CS421 COMPILERS AND INTERPRETERS

CS421 COMPILERS AND INTERPRETERS

Intermediate Code Generation

« Translating the abstract syntax into the intermediate representation.

report all lexical report all
& syntactic errors semantic errors
Tiger
source
program absyn correct inter.
lexer & | semantic | @bsyn | inter. code. ;’cﬁrﬁrﬁlér“l
» parser 7| analysis > | codegen 7| backend,

* What should Intermediate Representation (IR) be like ?

not too low-level (machine independent) but also not too high-level
(so that we can do optimizations)

* How to convert abstract syntax into IR ?

Intermediate Representations (IR)

* What makes a good IR ? --- easy to convert from the absyn; easy to
convert into the machine code; must be clear and simple; must support
various machine-independent optimizing transformations;

* Some modern compilers use several IRs (e.g., k=3in SML/NJ) --- each IR
in later phase is a little closer (to the machine code) than the previous
phase.

Absyn ==> IR; ==> IR, ... ==> IR ==> machine code
pros : make the compiler cleaner, simpler, and easier to maintain
cons : multiple passes of code-traversal --- compilation may be slow

» The Tiger compiler uses one IR only --- the Intermediate Tree (itree)

Absyn => itree frags => assembly => machine code

How to design itree ? stay in the middle of absyn and assembly!

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 1 of 25

CS421 COMPILERS AND INTERPRETERS

Case Study : itree

* Here is one example, defined using ML datatype definition:

structure Tree : TREE =
struct

type label = string
type size = int
type temp = int
datatype stm
and exp

SEQ of stm * stm |
BINOP of binop * exp * exp | ..-...

and test = TEST of relop * exp * exp

and binop = FPLUS | FMINUS | FDIV | FMUL

| PLUS | MINUS | MUL | DIV

| AND | OR | LSHIFT | RSHIFT | ARSHIFT | XOR
and relop = EQ | NE | LT | GT | LE | GE

| ULT | ULE | UGT | UGE

| FEQ | FNE | FLT | FLE | FGT | FGE
and cvtop = CVTSU | CVTSS | CVTSF | CVTUU

|

CVTUS | CVTFS | CVTFF
end

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 2 of 25

CS421 COMPILERS AND INTERPRETERS

itree Statements and Expressions

» Here is the detail of itree statements stm and itree expressions exp

datatype stm = SEQ of stm * stm

| LABEL of label

] JUMP of exp

] CJUMP of test * label * label
| MOVE of exp * exp

| EXP of exp

and exp = BINOP of binop * exp * exp

CVTOP of cvtop * exp * size * size
MEM of exp * size

TEMP of temp

ESEQ of stm * exp

NAME of label

CONST of int

CONSTF of real

CALL of exp * exp list

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 3 of 25

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 4 of 25

CS421 COMPILERS AND INTERPRETERS

itree Expressions

« itree expressions stand for the computation of some value, possiblly with
side-effects:

CONST (i) the integer constant i
CONSTF(x) the real constant x
NAME(n) the symbolic constant n (i.e., the assembly lang. label)

TEMP(t) content of temporary t ; like registers (unlimited number)

BINOP(0,eq,€e5) apply binary operator o to operands e, and e, ,
here e; must be evaluated before e,

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 5 of 25

CS421 COMPILERS AND INTERPRETERS

itree Statements

« itree statements performs side-effects and control flow - no return value!

SEQ(s;,S,) statement s; followed by s,
EXP(e) evaluate expression e and discard the result

LABEL(n) define n as the current code address (just like a label
definition in the assembly language)

MOVE(TEMP t, e) evaluate e and move it into temporary t

MOVE(MEM(eq,Kk), e,) evaluate e to address adr, then evaluate
€5, and store its result into MEM[adr]

JUMP(e) jump to the address e; the common case is jumping to a
known label I ~ JUMP(NAME(I))

CJUMP(TEST(0,e1,€5),t,F) conditional jump, first evaluate e,
and then e,, do comparison o, if the result is true, jump
to label t, otherwise jump the label £

itree Expressions (cont’'d)

* more itree expressions:

CVTOP(o0,e,J ,k) converting j-byte operand e to a k-byte value
using operator o.

MEM(e, k) the contents of k bytes of memory starting at address e.
if used as the left child of a MOVE, it means “store”;
otherwise, it means “fetch”. (k is often a word)

CALL(F,) aprocedure call: the application of function f : the
expression f is evaluated first, then the expression
list (for arguments) 1 are evaluated from left to right.

