Pattern Matching Chapter 16

The last chapter covered character strings and various operations on those strings. A
very typical program reads a sequence of strings from the user and compares the strings
to see if they match. For example, DOS’ COMMAND.COM program reads command lines
from the user and compares the strings the user types to fixed strings like “COPY?”,
“DEL”, “RENAME”, and so on. Such commands are easy to parse because the set of
allowable commands is finite and fixed. Sometimes, however, the strings you want to test
for are not fixed; instead, they belong to a (possibly infinite) set of different strings. For
example, if you execute the DOS command “DEL *.BAK”, MS-DOS does not attempt to
delete a file named “*.BAK?”. Instead, it deletes all files which match the generic pattern
“* BAK”. This, of course, is any file which contains four or more characters and ends with
“BAK”. In the MS-DOS world, a string containing characters like “*”” and “?” are called
wildcards; wildcard characters simply provide a way to specify different names via pat-
terns. DOS’ wildcard characters are very limited forms of what are known as regular
expressions; regular expressions are very limited forms of patterns in general. This chapter
describes how to create patterns that match a variety of character strings and write pattern
matching routines to see if a particular string matches a given pattern.

16.1 An Introduction to Formal Language (Automata) Theory

Pattern matching, despite its low-key coverage, is a very important topic in computer
science. Indeed, pattern matching is the main programming paradigm in several pro-
gramming languages like Prolog, SNOBOLA4, and Icon. Several programs you use all the
time employ pattern matching as a major part of their work. MASM, for example, uses
pattern matching to determine if symbols are correctly formed, expressions are proper,
and so on. Compilers for high level languages like Pascal and C also make heavy use of
pattern matching to parse source files to determine if they are syntactically correct. Sur-
prisingly enough, an important statement known as Church’s Hypothesis suggests that any
computable function can be programmed as a pattern matching problem?. Of course,
there is no guarantee that the solution would be efficient (they usually are not), but you
could arrive at a correct solution. You probably wouldn’t need to know about Turing
machines (the subject of Church’s hypothesis) if you’re interested in writing, say, an
accounts receivable package. However, there many situations where you may want to
introduce the ability to match some generic patterns; so understanding some of the theory
of pattern matching is important. This area of computer science goes by the stuffy names
of formal language theory and automata theory. Courses in these subjects are often less than
popular because they involve a lot of proofs, mathematics, and, well, theory. However, the
concepts behind the proofs are quite simple and very useful. In this chapter we will not
bother trying to prove everything about pattern matching. Instead, we will accept the fact
that this stuff really works and just apply it. Nonetheless, we do have to discuss some of
the results from automata theory, so without further ado...

16.1.1 Machines vs. Languages

You will find references to the term “machine” throughout automata theory literature.
This term does not refer to some particular computer on which a program executes.
Instead, this is usually some function that reads a string of symbols as input and produces
one of two outputs: match or failure. A typical machine (or automaton) divides all possible
strings into two sets — those strings that it accepts (or matches) and those string that it
rejects. The language accepted by this machine is the set of all strings that the machine

1. Actually, Church’s Hypothesis claims that any computable function can be computed on a Turing machine.
However, the Turing machine is the ultimate pattern machine computer.

Page 883

Chapter 16

accepts. Note that this language could be infinite, finite, or the empty set (i.e., the machine
rejects all input strings). Note that an infinite language does not suggest that the machine
accepts all strings. It is quite possible for the machine to accept an infinite number of
strings and reject an even greater number of strings. For example, it would be very easy to
design a function which accepts all strings whose length is an even multiple of three. This
function accepts an infinite number of strings (since there are an infinite number of strings
whose length is a multiple of three) yet it rejects twice as many strings as it accepts. This is
a very easy function to write. Consider the following 80x86 program that accepts all
strings of length three (we’ll assume that the carriage return character terminates a string):

Mat chLen3 proc near
getc ; Get character #1.
cnp al, cr ;Zero chars if EQLN
je Accept
getc ; Get character #2.
cnp al, cr
je Fail ure
getc ; Get character #3.
cnp al, cr
j ne Mat chLen3
Fai | ure: nmov ax, 0 ;Return zero to denote failure.
ret
Accept : nov ax, 1 ; Return one to denote success.
ret
Mat chLen3 endp

By tracing through this code, you should be able to easily convince yourself that it returns
one in ax if it succeeds (reads a string whose length is a multiple of three) and zero other-
wise.

Machines are inherently recognizers. The machine itself is the embodiment of a pattern.
It recognizes any input string which matches the built-in pattern. Therefore, a codification
of these automatons is the basic job of the programmer who wants tomatch some patterns.

There are many different classes of machines and the languages they recognize. From
simple to complex, the major classifications are deterministic finite state automata (which are
equivalent to nondeterministic finite state automata), deterministic push down automata, nonde-
terministic push down automata, and Turing machines. Each successive machine in this list
provides a superset of the capabilities of the machines appearing before it. The only rea-
son we don’t use Turing machines for everything is because they are more complex to pro-
gram than, say, a deterministic finite state automaton. If you can match the pattern you
want using a deterministic finite state automaton, you’ll probably want to code it that way
rather than as a Turing machine.

Each class of machine has a class of languages associated with it. Deterministic and
nondeterministic finite state automata recognize the regular languages. Nondeterministic
push down automata recognize the context free languages®. Turing machines can recog-
nize all recognizable languages. We will discuss each of these sets of languages, and their
properties, in turn.

16.1.2

Regular Languages

The regular languages are the least complex of the languages described in the previ-
ous section. That does not mean they are less useful; in fact, patterns based on regular
expression are probably more common than any other.

2. Deterministic push down automata recognize only a subset of the context free languages.

Page 884

Control Structures

16.1.2.1 Regular Expressions

The most compact way to specify the strings that belong to a regular language is with
a regular expression. We shall define, recursively, a regular expression with the following
rules:

« [(the empty set) is a regular language and denotes the empty set.

e ¢&isaregular expression3. It denotes the set of languages containing only
the empty string: {€}.

= Anysingle symbol, a, is a regular expression (we will use lower case char-
acters to denote arbitrary symbols). This single symbol matches exactly
one character in the input string, that character must be equal to the sin-
gle symbol in the regular expression. For example, the pattern “m”
matches a single “m” character in the input string.

Note that [0 and € are not the same. The empty set is a regular language that does not
accept any strings, including strings of length zero. If a regular language is denoted by {€},
then it accepts exactly one string, the string of length zero. This latter regular language
accepts something, the former does not.

The three rules above provide our basis for a recursive definition. Now we will define
regular expressions recursively. In the following definitions, assume that r, s, and t are
any valid regular expressions.

= Concatenation. If r and s are regular expressions, so is rs. The regular
expression rs matches any string that begins with a string matched by r
and ends with a string matched by s.

= Alternation/Union. If r and s are regular expressions, soisr | s (read
thisasr ors) This is equivalent to r (I s, (read as r union s). This regular
expression matches any string that r or s matches.

= Intersection. If r and s are regular expressions, so is r n s. This is the set
of all strings that both r and s match.

