## **Lexical Analysis**

• Read source program and produce a list of **tokens** ("linear" analysis)



- The lexical structure is specified using regular expressions
- Other secondary tasks:
  - (1) get rid of white spaces (e.g.,  $\t$ ,  $\t$ ,  $\t$ ) and comments
  - (2) line numbering

Copyright 1994 - 2000 Zhong Shao, Yale University

Lexical Analysis : Page 1 of 40

## The Lexical Structure

CS421 COMPILERS AND INTERPRETERS

Output after the Lexical Analysis ---- token + associated value

| ==                         |                            |                               |
|----------------------------|----------------------------|-------------------------------|
| <b>LET</b> 51              | FUNCTION 56                | <pre>ID(do_nothing1) 65</pre> |
| LPAREN 76                  | <b>ID</b> (a) 77           | <b>COLON</b> 78               |
| <b>ID</b> (int) 80         | COMMA 83                   | <b>ID</b> (b) 85              |
| COLON 86                   | ID(string) 88              | RPAREN 94                     |
| <b>EQ</b> 95               | <pre>ID(do_nothing2)</pre> | 99                            |
| LPAREN 110                 | <b>ID</b> (a) 111          | PLUS 112                      |
| <b>INT</b> (1) 113         | RPAREN 114                 | FUNCTION 117                  |
| <pre>ID(do_nothing2)</pre> | 126                        | LPAREN 137                    |
| <b>ID</b> (d) 138          | COLON 139                  | <b>ID</b> (int) 141           |
| RPAREN 144                 | <b>EQ</b> 146              |                               |
| <pre>ID(do_nothing1)</pre> | 150                        | LPAREN 161                    |
| <b>ID</b> (d) 162          | <b>COMMA</b> 163           | <b>STRING</b> (str) 165       |
| RPAREN 170                 | <b>IN</b> 173              |                               |
| <pre>ID(do_nothing1)</pre> | 177                        | LPAREN 188                    |
| <b>INT</b> (0) 189         | <b>COMMA</b> 190           | STRING(str2) 192              |
| RPAREN 198                 | <b>END</b> 200             | <b>EOF</b> 203                |
|                            |                            |                               |

CS421 COMPILERS AND INTERPRETERS

## **Example: Source Code**

#### A Sample Toy Program:

#### What do we really care here?

Copyright 1994 - 2000 Zhong Shao, Yale University

Lexical Analysis : Page 2 of 40

#### Tokens

CS421 COMPILERS AND INTERPRETERS

• **Tokens** are the <u>atomic unit</u> of a language, and are usually <u>specific</u> <u>strings</u> or <u>instances</u> of <u>classes</u> of strings.

| Tokens | Sample Values                  | Informal Description                                 |
|--------|--------------------------------|------------------------------------------------------|
| LET    | let                            | keyword LET                                          |
| END    | end                            | keyword END                                          |
| PLUS   | +                              |                                                      |
| LPAREN | (                              |                                                      |
| COLON  | :                              |                                                      |
| STRING | "str"                          |                                                      |
| RPAREN | )                              |                                                      |
| INT    | 49, 48                         | integer constants                                    |
| ID     | do_nothing1, a,<br>int, string | letter followed by letters, digits, and under-scores |
| EQ     | =                              |                                                      |
| EOF    |                                | end of file                                          |

Copyright 1994 - 2000 Zhong Shao, Yale University Lesical Analysis - Page 3 of 40 Copyright 1994 - 2000 Zhong Shao, Yale University Lesical Analysis - Page 4 of 40

## **Lexical Analysis, How?**

• First, write down the **lexical specification** (how each token is defined?)

using regular expression to specify the lexical structure:

```
identifier = letter (letter | digit | underscore)* letter = a \mid \dots \mid z \mid A \mid \dots \mid Z digit = 0 | 1 | \dots \ | 9
```

 Second, based on the above lexical specification, build the lexical analyzer (to recognize tokens) by hand.

