CsS421 COMPILERS AND INTERPRETERS CS421 COMPILERS AND INTERPRETERS

Lexical Analysis Example: Source Code

. . . A Sample Toy Program:
» Read source program and produce a list of tokens (“linear” analysis) P y g

(* define valid nutually recursive procedures *)

| et
token
source | lexical ™ parser | ___ p function do_nothingl(a: int, b: string)=
program analyzer | — do_not hi ng2(a+1)
token

function do_nothing2(d: int) =
do_not hi ngl(d, “str”)

» The lexical structure is specified using regular expressions

» Other secondary tasks: end do_nothing1(0, “str2”)

(1) get rid of white spaces (e.g., \ t, \ n, \ sp) and comments

(2) line numbering What do we really care here ?

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 1 of 40 Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 2 of 40

CS421 COMPILERS AND INTERPRETERS CS421 COMPILERS AND INTERPRETERS

The Lexical Structure Tokens

Output after the Lexical Analysis ----- token + associated value - Tokens are the atomic unit of a language, and are usually specific
LET 51 FUNCTI ON 56 | D(do_not hi ngl) 65 strings or instances of classes of strings.
LPAREN 76 ID(a) 77 COLON 78 —
| D(i nt) 80 COVMA 83 I D(b) 85 H Tokens Sample Values Informal Description H
COLON 86 ID(string) 88 RPAREN 94 LET I'et keyword LET
EQ 95 | D(do_not hi ng2) 99 END end keyword END
LPAREN 110 ID(a) 111 PLUS 112 PLUS +
INT(1) 113 RPAREN 114 FUNCTI ON 117 LPAREN (
| D(do_not hi ng2) 126 LPAREN 137
I D(d) 138 COLON 139 ID(int) 141 COLON :
RPAREN 144 EQ 146 STRING “str”
| D(do_not hi ngl) 150 LPAREN 161 RPAREN)
1D(d) 162 COWA 163 STRING(str) 165 INT 49, 48 integer constants
FE(A(TENnéZgi ngl) 17|7N 173 LPAREN 188 ID do_not hingl, a, letter followed by letters, digits, and

- int, string under-scores
I NT(0) 189 COWA 190 STRING(str2) 192 EQ z
RPAREN 198 END 200 ECF 203 .

EOF end of file

Copyright 1994 - 2000 Zhong Shao, Yale University

Lexical Analysis : Page 3 of 40

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 4 of 40

CsS421 COMPILERS AND INTERPRETERS

CS421 COMPILERS AND INTERPRETERS

Lexical Analysis, How?

« First, write down the lexical specification (how each token is defined?)

using regular expression to specify the lexical structure:

identifier = letter (letter | digit | underscore)*
letter =a | ... | z| A| ... | Z
digit =01] 1] ... 1] 9

» Second, based on the above lexical specification, build the lexical
analyzer (to recognize tokens) by hand,
Regular Expression Spec ==> NFA ==> DFA ==>Transition Table ==> Lexical Analyzer

« Or just by using lex --- the lexical analyzer generator

Regular Expression Spec (in lex format) ==> feed to lex ==> Lexical Analyzer

Regular Expressions
* regular expressions are concise, linguistic characterization of regular
languages (regular sets)
identifier = letter (letter | digit | underscore)”
= 4 /A

“or” “ 0ormore”

« each regular expression define a regular language --- a set of strings
over some alphabet, such as ASCII characters; each member of this set
is called a sentence, or a word

* we use regular expressions to define each category of tokens

For example, the above i denti fi er specifies a set of strings that
are a sequence of letters, digits, and underscores, starting with a

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 5 of 40

CS421 COMPILERS AND INTERPRETERS

Regular Expressions and Regular
Languages

» Given an alphabet Z, the regular expressions over Z and their
corresponding regular languages are

a) O denotes] € ,the empty string, denotes the language { € }.
b) for each a in Z, a denotes { a } --- a language with one string.

c) if Rdenotes Lg and S denotes Lg then R | S denotes the language
LrOLg,ie, {x|xOLgorxOLg}

d) if R denotes Lg and S denotes Lg then RS denotes the language
LrLs ., thatis, {xy|xOLgandyOLg}.