= Kleene Star. If r is a regular expression, so is r*. This regular expression
matches zero or more occurrences of r. That is, it matches €, r, rr, rrr, rrrr,

= Difference. If r and s are regular expressions, so is r-s. This denotes the
set of strings matched by r that are not also matched by s.

= Precedence. If r is a regular expression, so is (r). This matches any string
matched by r alone. The normal algebraic associative and distributive
laws apply here, so (r | s) tis equivalentto rt | st.

These operators following the normal associative and distributive laws and exhibit
the following precedences:

H ghest : (r)
Kl eene Star
Concat ent ati on
I ntersection
D fference
Lowest : Al ternation/ Uni on

Examples:

(r] s) t =rt | st
rs* =r(s*)
rdt - s
rnt-s

r O (t - s)
(r nt) -s

Generally, we’ll use parenthesis to avoid any ambiguity

Although this definition is sufficient for an automata theory class, there are some
practical aspects to this definition that leave a little to be desired. For example, to define a

3. The empty string is the string of length zero, containing no symbols.

Page 885

Chapter 16

Page 886

regular expression that matches a single alphabetic character, you would need to create
something like (@ b] c] ... | y | z). Quite a lot of typing for such a trivial character set.
Therefore, we shall add some notation to make it easier to specify regular expressions.

Character Sets. Any set of characters surrounded by brackets, e.g., [abc-
defg] is a regular expression and matches a single character from that set.
You can specify ranges of characters using a dash, i.e., “[a-z]” denotes the
set of lower case characters and this regular expression matches a single
lower case character.

Kleene Plus. If r is a regular expression, so is r*. This regular expression
matches one or more occurrences of r. That is, it matches r, rr, rrr, rrrr, ...
The precedence of the Kleene Plus is the same as for the Kleene Star. Note
that r* = rr*,

2 represents any single character from the allowable character set. Z* rep-
resents the set of all possible strings. The regular expression 2*-r is the
complement of r —that is, the set of all strings that r does not match.

With the notational baggage out of the way, it’s time to discuss how to actually use
regular expressions as pattern matching specifications. The following examples should
give a suitable introduction.

ldentifiers:

Most programming languages like Pascal or C/C++ specify legal forms
for identifiers using a regular expression. Expressed in English terms, the
specification is something like “An identifier must begin with an alpha-
betic character and is followed by zero or more alphanumeric or under-
score characters.” Using the regular expression (RE) syntax described in
this section, an identifier is

[a-zA-Z][a-zA-Z0-9_]*

Integer Consts: A regular expression for integer constants is relatively easy to design. An

integer constant consists of an optional plus or minus followed by one or
more digits. The RE is

+1-1¢)[p9"

Note the use of the empty string (€) to make the plus or minus optional.

Real Consts:

Real constants are a bit more complex, but still easy to specify using REs.
Our definition matches that for a real constant appearing in a Pascal pro-
gram — an optional plus or minus, following by one or more digits;
optionally followed by a decimal point and zero or more digits; option-

ally followed by an “e” or an “E” with an optional sign and one or more
digits:

Fl-le)or (o9 le)((elE)(+1-1€)[0-9]) I ¢€)

Since this RE is relatively complex, we should dissect it piece by piece.
The first parenthetical term gives us the optional sign. One or more digits
are mandatory before the decimal point, the second term provides this.
The third term allows an optional decimal point followed by zero or more

digits. The last term provides for an optional exponent consisting of “e”
or “E” followed by an optional sign and one or more digits.

Reserved Words: It is very easy to provide a regular expression that matches a set of

Even:

Sentences:

reserved words. For example, if you want to create a regular expression
that matches MASM'’s reserved words, you could use an RE similar to the
following:

(mov]add]and] ... | mul)

The regular expression (2%)* matches all strings whose length is a multi-
ple of two.

The regular expression:
(Z* x Yy run (¢ <t (Zx« <t] e))fast (¢« IF)

Control Structures

0-9

Figure 16.1 NFA for Regular Expression (+ |- | e) [0-9]+ (“."[0-9]* | e) (((e | E) (+ | -] e) [0-9]+) | e)

matches all strings that contain the separate words “run” followed by
“fast” somewhere on the line. This matches strings like “l want to run
very fast” and “run as fast as you can” as well as “run fast.”

While REs are convenient for specifying the pattern you want to recognize, they are
not particularly useful for creating programs (i.e., “machines”) that actually recognize
such patterns. Instead, you should first convert an RE to a nondeterministic finite state
automaton, or NFA. It is very easy to convert an NFA into an 80x86 assembly language pro-
gram; however, such programs are rarely efficient as they might be. If efficiency is a big
concern, you can convert the NFA into a deterministic finite state automaton (DFA) that is
also easy to convert to 80x86 assembly code, but the conversion is usually far more effi-
cient.

16.1.2.2 Nondeterministic Finite State Automata (NFAS)

An NFA is a directed graph with state numbers associated with each node and charac-
ters or character strings associated with each edge of the graph. A distinguished state, the
starting state, determines where the machine begins attempting to match an input string.
With the machine in the starting state, it compares input characters against the characters
or strings on each edge of the graph. If a set of input characters matches one of the edges,
the machine can change states from the node at the start of the edge (the tail) to the state at
the end of the edge (the head).

Certain other states, known as final or accepting states, are usually present as well. If a
machine winds up in a final state after exhausting all the input characters, then that
machine accepts or matches that string. If the machine exhausts the input and winds up in
a state that is not a final state, then that machine rejects the string. Figure 16.1 shows an
example NFA for the floating point RE presented earlier.

By convention, we’ll always assume that the starting state is state zero. We will denote
final states (there may be more than one) by using a double circle for the state (state eight
is the final state above).

An NFA always begins with an input string in the starting state (state zero). On each
edge coming out of a state there is either €, a single character, or a character string. To help
unclutter the NFA diagrams, we will allow expressions of the form “ xxx | yyy | zzz | ...”
where xxX, yyy, and zzz are &, a single character, or a character string. This corresponds to

Page 887

Chapter 16

multiple edges from one state to the other with a single item on each edge. In the example

above,

is equivalent to

Likewise, we will allow sets of characters, specified by a string of the form x-y, to denote
the expression X | x+1 | x+2 | ... | v.

Note that an NFA accepts a string if there is some path from the starting state to an
accepting state that exhausts the input string. There may be multiple paths from the start-
ing state to various final states. Furthermore, there may be some particular path from the
starting state to a non-accepting state that exhausts the input string. This does not neces-
sarily mean the NFA rejects that string; if there is some other path from the starting state
to an accepting state, then the NFA accepts the string. An NFA rejects a string only if there
are no paths from the starting state to an accepting state that exhaust the string.

Passing through an accepting state does not cause the NFA to accept a string. You
must wind up in a final state and exhaust the input string.

To process an input string with an NFA, begin at the starting state. The edges leading
out of the starting state will have a character, a string, or € associated with them. If you
choose to move from one state to another along an edge with a single character, then
remove that character from the input string and move to the new state along the edge tra-
versed by that character. Likewise, if you choose to move along an edge with a character
string, remove that character string from the input string and switch to the new state. If
there is an edge with the empty string, €, then you may elect to move to the new state
given by that edge without removing any characters from the input string.