ESEQ(s,e) the statement s is evaluated for side effects, then e is
evaluated for a result.

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 7 of 25

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 6 of 25

CS421 COMPILERS AND INTERPRETERS

itree Fragments

* How to represent Tiger function declarations inside the itree ?
representing it as a itree PROC fragment :

datatype frag

= PROC of {name : Tree.label, function name
body : Tree.stm, function body itree
frame : Frame.frame} static frame layout

| DATA of string

each itree PROC fragment will be translated into a function
definition in the final “assembly code”

* The itree DATA fragment is used to denote Tiger string literal. It will be
placed as string constants in the final “assembly code”.

* Our job is to convert Absyn into a list of itree Fragments

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 8 of 25

CS421 COMPILERS AND INTERPRETERS

Example: Absyn => itree Frags

CS421 COMPILERS AND INTERPRETERS

Tunction tigermain () : resType = (* added for uniformity =)

let type intArray = array of int
var a := intArray [9] of O
function readarray () = ... |
| function writearray Q) = --- r
functiomexchange(x ——int; y - int)y =
let var z := a[x] in a[x] := a[yl; a[y]l := z end |
Function quicksort(m : int, n : Int) =
let [function partition(y : Int, z : Int) : Int =
let var i =y var j =z +1
in (while (i < j) do
(i == i+1; while a[i] < a[y] do i
j J-1; while a[j] > a[y] do j

+1
-1

3]
if i < j then exchange(i,j));
exchange(y,j); J)

i
i

end
in if n > m then (let var 1 := partition(m,n)
in quicksort(m, i-1);
quicksort(i+1l, n)
end)

end
in readarray(); quicksort(0,8); writearray(Q)
end

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 9 of 25

CS421 COMPILERS AND INTERPRETERS

Summary: Absyn => itree Frags
« Each absyn function declaration is translated into an itree PROC frag

TODO: 1. functions are no longer nested -- must figure out the
stack frame layout information and the runtime access
information for local and non-local variables !

2. must convert function body (Absyn.exp) into itree stm

3. calling conventions for Tiger functions and external C
functions (which uses standard convention...)

« Each string literal or real constant is translated into an itree DATA frag,
associated with a assembly code label ---- To reference the constant,
just use this label.

* Future work: translate itree-Frags into the assembly code of your
favourite machine (PowerPC, or SPARC)

Example: Absyn => itree frags
* The quicksort program (in absyn) is translated to a list of itree frags :

PROC(label Tigermain, itree code for Tigermain’s body,
Tigermain's frame layout info)

PROC(label readarray, itree code for readarray’s body,
readarray’s frame layout info)

PROC(label writearray, itree code for writearray's body,
writearray’s frame layout info)

PROC(label exchange, itree code for exchange’s body,
exchange'’s frame layout info)

PROC(label partition, itree code for partition’s body,
partition’s frame layout info)

PROC(label quicksort, itree code for quicksort's body,
quicksort'’s frame layout info)

DATA(*... assembly code for string literal #1 ...7)
DATA(*... assembly code for string literal #2 ...7)

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 11 of 25

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 10 of 25

CS421 COMPILERS AND INTERPRETERS

Review: Tiger Abstract Syntax

exp = VarExp of var
| NilExp
| IntExp of int
| StringExp of string * pos
| AppExp of {func: Symbol.symbol, args: exp list, pos: pos}
| OpExp of {left: exp, oper: oper, right: exp, pos: pos}
| RecordExp of {typ: Symbol.symbol, pos: pos,
fields: (Symbol.symbol * exp * pos) list}
| SeqExp of (exp * pos) list
| AssignExp of {var: var, exp: exp, pos: pos}
| IfExp of {test: exp, then’: exp, else’: exp option, pos: pos}
| WhileExp of {test: exp, body: exp, pos: pos}
| ForExp of {var: Symbol.symbol, lo: exp, hi: exp,
body: exp, pos: pos}
| BreakExp of pos
| LetExp of {decs: dec list, body: exp, pos: pos}
| ArrayExp of {typ: Symbol.symbol, size: exp,
init: exp, pos: pos}
dec = VarDec of {var: Symbol._.symbol,init: exp, pos : pos,

typ: (Symbol.symbol * pos) option}
FunctionDec of fundec list
TypeDec of {name: Symbol.symbol, ty: ty, pos: pos} list