e) if R denotes Ly then R" denotes the language Lg" where L" is the
union of all L' (i=0,...,%) and L"is just {x1X,...; | X,O L, ..., 0 L}.

f) if R denotes Lg then (R) denotes the same language Lg

letter.
CS421 COMPILERS AND INTERPRETERS
Example
Regular Expression Explanation
a 0 or more a’s
a* 1 or more a’s
(al b)) all strings of a’s and b’s (including €)
(aal ab| ba| bb) * all strings of a’s and b’s of even length
[a-zA-Z] shorthand for “a| b|...|z|Al...|Z"
[0-9] shorthand for “0| 1| 2| .. .| 9"
0([0-9]) 0 numbers that start and end with 0
(ab| aab| b) "(al aal €) ?
? all strings that contain f oo as substring
« the following is not a regular expression: a™" (n > 0)

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 7 of 40

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 8 of 40

CsS421 COMPILERS AND INTERPRETERS

CS421 COMPILERS AND INTERPRETERS

Lexical Specification

» Using regular expressions to specify tokens

keyword = begin | end | if | then | else
identifier = letter (letter | digit | underscore)”
integer = digit*

relop =< | <=| =| <> | > >=

letter =a | b| ... | z| A| B| ... | Z

digit =01 1] 2] ... 1] 9

* Ambiguity : is “begi n” a keyword or an identifier ?

* Next step: to construct a token recognizer for languages given by
regular expressions --- by using finite automata !

given a string x, the token recognizer says “yes” if x is a sentence of
the specified language and says “no” otherwise

Transition Diagrams

Flowchart with states and edges; each edge is labelled with characters;
certain subset of states are marked as “final states”

Transition from state to state proceeds along edges according to the next
input character

letter digit underscore

start .@ letter HQ delimiter . final state

Every string that ends up at a final state is accepted
If get “stuck”, there is no transition for a given character, it is an error

Transition diagrams can be easily translated to programs using case
statements (in C).

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 9 of 40

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 10 of 40

CS421 COMPILERS AND INTERPRETERS

Transition Diagrams (cont’d)

The token recognizer (for identifiers) based on transition diagrams:

st at e0: c = getchar();
if (isalpha(c)) goto statel;
error();
statel: c = getchar();
if (isalpha(c) || isdigit(c) |]
i sunderscore(c)) goto statel;
if (c="*"1] ... |]] ¢ ==")") goto state2;
error();
st at e2: ungetc(c,stdin); /* retract current char */
return(ID, ... the current identifier ...);

Next: 1. finite automata are generalized transition diagrams !
2. how to build finite automata from regular expressions?

Finite Automata

Finite Automata are similar to transition diagrams; they have states and
labelled edges; there are one unique start state and one or more than
one final states

Nondeterministic Finite Automata (NFA) :

a) ¢ can label edges (these edges are called e-transitions)

b) some character can label 2 or more edges out of the same state
Deterministic Finite Automata (DFA) :

a) no edges are labelled with €
b) each charcter can label at most one edge out of the same state

NFA and DFA accepts string x if there exists a path from the start state
to a final state labeled with characters in x

NFA: multiple paths DFA: one unique path

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 11 of 40

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 12 of 40

CsS421 COMPILERS AND INTERPRETERS

Example: NFA

start a final state

Y

An NFA accepts (a| b) “abb

There are many possible moves --- to accept a string, we only need one
sequence of moves that lead to a final state.

input string: aabb

a a b b
One sucessful sequence: 0—0—>1—»2—»3
Another unsuccessful sequence: a a b b

0—0—>0——>»0—0

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 13 of 40

CS421 COMPILERS AND INTERPRETERS

Example: DFA

b b finalstate\
S T —
(D)
a

&———
a

A DFA accepts (a| b) "abb

There is only one possible sequence of moves --- either lead to a final
state and accept or the input string is rejected

input string: aabb

a a b b

The sucessful sequence: 0 1 1—s2— »3

Transition Table

» Finite Automata can also be represented using transition tables

For NFA, each entry is a set of For DFA, each entry is a unique
states: state:
STATE a b STATE a b
0 {0,1} {0} 1 0
1 - {2} 1 1 2
2 - {3} 2 1 3
3 - - 3 1 0

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 14 of 40

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 15 of 40

NFA with s-transitions

1. NFA can have e-transitions --- edges labelled with €

accepts the regular language denoted by (aa“| bb”)

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 16 of 40

CsS421 COMPILERS AND INTERPRETERS

Regular Expressions -> NFA

* How to construct NFA (with e-transitions) from a regular expression ?