Consider the string “1.25e2” and the NFA in Figure 16.1. From the starting state we
can move to state one using the € string (there is no leading plus or minus, so € is our only
option). From state one we can move to state two by matching the “1” in our input string
with the set 0-9; this eats the “1” in our input string leaving “.25e2”. In state two we move
to state three and eat the period from the input string, leaving “25e2”. State three loops on
itself with numeric input characters, so we eat the “2” and “5” characters at the beginning
of our input string and wind up back in state three with a new input string of “e2”. The
next input character is “e”, but there is no edge coming out of state three with an “e” on it;
there is, however, an €-edge, so we can use that to move to state four. This move does not
change the input string. In state four we can move to state five on an “e” character. This
eats the “e” and leaves us with an input string of “2”. Since this is not a plus or minus
character, we have to move from state five to state six on the € edge. Movement from state
Six to state seven eats the last character in our string. Since the string is empty (and, in par-
ticular, it does not contain any digits), state seven cannot loop back on itself. We are cur-
rently in state seven (which is not a final state) and our input string is exhausted.
However, we can move to state eight (the accepting state) since the transition between
states seven and eight is an € edge. Since we are in a final state and we’ve exhausted the
input string, This NFA accepts the input string.

16.1.2.3 Converting Regular Expressions to NFAs

Page 888

If you have a regular expression and you want to build a machine that recognizes
strings in the regular language specified by that expression, you will need to convert the

Control Structures
RE to and NFA. It turns out to be very easy to convert a regular expression to an NFA. To
do so, just apply the following rules:

= The NFA representing regular language denoted by the regular expres-
sion [(the empty set) is a single, non-accepting state.

= Ifaregular expression contains an €, a single character, or a string, create
two states and draw an arc between them with €, the single character, or
the string as the label. For example, the RE “a” is converted to an NFA as

e Letthe symbol :} denote an NFA which recognizes some reg-

ular language specified by some regular expression r, s, or t. If a regular
expression takes the form rs then the corresponding NFA is

—C s r—»

= If aregular expression takes the formr | s, then the corresponding NFA is

All of the other forms of regular expressions are easily synthesized from these, therefore,
converting those other forms of regular expressions to NFAs is a simple two-step process,
convert the RE to one of these forms, and then convert this form to the NFA. For example,
to convert r* to an NFA, you would first convert r* to rr*. This produces the NFA:

The following example converts the regular expression for an integer constant to an NFA.
The first step is to create an NFA for the regular expression (+ | - | €). The complete con-
struction becomes

Although we can obviously optimize this to

C+I e C

Page 889

Chapter 16

The next step is to handle the [0-9]* regular expression; after some minor optimization,
this becomes the NFA

0-9

Now we simply concatenate the results to produce:

09
| -1
O—>0O~ >QW>Q

All we need now are starting and final states. The starting state is always the first state of
the NIFA created by the conversion of the leftmost item in the regular expression. The final
state is always the last state of the NFA created by the conversion of the rightmost item in
the regular expression. Therefore, the complete regular expression for integer constants
(after optimizing out the middle edge above, which serves no purpose) is

16.1.2.4 Converting an NFA to Assembly Language

Page 890

There is only one major problem with converting an NFA to an appropriate matching
function — NFAs are nondeterministic. If you’re in some state and you’ve got some input
character, say “a”, there is no guarantee that the NFA will tell you what to do next. For
example, there is no requirement that edges coming out of a state have unique labels. You
could have two or more edges coming out of a state, all leading to different states on the
single character “a”. If an NFA accepts a string, it only guarantees that there is some path
that leads to an accepting state, there is no guarantee that this path will be easy to find.

The primary technique you will use to resolve the nondeterministic behavior of an
NFA is backtracking. A function that attempts to match a pattern using an NFA begins in
the starting state and tries to match the first character(s) of the input string against the
edges leaving the starting state. If there is only one match, the code must follow that edge.
However, if there are two possible edges to follow, then the code must arbitrarily choose
one of them and remember the others as well as the current point in the input string. Later, if it
turns out the algorithm guessed an incorrect edge to follow, it can return back and try one
of the other alternatives (i.e., it backtracks and tries a different path). If the algorithm
exhausts all alternatives without winding up in a final state (with an empty input string),
then the NFA does not accept the string.

Probably the easiest way to implement backtracking is via procedure calls. Let us
assume that a matching procedure returns the carry flag set if it succeeds (i.e., accepts a

Control Structures

string) and returns the carry flag clear if it fails (i.e., rejects a string). If an NFA offers mul-
tiple choices, you could implement that portion of the NFA as follows:

At RST proc near
push ax ; The purpose of these two instructions
nov ax, di ; is to preserve di in case of failure.
cal | r
jc Success
nov di, ax ;Restore di (it may be nodified by r).
cal | s
jc Success
nov di, ax ;Restore di (it may be nodified by s).
cal t

Success: pop ax ; Restore ax.
ret

At RST endp

If the r matching procedure succeeds, there is no need to try s and t. On the other hand, ifr
fails, then we need to try s. Likewise, if r and s both fail, we need to try t. AtRST will fail
only ifr, s, and t all fail. This code assumes that es:di points at the input string to match. On
return, es:di points at the next available character in the string after a match or it points at
some arbitrary point if the match fails. This code assumes that r, s, and t all preserve the ax
register, so it preserves a pointer to the current point in the input string in ax in the event r
or s fail.

To handle the individual NFA associated with simple regular expressions (i.e., match-
ing € or a single character) is not hard at all. Suppose the matching function r matches the
regular expression (+ | - | €). The complete procedure for r is

r proc near
cnp byte ptr es:[di], ‘+
je r _mat ched
cnp byte ptr es:[di], ‘-’
j ne r_nonat ch

r _mat ched: inc di

r _nonat ch: stc
ret

r endp

Note that there is no explicit test for €. If € is one of the alternatives, the function
attempts to match one of the other alternatives first. If none of the other alternatives suc-
ceed, then the matching function will succeed anyway, although it does not consume any
input characters (which is why the above code skips over the inc di instruction if it does
not match “+” or “-”). Therefore, any matching function that has € as an alternative will
always succeed.

Of course, not all matching functions succeed in every case. Suppose the s matching
function accepts a single decimal digit. the code for s might be the following:

s proc near
cnp byte ptr es:[di], ‘0O
ib s fails
cnp byte ptr es:[di], ‘9
ja s _fails
i nc di
stc
ret

s _fails: clc
ret

s endp

Page 891

Chapter 16

If an NFA takes the form:

—C > >

Where x is any arbitrary character or string or €, the corresponding assembly code for this
procedure would be

Concat RxS proc near
cal | r
jnc CRxS Fai | ;1f nor, we won't succeed

Note, if x=€ then sinply delete the follow ng three statenents.
; If xis astring rather than a single character, put the the additional
; code to match all the characters in the string.

Page 892

CRxS Fail :

Concat RxS

cnp
j ne
inc

call
jnc
stc
ret

clc
ret

endp

byte ptr es:[di], ‘X
CRxS Fai |
di

s
CRxS Fai |
; Success!