Regular Expression Spec ==> NFA ==> DFA ==> Transition Table ==> Lexical Analyzer

Or just by using lex --- the lexical analyzer generator

Regular Expression Spec (in lex format) ==> feed to lex ==> Lexical Analyzer

Copyright 1994 - 2000 Zhong Shao, Yale University

Lexical Analysis: Page 5 of 40

CS421 COMPILERS AND INTERPRETERS

# Regular Expressions and Regular Languages

- Given an alphabet Σ, the regular expressions over Σ and their corresponding regular languages are
  - a)  $\varnothing$  denotes  $\varnothing$ ;  $\varepsilon$ , the empty string, denotes the language {  $\varepsilon$  }.
  - b) for each a in  $\Sigma$ , a denotes { a } --- a language with one string.
  - c) if R denotes  $L_R$  and S denotes  $L_S$  then  $R \mid S$  denotes the language  $L_R \cup L_S$ , i.e,  $\{ x \mid x \in L_R \text{ or } x \in L_S \}$ .
  - d) if R denotes  $L_R$  and S denotes  $L_S$  then RS denotes the language  $L_RL_S$ , that is,  $\{ xy \mid x \in L_R \text{ and } y \in L_S \}$ .
  - e) if R denotes  $L_R$  then  $R^*$  denotes the language  $L_R^*$  where  $L^*$  is the union of all  $L^i$  (i=0,..., $\infty$ ) and  $L^i$  is just  $\{x_1x_2...x_i \mid x_1\in L,...,x_i\in L\}$ .
  - f) if R denotes  $L_R$  then (R) denotes the same language  $L_R$

CS421 COMPILERS AND INTERPRETERS

## **Regular Expressions**

 regular expressions are concise, linguistic characterization of regular languages (regular sets)

- each regular expression define a regular language --- a <u>set of strings</u> over some alphabet, such as ASCII characters; each member of this set is called a **sentence**, or a **word**
- we use regular expressions to define each category of tokens

For example, the above identifier specifies a set of strings that are a sequence of letters, digits, and underscores, starting with a letter.

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2000 Zhong Shao, Yale University

Lexical Analysis : Page 6 of 40

## Example

| Regular Expression            | Explanation                               |  |
|-------------------------------|-------------------------------------------|--|
| a <sup>*</sup>                | 0 or more a's                             |  |
| a <sup>+</sup>                | 1 or more a's                             |  |
| (a b)*                        | all strings of a's and b's (including ε)  |  |
| (aa ab ba bb)*                | all strings of a's and b's of even length |  |
| [a-zA-Z]                      | shorthand for "a b  z A   $Z''$           |  |
| [0-9]                         | shorthand for "0 1 2  9"                  |  |
| 0([0-9])*0                    | numbers that start and end with 0         |  |
| $(ab aab b)^*(a aa \epsilon)$ | ?                                         |  |
| ?                             | all strings that contain foo as substring |  |

• the following is not a regular expression:

 $a^nb^n$  (n > 0)

## **Lexical Specification**

• Using regular expressions to specify tokens

```
keyword = begin | end | if | then | else
identifier = letter (letter | digit | underscore)*
integer = digit*
relop = < | <= | = | <> | > | >=
letter = a | b | ... | z | A | B | ... | Z
digit = 0 | 1 | 2 | ... | 9
```

- Ambiguity: is "begin" a keyword or an identifier?
- Next step: to construct a token recognizer for languages given by regular expressions --- by using finite automata!

given a string x, the token recognizer says "yes" if x is a sentence of the specified language and says "no" otherwise

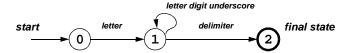
Copyright 1994 - 2000 Zhong Shao, Yale University

Lexical Analysis : Page 9 of 40

CS421 COMPILERS AND INTERPRETERS

## **Transition Diagrams (cont'd)**

The token recognizer (for identifiers) based on transition diagrams:


Next: 1. finite automata are generalized transition diagrams!