» Algorithm : apply the following construction rules , use unique names
for all the states. (inportant invariant: always one final state !)

1. Basic Construction

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 17 of 40

CS421 COMPILERS AND INTERPRETERS

RE -> NFA (cont'd)

2. “Inductive” Construction N, : NFA for R;

N, : NFA for R,

RE -> NFA (cont'd)

2. “Inductive” Construction (cont'd)

initial state final
* for Ny inal state

for Ng

N; : NFA for Ry

* RiIRy
@ ’
the new and
m unique final state
initial state "\ M inal state
for Ny and N
or Ny and N, or N; and N,
merge : final state of Ny
* R{Ry and initial state of N,
initial staie/(o Nl @ NZ O)\ final state
for Ny “for N,
Copyright 1994 - 2000 Zhong Shao, Yale Universiy Lexical Analyss : Page 18 of 40

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 19 of 40

Example : RE -> NFA

Converting the regular expression : (a| b) “abb

a (in a| b) ===> e 2 @
b (in a| b)===> o ° @

al b ====>

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 20 of 40

CsS421 COMPILERS AND INTERPRETERS

Example : RE -> NFA (cont’d)
Converting the regular expression : (a| b) “abb

(al b) ¥ zz==> €

€

@—O ©—0)
D—>0

abb ====> (several steps are omitted)

a b b

© ® ®

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 21 of 40

CS421 COMPILERS AND INTERPRETERS

Example : RE -> NFA (cont’d)

Converting the regular expression : (a| b) “abb

(a]b)"abb ====> €

NFA -> DFA

« NFA are non-deterministic; need DFA in order to write a deterministic
prorgam !

* There exists an algorithm (“subset construction”) to convert any NFA to a
DFA that accepts the same language

» States in DFA are sets of states from NFA; DFA simulates “in parallel”
all possible moves of NFA on given input.

Definition: for each state s in NFA,

E-CLOSURE(s) ={s} O{t | scanreacht via e-transitions }

Definition: for each set of states S in NFA,

E€-CLOSURE(S) = [; ecLoOsURE(s) for all s in S

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 22 of 40

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 23 of 40

NFA -> DFA (cont'd)
¢ each DFA-state is a set of NFA-states

¢ suppose the start state of the NFA is s, then the start state for its DFA
is €-CLOSURE(S) ; the final states of the DFA are those that include a
NFA-final-state

¢ Algorithm : convertingan NFA' N intoaDFA D ----

Dstates = {e-CLOSURE(Sg),sg is N's start state}
Dstates are initially “unmarked”
while there is an unmarked D-state X do {
mark X
for each alX do {
T = {states reached fromany s; in X via a}
Y = &- CLOSURE(T)
if YODstates then add Y to Dstates “unnarked”
add transition fromX to Y, labelled with a

}

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 24 of 40

CsS421 COMPILERS AND INTERPRETERS CS421 COMPILERS AND INTERPRETERS

Example : NFA -> DFA Example : NFA -> DFA (cont’d)

« converting NFA for (a| b) *abb to a DFA ------------- B’s b-transitions: T = {5, 9};
a new state D = e-cLosURe({5, 9}) ={1, 2, 4,5, 6, 7, 9}

add a transition from B to D labelled with b

The start state A = e-cLosURE(0) = {0, 1, 2, 4, 7}; Dstates={A} Dstates = {A, B, C, D}

1st iteration: A is unmarked; mark A now; .
a-transitions: T = {3, 8} then we pick C, and mark C

a new state B= e-CLOSURE(3) [k -CLOSURE(8) C’s a—transi_ti_ons: T={3,8}its €-CLOSURE is B.
={3,6,1,2,4,7}0 8)={1,2,3,4,6, 7,8} add a transition from C to B labelled with a
baroio ot Jalled with a C’s b-transitions: T = {5}; its e-CLOSURE is C itself.