If the regular expression is of the form r* and the corresponding NFA is of the form

Then the corresponding 80x86 assembly code can look something like the following:

RSt ar

RSt ar

proc
call
jc
stc
ret

endp

near
r
RSt ar

Regular expressions based on the Kleene star always succeed since they allow zero or
more occurrences. That is why this code always returns with the carry flag set.

The Kleene Plus operation is only slightly more complex, the corresponding (slightly

optimized) assembly code is

RPl us

RPl usLp:

RPl us_Fai | :

proc
call
jnc
call
jc
stc
ret

clc
ret

near
r

RPl us_Fai |
r

RPl usLp

RPl us endp

Note how this routine fails if there isn’t at least one occurrence of r.

A major problem with backtracking is that it is potentially inefficient. It is very easy to
create a regular expression that, when converted to an NFA and assembly code, generates
considerable backtracking on certain input strings. This is further exacerbated by the fact

Control Structures

that matching routines, if written as described above, are generally very short; so short, in
fact, that the procedure calls and returns make up a significant portion of the execution
time. Therefore, pattern matching in this fashion, although easy, can be slower than it has
to be.

This is just a taste of how you would convert REs to NFAs to assembly language. We
will not go into further detail in this chapter; not because this stuff isn’t interesting to
know, but because you will rarely use these techniques in a real program. If you need high
performance pattern matching you would not use nondeterministic techniques like these.
If you want the ease of programming offered by the conversion of an NFA to assembly
language, you still would not use this technique. Instead, the UCR Standard Library pro-
vides very powerful pattern matching facilities (which exceed the capabilities of NFAS), so
you would use those instead; but more on that a little later.

16.1.2.5 Deterministic Finite State Automata (DFAS)

Nondeterministic finite state automata, when converted to actual program code, may
suffer from performance problems because of the backtracking that occurs when match-
ing a string. Deterministic finite state automata solve this problem by comparing different
strings in parallel. Whereas, in the worst case, an NFA may require n comparisons, where
n is the sum of the lengths of all the strings the NFA recognizes, a DFA requires only m
comparisons (worst case), where m is the length of the longest string the DFA recognizes.

For example, suppose you have an NFA that matches the following regular expres-
sion (the set of 80x86 real-mode mnemonics that begin with an “A”):

(AMA| AAD| AAM| AAS| ADC| ADD| AND)
A typical implementation as an NFA might look like the following:

Mat chAvhem pr oc near
strcnpl
byte “AAXT 0
je mat ched
strenpl
byte “AAD', 0
je mat ched
strenpl
byt e “AAM, O
je mat ched
strcnpl
byt e “AAS’, 0
je mat ched
strcnpl
byte “ADC', 0
je mat ched
strcnpl
byte “ADD', 0
je mat ched
strcnpl
byte “AND', 0
je mat ched
clc
ret

mat ched: add di, 3
stc
ret

Mat chAvhem endp

If you pass this NFA a string that it doesn’t match, e.g., “AAND?”, it must perform
seven string comparisons, which works out to about 18 character comparisons (plus all
the overhead of calling strcmpl). In fact, a DFA can determine that it does not match this
character string by comparing only three characters.

Page 893

Chapter 16

Figure 16.3 Simplified DFA for Regular Expression (+ | - | €) [0-9]"

Page 894

A DFA is a special form of an NFA with two restrictions. First, there must be exactly
one edge coming out of each node for each of the possible input characters; this implies
that there must be one edge for each possible input symbol and you may not have two
edges with the same input symbol. Second, you cannot move from one state to another on
the empty string, €. A DFA is deterministic because at each state the next input symbol
determines the next state you will enter. Since each input symbol has an edge associated
with it, there is never a case where a DFA “jams” because you cannot leave the state on
that input symbol. Similarly, the new state you enter is never ambiguous because there is
only one edge leaving any particular state with the current input symbol on it. Figure 16.2
shows the DFA that handles integer constants described by the regular expression

+1-1¢)[p9"

Note than an expression of the form “X - [0-9]* means any character except a digit; that is,
the complement of the set [0-9].

State three is a failure state. It is not an accepting state and once the DFA enters a fail-
ure state, it is stuck there (i.e., it will consume all additional characters in the input string
without leaving the failure state). Once you enter a failure state, the DFA has already
rejected the input string. Of course, this is not the only way to reject a string; the DFA
above, for example, rejects the empty string (since that leaves you in state zero) and it
rejects a string containing only a “+” or a “-” character.

DFAs generally contain more states than a comparable NFA. To help keep the size of a
DFA under control, we will allow a few shortcuts that, in no way, affect the operation of a
DFA. First, we will remove the restriction that there be an edge associated with each possi-
ble input symbol leaving every state. Most of the edges leaving a particular state lead to
the failure state. Therefore, our first simplification will be to allow DFAs to drop the edges
that lead to a failure state. If a input symbol is not represented on an outgoing edge from
some state, we will assume that it leads to a failure state. The above DFA with this simpli-
fication appears in Figure 16.2.

Control Structures

Figure 16.4 DFA that Recognizes AND, AAA, AAD, AAM, AAS, ADD, and ADC

A second shortcut, that is actually present in the two examples above, is to allow sets
of characters (or the alternation symbol, “|”) to associate several characters with a single
edge. Finally, we will also allow strings attached to an edge. This is a shorthand notation
for a list of states which recognize each successive character, i.e., the following two DFAs

are equivalent:
O abc C
O—0O——0—0O

Returning to the regular expression that recognizes 80x86 real-mode mnemonics

beginning with an “A”, we can construct a DFA that recognizes such strings as shown in
Figure 16.4.

If you trace through this DFA by hand on several accepting and rejecting strings, you will
discover than it requires no more than six character comparisons to determine whether
the DFA should accept or reject an input string.

Although we are not going to discuss the specifics here, it turns out that regular
expressions, NFAs, and DFAs are all equivalent. That is, you can convert anyone of these
to the others. In particular, you can always convert an NFA to a DFA. Although the con-
version isn’t totally trivial, especially if you want an optimized DFA, it is always possible
to do so. Converting between all these forms is beginning to leave the scope of this text. If
you are interested in the details, any text on formal languages or automata theory will fill
you in.

