes “F(`′) (µF′′) k (h(`′))”. First, it is easy to show
F′ ≥ F. By this and F′′ ≥ F′, we get F′′ ≥ F. From |= h : F, we get
F |= h(`′) :F(`′). By this and F′′ ≥ F, we derive the goal.

(b) `′ = `. The goal becomes “t (µF′′) k v”. This is immediate from F |= v : t
and F′′ ≥ F.

3.2 Semantic Model of SLw

To show the soundness of SLw, we define semantics for judgments in SLw

and then prove each rule as a lemma according to the semantics. Figure 9
presents definitions that are used in the semantics.

The semantics of types is unsurprising. In particular, the semantics of
[[wref τ ]] is defined in terms of the predicate WRef(t) in Definition 3.2. All these
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[[τ ]] ∈ SemIType [[int]] , λφ, k, v. True. [[wref τ ]] , WRef([[τ ]])

[[Ψ]] ∈ Loc ⇀ SemIType [[{`1 : τ1, . . . , `n : τn}]] , {`1 : [[τ1]], . . . , `n : [[τn]]}

[[Γ]] ∈ Var ⇀ SemIType [[{x1 : τ1, . . . , xn : τn}]] , {x1 : [[τ1]], . . . , xn : [[τn]]}

F, s, h |= p

F, s, h |= {e : τ} , F |= s(e) : [[τ ]]

F, s, h |= emp , dom(h) = ∅
F, s, h |= (e1 7→ e2) , dom(h) = s(e1) ∧ h(s(e1)) = s(e2)

F, s, h |= p1 ∗ p2 , ∃h1, h2, s1, s2.
(h = h1 ] h2) ∧ (s = s1 ] s2) ∧ (F, s1, h1 |= p1) ∧ (F, s2, h2 |= p2)

F, s, h |= p1 −∗p2 , ∀h1. ((h1 ⊥ h) ∧ ({}, s, h1 |= p1)) ⇒ (F, s, h1 ] h |= p2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F |= s :Γ , dom(s) = dom(Γ) ∧ ∀x ∈ dom(Γ). F |= s(x) : [[Γ(x)]]

F, s, h |= Γ.p , fvar(p) ⊆ dom(Γ) ∧ (F |= s :Γ) ∧ (F, s, h |= p)

|= (s, h) sat (F, Γ.p) ,
∃h1, h2. h=h1]h2 ∧ dom(h1)=dom(F) ∧ (|= h1 :F) ∧ (F, s, h2 |= Γ.p)

Fig. 9 Semantic Definitions

types are contractive. The semantics of Ψ and Γ is just the point-wise extension
of the semantics of types.

The predicate “F, s, h |= p” interprets the truth of assertion p. When p is
a SL formula, the interpretation is similar to the one in SL. When p is {e : τ},
the interpretation depends on F. Notice that the interpretation of {e : τ} is
independent of the heap; it is a pure assertion (that is, it does not depend on
the strong heap).

The definition of F |= s :Γ requires the domains of s and Γ match and every
value in s has the specified type in Γ. The definition of “|= (s, h) sat (F,Γ.p)”
splits the heap into two parts. One for the weak heap, which should satisfy F,
and the other for the strong heap, which is specified by p.

With the above definitions, we are ready to define the semantics of the
judgments in SLw. The following definitions interpret “Ψ,Γ ` e : τ”, “` p⇒ p′,”
and “` {Γ.p} ⇒ {Γ′.p′}.”
Definition 3.5

Ψ,Γ |= e : τ , fvar(e) ⊆ dom(Γ) ∧ ∀F ≥ [[Ψ]] . ∀s. F |= s :Γ ⇒ F |= s(e) : [[τ ]].
|= p⇒ p′ , ∀F, s, h. (F, s, h |= p) ⇒ (F, s, h |= p′)
|= {Γ.p} ⇒ {Γ′.p′} , ∀F, s, h. (F, s, h |= Γ.p) ⇒ (F, s, h |= Γ′.p′)

Now we are ready to interpret Ψ ` {Γ.p} c {Γ′.p′}. Below we present a
partial-correctness interpretation.
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Definition 3.6 (Partial correctness)

Ψ |= {Γ.p} c {Γ′.p′} ,
∀F ≥ [[Ψ]], s, h.

