
C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 1 of 36

Syntax Analysis
• Convert the list of tokens into a parse tree (“hierarchical” analysis)

• The syntactic structure is specified using context-free grammars 

[in lexical anlaysis, the lexical structure is specified using regular expressions]

• A parse tree (also called concrete syntax) is a graphic representation of a 
derivation that shows the hierarchical structure of the language

• Other secondary tasks: syntax error detection and recovery

token

get next
token

lexical 
analyzer

parsersource 
program

parse
tree

abstract
syntax

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 2 of 36

Tokens ---> Parse Tree
Tokens:

FUNCTION
ID(do_nothing1)
LPAREN
ID(a)
COLON
ID(int)
COMMA
ID(b)
COLON
ID(string)
RPAREN
EQ
ID(do_nothing2)
LPAREN
INT(1)
PLUS
ID(a)
RPAREN

The parse tree captures the 

syntactic structure !

fundec

RPARENtyfieldsLPARENIDFUNCTION EQ exp

tyf

COMMA

PLUS

RPARENLPAREN

exp

exp

explID

exp

IDINT

COLONID IDtyf

COLONID ID

source program :
function do_nothing1(a:int,b:string) = do_nothing2(1+a)

ParseTree:

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 3 of 36

Main Problems
• How to specify the syntactic structure of a programming language ?

by using Context-Free Grammars (CFG) !

• How to parse ? i.e., given a CFG and a stream of tokens, how to build its parse 
tree ? 

1. bottom-up parsing 2. top-down parsing 

• How to make sure that the parser generates a unique parse tree ? (the 
ambiguity problem)

• Given a CFG, how to build its parser quickly ? 

using YACC ---- the parser generator 

• How to detect, report, and recover syntax errors ? 

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 4 of 36

Grammars
• A grammar is a precise, understandable specification of programming 

language syntax (but not semantics !)

• Grammar is normally specified using Backus-Naur Form (BNF) ---

1. a set of rewriting rules (also called productions) 

2. a set of non-terminals and a set of terminals

non-terminals ---- stmt, expr
terminals ---- if, then, else, +, *, (, ), id

3. lists are specified using recursion
stmt -> begin stmt-list end

 stmt-list -> stmt | stmt ; stmt-list

stmt -> if expr then stmt else stmt 
expr -> expr + expr | expr * expr 

| ( expr ) | id “or”



C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 5 of 36

Context-Free Grammars (CFG)
• A context-free grammar is defined by the following (T,N,P,S):

T is vocabulary of terminals,
N is set of non-terminals,
P is set of productions (rewriting rules), and
S is the start symbol (also belong to N).

• Example: a context-free grammar G=(T,N,P,S) 

T = { +, *, (, ), id }, 
N = { E }, 
P = { E -> E + E, E -> E * E, E -> ( E ), E -> id },
S = E 

• Written in BNF: E -> E + E | E * E | ( E ) | id 

• All regular expressions can also be described using CFG

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 6 of 36

Context-Free Languages (CFL)
• Each context-free gammar G=(T,N,P,S) defines a context-free language  L = 

L(G) 

• The CFL L(G) contains all sentences of teminal symbols (from T) --- derived 
by repeated application of productions in P, beginning at the start symbol S.

• Example the above CFG denotes the language L =

L({ +, *, (, ), id }, 
{ E }, 
{ E -> E + E, E -> E * E, E -> ( E ), E -> id }, 
E )

it contains sentences such as id+id, id+(id*id), (id), 
 id*id*id*id, .............

• Every regular language must also be a CFG ! (the reverse is not true)

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 7 of 36

Derivations
• derivation is repeated application of productions to yield a sentence from the 

start symbol: 

• the intermediate forms always contain some non-terminal symbols

• leftmost derivation : at each step, leftmost non-terminal is replaced; e.g. E => 

E * E => id * E => id * id 

• rightmost derivation : at each step, rightmost non-terminal is replaced; e.g. E 

=> E * E => E * id => id * id 

E => E * E
=> id * E
=> id * (E)
=> id * (E + E)
=> id * (id + E) 
=> id * (id + id)

--- “E derives E * E”
--- “E derives id”
--- “E derives (E)”

Summary: E =>* id * (id + id)
“=>*”: derives in 0 or more steps

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 8 of 36

Parse Tree
• A parse tree is a graphical representation of a derivation that shows 

hierarchical structure of the language, independent of derivation order.