16.1.2.6 Converting a DFA to Assembly Language

It is relatively straightforward to convert a DFA to a sequence of assembly instruc-
tions. For example, the assembly code for the DFA that accepts the A-mnemonics in the
previous section is

DFA_A Mhem proc near
cnp byte ptr es:[di], ‘A
j ne Fai |
cnp byte ptr es:[di+1], ‘A
je DoAA
cnp byte ptr es:[di+1], ‘D
je DoAD
cnp byte ptr es:[di+1], ‘N
je DoAN

Page 895

Chapter 16

Page 896

Fail :

DoAN:

Succeed:

DoAD:

DoAA

DFA_A_Mem

Although this scheme works and is considerably more efficient than the coding
scheme for NFAs, writing this code can be tedious, especially when converting a large
DFA to assembly code. There is a technique that makes converting DFAs to assembly code
almost trivial, although it can consume quite a bit of space — to use state machines. A sim-
ple state machine is a two dimensional array. The columns are indexed by the possible
characters in the input string and the rows are indexed by state number (i.e., the states in
the DFA). Each element of the array is a new state number. The algorithm to match a given

clc
ret

cnp
j ne
add
stc
ret

cnp
je
cnp
je
clc
ret

byte ptr
Fai |
di, 3

byte ptr
Succeed
byte ptr
Succeed

byte ptr
Succeed
byte ptr
Succeed
byte ptr
Succeed
byte ptr
Succeed

es: [di +2],

es: [di +2],

es: [di +2],

es: [di +2],
es: [di +2],
es: [di +2],

es: [di +2],

string using a state machine is trivial, it is

state := 0;

whi | e (anot her input character) do begin

ch := next input character ;
;= StateTable [state][ch];

state

end;

if (state in Final States) then accept

el se reject;

FinalStates is a set of accepting states. If the current state number is in this set after the
algorithm exhausts the characters in the string, then the state machine accepts the string,
otherwise it rejects the string.

The following state table corresponds to the DFA for the “A” mnemonics appearing in

the previous section:

w z 9 =

;Return Failure

Control Structures

Table 62; State Machine for 80x86 “A” Instructions DFA

State A C D M N S Else
0 1 F F F F F F
1 3 F 4 F 2 F F
2 F F 5 F F F F
3 5 F 5 5 F 5 F
4 F 5 5 F F F F
5 F F F F F F F
F F F F F F F F

State five is the only accepting state.

There is one major drawback to using this table driven scheme — the table will be quite
large. This is not apparent in the table above because the column labelled “Else” hides
considerable detail. In a true state table, you will need one column for each possible input
character. since there are 256 possible input characters (or at least 128 if you’re willing to
stick to seven bit ASCII), the table above will have 256 columns. With only one byte per
element, this works out to about 2K for this small state machine. Larger state machines
could generate very large tables.

One way to reduce the size of the table at a (very) slight loss in execution speed is to
classify the characters before using them as an index into a state table. By using a single
256-byte lookup table, it is easy to reduce the state machine to the table above. Consider
the 256 byte lookup table that contains:

= Aone at positions Base+”a” and Base+”A”,

< Atwo at locations Base+”c” and Base+”C”,

« Athree at locations Base+”d” and Base+”D”,
« Afour at locations Base+”m” and Base+”M?”,
< Afive at locations Base+”n” and Base+”N”,

= Asix at locations Base+”s” and Base+”S”, and

= Azero everywhere else.

Now we can modify the above table to produce:

Table 63; Classified State M achine Table for 80x86 “ A” Instructions DFA

State 4

0

OOl | W N
DO || OO O O
OO || O WwW| KK
OpOoOjJUI|OoO|OoO| O O N
ojpojo|lo| ol b O||WwW
Do jo|o|o|o| O
DO || OO DN OO
OO | 01| OO OO
(o2} Werl NerNiNe>N NN e N N} | BN

The table above contains an extra column, “7”, that we will not use. The reason for adding
the extra column is to make it easy to index into this two dimensional array (since the
extra column lets us multiply the state number by eight rather than seven).

Assuming Classify is the name of the lookup table, the following 80386 code recog-
nizes the strings specified by this DFA:

Page 897

Chapter 16

Page 898

DFA2_A Miem proc
push ebx ;Ptr to AQassify.
push eax ; Qurrent character.
push ecx ;Qurrent state.
xor eax, eax T EAX =0
nov ebx, eax yEBX := 0
nov ecx, eax ;ECX (state) := 0
| ea bx, dassify

Wi | eNot ECS: nov al, es:[di] ; Get next input char.
cnp al, 0 ; At end of string?
je At ECS
x| at ;dassify character.
nov cl, State_Tbl [eax+ecx* 8] ;Get new state #.
i nc di ; Move on to next char.
jmp Wi | eNot ECS

At ECS: cnp cl, 5 ;In accepting state?
stc ; Assune accept ance.
je Accept
clc

Accept : pop ecx
pop eax
pop ebx
ret

DFA2_A Mhem endp

The nice thing about this DFA (the DFA is the combination of the classification table,
the state table, and the above code) is that it is very easy to modify. To handle any other
state machine (with eight or fewer character classifications) you need only modify the
Classification array, the State_Thbl array, the lea bx, Classify statement and the statements at
label AtEOS that determine if the machine is in a final state. The assembly code does not
get more complex as the DFA grows in size. The State_Tbl array will get larger as you add
more states, but this does not affect the assembly code.

Of course, the assembly code above does assume there are exactly eight columns in the
matrix. It is easy to generalize this code by inserting an appropriate imul instruction to
multiply by the size of the array. For example, had we gone with seven columns rather
than eight, the code above would be

DFA2_A Miem proc
push ebx ;Ptr to AQassify.
push eax ; Qurrent character.
push ecx ;Qurrent state.
xor eax, eax T EAX =0
nov ebx, eax yEBX := 0
nov ecx, eax ;ECX (state) := 0
| ea bx, dassify

Wi | eNot ECS: nov al, es:[di] ; Get next input char.
cnp al, 0 ; At end of string?
je At ECS
x| at ;dassify character.
i mul cx, 7
novzx ecx, State_Tbl [eax+ecx] ;Get new state #.
i nc di ; Move on to next char.
j mp Wi | eNot ECS

At ECS: cnp cl, 5 ;In accepting state?
stc ; Assune accept ance.
je Accept
clc

Accept : pop ecx
pop eax
pop ebx
ret

DFA2_A Mhem endp

Although using a state table in this manner simplifies the assembly coding, it does
suffer from two drawbacks. First, as mentioned earlier, it is slower. This technique has to

Control Structures

execute all the statements in the while loop for each character it matches; and those
instructions are not particularly fast ones, either. The second drawback is that you’ve got
to create the state table for the state machine; that process is tedious and error prone.

If you need the absolute highest performance, you can use the state machine tech-
niques described in (see “State Machines and Indirect Jumps” on page 529). The trick here
is to represent each state with a short segment of code and its own one dimensional state
table. Each entry in the table is the target address of the segment of code representing the
next state. The following is an example of our “A Mnemonic” state machine written in this
fashion. The only difference is that the zero byte is classified to value seven (zero marks
the end of the string, we will use this to determine when we encounter the end of the
string). The corresponding state table would be:

Table 64: Another State Machine Tablefor 80x86 “A” Instructions DFA

State 0 1 2 3 4 5 6 7
0 6 1 6 6 6 6 6 6
1 6 3 6 4 6 2 6 6
2 6 6 6 5 6 6 6 6
3 6 5 6 5 5 6 5 6
4 6 6 5 5 6 6 6 6
5 6 6 6 6 6 6 6 5
6 6 6 6 6 6 6 6 6
The 80x86 code is
DFA3_A Mem proc
push ebx
push eax
push ecx
Xor eax, eax
| ea ebx, dassify
St at e0: nov al, es:[di]
x| at
inc di
jnp cseg: St at e0Tbl [eax* 2]
St at e0Thl word State6, Statel, State6, State6
wor d State6, State6, State6, State6
Statel: nov al, es:[di]
x| at
inc di
jnp cseg: St at elThl [eax* 2]
St at elThl wor d State6, State3d, State6, State4d
wor d State6, State2, State6, State6
State2: nmov al, es:[di]
x| at
inc di
jnp cseg: St at e2Thl [eax* 2]
St at e2Thl wor d State6, State6, State6, Stateb
wor d State6, State6, State6, State6
State3: nmov al, es:[di]
x| at
inc di
jnp cseg: St at e3Thl [eax* 2]