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 12 of 25

CS421 COMPILERS AND INTERPRETERS

CS421 COMPILERS AND INTERPRETERS

Mapping Absyn Exp into itree
* We define the following new generic expression type gexp

datatype gexp
= Ex of Tree.exp
| Nx of Tree.stm
| Cx of Tree.label * Tree.label -> Tree.stm

this introduce three new constructors:
Ex : Tree.exp -> gexp
Nx : Tree.stm -> gexp
Cx : (Tree.label * Tree.label -> Tree.stm) -> gexp

« Each Absyn.exp that computes a value is translated into Tree.exp
Each Absyn.exp that returns no value is translated into Tree.stm

« Each “condititional” Absyn.exp (which computes a boolean value) is
translated into a function Tree. label * Tree.label -> Tree.stm
Tiger Expression: a>b | c<d would be translated into

Cx(fn (t,F) => SEQ(CIUMP(TEST(GT,a,b),t,z),
SEQ(LABEL z, CJUMP(TEST(LT,c,d),t,F))))

Mapping Absyn Exp into itree
« Utility functions for convertion among Ex, Nx, and Cx expressions:

unEx : gexp -> Tree.exp
unNx : gexp -> Tree.stm
unCx : gexp -> (Tree.label * Tree.label -> Tree.stm)

Examples:
fun seq [1 = error “...”
| seq [a] = a
| seq(a::r) = SEQ(a,seq r)

fun unEx(Ex e) = e
unEx(Nx s) = T.ESEQ(s, T.CONST 0)
unEx(Cx genstm) =
let val r = T.newtemp()
val t = T.newlabel and ¥ = T.newlabel()
in T.ESEQ(seq[T.MOVE(T.TEMP r, T.CONST 1),
genstm(t,),
T.LABEL T,
T.MOVE(T.TEMP r, T.CONST 0)
T.LABEL t],
T.TEMP r)

end

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 13 of 25

CS421 COMPILERS AND INTERPRETERS

Simple Variables

« Define the frame and level type for each function definition:

type frame = {formals: int, offlst : int list,
locals : int ref, maxargs : int ref}

datatype level = LEVEL of {frame : frame,
slink_offset : offset,
parent : level} * unit ref
| ToP

type access = level * offset

* The access information for a variable v is a pair (1,k) where I isthe
level in which v is defined and k is the frame offset.

« The frame offset can be calculated by the al locLocal function in the
Frame structure (which is architecture-dependant). The access
information will be put in the env in the typechecking phase.

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 14 of 25

CS421 COMPILERS AND INTERPRETERS

Simple Variables (cont’'d)

» To access a local variable v at offset k, assuming the frame pointer is
fp,justdo MEM(BINOP(PLUS, TEMP fp, CONST k),w)

» To access a non-local variable v inside function f at level 1¢ assuming
v's access is (14, k); we do the following:

MEM(+(CONST Ky, MEM(+(CONST Kp_1, . . -MEM(+(CONST ki, TEMP Fp))..))

Strip levels from I¢, we use the static link offsets k4, k5, ... from these
levels to construct the tree. When we reach 1, we stop.

datatype level = LEVEL of {frame : frame,
slink_offset : offset,
parent : level} * unit ref
| TOP

use “unit ref’ to test if two levels are the same one.

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 15 of 25

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 16 of 25

CS421 COMPILERS AND INTERPRETERS

CS421 COMPILERS AND INTERPRETERS

Array and Record Variables

« In Pascal, an array variable stands for the contents of the array --- the
assignment will do the copying :
var a, b : array [1..12] of integer;
begin

a:=b
end;

* InTiger and ML, an array or record variable just stands for the pointer to

the object, not the actual object. The assignment just assigns the pointer.

let type intArray = array of int

var a := intArray[12] of O
var b := intArray[12] of 7
ina::=b

end

« In C, assignment on array variables are illegal !

int a[12], b[12], *c; a = b; isillegal! c = a; islegal!

Array Subscription

* If a is an array variable represented as MEM(e), then array
subscription a[1] would be (ws is the word size)

MEM(BINOP(PLUS ,MEM(e) ,BINOP(MUL, i ,CONST ws)))

» To ensure safety, we must do the array-bounds-checking: if the array
bounds are L..H, and the subscript is i; then report runtime errors when
either i<L or i>H happens.

» Array subscription can be either I-values or r-values --- use it properly.

