







#### **Basic Blocks**

- A sequence of instructions that is always executed starting at the first instruction and always exits at the last instruction.
  - Starts with a label that names the *entry point* of the basic block.
  - Ends with a control-flow instruction (e.g. branch or return) the "link"
  - Contains no other control-flow instructions
  - Contains no interior label used as a jump target
- Basic blocks can be arranged into a *control-flow graph* Nodes are basic blocks
  - There is a directed edge from node A to node B if the control flow instruction at the end of basic block A might jump to the label of basic block B.



#### LL Storage Model: Locals

- Two kinds of storage: - Local variables: %uid Abstract locations: references to storage created by the alloca instruction
- Local variables:
  - Defined by the instructions of the form suid = ...

  - Must astisfy the single static assignment invariant
     Each suid appears on the left-hand side of an assignment only once in the entire control flow graph.
     The value of a suid remains unchanged throughout its lifetime
  - Analogous to "let %uid = e in ..." in OCaml
- · Intended to be an abstract version of machine registers.
- · We'll see later how to extend SSA to allow richer use of local variables.





| Decorates values w                               | ith type information                                                                                                                                                                                                                               |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i32<br>i32*<br>i1                                | define 132 @factorial(132 %n) nounvind uwtable msp {<br>entry:<br>allosa 137, align 4<br>%acc = align 131 gr 4<br>%tore 132 %n, 132* %1, align 4<br>%tore 132 %l, 132* %acc, align 4                                                               |
| Has alignment                                    | br label %start                                                                                                                                                                                                                                    |
| annotations                                      | <pre>start: ; preds = %entry, %else %3 = load i32* %l, align 4 %4 = icmp ugt i32 %3, 0 br il %4, label %then, label %else</pre>                                                                                                                    |
| entry edges for<br>each block:<br>preds = %start | then: ; preds = tatart<br>46 = load 132* tacc, align 4<br>57 = load 132* til, align 4<br>stores 23 24 34, 122* tat, align 4<br>tatores 23 24 34, 122* tacc, align 4<br>510 = sub 132* 51, align 4<br>51 = load 132* 51, align 4<br>br label tatart |
|                                                  | else: ; preds = %start<br>%12 = load i32* %acc, align 4<br>ret i32 %12                                                                                                                                                                             |





#### **GetElementPtr**

- LLVM provides the getelementptr instruction to compute pointer values
  - Given a pointer and a "path" through the structured data pointed to by that pointer, getelementptr computes an address
    This is the abstract analog of the X86 LEA (load effective address). It does
  - It is a "type indexed" operation, since the sizes computations involved
- Example: access the x component of the first point of a rectangle:
  - %tmp1 = getelementptr %Rect\* %square, i32 0, i32 0
    %tmp2 = getelementptr %Point\* %tmp1, i32 0, i32 0













# Dominator Dataflow Analysis

- We can define Dom[n] as a forward dataflow analysis.
   Using the framework we saw earlier: Dom[n] = out[n] where:
- Osing the trainework we saw earlier: Donini = outini where:
   "A node B is dominated by another node A if A dominates *all* of the predecessors of B."
- in[n] := ∩<sub>n'∈pred[n]</sub>out[n']
   "Every node dominates itself."
   out[n] := in[n] ∪ {n}
- Formally:  $\mathcal{L} = set of nodes ordered by \subseteq$ -  $T = \{all nodes\}$ -  $F_n(x) = x \cup \{n\}$ 
  - $\prod_{n \in \mathbb{N}} is \cap$
- Easy to show monotonicity and that  $F_n$  distributes over meet. - So algorithm terminates







#### **Uses of Control-flow Information**

- Loop nesting depth plays an important role in optimization heuristics.
   Deeply nested loops pay off the most for optimization.
- Need to know loop headers / back edges for doing
   loop invariant code motion
  - loop unrolling
- Dominance information also plays a role in converting to SSA form

   Used internally by LLVM to do register allocation.