(|= (s, h) sat (F,Γ.p)
) ⇒

¬((s, h, c) −→∗ wrong) ∧(∀s′, h′. (s, h, c) −→∗ (s′, h′, ε) ⇒ ∃F′ ≥ F. |= (s′, h′) sat (F′,Γ′.p′)

In the interpretation, it assumes F and a state that satisfies the condition (F,Γ.p)
and requires that the state does not go wrong. In addition, it requires that, for
any terminal state after the execution of c, we must be able to find a new
semantic heap type F′ so that F′ ≥ F and the new state satisfies (F′,Γ′.p′). Note
that F′ may be larger than F due to allocations in c.

Theorem 3.3 (Soundness)
If Ψ ` {Γ.p} c {Γ′.p′}, then Ψ |= {Γ.p} c {Γ′.p′}.
Proof
The proof is by induction over the derivation of the assumption. We show the
cases s-load and w-alloc. Most other cases are similar. The case of the frame

rule uses Lemma 3.3.

(i)
x ∈ dom(Γ) Ψ,Γ ` e : int Ψ,Γ ` e′ : τ

Ψ ` {Γ.(e 7→ e′)} x := [e] {Γ[x;τ ].x = e′ ∧ (e 7→ x)} (s-load)

where x 6∈ fvar(e) ∪ fvar(e′)

Pick F ≥ [[Ψ]], s, h and assume |= (s, h) sat (F,Γ.(e 7→ e′)). Therefore, for
some h1 and h2, we have

h = h1 ] h2 ∧ dom(h1) = dom(F) ∧ |= h1 :F ∧ F, s, h2 |= Γ.(e 7→ e′) (10)

The first subgoal is to show (s, h, (x := [e])) does not step to a wrong
state. It is sufficient to show “{x} ∪ fvar(e) ⊆ dom(s)” and “s(e) ∈ dom(h)”.
The first is true because “{x} ∪ fvar(e) ⊆ dom(Γ)” (by the assumptions of the
s-load rule), and “dom(s) = dom(Γ)” (by F, s, h2 |= Γ.(e 7→ e′) in (10)).

The second subgoal is to show ∃F′ ≥ F. |= (s′, h) sat (F′,Γ′.p′), where
s′ = s[x;h(s(e))], Γ′ = Γ[x;τ ], and p′ = (x = e′)∧ (e 7→ x). Let F′ = F. Then
by (10), we only need to show F, s′, h2 |= Γ′.p′, which is the same as

(fvar(p′) ⊆ dom(Γ′)) ∧ (F |= s′ :Γ′) ∧ (F, s′, h2 |= p′)

All the above can be proved easily using the assumptions of the s-load rule.

(ii)
x ∈ dom(Γ) Ψ,Γ ` e : τ

Ψ ` {Γ.emp} x := alloc(e) {Γ[x;wref τ ].emp} (w-alloc)

Pick F ≥ [[Ψ]], s, h and assume |= (s, h) sat (F,Γ.emp). Therefore, we have

dom(h) = dom(F) ∧ |= h :F ∧ F, s, {} |= Γ.emp (11)
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The first subgoal is to show (s, h, x := alloc(e)) does not go to a wrong
state. It is sufficient to show “{x} ∪ fvar(e) ⊆ dom(s)”. It is true because
x ∈ dom(Γ), fvar(e) ⊆ dom(Γ) (from “Ψ,Γ |= e : τ”), and “dom(s) = dom(Γ)”.

The second subgoal is to show ∃F′ ≥ F. |= (s′, h′) sat (F′,Γ′.emp), where
s′ = s[x;`], h′ = h ] {` ; s(e)}, and Γ′ = Γ[x;wref τ ].

