
C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 1 of 40

Lexical Analysis

• Read source program and produce a list of tokens (“linear” analysis)

• The lexical structure is specified using regular expressions

• Other secondary tasks:

(1) get rid of white spaces (e.g., \t,\n,\sp) and comments

(2) line numbering

token

get next
token

lexical
analyzer

parsersource
program

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 2 of 40

Example: Source Code
A Sample Toy Program:

(* define valid mutually recursive procedures *)
let

function do_nothing1(a: int, b: string)=

do_nothing2(a+1)

function do_nothing2(d: int) =

do_nothing1(d, “str”)

in
 do_nothing1(0, “str2”)
end

What do we really care here ?

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 3 of 40

The Lexical Structure
Output after the Lexical Analysis ----- token + associated value

LET 51 FUNCTION 56 ID(do_nothing1) 65
LPAREN 76 ID(a) 77 COLON 78
ID(int) 80 COMMA 83 ID(b) 85
COLON 86 ID(string) 88 RPAREN 94
EQ 95 ID(do_nothing2) 99
LPAREN 110 ID(a) 111 PLUS 112
INT(1) 113 RPAREN 114 FUNCTION 117
ID(do_nothing2) 126 LPAREN 137
ID(d) 138 COLON 139 ID(int) 141
RPAREN 144 EQ 146
ID(do_nothing1) 150 LPAREN 161
ID(d) 162 COMMA 163 STRING(str) 165
RPAREN 170 IN 173
ID(do_nothing1) 177 LPAREN 188
INT(0) 189 COMMA 190 STRING(str2) 192
RPAREN 198 END 200 EOF 203

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 4 of 40

Tokens
• Tokens are the atomic unit of a language, and are usually specific

strings or instances of classes of strings.

Tokens Sample Values Informal Description

LET let keyword LET

END end keyword END

PLUS +

LPAREN (

COLON :

STRING “str”

RPAREN)

INT 49, 48 integer constants

ID do_nothing1, a,
int, string

letter followed by letters, digits, and
under-scores

EQ =

EOF end of file

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 5 of 40

Lexical Analysis, How?

• First, write down the lexical specification (how each token is defined?)

using regular expression to specify the lexical structure:

identifier = letter (letter | digit | underscore)*

letter = a | ... | z | A | ... | Z
digit = 0 | 1 | ... | 9

• Second, based on the above lexical specification, build the lexical

analyzer (to recognize tokens) by hand,

Regular Expression Spec ==> NFA ==> DFA ==>Transition Table ==> Lexical Analyzer

• Or just by using lex --- the lexical analyzer generator

Regular Expression Spec (in lex format) ==> feed to lex ==> Lexical Analyzer

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 6 of 40

Regular Expressions
• regular expressions are concise, linguistic characterization of regular

languages (regular sets)

• each regular expression define a regular language --- a set of strings

over some alphabet, such as ASCII characters; each member of this set

is called a sentence, or a word

• we use regular expressions to define each category of tokens

For example, the above identifier specifies a set of strings that
are a sequence of letters, digits, and underscores, starting with a
letter.

identifier = letter (letter | digit | underscore)*

“or” “ 0 or more”

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 7 of 40

Regular Expressions and Regular
Languages

• Given an alphabet Σ, the regular expressions over Σ and their

corresponding regular languages are

a) ∅ denotes ∅; ε ,the empty string, denotes the language { ε }.

b) for each a in Σ, a denotes { a } --- a language with one string.

c) if R denotes LR and S denotes LS then R | S denotes the language
LR ∪ LS , i.e, { x | x ∈ LR or x ∈ LS }.

d) if R denotes LR and S denotes LS then RS denotes the language
LRLS , that is, { xy | x ∈ LR and y ∈ LS }.

e) if R denotes LR then R* denotes the language LR
* where L* is the

union of all Li (i=0,...,∞) and Li is just {x1x2...xi | x1∈ L, ..., xi∈ L}.

f) if R denotes LR then (R) denotes the same language LR.