2. how to build finite automata from regular expressions?

## **Transition Diagrams**

CS421 COMPILERS AND INTERPRETERS

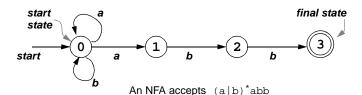
- Flowchart with states and edges; each edge is labelled with characters; certain subset of states are marked as "final states"
- Transition from state to state proceeds along edges according to the next input character



- · Every string that ends up at a final state is accepted
- If get "stuck", there is no transition for a given character, it is an error
- Transition diagrams can be easily translated to programs using case statements (in C).

Copyright 1994 - 2000 Zhong Shao, Yale University

Lexical Analysis : Page 10 of 40

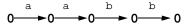

# Finite Automata

- Finite Automata are similar to transition diagrams; they have states and labelled edges; there are one unique start state and one or more than one final states
- Nondeterministic Finite Automata (NFA) :
  - a)  $\varepsilon$  can label edges (these edges are called  $\varepsilon$ -transitions)
  - b) some character can label 2 or more edges out of the same state
- Deterministic Finite Automata (DFA):
  - a) no edges are labelled with  $\epsilon$
  - b) each charcter can label at most **one** edge out of the same state
- NFA and DFA accepts string x if there exists a path from the start state to a final state labeled with characters in x

NFA: multiple paths DFA: one unique path

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 11 of 40 Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 12 of 40

## **Example: NFA**




There are many possible moves --- to accept a string, we only need one sequence of moves that lead to a final state.

input string: aabb

One sucessful sequence:  $0 \xrightarrow{a} 0 \xrightarrow{a} 1 \xrightarrow{b} 2$ 

Another unsuccessful sequence:



Copyright 1994 - 2000 Zhong Shao, Yale University

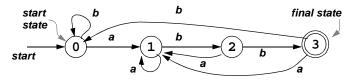
Lexical Analysis : Page 13 of 40

CS421 COMPILERS AND INTERPRETERS

### **Transition Table**

• Finite Automata can also be represented using transition tables

For NFA, each entry is a set of states:

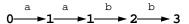

| STATE | a     | b   |
|-------|-------|-----|
| 0     | {0,1} | {0} |
| 1     | -     | {2} |
| 2     | -     | {3} |
| 3     | -     | -   |

For DFA, each entry is a unique state:

| S | TATE | а | b |
|---|------|---|---|
|   | 0    | 1 | 0 |
|   | 1    | 1 | 2 |
|   | 2    | 1 | 3 |
|   | 3    | 1 | 0 |

#### CS421 COMPILERS AND INTERPRETERS

## **Example: DFA**



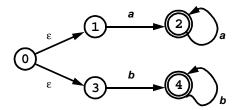

A DFA accepts (a|b)\*abb

There is only one possible sequence of moves --- either lead to a final state and accept or the input string is rejected

input string: aabb

The sucessful sequence:

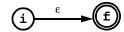



Copyright 1994 - 2000 Zhong Shao, Yale University

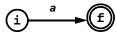
Lexical Analysis : Page 14 of 40

#### **NFA** with ε-transitions

CS421 COMPILERS AND INTERPRETERS


1. NFA can have  $\epsilon$ -transitions --- edges labelled with  $\epsilon$ 




accepts the regular language denoted by  $(aa^*|bb^*)$ 

## **Regular Expressions -> NFA**

- How to construct NFA (with  $\epsilon$ -transitions) from a regular expression ?
- Algorithm : apply the following construction rules , use unique names for all the states. (inportant invariant: always one final state!)
  - 1. Basic Construction



•  $a \in \Sigma$ 



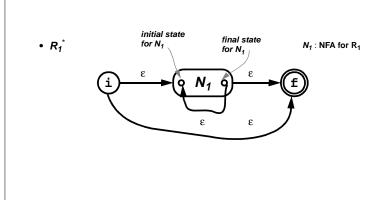
Copyright 1994 - 2000 Zhong Shao, Yale University