Let F′ = F]{` ; [[τ ]]}; then F′ ≥ F. By Theorem 3.2(iii) and F |= s(e) : [[τ ]]
(from “Ψ,Γ |= e : τ”), we can show |= h′ :F′. It is also easy to show F′, s′, {} |=
Γ′.emp. All these give us |= (s′, h′) sat (F′,Γ′.emp).

Lemma 3.3 (Locality)
If s = s1]s2, h = h1]h2, ¬(s1, h1, c) −→ wrong, then
1. ¬(s, h, c) −→ wrong; and
2. for all s′ and h′, if (s, h, c) −→ (s′, h′, c′), then there exist s′1 and h′1 such

that s′ = s′1]s2, h′ = h′1]h2, and (s1, h1, c) −→ (s′1, h
′
1, c

′).

§4 Concurrency
In this section, we extend SLw with concurrency. Figure 10 presents

the syntax of extra commands for concurrency and their operational seman-
tics. The atomic-block command atomic{c} executes c atomically. Vafeiadis and
Parkinson23) pointed out that such a command can be used to model synchro-
nizations provided by locks or transactional memory. The operational semantics
of atomic{c} executes c in one step and is not interrupted by other threads. The
parallel-composition command “c1‖c2” has the usual semantics of running c1 and
c2 in parallel. It makes a step when either c1 makes a step or c2 makes a step.
When both c1 and c2 reach the end (i.e., ε), the command “c1‖c2” terminates.

The judgment for checking commands is changed to

ΓG.I,Ψ `c {Γ.p} c {Γ′.p′}.
Compared to the sequential version, the concurrent one has an extra ΓG.I for
specifying invariants in a shared strong heap. We use the symbol I for a global
invariant that should always hold unless in an atomic block; invariant I is a
separation-logic assertion and is required to be a precise assertion.13) The follow-
ing diagram depicts the relationship between various heaps and their specifica-
tions from the point view of one particular thread.

(Command) c ::= . . . | atomic{c} | (c1‖c2)

(s, h, c) −→∗ (s′, h′, ε)

(s, h, atomic{c}) −→ (s′, h′, ε)
(s, h, c) −→∗ wrong

(s, h, atomic{c}) −→ wrong

(s, h, c1) −→ (s′, h′, c′1)

(s, h, c1‖c2) −→ (s′, h′, c′1‖c2)

(s, h, c2) −→ (s′, h′, c′2)

(s, h, c1‖c2) −→ (s′, h′, c1‖c′2)

(s, h, c1) −→ wrong

(s, h, c1‖c2) −→ wrong

(s, h, c2) −→ wrong

(s, h, c1‖c2) −→ wrong (s, h, ε‖ε) −→ (s, h, ε)

Fig. 10 Syntax and Semantics of Commands for Concurrency
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The weak heap hw remains the same as that in the sequential setting and
is specified by a heap type Ψ. The strong heap hs, however, is conceptually split
into a global one (hg), shared by all threads, and a local one (hl), private to one
thread. The global one is specified by the global invariant I, and the local one
by p.

Figure 11 presents inference rules for checking commands. The atomic
rule states that the global strong heap with invariant I is accessible for the
command c in an atomic block. The command can temporarily break the in-
variant, but has to restore the invariant when it is finished. Since it is inside
an atomic block, its temporary breaking of the invariant will not interfere with
other threads.

The par rule conceptually breaks the store and the local strong heap into
two disjoint parts, specified by Γ1.p1 and Γ2.p2, respectively. It then checks c1

with Γ1.p1 as the precondition and c2 with Γ2.p2. For simplicity, the rule does
not allow concurrent reads of variables or heap locations. This could be enabled
by fractional permissions.5)

In addition, rules in Fig. 5, 6, and 7 have to be adjusted: every judgment
of the form Ψ ` {Γ.p} c {Γ′.p′} is changed to ΓG.I,Ψ `c {Γ.p} c {Γ′.p′}.