add a transition from A to B labelled with a o -
add a transition from C to C labelled with b

b-transitions: T = {5}

a new state C = e-cLOSURE(5) ={1, 2, 4, 5, 6, 7}
add a transition from A to C labelled with b
Dstates = {A, B, C}

next we pick D, and mark D
D’s a-transitions: T = {3, 8}; its e-CLOSURE is B.
add a transition from D to B labelled with a
D’s b-transitions: T = {5, 10};
a new state E = e-cLosure({5, 10}) ={1, 2, 4, 5, 6, 7, 10}

2nd iteration: B, C are unmarked; we pick B and mark B first; - J ; '
Dstates = {A, B, C, D, E}; E is a final state since it has 10;

B={1,23,4,6,7,8}
B’s a-transitions: T = {3, 8}; T's e-CLOSURE is B itself.

add a transition from B to B labelled with a next we pick E, and mark E

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 25 of 40 Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 26 of 40

CS421 COMPILERS AND INTERPRETERS CS421 COMPILERS AND INTERPRETERS

Example : NFA -> DFA (cont’d) Other Algorithms

E’s a-transitions: T = {3, 8}; its e-CLOSURE is B.
add a transition from E to B labelled with a

E’s b-transitions: T = {5}, its e-cLOSURE is C itself.
add a transition from E to C labelled with b

* How to minimize a DFA ? (see Dragon Book 3.9, pp141)

all states in Dstates are marked, the DFA is constructed ! « How to convert RE to DFA directly ? (see Dragon Book 3.9, pp135)

* How to prove two Regular Expressions are equivalent ? (see
Dragon Book pp150, Exercise 3.22)

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 27 of 40 Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 28 of 40

CsS421 COMPILERS AND INTERPRETERS

CS421 COMPILERS AND INTERPRETERS

Lex

» Lex is a program generator ---------- it takes lexical specification as
input, and produces a lexical processor written in C.

Lex

SPECIfiCatioN m—m—l | QX — |— lex.yy.C
foo.l

lex.yy.c —ep] C COMpiler |—— a.out

INPUE tEX! coeee— a.out e sequence of tokens

* Implementation of Lex:

Lex Spec -> NFA -> DFA -> Transition Tables + Actions -> yylex()

Lex Specification

DIA TS [0-9] I ex definition

%W

expression action

I nteger printf(“INT"); translation rul es

%W

char getc() { user’s C functions
(optional)

* expression is a regular expression ; action is a piece of C program;

« for details, read the Lesk&Schmidt paper

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 29 of 40

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 30 of 40

CS421 COMPILERS AND INTERPRETERS

ML-Lex

e ML-Lex is like Lex ---------- it takes lexical specification as input, and
produces a lexical processor written in Standard ML.

Lex

Specification el M| - eX f——— foo.lex.sml
foo.lex

f00.1eX.SM| c—e] ML COMPilEl |r— module Mlex

INPUE TEXT e M lex P sequence of tokens

* Implementation of ML-Lex is similar to implementation of Lex

ML-Lex Specification

type pos = int
val |lineNum =
val lexresult =

user’s M
decl arations

%6

% COMVENT STRI NG
SPACE=[\t\n\012];
DI G TS=[0- 9] ;

m -1 ex| definitions

%
expression => (action);)
i nteger => (print(“INT")); translation rules

...... => (...lineNum..); can call the above
ML declarations

* expression is a regular expression ; action is a piece of ML program;
when the input matches the expr essi on, the acti on is executed, the
text matched is placed in the variable yyt ext.

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 31 of 40

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 32 of 40

CsS421 COMPILERS AND INTERPRETERS

CS421 COMPILERS AND INTERPRETERS

What does ML-Lex generate?

foo.lex — ML-Lex —pp foO.lex.sml

sample foo.lex.sml:
everything in part 1 of foo. | ex

structure Mex = A
struct N
structure UserDeclarations = struct ... end

fun nakelLexer yyinput =
end

To use the generated lexical processor:

val |exer =
M ex. makeLexer (fn _ => input (openln “toy”));
val next Token = |exer()

e&h call returns one token ! input filename

ML-Lex Definitions

« Things you can write inside the “ml-lex definitions” section (2nd part):

% COWENT STRI NG define new start states

% ej ect REJECT() to reject a match
%count count the line number
%structure {identifier} theresulting structure name

(the default is M ex)

(hint: you probably don't need use %eject, %ount,or %tructure

for assignment 2.)