• Parse trees have leaves labeled with terminals; interior nodes labeled with non-
terminals.

• Every parse tree has unique leftmost (or rightmost) derivation !

example: E =>*  id * (id + id)

E

+
idid

EE

E

)(

E

*

id

E



C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 9 of 36

Ambiguity
• A language is ambiguous if a sentence has more than one parse tree, i.e., more 

than one leftmost (or rightmost) derivation

example: id + id * id

a) E => E + E => id + E
=> id + E * E 
=> id + id * E

 => id + id * id

E

+

id

id

EE

* EE

idid

E

* EE

+ EE

id

id

another leftmost derivation:

b) E => E * E => E + E * E
=> id + E * E 
=> id + id * E

 => id + id * id

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 10 of 36

Resolving Ambiguity 
• Solution #1 : using “disambiguating rules” such as precedence ...

e.g. let * has higher priority over + 
(favor derivation (a))

• Solution #2 : rewriting grammar to be unambiguous !

“dangling-else” stmt -> if expr then stmt
| if expr then stmt else stmt
| ......

How to parse the following ?

if E1 then if E2 then S1 else S2

How to rewrite ? 

Main Idea: build “precedence” into grammar with extra non-terminals !

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 11 of 36

Resolving Ambiguity (cont’d)

• solution: define “matched” and “unmatched” statements 

stmt -> m-stmt | um-stmt

m-stmt -> if expr then m-stmt else m-stmt
| ......

um-stmt -> if expr then stmt
| if expr then m-stmt else um-stmt

Now how to parse the following ?

if E1 then if E2 then S1 else S2

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 12 of 36

Resolving Ambiguity (cont’d)
• Another ambiguous grammar 

E -> E + E | E - E | E * E | E / E 
| ( E ) | - E | id 

usual precedence: highest - (unary minus)
* /

lowest + -

• Build grammar from highest ---> lowest precendence

element -> ( expr ) | id 
primary -> - primary | element 
term -> term * primary | term / primary | primary
expr -> expr + term | expr - term | term

try the leftmost derivation for - id + id * id 
expr => expr + term => term + term => primary + term 

=> - primary + term => - element + term => - id + term
=> - id + term * primary => ... =>* - id + id * id 



C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 13 of 36

Other Grammar Transformations
• Elimination of Left Recursion (useful for top-down parsing only)

replace productions of the form A -> A x | y 
with

A -> y A’
A’ -> x A’ | 

(yields different parse trees but same language)

see Appel pp 51-52 for the general algorithm 

• Left Factoring --- find out the common prefixes (see Appel pp 53)

change the production A -> x y | x z
to 

A -> x A’
A’ -> y | z

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 14 of 36

Parsing
• parser : a program that, given a sentence, reconstructs a derivation for that 

sentence ---- if done sucessfully, it “recognizes” the sentence

• all parsers read their input left-to-right, but construct parse tree differently. 

• bottom-up parsers --- construct the tree from leaves to root 

shift-reduce, LR, SLR, LALR, operator precedence

• top-down parsers --- construct the tree from root to leaves 

recursive descent, predictive parsing, LL(1) 

• parser generator --- given BNF for grammar, produce parser

YACC --- a LALR(1) parser generator

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 15 of 36

Top-Down Parsing
• Construct parse tree by starting at the start symbol and “guessing” at 

derivation step. It often uses next input symbol to guide “guessing”.

• Main algorithms : recursive descent, predictive parsing (see the textbook for 
detail)

example: S -> c A d
A -> ab | a

S

A dc

S

ba

S

A dc

S

A dc

a

input symbols: cad

decide which rule 
of A to use here?

decide to use 1st 
alternative of A 

guessed wrong
backtrack, and 
try 2nd one.

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 16 of 36

Bottom-Up Parsing
• Construct parse tree “bottom-up” --- from leaves to the root

• Bottom-up parsing always constructs right-most derivation 

• Important parsing algorithms: shift-reduce, LR parsing, ...