It is worth mentioning that the rules allow the weak heap to be accessed
concurrently without synchronization (in contrast to the strong heap). Although
it is partly because there are only single-cell references and because access to
these cells is atomic in the operational semantics, this demonstrates an important
difference between strong and weak heaps in the concurrent setting.

ΓG.I, Ψ `c {Γ.p} c {Γ′.p′}

dom(Γ) = dom(Γ′)
{}.emp, Ψ `c {(ΓG.I) ∗ (Γ.p)} c {(ΓG.I) ∗ (Γ′.p′)}

ΓG.I, Ψ `c {Γ.p} atomic{c} {Γ′.p′} (atomic)

∀i ∈ [1, 2]. ΓG.I, Ψ `c {Γi.pi} ci {Γ′i.p′i}
ΓG.I, Ψ `c {(Γ1.p1) ∗ (Γ2.p2)} c1‖c2 {(Γ′1.p′1) ∗ (Γ′2.p′2)} (par)

Fig. 11 Checking Commands in the Presence of Concurrency

An example This example computes the largest Fibonacci number that is less
than 101376. Below is the initialization code for the example.

r1 := allocw,int(0); r2 := r1; y := allocs(1); z := allocs(1)

The example simulates the situation where a high-level program invokes some
low-level program for performing the actual computation. The first operation
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in the initialization allocates a weak-heap cell for storing the final result; this
is to simulate an operation by the high-level program. The low-level program
receives the reference r1, makes a copy (r2 := r1), and then initializes two cells
in the strong heap (pointed to by y and z) for storing two adjacent numbers in
the Fibonacci sequence. The two cells are initialized to be 1.

After initialization, the low-level code uses two threads for performing
the computation: c1‖c2. The program c1, presented below, contains a loop that
retrieves the two numbers stored in the global strong heap, terminates if the
second is greater than or equal to 101376, and computes the next two numbers
in the Fibonacci sequence otherwise. We define c2 to be the same as c1 except
that r1, td1, ty1, and tz1 are replaced by r2, td2, ty2, and tz2, respectively.

td1 := 0;
while (td1 = 0) do {

atomic {
ty1 := [y]; tz1 := [z];
if (tz1 ≥ 101376) {td1 := 1}
else {[y] := tz1; [z] := ty1 + tz1}
}
};
[r1] := ty1

After initialization, the heap satisfies the specification (ΓG.I) ∗ (Γ1.emp) ∗
(Γ2.emp), where ΓG = {y : int, z : int}, I = (y 7→ −) ∗ (z 7→ −), Γ1 = {r1 :
wref int, td1 : int, ty1 : int, tz1 : int}, and Γ2 = {r2 : wref int, td2 : int, ty2 :
int, tz2 : int}. It is easy to show that ΓG.I,Ψ `c {Γ1.emp} c1 {Γ1.emp} holds
for any Ψ, assuming the obvious rules for while and if:

ΓG.I,Ψ `c {Γ.p ∧ b} c {Γ.p}
ΓG.I,Ψ `c {Γ.p} while (b) do c {Γ.p ∧ ¬b} (while)

ΓG.I,Ψ `c {Γ.p ∧ b} c1 {Γ′.p′} ΓG.I,Ψ `c {Γ.p ∧ ¬b} c2 {Γ′.p′}
ΓG.I,Ψ `c {Γ.p} if (b) c1 else c2 {Γ′.p′}

(if)

Similarly, ΓG.I,Ψ `c {Γ2.emp} c2 {Γ2.emp} holds. Therefore, by the
parallel-composition rule, we have

ΓG.I,Ψ `c {Γ1.emp ∗ Γ2.emp} c1‖c2 {Γ1.emp ∗ Γ2.emp}

Soundness We next prove the soundness of the concurrent version of SLw. We
first define the semantics of the judgment for commands.
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Definition 4.1 (Partial correctness)

ΓG.I,Ψ |=c {Γ.p} c {Γ′.p′} ,
∀F ≥ [[Ψ]], s, h.