Page 899

Chapter 16

St at e3Thl wor d State6, Stateb5, State6, Stateb
wor d Stateb5, State6, State5, State6b
St at e4: nov al, es:[di]
x| at
inc di
j mp cseg: St at e4Thl [eax* 2]
St at e4Thl wor d State6, State6, Stateb, Stateb
wor d State6, State6, State6, Stateb
St at e5: nov al, es:[di]
cnp al, 0
j ne St at e6
stc
pop ecx
pop eax
pop ebx
ret
St at e6: clc
pop ecx
pop eax
pop ebx
ret

There are two important features you should note about this code. First, it only exe-
cutes four instructions per character comparison (fewer, on the average, than the other
techniques). Second, the instant the DFA detects failure it stops processing the input char-
acters. The other table driven DFA techniques blindly process the entire string, even after
it is obvious that the machine is locked in a failure state.

Also note that this code treats the accepting and failure states a little differently than
the generic state table code. This code recognizes the fact that once we’re in state five it
will either succeed (if EOS is the next character) or fail. Likewise, in state six this code
knows better than to try searching any farther.

Of course, this technique is not as easy to modify for different DFAs as a simple state
table version, but it is quite a bit faster. If you’re looking for speed, this is a good way to
code a DFA.

16.1.3

Context Free Languages

Context free languages provide a superset of the regular languages - if you can spec-
ify a class of patterns with a regular expression, you can express the same language using
a context free grammar. In addition, you can specify many languages that are not regular
using context free grammars (CFGs).

Examples of languages that are context free, but not regular, include the set of all
strings representing common arithmetic expressions, legal Pascal or C source files*, and
MASM macros. Context free languages are characterized by balance and nesting. For
example, arithmetic expression have balanced sets of parenthesis. High level language
statements like repeat...until allow nesting and are always balanced (e.g., for every repeat
there is a corresponding until statement later in the source file).

There is only a slight extension to the regular languages to handle context free lan-
guages — function calls. In a regular expression, we only allow the objects we want to
match and the specific RE operators like “|”, “*”, concatenation, and so on. To extend reg-
ular languages to context free languages, we need only add recursive function calls to reg-
ular expressions. Although it would be simple to create a syntax allowing function calls

4. Actually, C and Pascal are not context free languages, but Computer Scientists like to treat them as though they

Wwere.

Page 900

Control Structures

within a regular expression, computer scientists use a different notation altogether for
context free languages — a context free grammar.

A context free grammar contains two types of symbols: terminal symbols and nontermi-
nal symbols. Terminal symbols are the individual characters and strings that the context
free grammar matches plus the empty string, €. Context free grammars use nonterminal
symbols for function calls and definitions. In our context free grammars we will use italic
characters to denote nonterminal symbols and standard characters to denote terminal
symbols.

A context free grammar consists of a set of function definitions known as productions.
A production takes the following form:

Function_Nanme — «list of terminal and nontermnal synbol s»

The function name to the left hand side of the arrow is called the left hand side of the pro-
duction. The function body, which is the list of terminals and nonterminal symbols, is
called the right hand side of the production. The following is a grammar for simple arith-
metic expressions:

expression — expression + factor
expression — expression - factor
expression — factor

factor — factor * term

factor — factor | term

factor — term

term — | nteger Const ant

term — (expression)

I nteger Constant — digit

I nteger Constant — digit |ntegerConstant
digit - 0

digit —
digit —
digit —
digit —
digit -
digit -
digit -
digit -

© 00 ~NO U b WN

Note that you may have multiple definitions for the same function. Context-free
grammars behave in a non-deterministic fashion, just like NFAs. When attempting to
match a string using a context free grammar, a string matches if there exists some match-
ing function which matches the current input string. Since it is very common to have mul-
tiple productions with identical left hand sides, we will use the alternation symbol from
the regular expressions to reduce the number of lines in the grammar. The following two
subgrammars are identical:

expression — expression + factor
expression — expression - factor
expression — factor

The above is equivalent to:
expression — expression + factor | expression - factor | factor

The full arithmetic grammar, using this shorthand notation, is

expression — expression + factor | expression - factor | factor
factor — factor * term | factor | term | term
term — IntegerConstant | (expression)

Page 901

Chapter 16

Page 902

Integer Constant — digit | digit IntegerConstant
digit - o0 | 1] 2| 31| 4| 51| 6| 7] 8] 9

One of the nonterminal symbols, usually the first production in the grammar, is the
starting symbol. This is roughly equivalent to the starting state in a finite state automaton.
The starting symbol is the first matching function you call when you want to test some
input string to see if it is a member of a context free language. In the example above,
expression is the starting symbol.

Much like the NFAs and DFAs recognize strings in a regular language specified by a
regular expression, nondeterministic pushdown automata and deterministic pushdown
automata recognize strings belonging to a context free language specified by a context free
grammar. We will not go into the details of these pushdown automata (or PDAs) here, just
be aware of their existence. We can match strings directly with a grammar. For example,
consider the string

7+5* (2+1)
To match this string, we begin by calling the starting symbol function, expression, using the
function expression — expression + factor. The first plus sign suggests that the
expression term must match “7” and the factor term must match “5*(2+1)”. Now we need
to match our input string with the pattern expressi on + factor. To do this, we call the
expression function once again, this time using the expression — factor production.
This give us the reduction:

expression [expression + factor 1 factor + factor
The [J symbol denotes the application of a nonterminal function call (a reduction).

Next, we call the factor function, using the production factor — term to yield the
reduction:

expression [0 expression + factor 1 factor + factor [term+ factor
Continuing, we call the term function to produce the reduction:

expression 1 expression + factor L1 factor + factor 0 term+ factor U Inte-
ger Constant + factor

Next, we call the IntegerConstant function to yield:

expression 1 expression + factor L1 factor + factor 0 term+ factor I Inte-
ger onstant + factor 1 7 + factor

At this point, the first two symbols of our generated string match the first two characters
of the input string, so we can remove them from the input and concentrate on the items
that follow. In succession, we call the factor function to produce the reduction 7 + fact or
* termand then we call factor, term, and IntegerConstant toyield 7 + 5 * term In asimi-
lar fashion, we can reduce the term to “(expression)” and reduce expression to “2+1”. The
complete derivation for this string is

Control Structures

expressi on expression + factor

factor + factor

term+ factor

I nt eger Const ant + factor

7 + factor

7 + factor * term

7+ term* term

7 + IntegerConstant * term
7+ 5* term

7+ 5 * (expression)

7+ 5 * (expression + factor)
7+ 5 * (factor + factor)
7+ 5 * (IntegerConstant + factor)
7+ 5*(2+ factor)

7+5*(2+ term)

7+ 5* (2+ IntegerConstant)
7+5*(2+1)

Ooooooooooogoooogogo
a0 aun

The final reduction completes the derivation of our input string, so the string 7+5*(2+1) is
in the language specified by the context free grammar.