• shift-reduce parsing : given input string w, “reduces” it to the start symbol !
Main idea: look for substrings that match r.h.s of a production

Example:
 sentential form  reduction

Grammar  abbcde
 aAbcde A -> b

S -> aAcBe aAcde  A -> Ab
A -> Ab|b aAcBe B -> d
B -> d  S  S -> aAcBe

right-most 
derivation 
in reverse



C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 17 of 36

Handles
• Handles are substrings that can be replaced by l.h.s. of productions to lead to 

the start symbol.

• Not all possible replacements are handles --- some may not lead to the start 
symbol ... abbcde -> aAbcde -> aAAcde -> stuck! 

this b is not a handle !

• Definition : if   can be derived from S via right-most derivation, then   is 
called a right-sentential form of the grammar G (with S as the start symbol). 
Similar definiton for left-sentential form.

• handle of a right-sentential form A is  A ->  if 

S =>*rm A =>rm 

and  contains only terminals. E.g., A -> Ab in aAbcde

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 18 of 36

Handle Pruning
• Main idea: start with terminal string w and “prune” handles by replacing them 

with l.h.s. of productions until we reach S : 

S =>rm  =>rm  =>rm  =>rm n-1 =>rm 

(i.e., construct the rightmost derivation in reverse)

• Example: E -> E + E | E * E | ( E ) | a | b | c

right-sentential form handle reducing production
 a + b * c  a E -> a
 E + b * c  b E -> b
 E + E * c  c E -> c
 E + E * E E * E E -> E * E
 E + E E + E E -> E + E
 E

ambiguity

Key of Bottom-Up Parsing: Identifying Handles

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 19 of 36

Shift-Reduce Parsing
• Using a stack, shift input symbols onto the stack until a handle is found; reduce 

handle by replacing grammar symbols by l.h.s. of productions; accept for 
successful completion of parsing;  error for syntax errors.

• Example: E -> E + E | E * E | ( E ) | a | b | c

stack input   action
$  a+b*c$  shift
$a  +b*c$  reduce: E -> a
$E  +b*c$  shift
$E+  b*c$  shift
$E+b  *c$  reduce: E -> b
$E+E  *c$  shift (possible SR conflict)

$E+E*  c$  shift 
$E+E*c  $  reduce: E -> c
$E+E*E  $  reduce: E -> E*E
$E+E    $  reduce: E -> E+E
$E    $  accept

handle is always at the top !

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 20 of 36

Conflicts
• ambiguous grammars lead to parsing conflicts; conflicts can be fixed by 

rewriting the grammar, or making a decision during parsing

• shift / reduce (SR) conflicts : choose between reduce and shift actions

S -> if E then S | if E then S else S| ......

stack input action
$if E then S else ...$ reduce or shift?

• reduce/reduce (RR) conflicts : choose between two reductions

stmt -> id (param) --- procedure call a(i)
param -> id
E -> id (E) | id --- array subscript a(i)

stack input action
$id(id  ) ...$ id reduce to  E or  param ?



C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 21 of 36

LR Parsing
today’s most commonly-used parsing techniques !

• LR(k) parsing : the “L” is for left-to-right scanning of the input; the “R” for 
constructing a rightmost derivation in reverse, and the “k” for the number of 
input symbols of lookahead used in making parsing decisions. (k=1)

• LR parser components: input, stack (strings of grammar symbols and states), 
driver routine, parsing tables. 

LR Parsing Program outputsm
Xm
..
s1
X1
s0

Parsing Table (action+goto)

a1 a2 a3 a4 ...... an $input:

stack

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 22 of 36

LR Parsing (cont’d)
• A sequence of new state symbols  s0,s1,s2,..., sm ----- each state 

sumarizes the information contained in the stack below it.

• Parsing configurations: (stack, remaining input) written as

(s0X1s1X2s2...Xmsm , aiai+1ai+2...an$)

next “move” is determined by sm and ai

• Parsing tables: ACTION[s,a] and GOTO[s,X]

Table A ACTION[s,a] --- s : state, a : terminal

its entries (1) shift sk (2) reduce A -> 
(3) accept (4) error

Table G GOTO[s,X] --- s : state, X : non-terminal
its entries  are states

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 23 of 36

LR Parsing Driver Routine
Given the configuration:

(s0X1s1X2s2...Xmsm , aiai+1ai+2...an$)

(1) If ACTION[sm,ai] is “shift s”, enter config

(s0X1s1X2s2...Xmsmais, ai+1ai+2...an$)

(2) If ACTION[sm,ai] is “reduce A->”, enter config

(s0X1s1X2s2...Xm-rsm-rAs, aiai+1ai+2...an$)

where r=||, and s = GOTO[sm-r,A]
(here  should be Xm-r+1Xm-r+2...Xm)

(3) If ACTION[sm,ai] is “accept”, parsing completes

(4) If ACTION[sm,ai] is “error”, attempts error 
recovery.