(|= (s, h) sat (F, (ΓG.I) ∗ (Γ.p))
) ⇒

¬((s, h, c) −→∗ wrong) ∧(∀s′, h′. (s, h, c) −→∗ (s′, h′, ε) ⇒
∃F′ ≥ F. |= (s′, h′) sat (F′, (ΓG.I) ∗ (Γ′.p′))

Theorem 4.1 (Soundness)
If ΓG.I,Ψ `c {Γ.p} c {Γ′.p′}, then ΓG.I,Ψ |=c {Γ.p} c {Γ′.p′}.

Proving the soundness theorem directly based on the induction over the
derivation of the assumption would not go through for the case of the par rule.
We need a stronger induction principle given by Definition 4.3. Then the sound-
ness follows from the following Lemma 4.2 and Lemma 4.3.

Definition 4.2
ΓG.I, F |=0

c (s, h, c) :Γ.p always holds; ΓG.I, F |=k+1
c (s, h, c) :Γ.p holds iff

1. ¬((s, h, c) −→ wrong);
2. if c = ε, then |= (s, h) sat (F, (ΓG.I) ∗ (Γ.p)).
3. for all s′, h′, and c′, if (s, h, c) −→ (s′, h′, c′), then there exists F′ such that

F′ ≥ F and ∀j ≤ k. ΓG.I, F
′ |=j

c (s′, h′, c′) :Γ.p;
4. there exist h1, h2, s1 and s2 such that h = h1 ] h2, s = s1 ] s2, and

a. |= (s1, h1) sat (F,ΓG.I);
b. for all h′1, s′1 and F′, if h′1⊥h2, s′1⊥s2, F′≥F, and |= (s′1, h

′
1) sat (F′,ΓG.I),

then, ∀j ≤ k. ΓG.I, F
′ |=j

c (s′1 ] s2, h
′
1 ] h2, c) :Γ.p.

We also define ΓG.I, F |=c (s, h, c) :Γ.p as ∀k. ΓG.I, F |=k
c (s, h, c) :Γ.p.

Lemma 4.1
If ΓG.I, F |=c (s, h, c) :Γ.p, then (1) ¬((s, h, c) −→∗ wrong), and,
(2) for all s′, h′, if (s, h, c) −→∗ (s′, h′, ε), then there exists F′ such that F′ ≥ F
and |= (s′, h′) sat (F′, (ΓG.I) ∗ (Γ.p)).

Proof
By induction over the number of execution steps.

Definition 4.3

ΓG.I,Ψ |=sc {Γ.p} c {Γ′.p′} ,
∀F ≥ [[Ψ]], s, h.

(|= (s, h) sat (F, (ΓG.I) ∗ (Γ.p))
)⇒(ΓG.I, F |=c (s, h, c) :Γ′.p′)

Lemma 4.2
If ΓG.I,Ψ |=sc {Γ.p} c {Γ′.p′}, then ΓG.I,Ψ |=c {Γ.p} c {Γ′.p′}.
Proof
Immediate from Lemma 4.1.
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Lemma 4.3
If ΓG.I,Ψ `c {Γ.p} c {Γ′.p′}, then ΓG.I,Ψ |=sc {Γ.p} c {Γ′.p′}.
Proof
By induction over the derivation of ΓG.I,Ψ `c {Γ.p} c {Γ′.p′}.
Case 1 The par rule. We know c = c1‖c2 and there exist Γ1, Γ2, Γ′1,
Γ′2, p1, p2, p′1 and p′2 such that Γ.p = Γ1.p1 ∗ Γ2.p2, Γ′.p′ = Γ′1.p

′
1 ∗ Γ′2.p

′
2,

ΓG.I,Ψ `c {Γ1.p1} c1 {Γ′1.p′1}, and ΓG.I,Ψ `c {Γ2.p2} c2 {Γ′2.p′2}.
For all s, h and F, if F ≥ [[Ψ]] and |= (s, h) sat (F,ΓG.I ∗ Γ.p), show

ΓG.I, F |=c (s, h, c) :Γ′.p′. We know there exist s0, s1, s2, h0, h1 and h2 such that
s = s0 ] s1 ] s2, h = h0 ]h1 ]h2, |= (s0, h0) sat (F,ΓG.I), F, s1, h1 |= Γ1.p1, and
F, s2, h2 |= Γ2.p2.