16.1.4 Eliminating Left Recursion and Left Factoring CFGs

In the next section we will discuss how to convert a CFG to an assembly language
program. However, the technique we are going to use to do this conversion will require
that we modify certain grammars before converting them. The arithmetic expression
grammar in the previous section is a good example of such a grammar - one that is left
recursive.

Left recursive grammars pose a problem for us because the way we will typically con-
vert a production to assembly code is to call a function corresponding to a nonterminal
and compare against the terminal symbols. However, we will run into trouble if we
attempt to convert a production like the following using this technique:

expression - expression + factor

Such a conversion would yield some assembly code that looks roughly like the following:

expr essi on proc near
cal | expr essi on
jnc fail
cnp byte ptr es:[di], ‘+
j ne fail
i nc di
cal | factor
jnc fail
stc
ret
Fai | : clc
ret
expressi on endp

The obvious problem with this code is that it will generate an infinite loop. Upon entering
the expression function this code immediately calls expression recursively, which immedi-
ately calls expression recursively, which immediately calls expression recursively, ... Clearly,
we need to resolve this problem if we are going to write any real code to match this pro-
duction.

The trick to resolving left recursion is to note that if there is a production that suffers
from left recursion, there must be some production with the same left hand side that is not
left recursive®. All we need do is rewrite the left recursive call in terms of the production

Page 903

Chapter 16

that does not have any left recursion. This sound like a difficult task, but it’s actually quite
easy.

To see how to eliminate left recursion, let X; and Y; represent any set of terminal sym-
bols or nonterminal symbols that do not have a right hand side beginning with the nonter-
minal A. If you have some productions of the form:

Ao AL A] Al Yl Yol ol Y

You will be able to translate this to an equivalent grammar without left recursion by
replacing each term of the form A - Y; by A - Y; A and each term of the form A - AX; by
A - X;A’| €. For example, consider three of the productions from the arithmetic grammar:

expression — expression + factor
expression — expression - factor
expression — factor

In this example A corresponds to expression, X; corresponds to “+ factor ”, X, corresponds
to “- factor , and Y; corresponds to “factor ”. The equivalent grammar without left recur-
sion is

expression — factor F

E - - factor F

E - + factor F

E g 8

The complete arithmetic grammar, with left recursion removed, is

expression — factor F

E - + factor E | - factor E | €

factor — termF

F - *termF | | termF | €

term — [ntegerConstant | (expression)

IntegerConstant — digit | digit IntegerConstant

digit - o0 | 1] 2| 31| 4| 51| 6| 71| 8] 9

Another useful transformation on a grammar is to left factor the grammar. This can
reduce the need for backtracking, improving the performance of your pattern matching
code. Consider the following CFG fragment:

stnt — if expression then stnt endif
stnt — if expression then stnt else stnt endif

These two productions begin with the same set of symbols. Either production will match
all the characters in an if statement up to the point the matching algorithm encounters the
first else or endif. If the matching algorithm processes the first statement up to the point of
the endif terminal symbol and encounters the else terminal symbol instead, it must back-
track all the way to the if symbol and start over. This can be terribly inefficient because of
the recursive call to stmt (imagine a 10,000 line program that has a single if statement
around the entire 10,000 lines, a compiler using this pattern matching technique would
have to recompile the entire program from scratch if it used backtracking in this fashion).
However, by left factoring the grammar before converting it to program code, you can
eliminate the need for backtracking.

To left factor a grammar, you collect all productions that have the same left hand side
and begin with the same symbols on the right hand side. In the two productions above,
the common symbols are “if expression then stmt . You combine the common strings into a
single production and then append a new nonterminal symbol to the end of this new pro-
duction, e.g.,

5. If this is not the case, the grammar does not match any finite length strings.

Page 904

Control Structures

stmt — if expression then stnt NewNonTerm

Finally, you create a new set of productions using this new nonterminal for each of the
suffixes to the common production:

New\onTerm — endif | else stnt endif

This eliminates backtracking because the matching algorithm can process the if, the expres-
sion, the then, and the stmt before it has to choose between endif and else.

16.1.5 Converting REs to CFGs

Since the context free languages are a superset of the regular languages, it should
come as no surprise that it is possible to convert regular expressions to context free gram-
mars. Indeed, this is a very easy process involving only a few intuitive rules.

1) Ifaregular expression simply consists of a sequence of characters, xyz, you can easily
create a production for this regular expression of the form P - xyz. This applies
equally to the empty string, €.

2) Ifr and s are two regular expression that you’ve converted to CFG productions R
and S, and you have a regular expression rs that you want to convert to a production,
simply create a new production of the formT - R S.

3) Ifr and s are two regular expression that you’ve converted to CFG productions R
and S, and you have a regular expressionr | s that you want to convert to a produc-
tion, simply create a new production of theformT - R | S.

4) Ifr is aregular expression that you’ve converted to a production, R, and you want to
create a production for r*, simply use the production RStar — R RStar | €.

5) Ifr is aregular expression that you’ve converted to a production, R, and you want to
create a production for r*, simply use the production RPlus — R RPlus | R.

6) For regular expressions there are operations with various precedences. Regular
expressions also allow parenthesis to override the default precedence. This notion of
precedence does not carry over into CFGs. Instead, you must encode the precedence
directly into the grammar. For example, to encode R S* you would probably use pro-
ductions of the form:

T - R SStar
SStar - S SStar | €

Likewise, to handle a grammar of the form (RS)* you could use productions of the
form:

T ~RS T|¢&
RS - R S

16.1.6 Converting CFGs to Assembly Language

If you have removed left recursion and you’ve left factored a grammar, it is very easy
to convert such a grammar to an assembly language program that recognizes strings in
the context free language.

The first convention we will adopt is that es:di always points at the start of the string
we want to match. The second convention we will adopt is to create a function for each
nonterminal. This function returns success (carry set) if it matches an associated subpat-
tern, it returns failure (carry clear) otherwise. If it succeeds, it leaves di pointing at the next
character is the staring after the matched pattern; if it fails, it preserves the value in di
across the function call.

To convert a set of productions to their corresponding assembly code, we need to be
able to handle four things: terminal symbols, nonterminal symbols, alternation, and the

Page 905

Chapter 16

Page 906

empty string. First, we will consider simple functions (nonterminals) which do not have
multiple productions (i.e., alternation).

If a production takes the form T — € and there are no other productions associated
with T, then this production always succeeds. The corresponding assembly code is simply:

T proc near
stc
ret

T endp

Of course, there is no real need to ever call T and test the returned result since we knowv it
will always succeed. On the other hand, if T is a stub that you intend to fill in later, you
should call T.