Lexical Analysis : Page 17 of 40

#### 2. "Inductive" Construction N1: NFA for R1 N<sub>2</sub>: NFA for R<sub>2</sub> • $R_1 | R_2$ the new and unique final state initial state final state for N<sub>1</sub> and N<sub>2</sub> for N<sub>1</sub> and N<sub>2</sub> merge: final state of N<sub>1</sub> and initial state of N<sub>2</sub> • R<sub>1</sub> R<sub>2</sub> final state

CS421 COMPILERS AND INTERPRETERS

RE -> NFA (cont'd)


Copyright 1994 - 2000 Zhong Shao, Yale University

Lexical Analysis : Page 18 of 40

## RE -> NFA (cont'd)

CS421 COMPILERS AND INTERPRETERS

2. "Inductive" Construction (cont'd)



**Example: RE -> NFA Converting the regular expression:** (a|b) \*abb a (in a|b) ===>b (in a|b) ===>

CS421 COMPILERS AND INTERPRETERS

## Example: RE -> NFA (cont'd)

**Converting the regular expression :** (a | b) \*abb

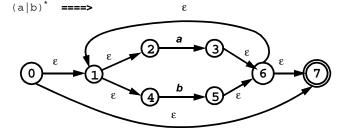
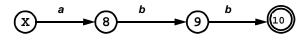




abb ====> (several steps are omitted)



Copyright 1994 - 2000 Zhong Shao, Yale University

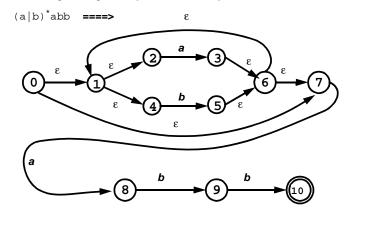
Lexical Analysis : Page 21 of 40

## CS421 COMPILERS AND INTERPRETERS

#### NFA -> DFA

- NFA are non-deterministic; need DFA in order to write a deterministic prorgam!
- There exists an algorithm ("subset construction") to convert any NFA to a
  DFA that accepts the same language
- States in DFA are **sets of states** from NFA; DFA simulates "in parallel" all possible moves of NFA on given input.
- **Definition:** for each state **s** in NFA,

 $\varepsilon$ -CLOSURE(**s**) = { **s** }  $\cup$  { **t** | **s** can reach **t** via  $\varepsilon$ -transitions }


• Definition: for each set of states S in NFA,

 $\varepsilon$ -CLOSURE(**S**) =  $\bigcup_i \varepsilon$ -CLOSURE(**S**) for all **S**<sub>i</sub> in **S** 

CS421 COMPILERS AND INTERPRETERS

## **Example : RE -> NFA (cont'd)**

**Converting the regular expression:**  $(a|b)^*abb$ 



Copyright 1994 - 2000 Zhong Shao, Yale University

Lexical Analysis : Page 22 of 40

## NFA -> DFA (cont'd)

CS421 COMPILERS AND INTERPRETERS

- each DFA-state is a set of NFA-states
- suppose the start state of the NFA is s, then the start state for its DFA
  is ɛ-closure(s); the final states of the DFA are those that include a
  NFA-final-state
- Algorithm: converting an NFA N into a DFA D ----

```
\label{eq:def:Dstates} Dstates = \left\{ \epsilon\text{-CLOSURE}(s_0) \,, s_0 \text{ is } \mathbf{N}'\text{s start state} \right\} \\ Dstates \text{ are initially "unmarked"} \\ \text{while there is an unmarked D-state X do } \left\{ \\ \text{mark X} \\ \text{for each } a \in \Sigma \text{ do } \left\{ \\ \text{T = } \left\{ \text{states reached from any } s_i \text{ in X via a} \right\} \\ \text{Y = } \epsilon\text{-CLOSURE}(T) \\ \text{if } Y \notin Dstates \text{ then } \text{add Y to } Dstates \text{ "unmarked"} \\ \text{add transition from X to Y, labelled with a} \\ \right\} \\ \right\}
```