By the induction hypothesis we know ΓG.I,Ψ |=sc {Γ1.p1} c1 {Γ′1.p′1},
and ΓG.I,Ψ |=sc {Γ2.p2} c2 {Γ′2.p′2}. Then we know

(1) ΓG.I, F |=c (s0]s1, h0]h1, c1) :Γ′1.p
′
1; and

(2) ΓG.I, F |=c (s0]s2, h0]h2, c2) :Γ′2.p
′
2.

Our final goal ΓG.I, F |=c (s, h, c) :Γ′.p′ can be derived from Lemma 4.4 below.
Other cases: Proof is similar and is omitted here.

Lemma 4.4
For all k, if s = s0]s1]s2, h = h0]h1]h2, |= (s0, h0) sat (F,ΓG.I), ΓG.I, F |=k

c

(s0]s1, h0]h1, c1) : Γ1.p1, and ΓG.I, F |=k
c (s0]s2, h0]h2, c2) : Γ2.p2, then we

have ΓG.I, F |=k
c (s, h, c1‖c2) : (Γ1.p1) ∗ (Γ2.p2).

Proof
By induction over k. It is trivial when k = 0. Suppose k = i+1. We need to
prove the four sub-goals in Definition 4.2.

The sub-goals 1, 2 and 4.a are trivial. 4.b can be proved based on the
induction hypothesis. Now we prove the sub-goal 3.

Suppose (s, h, c1‖c2) −→ (s′, h′, c′) for some s′, h′ and c′. There are three
cases.

Case 1 c1 = c2 = c′ = ε.
Then we know s = s′, and h = h′. By ΓG.I, F |=i+1

c (s0]s1, h0]h1, c1) : Γ1.p1,
we know |= (s0]s1, h0]h1) sat (F, (ΓG.I) ∗ (Γ1.p1)). Similarly, we can prove
|= (s0]s2, h0]h2) sat (F, (ΓG.I) ∗ (Γ2.p2)). Since |= (s0, h0) sat (F,ΓG.I) and I
is precise, we have |= (s, h) sat (F, (ΓG.I) ∗ (Γ1.p1) ∗ (Γ2.p2)). By Definition 4.2
it is easy to prove ∀j ≤ i.ΓG.I, F |=j

c (s′, h′, c′) : (Γ1.p1) ∗ (Γ2.p2).
Case 2 c′ = c′1‖c2 and (s, h, c1) −→ (s′, h′, c′1).
By Lemma 3.3, we know there exist s′′, and h′′ such that s′ = s′′]s2, h′ = h′′]h2,
and (s0]s1, h0]h1, c1) −→ (s′′, h′′, c′1). By ΓG.I, F |=i+1

c (s0]s1, h0]h1, c1) :
Γ1.p1 we know there exists F′ ≥ F such that for all j ≤ i, ΓG.I, F

′ |=i
c (s′′, h′′, c′1) :

Γ1.p1 (following 3 of Definition 4.2). Then by 4.a of Definition 4.2 we know
there exist s′0, s′1, h′0 and h′1 such that s′′ = s′0 ] s′1, h′′ = h′0 ]h′1, and |=
(s′0, h

′
0) sat (F′,ΓG.I).
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Then, by ΓG.I, F |=i+1
c (s0]s2, h0]h2, c2) :Γ2.p2 and 4.b of Definition 4.2

we know for all j ≤ i, ΓG.I, F
′ |=j

c (s′0]s2, h
′
0]h2, c2) :Γ2.p2.

By the induction hypothesis, we know for all j ≤ i, ΓG.I, F
′ |=j

c (s′, h′, c′) :
(Γ1.p1) ∗ (Γ2.p2).

Case 3 c′ = c1‖c′2 and (s, h, c2) −→ (s′, h′, c′2).
The proof is similar to the case above.