# STATIC SINGLE ASSIGNMENT (SSA)

### Single Static Assignment (SSA)

- LLVM IR names (via %uids) all intermediate values computed by the program.
- It makes the order of evaluation explicit.
- Each %uid is assigned to only once
   Contrast with the mutable quadruple form
  - Note that dataflow analyses had these kill[n] sets because of updates to variables...
- Naïve implementation: map %uids to stack slots
- Better implementation: map suids to registers (as much as possible)
- Question: How do we convert a source program to make maximal use of %uids, rather than alloca-created storage?
   two problems: control flow & location in memory







#### **Phi Nodes and Loops**

- Importantly, the %uids on the right-hand side of a phi node can be defined "later" in the control-flow graph.
  - Means that %uids can hold values "around a loop"
    Scope of %uids is defined by dominance (discussed soon)

#### entry: %yl = \_\_ %xl = \_\_ br label %body body: %x2 = phi i32 %x1, %entry, %x3, %body %x3 = add i32 %x2, %yl %p = icmp alt i32, %x3, 10 br il %p, label %body, label %after after: \_\_\_\_\_\_\_



### **Converting to SSA: Overview**

- Start with the ordinary control flow graph that uses allocas
   Identify "promotable" allocas
- Compute dominator tree information
- Calculate def/use information for each such allocated variable
  Insert φ functions for each variable at necessary "join points"
- Replace loads/stores to alloc'ed variables with freshly-generated %uids
- · Eliminate the now unneeded load/store/alloca instructions.

## Where to Place $\phi$ functions?

- Need to calculate the "Dominance Frontier"
- Node A *strictly dominates* node B if A dominates B and  $A \neq B$ .
- The *dominance frontier* of a node B is the set of all CFG nodes y such that B dominates a predecessor of y but does not strictly dominate y
- Write DF[n] for the dominance frontier of node n.





#### **Insert \phi** at Join Points

- $\label{eq:linear} \begin{array}{l} \mbox{Lift the } DF[n] \mbox{ to a set of nodes N in the obvious way:} \\ DF[N] = U_{n \in \mathbb{N}} DF[n] \\ \mbox{Suppose that at variable x is defined at a set of nodes N.} \end{array}$
- •
- •
- Suppose that at variable x is defined at a set of nodes N.  $\begin{aligned} DF_0[N] &= DF[N] \\ DF_{i+1}[N] &= DF[DF_i[N] \cup N] \\ Let J[N] be the$ *least fixed point* $of the sequence: <math display="block">DF_0[N] &\subseteq DF_1[N] \subseteq DF_2[N] \subseteq ... \\ That is, J[N] &= DF_k[N] for some k such that DF_k[N] = DF_{k+1}[N] \\ DF_0[N] &\subseteq DF_k[N] = DF_{k+1}[N] \\ DF_0[N] &\subseteq DF_{k+1}[N] \\ DF_0[N] &\subseteq DF_{k+1}[N] \\ DF_0[N] &\subseteq DF_{k+1}[N] \\ DF_0[N] &\subseteq DF_{k+1}[N] \\ DF_{k+1}$
- Inat is, J[N] = Dr<sub>k1</sub>[N] for some k such final Dr<sub>k1</sub>[N] = Dr<sub>k1</sub>[N]
   J[N] is called the "join points" for the set N
   We insert \$\phi\$ functions for the variable x at each such join point.
   x = \$\phi(x, x, ..., x); (one "x" argument for each predecessor of the node)
   In practice, J[N] is never directly computed, instead you use a worklist algorithm that keeps adding nodes for DF<sub>k</sub>[N] until there are no changes.
- Intuition:
  - If N is the set of places where x is modified, then DF[N] is the places where phi nodes need to be added, but those also "count" as modifications of x, so we need to insert the phi nodes to capture those modifications too...

# **Example Join-point Calculation** • Suppose the variable x is modified at nodes 2 and 6 - Where would we need to add phi nodes? • $DF_0[\{2,6\}] = DF[\{2,6\}] = DF[2] \cup DF[6] = \{1,2,8\}$ • DF<sub>1</sub>[{2,6}] $\begin{array}{l} [\{2,6\}]\\ = & \mathsf{DF}[\mathsf{DF}_0\{2,6\} \cup \{2,6\}]\\ = & \mathsf{DF}[\{1,2,8,6\}]\\ = & \mathsf{DF}[1] \cup \mathsf{DF}[2] \cup \mathsf{DF}[8] \cup \mathsf{DF}[6]\\ = & \{\} \cup \{1,2\} \cup \{0\} \cup \{8\} = \{1,2,8,0\} \end{array}$ • DF<sub>2</sub>[{2,6}] $= \dots$ = {1,2,8,0} • So $J[\{2,6\}] = \{1,2,8,0\}$ and we need to add phi nodes at those four spots. 38