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 8 of 40

Example

• the following is not a regular expression: anbn (n > 0)

Regular Expression Explanation

a* 0 or more a’s

a+ 1 or more a’s

(a|b)* all strings of a’s and b’s (including ε)

(aa|ab|ba|bb)* all strings of a’s and b’s of even length

[a-zA-Z] shorthand for “a|b|...|z|A|...|Z”

[0-9] shorthand for “0|1|2|...|9”

0([0-9])*0 numbers that start and end with 0

(ab|aab|b)*(a|aa|ε) ?

? all strings that contain foo as substring

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 9 of 40

Lexical Specification

• Using regular expressions to specify tokens

keyword = begin | end | if | then | else
identifier = letter (letter | digit | underscore)*

integer = digit+

relop = < | <= | = | <> | > | >=
letter = a | b | ... | z | A | B | ... | Z
digit = 0 | 1 | 2 | ... | 9

• Ambiguity : is “begin” a keyword or an identifier ?

• Next step: to construct a token recognizer for languages given by

regular expressions --- by using finite automata !

given a string x, the token recognizer says “yes” if x is a sentence of
the specified language and says “no” otherwise

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 10 of 40

Transition Diagrams
• Flowchart with states and edges; each edge is labelled with characters;

certain subset of states are marked as “final states”

• Transition from state to state proceeds along edges according to the next

input character

• Every string that ends up at a final state is accepted

• If get “stuck”, there is no transition for a given character, it is an error

• Transition diagrams can be easily translated to programs using case

statements (in C).

0 1 2
start letter delimiter

letter digit underscore

final state

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 11 of 40

Transition Diagrams (cont’d)
The token recognizer (for identifiers) based on transition diagrams:

state0: c = getchar();
if (isalpha(c)) goto state1;
error();
...

state1: c = getchar();
if (isalpha(c) || isdigit(c) ||

isunderscore(c)) goto state1;
if (c == ‘,’ || ... || c == ‘)’) goto state2;
error();
...

state2: ungetc(c,stdin); /* retract current char */
return(ID, ... the current identifier ...);

Next: 1. finite automata are generalized transition diagrams !
2. how to build finite automata from regular expressions?

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 12 of 40

Finite Automata
• Finite Automata are similar to transition diagrams; they have states and

labelled edges; there are one unique start state and one or more than

one final states

• Nondeterministic Finite Automata (NFA) :

a) ε can label edges (these edges are called ε-transitions)
b) some character can label 2 or more edges out of the same state

• Deterministic Finite Automata (DFA) :

a) no edges are labelled with ε
b) each charcter can label at most one edge out of the same state

• NFA and DFA accepts string x if there exists a path from the start state

to a final state labeled with characters in x

NFA: multiple paths DFA: one unique path

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 13 of 40

Example: NFA

0 1 3
start a

final state

2

start
state

b

a

bb

An NFA accepts (a|b)*abb

There are many possible moves --- to accept a string, we only need one
sequence of moves that lead to a final state.

input string: aabb

Another unsuccessful sequence:

One sucessful sequence: 0 0 1 2 3
baa b

0 0 0 0 0
baa b

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 14 of 40

Example: DFA

0 1 3
start

a

final state

2

start
state

b

b

b

A DFA accepts (a|b)*abb

There is only one possible sequence of moves --- either lead to a final
state and accept or the input string is rejected

input string: aabb

The sucessful sequence:
0 1 1 2 3

baa b

b

a aa

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 15 of 40

Transition Table
• Finite Automata can also be represented using transition tables

For NFA, each entry is a set of
states:

STATE a b

0 {0,1} {0}

1 - {2}

2 - {3}

3 - -

For DFA, each entry is a unique
state:

STATE a b

0 1 0

1 1 2

2 1 3

3 1 0

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 16 of 40

NFA with ε-transitions

1. NFA can have ε-transitions --- edges labelled with ε

21
ε

43
b

0

ε

a

accepts the regular language denoted by (aa*|bb*)

a

b

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 17 of 40

Regular Expressions -> NFA
• How to construct NFA (with ε-transitions) from a regular expression ?