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 23 of 40 Copyright 1994 - 2000 Zhong Shao, Yale University

## **Example: NFA -> DFA**

• converting NFA for (a|b)\*abb to a DFA -----

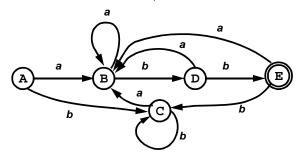
The start state  $A = \varepsilon$ -CLOSURE(0) = {0, 1, 2, 4, 7}; **Dstates**={A}

1st iteration: A is unmarked; mark A now; a-transitions: T =  $\{3, 8\}$  a new state B=  $\epsilon$ -CLOSURE(3)  $\cup$   $\epsilon$ -CLOSURE(8) =  $\{3, 6, 1, 2, 4, 7\} \cup \{8\}$  =  $\{1, 2, 3, 4, 6, 7, 8\}$  add a transition from A to B labelled with a

b-transitions: T =  $\{5\}$ a new state C =  $\epsilon$ -CLOSURE(5) =  $\{1, 2, 4, 5, 6, 7\}$ add a transition from A to C labelled with b **Dstates** =  $\{A, B, C\}$ 

2nd iteration: B, C are unmarked; we pick B and mark B first; B =  $\{1, 2, 3, 4, 6, 7, 8\}$  B's a-transitions: T =  $\{3, 8\}$ ; T's  $\epsilon$ -CLOSURE is B itself. add a transition from B to B labelled with a

Copyright 1994 - 2000 Zhong Shao, Yale University


Lexical Analysis : Page 25 of 40

## Example: NFA -> DFA (cont'd)

CS421 COMPILERS AND INTERPRETERS

E's a-transitions:  $T = \{3, 8\}$ ; its  $\epsilon$ -closure is B. add a transition from E to B labelled with a E's b-transitions:  $T = \{5\}$ ; its  $\epsilon$ -closure is C itself. add a transition from E to C labelled with b

all states in **Dstates** are marked, the DFA is constructed!



CS421 COMPILERS AND INTERPRETERS

## **Example : NFA -> DFA (cont'd)**

B's b-transitions:  $T = \{5, 9\}$ ; a new state  $D = \varepsilon$ -cLosure( $\{5, 9\}$ ) =  $\{1, 2, 4, 5, 6, 7, 9\}$  add a transition from B to D labelled with b **Dstates** =  $\{A, B, C, D\}$ 

then we pick C, and mark C

C's a-transitions:  $T = \{3, 8\}$ ; its  $\epsilon$ -closure is B. add a transition from C to B labelled with a C's b-transitions:  $T = \{5\}$ ; its  $\epsilon$ -closure is C itself. add a transition from C to C labelled with b

next we pick D, and mark D

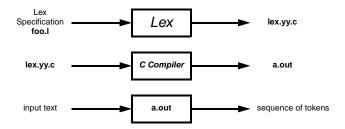
D's a-transitions:  $T = \{3, 8\}$ ; its  $\epsilon$ -closure is B. add a transition from D to B labelled with a D's b-transitions:  $T = \{5, 10\}$ ; a new state  $E = \epsilon$ -closure( $\{5, 10\}$ ) =  $\{1, 2, 4, 5, 6, 7, 10\}$  **Dstates** =  $\{A, B, C, D, E\}$ : E is a **final state** since it has 10:

next we pick E, and mark E

Copyright 1994 - 2000 Zhong Shao, Yale University

Lexical Analysis : Page 26 of 40

## **Other Algorithms**


CS421 COMPILERS AND INTERPRETERS

- How to minimize a DFA ? (see Dragon Book 3.9, pp141)
- How to convert RE to DFA directly ? (see Dragon Book 3.9, pp135)
- How to prove two Regular Expressions are equivalent? (see Dragon Book pp150, Exercise 3.22)