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 24 of 36

Example: LR Parsing 
• Grammar :

1. S -> S ; S 6. E -> E + E
2. S -> id := E 7. E -> (S , E)
3. S -> print (L) 8. L -> E
4. E -> id   9. L -> L , E
5. E -> num

• Tables :

sn  -- shift and put state n on the stack
gn  -- go to state n
rk -- reduce by rule k
a  -- accept and parsing completes
_ -- error

• Details see figure 3.18 and 3.19 in Appel pp.56-57



C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 25 of 36

Summary: LR Parsing
• LR Parsing is doing reverse right-most derivation !!!

• If a grammar is ambiguous, some entries in its parsing table (ACTION) contain 
multiple actions : “shift-reduce” or “reduce-reduce” conflicts. 

• Two ways to resolve conflicts ---- (1) rewrite the grammar to be unambiguous 
(2) making a decision in the parsing table (retaining only one action!)

• LR(k) parsing: parsing moves determined by state and next k input symbols; k 
= 0, 1 are most common. 

• A grammar is an LR(k) grammar, if each entry in its LR(k)-parsing table is 
uniquely defined.

• How to build LR parsing table? ---- three famous varieties: SLR, LR(1), 
LALR(1) (detailed algorithms will be taught later !)

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 26 of 36

Yacc
• Yacc is a program generator ---------- it takes grammar specification as input, 

and produces an LALR(1) parser written in C. 

• Implementation of Yacc: 

Construct the LALR(1) parser table from the grammar specification

Yacc
Grammar

Specification
foo.y

y.tab.c

C Compilery.tab.c a.out

a.outinput text parse tree, ......

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 27 of 36

ML-Yacc
• ML-Yacc is like Yacc ---------- it takes grammar specification as input, and 

produces a LALR(1) parser written in Standard ML. 

• Implementation of ML-Yacc is similar to implementation of Yacc

ML-Yacc
Grammar

Specification
foo.grm

foo.grm.yacc
(in ML)

ML Compilerfoo.lex.sml

foo.grm.yacc
Parser

Parserinput text parse tree ......

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 28 of 36

ML-Yacc Specification 

• grammar is specified as BNF production rules; action is a piece of ML 
program; when a grammar poduction rule is reduced during the parsing 
process, the corresponding  action is executed.

structure A = Absyn
.....
%%
%term EOF | ID of string ...
%nonterm exp | program ...
%pos int
%eop EOF
%noshift EOF
.....
%%  
grammar  (action)
program : exp ()
exp : id ()

Yacc declarations

rule-lists

user’s ML
declarations

can call the above
ML declarations



C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 29 of 36

ML-Yacc Rules
• BNF production A ->  |  | ... |   is written as 

A :  (action for A -> )
|  (action for A -> )
| ... 
|  (action for A -> )

• The start symbol is l.h.s. of the first production or symbol S in the Yacc 
declaration %start S

• The terminals or tokens are defined by the Yacc declaration %term

%term ID of string | NUM of int | PLUS | EOF | ...

• The non-terminals are defined by the Yacc declaration %nonterm

%nonterm EXP of int | START of int option

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 30 of 36

Example: calc.grm
fun lookup “bogus” = 10000 | lookup s = 0

%%
%eop EOF SEMI
%pos int
%left SUB PLUS
%left TIMES DIV

%term ID of string | NUM of int | PLUS | TIMES | PRINT |
SEMI | EOF | DIV | SUB

%nonterm EXP of int | START of int
%verbose
%name Calc
%%
START : PRINT EXP (print EXP; print “\n”; EXP)

| EXP (EXP)

EXP : NUM (NUM)
| ID (lookup ID)
| EXP PLUS EXP (EXP1+EXP2)
| EXP TIMES EXP (EXP1*EXP2)
| EXP DIV EXP (EXP1 div EXP2)
| EXP SUB EXP (EXP1-EXP2)

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 31 of 36

Yacc : Conflicts
• Yacc uses the LR parsing (i.e. LALR); if the grammar is ambiguous, the 

resulting parser table  ACTION will contain shift-reduce or reduce-reduce 
conflicts.