• Algorithm : apply the following construction rules , use unique names

for all the states. (inportant invariant: always one final state !)

1. Basic Construction

• ε

• a ∈ Σ

fi
ε

fi
a

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 18 of 40

RE -> NFA (cont’d)

2. “Inductive” Construction

• R1 | R2

fi

• R1 R2

N1

N2

ε

εε

ε

initial state
for N1 and N2

final state
for N1 and N2

N1 : NFA for R1
N2 : NFA for R2

the new and
unique final state

N1 N2initial state
for N1

final state
for N2

merge : final state of N1
and initial state of N2

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 19 of 40

RE -> NFA (cont’d)

2. “Inductive” Construction (cont’d)

• R1
*

fi N1
εε

initial state
for N1

final state
for N1 N1 : NFA for R1

ε ε

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 20 of 40

Example : RE -> NFA
Converting the regular expression : (a|b)*abb

32
ε

54
b

1

ε

a

32
a

a (in a|b)===>

54
b

b (in a|b)===>

6

ε

ε

a|b ====>

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 21 of 40

Example : RE -> NFA (cont’d)
Converting the regular expression : (a|b)*abb

32ε

54
b

1

ε

a

7

ε

ε

(a|b)* ====>

0 6

ε

ε

εε

abb ====> (several steps are omitted)

8X
a

109
bb

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 22 of 40

Example : RE -> NFA (cont’d)
Converting the regular expression : (a|b)*abb

32ε

54
b

1

ε

a

7

ε

ε

(a|b)*abb ====>

0 6

ε

ε

εε

8

a

9
bb

10

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 23 of 40

NFA -> DFA
• NFA are non-deterministic; need DFA in order to write a deterministic

prorgam !

• There exists an algorithm (“subset construction”) to convert any NFA to a

DFA that accepts the same language

• States in DFA are sets of states from NFA; DFA simulates “in parallel”

all possible moves of NFA on given input.

• Definition: for each state s in NFA,

ε-CLOSURE(s) = { s } ∪ { t | s can reach t via ε-transitions }

• Definition: for each set of states S in NFA,

ε-CLOSURE(S) = ∪ i ε-CLOSURE(s) for all si in S

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 24 of 40

NFA -> DFA (cont’d)
• each DFA-state is a set of NFA-states

• suppose the start state of the NFA is s, then the start state for its DFA
is ε-CLOSURE(s) ; the final states of the DFA are those that include a
NFA-final-state

• Algorithm : converting an NFA N into a DFA D ----

Dstates = {ε-CLOSURE(s0),s0 is N’s start state}
Dstates are initially “unmarked”
while there is an unmarked D-state X do {

 mark X
for each a ∈ Σ do {
T = {states reached from any si in X via a}
Y = ε-CLOSURE(T)
if Y ∉ Dstates then add Y to Dstates “unmarked”
add transition from X to Y, labelled with a

}
}

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 25 of 40

Example : NFA -> DFA
• converting NFA for (a|b)*abb to a DFA -------------

The start state A = ε-CLOSURE(0) = {0, 1, 2, 4, 7}; Dstates={A}

1st iteration: A is unmarked; mark A now;
a-transitions: T = {3, 8}
a new state B= ε-CLOSURE(3) ∪ ε -CLOSURE(8)

= {3, 6, 1, 2, 4, 7} ∪ { 8) = {1, 2, 3, 4, 6, 7, 8}
add a transition from A to B labelled with a

b-transitions: T = {5}
a new state C = ε-CLOSURE(5) = {1, 2, 4, 5, 6, 7}
add a transition from A to C labelled with b
Dstates = {A, B, C}

2nd iteration: B, C are unmarked; we pick B and mark B first;
B = {1, 2, 3, 4, 6, 7, 8}
B’s a-transitions: T = {3, 8}; T’s ε-CLOSURE is B itself.
add a transition from B to B labelled with a