§5 Related Work
We discuss related work in three categories: (1) work related to language

interoperation; (2) work related to integrating SL with type systems; and (3)
work related to semantic models of types.

Most work in language interoperation focuses on the design and implemen-
tation of foreign function interfaces. Examples are plenty. Given a multilingual
program, one natural question is how to reason about the program as a whole.
This kind of reasoning requires models, program analyzers, and program logics
that can work across language boundaries. Previous work has addressed the
question of how to model the interoperation between dynamically typed lan-
guages and statically typed languages,11) and the interoperation between two
safe languages when they have different systems of computational effects.22) By
integrating SL and type systems, SLw can elegantly reason about properties of
heaps that are shared by high-level and low-level code.

Previous systems of integrating SL with type systems 10,14) assume that
programs are well-typed according to a syntactic type system, and SL is then
used as an add-on to reason about more properties of programs. Honda et
al’s program logic 9,25) for higher-order languages supports reference types but
also requires a separate type system (in addition to the Hoare assertions); Reus
et al 16) presented an extension of separation logic for supporting higher-order
store (i.e., references to higher-order functions), but their logic does not sup-
port weak heaps which we believe embodies the key feature of reference types
(i.e., the ability to perform safe updates without knowing the exact aliasing re-
lation). Compared to previous systems, SLw targets the interoperation between
high-level and low-level code. It allows cross-boundary references and mixes SL
formulas and types.

Pottier showed how to use an anti-frame rule to encode weak references in
separation logic.15) His encoding relies heavily on the information-hiding aspect.
A client of a weak reference is supplied with a pair of a getter and a setter
function and the very existence of a reference cell is hidden by the anti-frame
rule. Most type systems (and also this article), in contrast, use a global heap
type to ensure the soundness of weak references. The benefit is that a client of
a weak heap can get direct references to objects in the weak heap. This style
matches the setting of foreign function interfaces where references to weak-heap
objects are passed to foreign code. The plus side of Pottier’s encoding is that a
single logic suffices while we mix separation logic with a type system.
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The soundness of SLw is justified by defining a semantic model, notably
for types. Ahmed1) and Appel et al.3) presented a powerful index-based semantic
model for a rich type system with ML-style references. They rely on construct-
ing a “dependently typed” global heap type to break the circularity discussed in
Section 3. Our current work, in contrast, simply takes a fixed point of the recur-
sively defined heap type predicate and avoids building any dependently typed
data structures. Our work also differs from theirs in that we are reasoning about
reference types in a program logic. Appel et al.3) can also support impredicative
polymorphism, which is not addressed in our current work. Birkedal et al.4) re-
cently presented a category-theoretic model that accommodates reference types
as well as impredicative polymorphism. Similar to our model, their model also
finds a fixed point and there is no need to work with approximation information.
On the other hand, it appears that an implementation of their model requires a
stratification of types and the use of dependent types, which our model avoids.

§6 Discussion and Future Work
This work aims toward a framework for reasoning about language inter-

operation, but a lot remains to be done. A realistic high-level language contains
many more language features and types. We do not foresee much difficulty in
incorporating language features and types at the logic level as their modeling is
largely independent from the interaction between weak and strong heaps. One
technical concern is how to extend our semantic model to cover a complicated
type system, including function types and OO classes.

SLw does not formally consider the effect of a garbage collector. A garbage
collector would break the crucial monotonicity condition of the weak heap that
our semantic model relies on. We believe a possible way to overcome this problem
is to use a region-based type system.21) A garbage collector would also imply that
there cannot be direct references from strong heaps to weak heaps; an extra level
of indirection has to be added.

§7 Conclusion
In his survey paper of separation logic,17) Reynolds asked “whether the

dividing line between types and assertions can be erased.” This article adds
evidence that the type-based approach has its unique place when ensuring safety
in weak heaps and when reasoning about the interaction between weak and
strong heaps. The combination of types and SL provides a powerful framework
for checking safety and verifying properties of multilingual programs.
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