• In Yacc, you resolve conflicts by (1) rewriting the grammar to be unambiguous 
(2) declaring precendence and associativity for terminals and rules.

• Consider the following grammar and input  ID PLUS ID PLUS ID

E : E PLUS E ()
| E TIMES E ()
| ID ()

we can specify TIMES has higher precedence than PLUS; and also 
assume both  TIMES and PLUS are left associative.

(also read the exampes on Appel pp73-74)

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 32 of 36

Precedence and Associativity
• To resolve conflicts in Yacc, you can define precedence and associativity for 

each terminal. The precedence of each grammar rule is the precedence of its 
rightmost terminal in r.h.s of the rule.

• On shift / reduce conflict: 

if input terminal prec. > rule prec. then shift
if input terminal prec. < rule prec. then reduce
if input terminal prec. == rule prec. then {

if terminal assoc. == left then reduce
if terminal assoc. == right then shift
if terminal assoc. == none then report error

}

if the input terminal or the rule has no prec. then shift & report error 

• On reduce / reduce conflict: report error & rule listed first is chosen



C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 33 of 36

Defining Prec. and Assoc.
• Defining precedence and associativity for terminals

• Defining precedence for rules using %prec

%left OR lowest prec.
%left AND
%noassoc EQ NEQ GT LT GE LE
%left PLUS MINUS
%left TIMES DIV  highest prec.

%%
......
%left PLUS MINUS
%left TIMES DIV
%left UNARYMINUS
%%
Exp : Exp MINUS Exp ()

| Exp TIMES exp ()
| MINUS exp %prec UNARYMINUS ()
 ......

Assuming unary minus has
higher precedence than 

PLUS,

Must define UNARYMINUS 
as a new terminal !

Only specifies the prec. 
of this rule == prec. of UNARY-

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 34 of 36

Parser Description (.desc file)
• The Yacc declaration %verbose will produce a verbose description of the 

generated parser (i.e., the “.desc” file)

1. A summary of errors found while generating the parser
2. A detailed description of all errors
3. The parsing engine --- describing the states and the parser table (see 
Example 3.1 on pp15-18 in Appel’s book)
state 0:

program : . exp current states (characterized by grammar rules)

ID      shift 13 table ACTION 
INT     shift 12
STRING  shift 11
LPAREN  shift 10
MINUS   shift 9
IF      shift 8

program goto 135 table GOTO 
        exp     goto 2
        lvalue  goto 1

        .       error

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 35 of 36

Tiger.Lex File “mumbo-jumbo”
You have to modify your “tiger.lex” file in assignment 2 by adding the
following --- in order to generate the functor “TigerLexFun” 

type svalue = Tokens.svalue
type pos = int
type (’a, ’b) token = (’a, ’b) Tokens.token
type lexresult = (svalue,pos) token

.....

.....

%%
%header (functor TigerLexFun(structure Tokens : Tiger_TOKENS));
.....
.....

%%

..............

C S 4 2 1  C O M P I L E R S  A N D  I N T E R P R E T E R S

Copyright 1994 - 2017  Zhong Shao, Yale University Syntax Analysis : Page 36 of 36

Connecting Yacc and Lex
signature PARSE = sig val parse : string -> unit end

structure Parse : PARSE = 
struct 
structure TigerLrVals = TigerLrValsFun(structure Token = 

LrParser.Token)

structure Lex = ToyLexFun(structure Tokens = TigerLrVals.Tokens)
structure TigerP =

Join(structure ParserData = TigerLrVals.ParserData
structure Lex=Lex
structure LrParser = LrParser)

fun parse filename =
let val _ = (ErrorMsg.reset(); ErrorMsg.fileName := filename)

val file = open_in filename
fun parseerror(s,p1,p2) = ErrorMsg.error p1 s
val lexer = LrParser.Stream.streamify 

(Lex.makeLexer (fn _ => TextIO.input file))
val (absyn, _) = TigerP.parse(30,lexer,parseerror,())

in close_in file;
absyn

end handle LrParser.ParseError => raise ErrorMsg.Error
end