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 26 of 40

Example : NFA -> DFA (cont’d)
B’s b-transitions: T = {5, 9};
a new state D = ε-CLOSURE({5, 9}) = {1, 2, 4, 5, 6, 7, 9}
add a transition from B to D labelled with b
Dstates = {A, B, C, D}

then we pick C, and mark C
C’s a-transitions: T = {3, 8}; its ε-CLOSURE is B.
add a transition from C to B labelled with a
C’s b-transitions: T = {5}; its ε-CLOSURE is C itself.
add a transition from C to C labelled with b

next we pick D, and mark D
D’s a-transitions: T = {3, 8}; its ε-CLOSURE is B.
add a transition from D to B labelled with a
D’s b-transitions: T = {5, 10};
a new state E = ε-CLOSURE({5, 10}) = {1, 2, 4, 5, 6, 7, 10}
Dstates = {A, B, C, D, E}; E is a final state since it has 10;

next we pick E, and mark E

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 27 of 40

Example : NFA -> DFA (cont’d)
E’s a-transitions: T = {3, 8}; its ε-CLOSURE is B.
add a transition from E to B labelled with a
E’s b-transitions: T = {5}; its ε-CLOSURE is C itself.
add a transition from E to C labelled with b

all states in Dstates are marked, the DFA is constructed !

BA
a

D
bb

E

Cb

b

b

a

a

a

a

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 28 of 40

Other Algorithms

• How to minimize a DFA ? (see Dragon Book 3.9, pp141)

• How to convert RE to DFA directly ? (see Dragon Book 3.9, pp135)

• How to prove two Regular Expressions are equivalent ? (see

Dragon Book pp150, Exercise 3.22)

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 29 of 40

Lex
• Lex is a program generator ---------- it takes lexical specification as

input, and produces a lexical processor written in C.

• Implementation of Lex:

Lex Spec -> NFA -> DFA -> Transition Tables + Actions -> yylex()

Lex
Lex

Specification
foo.l

lex.yy.c

C Compilerlex.yy.c a.out

a.outinput text sequence of tokens

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 30 of 40

Lex Specification

• expression is a regular expression ; action is a piece of C program;

• for details, read the Lesk&Schmidt paper

DIGITS [0-9]
......

%%
expression action
integer printf(“INT”);

......
%%
.....
char getc() {
}

lex definition

translation rules

user’s C functions
(optional)

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 31 of 40

ML-Lex
• ML-Lex is like Lex ---------- it takes lexical specification as input, and

produces a lexical processor written in Standard ML.

• Implementation of ML-Lex is similar to implementation of Lex

ML-Lex
Lex

Specification
foo.lex

foo.lex.sml

ML Compilerfoo.lex.sml module Mlex

M lexinput text sequence of tokens

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 32 of 40

ML-Lex Specification

• expression is a regular expression ; action is a piece of ML program;

when the input matches the expression, the action is executed, the

text matched is placed in the variable yytext.

type pos = int
val lineNum = ...
val lexresult =
....
%%
%s COMMENT STRING;
SPACE=[\t\n\012];
DIGITS=[0-9];
.....
%%
expression => (action);
integer => (print(“INT”));
...... => (...lineNum...);

ml-lex definitions

translation rules

user’s ML
declarations

can call the above
ML declarations

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 33 of 40

What does ML-Lex generate?

ML-Lexfoo.lex foo.lex.sml

sample foo.lex.sml:

structure Mlex =
 struct

structure UserDeclarations = struct ... end
......
fun makeLexer yyinput =

end

To use the generated lexical processor:
val lexer =

Mlex.makeLexer(fn _ => input (openIn “toy”));
val nextToken = lexer()

input filename
each call returns one token !

everything in part 1 of foo.lex

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 34 of 40

ML-Lex Definitions
• Things you can write inside the “ml-lex definitions” section (2nd part):

%s COMMENT STRING define new start states

%reject REJECT() to reject a match
%count count the line number
%structure {identifier} the resulting structure name

(the default is Mlex)

(hint: you probably don’t need use %reject, %count,or %structure
 for assignment 2.)