* Record field selection can be translated in the same way. We calculate
the offset of each field at compile time.

type point intlist = {hd : int, tl - intlist}
the offset for ““hd” and “t1” is O and 4

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 17 of 25

CS421 COMPILERS AND INTERPRETERS

Record and Array Creation
» Tigerrecord creation: var z = foo {f; = e, ..., F, = e }

we can implement this by calling the C mal loc function, and then
move each ej to the corresponding field of foo. (see Appel pp164)

In real compilers, calling mal loc is expensive; we often inline the
mal loc code.

« Tiger array creation: var z = foo n of initv

by callinga C initArray(size, initv) function, which allocates
an array of size size with initial value initv.

to support array-bounds-checking, we can put the array length in the
O-th field. z[i] is accessed at offset (i+1)*word_sz

* Requirement: a way to call external C functions inside Tiger.

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 18 of 25

CS421 COMPILERS AND INTERPRETERS

Integer and String

* Integer: absyn IntExp(i) => itree CONST(i)
e Arithmetic: absyn OpExp(i) => itree BINOP(i)

« Strings: every string literal in Tiger or C is the constant address of a
segment of memory initialized to the proper characters.

During translation from Absyn to itree, we associate a label 1
for each string literal s:
to refer to s, just use NAME 1

Later, we'll generate assembly instructions that define and initialize
this label 1 and string literal s.

String representations:

1. a word containing the length followed by characters (in Tiger)
2. a pointer to a sequence of characters followed by \00O (in C)
3. a fixed length array of characters (in Pascal)

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 19 of 25

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 20 of 25

CS421 COMPILERS AND INTERPRETERS

Conditionals

« Each comparison expression a < b will be translated to a Cx generic
expression fn (t,f) => (TEST(LT,a,b),t,f)

» Given a conditional expression (in absyn) if e; then e, else e3

. translate e,, e,, e into itree generic expressions e;, e, €3

.apply unCx toeq,and unkEx toe, and e;

. make three labels, then case: t and else case: ¥ and join : j

. allocate a temporary r, after label £, move e, to r, then jump to j;
after label ¥, move e to r, then jump to j

5. apply unCx-ed version of e; to label t and

A WDN P

* Need to recognize certain special case: (x < 5) & (a > b) itis
converted to “if x <5 then a > b else 0" in absyn -------- too many labels
if using the above algorithm --- inefficient. (read Appel page 162)

CS421 COMPILERS AND INTERPRETERS

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 21 of 25

CS421 COMPILERS AND INTERPRETERS

Function Calls

* Inside a function g, the function call f(ei,es, ..., e,) is
translated into CALL(NAME l¢, [sl, e;, e, --., e,D)

s1 is the static link --- it is just a pointer to f's parent level, but how
can we find it when we are inside g ?

striping the level of g one by one, generate the code that follow g's
chains of static links until we reach f's parent level.

* When calling external C functions, what kind of static link do we pass ?

« In the future, we need to decide what is the calling convention -----
where the callee is expecting the formal parameters and the static link?

» Translating while loops:
goto test

test: top:

if not (condition) goto done ... the loop body ...

. the loop body ... test:

goto test if (condition) goto top
done: done:
each round executes one conditional each round executes one conditional
branch plus one jump branch only

» Translating break statements: just JUMP to done

need to pass down the label done when translating the loop body!

» Translating For loops: (exercise, or see Appel pp 166)

for i := lo to hi do body

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 23 of 25

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 22 of 25

CS421 COMPILERS AND INTERPRETERS

Declarations

» Variable declaration: need to figure out the offset in the frame, then
move the expression on the r.h.s. to the proper slot in the frame.

« Type declaration: no need to generate any itree code !
* Function declaration: build the PROC itree fragment
Later we translate PROC(name : label, body : stm, frame)
to assembly: _global name
name: prologue
assembly code for body

...... epilogue

The prologue and epilogue captures the calling sequence, and can
be figured out from the frame layout information in frame. Prologue
and epilogue are often machine-dependant.

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 24 of 25

CS421 COMPILERS AND INTERPRETERS

Function Declarations
* Generating prologue :

. psuedo-instructions to announce the beginning of a function

. a label definiton fo the function name

. an instruction to adjust the stack pointer (allocating a new frame)

. store instructions to save callee-save registers and return address
5. store instructions to save arguments and static links

A WOWON PR

* Generating epilogue :

1. an instruction to move the return result to a special register
2. load instructions to restore callee-save registers

3. an instruction to reset the stack pointer (pop the frame)

4. areturn instruction (jump to the return address)

5. psuedo-instructions to announce the end of a function

Copyright 1994 - 2010 Zhong Shao, Yale University Intermediate Code Generation: Page 25 of 25