Copyright 1994 - 2000 Thong Shao, Yale University Lexical Analysis - Page 27 of 40 Copyright 1994 - 2000 Thong Shao, Yale University Lexical Analysis - Page 28 of 40

#### Lex

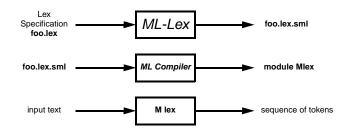
 Lex is a program generator ------ it takes lexical specification as input, and produces a lexical processor written in C.



• Implementation of Lex:

Lex Spec -> NFA -> DFA -> Transition Tables + Actions -> yylex()

Copyright 1994 - 2000 Zhong Shao, Yale University


Lexical Analysis : Page 29 of 40

NAL Las

### **ML-Lex**

CS421 COMPILERS AND INTERPRETERS

• ML-Lex is like Lex ------ it takes lexical specification as input, and produces a lexical processor written in Standard ML.



• Implementation of ML-Lex is similar to implementation of Lex

CS421 COMPILERS AND INTERPRETERS

## **Lex Specification**

```
DIGITS [0-9]
.....
%%
expression integer printf("INT");
.....
%%
.....
char getc() { ......
getc() { ......
(optional)
```

- expression is a regular expression; action is a piece of C program;
- for details, read the Lesk&Schmidt paper

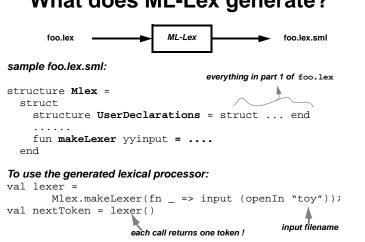
Copyright 1994 - 2000 Zhong Shao, Yale University

Lexical Analysis : Page 30 of 40

CS421 COMPILERS AND INTERPRETERS

## **ML-Lex Specification**

```
type pos = int
                                         user's ML
val lineNum = ...
                                        declarations
val lexresult = ....
%s COMMENT STRING;
SPACE=[ \t n\012];
                                    ml-lex definitions
DIGITS=[0-9];
%%
expression => (action);
                                     translation rules
integer
            => (print("INT"));
            => (...lineNum...);
                                       can call the above
                                       MI declarations
```


 <u>expression</u> is a regular expression; <u>action</u> is a piece of ML program; when the input matches the <u>expression</u>, the <u>action</u> is executed, the text matched is placed in the variable <u>yytext</u>.

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 31 of 40

Copyright 1994 - 2000 Zhong Shao, Yale University

Lexical Analysis : Page 32 of 40

## What does ML-Lex generate?



Copyright 1994 - 2000 Zhong Shao, Yale University

Lexical Analysis : Page 33 of 40

#### **ML-Lex Translation Rules**

• Each translation rule (3rd part) are in the form

```
<start-state-list> regular expression => (action);
```

CS421 COMPILERS AND INTERPRETERS

• Valid ML-Lex regular expressions: (see ML-Lex-manual pp 4-6)

a character stands for itself except for the reserved chars: ? \* + | ( ) ^ \$ / ; . = < > [ { " \ to use these chars, use backslash! for example, \\\" represents the string \"

using square brackets to enclose a set of characters ( \ - ^ are reserved)

[abc] char a, or b, or c [^abc] all chars except a, b, c [a-z] all chars from a to z [\n\t\b] new line, tab, or backspace [-abc] char - or a or b or c

CS421 COMPILERS AND INTERPRETERS

#### **ML-Lex Definitions**

• Things you can write inside the "ml-lex definitions" section (2nd part):

REJECT() to reject a match %reject %count count the line number

the resulting structure name %structure {identifier} (the default is Mlex)

define new start states

(hint: you probably don't need use %reject, %count,or %structure for assignment 2.)