Definition of named regular expressions :

identifier = regular expression

SPACE=[\t\n\012]
IDCHAR=[_a-zA-Z0-9]

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 35 of 40

ML-Lex Translation Rules
• Each translation rule (3rd part) are in the form

<start-state-list> regular expression => (action);

• Valid ML-Lex regular expressions: (see ML-Lex-manual pp 4-6)

a character stands for itself except for the reserved chars:
? * + | () ^ $ / ; . = < > [{ ” \

to use these chars, use backslash! for example, \\\” represents
the string \”

using square brackets to enclose a set of characters
(\ - ^ are reserved)

[abc] char a, or b, or c
[^abc] all chars except a, b, c
[a-z] all chars from a to z

 [\n\t\b] new line, tab, or backspace
[-abc] char - or a or b or c

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 36 of 40

ML-Lex Translation Rules (cont’d)
• Valid ML-Lex regular expressions: (cont’d)

escape sequences: (can be used inside or outside square brackets)
\b backspace
\n newline
\t tab
\ddd any ascii char (ddd is 3 digit decimal)

. any char except newline (equivalent to [^\n])
“x” match string x exactly even if it contains reserved chars
x? an optional x
x* 0 or more x’s
x+ 1 or more x’s
x|y x or y
^x if at the beginning, match at the beginning of a line only
{x} substitute definition x (defined in the lex definition section)
(x) same as regular expression x
x{n} repeating x for n times
x{m-n} repeating x from m to n times

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 37 of 40

ML-Lex Translation Rules (cont’d)
what are valid actions ?

• Actions are basically ML code (with the following extensions)

• All actions in a lex file must return values of the same type

• Use yytext to refer to the current string

[a-z]+ => (print yytext);
[0-9]{3} => (print (Char.ord(sub(yytext,0))));

• Can refer to anything defined in the ML-Declaration section (1st part)

• YYBEGIN start-state ----- enter into another start state

• lex() and continue() to reinvoking the lexing function

• yypos --- refer to the current position

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 38 of 40

Ambiguity
• what if more than one translation rules matches ?

A. longest match is preferred
B. among rules which matched the same number of

characters, the rule given first is preferred

input “while” matches rule 1 according B above

input “<=” matches rule 4 according A above

%%
%%
while => (Tokens.WHILE(...));
[a-zA-Z][a-zA-Z0-9_]* => (Tokens.ID(yytext,...));
“<” => (Tokens.LESS(...));
“<=” => (Tokens.LE(yypos,...));

1
2
3
4

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 39 of 40

Start States (or Start Conditions)
• start states permit multiple lexical analyzers to run together.

• each translation rule can be prefixed with <start-state>

• the lexer is initially in a predefined start stae called INITIAL

• define new start states (in ml-lex-definitions): %s COMMENT STRING

• to switch to another start states (in action): YYBEGIN COMMENT

• example: multi-line comments in C

%%
%s COMMENT
%%
<INITIAL>”/*” => (YYBEGIN COMMENT; continue());
<COMMENT>”*/” => (YYBEGIN INITIAL; continue());
<COMMENT>.|”\n” => (continue());
<INITIAL>

C S 4 2 1 C O M P I L E R S A N D I N T E R P R E T E R S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 40 of 40

Implementation of Lex
• construct NFA for sum of Lex translation rules (regexp/action);

• convert NFA to DFA, then minimize the DFA

• to recognize the input, simulate DFA to termination; find the last DFA

state that includes NFA final state, execute associated action (this pickes

longest match). If the last DFA state has >1 NFA final states, pick one for

rule that appears first

• how to represent DFA, the transition table:

2D array indexed by state and input-character too big !

each state has a linked list of (char, next-state) pairs too slow!

hybrid scheme is the best ------- see Dragon Book page 144-146