Definition of named regular expressions :

identifier = reqular expression

SPACE=[\t\n\012]
| DCHAR=[_a- zA- Z0- 9]

Copyright 1994 - 2000 Zhong Shao, Yale University

CS421 COMPILERS AND INTERPRETERS

Lexical Analysis : Page 33 of 40

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 34 of 40

CS421 COMPILERS AND INTERPRETERS

ML-Lex Translation Rules

» Each translation rule (3rd part) are in the form

<start-state-list> regul ar expression => (action);

» Valid ML-Lex regular expressions: (see ML-Lex-manual pp 4-6)

a character stands for itself except for the reserved chars:

PE A () NS =< > {0
to use these chars, use backslash! for example, \\\ " represents
the string \ ”

using square brackets to enclose a set of characters
(\ - " arereserved)

[abc] char a, or b, or c

[~abc] all chars except a, b, ¢
[a-2z] all chars froma to z
[\n\t\Db] new | ine, tab, or backspace
[-abc] char - or a or b or c

ML-Lex Translation Rules (cont’d)

¢ Valid ML-Lex regular expressions: (cont'd)

escape sequences: (can be used inside or outside square brackets)

:‘x
X?
X*
X+
x|y
X

{x}
(x)

x{n

\b backspace

\n new i ne

\'t tab

\ ddd any ascii char (ddd is 3 digit decinal)

any char except newline (equivalentto [*\ n])
match string x exactly even if it contains reserved chars
an optional x
0 or more x’s
1 or more Xx’s
X ory
if at the beginning, match at the beginning of a line only
substitute definition x (defined in the lex definition section)
same as regular expression x

} repeating x for n times

x{m n} repeating x from m to n times

Copyright 1994 - 2000 Zhong Shao, Yale University

Lexical Analysis : Page 35 of 40

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 36 of 40

CsS421 COMPILERS AND INTERPRETERS

ML-Lex Translation Rules (cont’d)

what are valid actions ?

Actions are basically ML code (with the following extensions)

All actions in a lex file must return values of the same type
* Use yytext toreferto the current string

[a-z]+ => (print yytext);
[0-9]1{3} => (print (Char.ord(sub(yytext,0))));

» Can refer to anything defined in the ML-Declaration section (1st part)
* YYBEG N start-state ----- enter into another start state
* | ex() and conti nue() to reinvoking the lexing function

* yypos ---refer to the current position

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 37 of 40

CS421 COMPILERS AND INTERPRETERS

Ambiguity

what if more than one translation rules matches ?

A. longest match is preferred
B. among rules which matched the same number of
characters, the rule given first is preferred

=> (Tokens. WH LE(...));

[a-zA-Z][a-zA-Z0-9_]* => (Tokens.|D(yytext,...));
‘<" => (Tokens.LESS(...));
‘<= => (Tokens. LE(yypos,...));

i nput “while” matches rule 1 accordi ng B above

i nput “<=" matches rule 4 according A above

Start States (or Start Conditions)

start states permit multiple lexical analyzers to run together.

each translation rule can be prefixed with <start - st at e>
« the lexer is initially in a predefined start stae called | NI TI AL

« define new start states (in ml-lex-definitions): % COMMVENT STRI NG

to switch to another start states (in action): YYBEG N COMVENT

» example: multi-line comments in C

)

% COMVENT

)

<INl TI AL>" / *” => (YYBEG N COMMENT; continue());
<COMMENT>" */ " => (YYBEG N I NITI AL; continue());
<COMMENT>. | "\ n” => (continue());

<INITIAL>

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 38 of 40

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 39 of 40

Implementation of Lex

« construct NFA for sum of Lex translation rules (regexp/action);
« convert NFA to DFA, then minimize the DFA

« to recognize the input, simulate DFA to termination; find the last DFA
state that includes NFA final state, execute associated action (this pickes
longest match). If the last DFA state has >1 NFA final states, pick one for
rule that appears first

« how to represent DFA, the transition table:

2D array indexed by state and input-character too big !
each state has a linked list of (char, next-state) pairs too slow!

hybrid scheme is the best ------- see Dragon Book page 144-146

Copyright 1994 - 2000 Zhong Shao, Yale University Lexical Analysis : Page 40 of 40