Definition of named regular expressions:

identifier = regular expression

```
SPACE=[ \t \n \012]
IDCHAR=[ a-zA-Z0-9]
```

%s COMMENT STRING

Copyright 1994 - 2000 Zhong Shao, Yale University

Lexical Analysis : Page 34 of 40

## **ML-Lex Translation Rules (cont'd)**

CS421 COMPILERS AND INTERPRETERS

• Valid ML-Lex regular expressions: (cont'd)

escape sequences: (can be used inside or outside square brackets)

backspace \b \n newline \t tab

any ascii char (ddd is 3 digit decimal)

any char except newline (equivalent to [^\n])

match string x exactly even if it contains reserved chars

an optional x x? 0 or more x's x\*

x | y

x+

if at the beginning, match at the beginning of a line only

substitute definition x (defined in the lex definition section)  $\{x\}$ 

same as regular expression x

repeating x for n times  $x\{n\}$ 

1 or more x's

 $x\{m-n\}$  repeating x from m to n times

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 35 of 40 Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis: Page 36 of 40

## **ML-Lex Translation Rules (cont'd)**

#### what are valid actions?

- Actions are basically ML code (with the following extensions)
- All actions in a lex file must return values of the same type
- Use yytext to refer to the current string

```
[a-z]+ => (print yytext);
[0-9]{3} \Rightarrow (print (Char.ord(sub(yytext,0))));
```

- Can refer to anything defined in the ML-Declaration section (1st part)
- YYBEGIN start-state ---- enter into another start state
- lex() and continue() to reinvoking the lexing function
- vvpos --- refer to the current position

Copyright 1994 - 2000 Zhong Shao. Yale University

Copyright 1994 - 2000 Zhong Shao, Yale University

Lexical Analysis : Page 37 of 40

Lexical Analysis : Page 39 of 40

CS421 COMPILERS AND INTERPRETERS

## **Start States (or Start Conditions)**

- · start states permit multiple lexical analyzers to run together.
- each translation rule can be prefixed with <start-state>
- the lexer is initially in a predefined start stae called INITIAL
- define new start states (in ml-lex-definitions): %s COMMENT STRING
- to switch to another start states (in **action**): YYBEGIN COMMENT
- example: multi-line comments in C

```
%s COMMENT
<INITIAL>"/*"
                => (YYBEGIN COMMENT; continue());
<COMMENT>"*/"
               => (YYBEGIN INITIAL; continue());
<COMMENT>. | "\n" => (continue());
<INITIAL> .....
```

CS421 COMPILERS AND INTERPRETERS

## **Ambiguity**

- what if more than one translation rules matches?
  - longest match is preferred
  - among rules which matched the same number of characters, the rule given first is preferred

```
응응
   while
                         => (Tokens.WHILE(...));
   [a-zA-Z][a-zA-Z0-9_]* => (Tokens.ID(yytext,...));
                         => (Tokens.LESS(...));
4
   "<="
                         => (Tokens.LE(yypos,...));
```

```
input "while" matches rule 1 according B above
input "<=" matches rule 4 according A above
```

Copyright 1994 - 2000 Zhong Shao, Yale University

Lexical Analysis: Page 38 of 40

# Implementation of Lex

CS421 COMPILERS AND INTERPRETERS

- construct NFA for sum of Lex translation rules (regexp/action);
- convert NFA to DFA, then minimize the DFA
- to recognize the input, simulate DFA to **termination**; find the <u>last</u> DFA state that includes NFA final state, execute associated action (this pickes longest match). If the last DFA state has >1 NFA final states, pick one for rule that appears first
- how to represent DFA, the transition table:

```
2D array indexed by state and input-character
                                                      too bia!
each state has a linked list of (char, next-state) pairs
                                                           too slow!
hybrid scheme is the best ----- see Dragon Book page 144-146
```

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis: Page 40 of 40