If a production takes the form T — xyz, where xyz is a string of one or more terminal
symbols, then the function returns success if the next several input characters match xyz,
it returns failure otherwise. Remember, if the prefix of the input string matches xyz, then
the matching function must advance di beyond these characters. If the first characters of
the input string does not match xyz, it must preserve di. The following routines demon-
strate two cases, where xyz is a single character and where xyz is a string of characters:

T1 proc near
cnp byte ptr es:[di], ‘X ;Single char.
je Success
cle ;Return Failure.
ret

Success: inc di ; Skip mat ched char.
stc ; Return success.
ret

T1 endp

T2 proc near
cal l Mat chPref i x
byt e ‘xyz',0
ret

T2 endp

MatchPrefix is a routine that matches the prefix of the string pointed at by es:di against the
string following the call in the code stream. It returns the carry set and adjusts di if the
string in the code stream is a prefix of the input string, it returns the carry flag clear and
preserves di if the literal string is not a prefix of the input. The MatchPrefix code follows:

Mat chPr ef i x proc far ;Must be far!
push bp
nov bp, sp
push ax
push ds
push si
push di
| ds si, 2[bp] ; Get the return address.
OnpLoop: nov al, ds:[si] ;Get string to natch.
cnp al, 0 ;1 f at end of prefix,
je Success ; We succeed.
cnp al, es:[di] ;See if it natches prefix,
j ne Fail ure if not, inmediately fail.
i nc si
i nc di
Jnp GpLoop
Success: add sp, 2 ;Don't restore di.
inc si ;Skip zero termnating byte.
nov 2[bp], si ; Save as return address.
pop si
pop ds
pop ax

Control Structures

pop bp
stc ; Return success.
ret
Fail ure: inc Si ;Need to skip to zero byte.
cnp byte ptr ds:[si], O
j ne Fail ure
i nc si
nov 2[bp], si ; Save as return address.
pop di
pop si
pop ds
pop ax
pop bp
cle ;Return failure.
ret
Mat chPref i x endp

If a production takes the form T — R, where R is a honterminal, then the T function
calls R and returns whatever status R returns, e.g.,

T proc near
call R
ret

T endp

If the right hand side of a production contains a string of terminal and nonterminal
symbols, the corresponding assembly code checks each item in turn. If any check fails,
then the function returns failure. If all items succeed, then the function returns success.
For example, if you have a production of the form T — R abc S you could implement this
in assembly language as

T proc near

push di ;If we fail, must preserve
di.

cal R

jnc Fail ure

cal Mat chPref i x

byt e “abc”, 0

jnc Fail ure

cal S

jnc Fail ure

add sp, 2 ;Don't preserve di if we
succeed.

stc

ret
Fail ure: pop di

clc

ret
T endp

Note how this code preserves di if it fails, but does not preserve di if it succeeds.

If you have multiple productions with the same left hand side (i.e., alternation), then
writing an appropriate matching function for the productions is only slightly more com-
plex than the single production case. If you have multiple productions associated with a
single nonterminal on the left hand side, then create a sequence of code to match each of
the individual productions. To combine them into a single matching function, simply
write the function so that it succeeds if any one of these code sequences succeeds. If one of
the productions is of the form T - e, then test the other conditions first. If none of them
could be selected, the function succeeds. For example, consider the productions:

E - + factor E | - factor E | €

This translates to the following assembly code:

Page 907

Chapter 16

Page 908

EPrime proc near
push di
cnp byte ptr es:[di], ‘+
j ne TryM nus
inc di
call factor
jnc EP_Fai | ed
call EPri ne
jnc EP_Fai |l ed
Success: add sp, 2
stc
ret
TryM nus: cnp byte ptr es:[di], ‘-’
j ne EP _Fail ed
inc di
call factor
jnc EP_Fai |l ed
call EPri ne
jnc EP_Fai |l ed
add sp, 2
stc
ret
EP_Fai |l ed: pop di
stc ; Succeed because of E -> €
ret
EPrime endp

This routine always succeeds because it has the production E' - €. This is why the stc
instruction appears after the EP_Failed label.

To invoke a pattern matching function, simply load es:di with the address of the string
you want to test and call the pattern matching function. On return, the carry flag will con-
tain one if the pattern matches the string up to the point returned in di. If you want to see
if the entire string matches the pattern, simply check to see if es:di is pointing at a zero
byte when you get back from the function call. If you want to see if a string belongs to a
context free language, you should call the function associated with the starting symbol for
the given context free grammar.

The following program implements the arithmetic grammar we’ve been using as
examples throughout the past several sections. The complete implementation is

; AR TH ASM

; A sinple recursive descent parser for arithmetic strings.

.xlist
include stdlib.a
includelibstdlib.lib

st
dseg segment para public ‘data’
QGammar for sinple arithnetic grammar (supports +, -, *, /):
E ->FE
E ->+FFE | - FE | <enpty string>
F->TF
->*TF | | TF | <enpty string>

2|1 3| 4| 5| 6] 7] 8|09

I nput Li ne byte 128 dup (0)

dseg ends

Control Structures

cseg segment para public ‘code’
assune cs: cseg, ds:dseg

Mat ching functions for the gramar.

These functions return the carry flag set if they match their
respective item They return the carry flag clear if they fail.
If they fail, they preserve di. If they succeed, di points to
the first character after the match.

; E->FE
E proc near
push di
cal F ;See if F, then E, succeeds.
jnc E Fail ed
call EPri ne
jnc E Failed
add sp, 2 ; Success, don't restore di.
stc
ret
E Fail ed: pop di ;Failure, nmust restore di.
clc
ret
E endp
i E ->+FFE | - FE | €
EPrine proc near
push di

; Try + FE here

cnp byte ptr es:[di], ‘+
j ne TryM nus
i nc di
cal F
jnc EP Fail ed
cal EPrime
jnc EP Fail ed
Success: add sp, 2
stc
ret

; Try - FE here.

TryM nus: cnp byte ptr es:[di], ‘-’
j ne Success
inc di
call F
jnc EP_Fai | ed
call EPri ne
jnc EP_Fai |l ed
add sp, 2
stc
ret

; |f none of the above succeed, return success anyway because we have
; a production of the formE -> €.

EP_Fai |l ed: pop di
stc
ret

EPrine endp

Page 909

Chapter 16

Page 910

D F-> TR

F proc
push
cal
jnc
cal
jnc
add
stc
ret

F_Fail ed: pop
cle
ret

F endp

S F->*TFP | /I TF | €

FPri ne proc
push
cnp
j ne
inc
call
jnc
call
jnc

Success: add
stc
ret

; Try F->/ TF here

TryD v: cnp
j ne
i nc
call
jnc
call
jnc
add
stc
ret

; If the above both fail,

near
di

T

F Failed
FPrime

F _Failed

sp, 2 ; Success,

di

near

di

byte ptr es:[di],
TryD v

di

T

FP_Fai | ed

FPrime

FP_Fai | ed

sp, 2

byte ptr es:[di],
Success

di

T

FP_Fail ed

FPri ne

FP_Fail ed

sp, 2

; a production of the formF -> €

FP_Fai | ed: pop
stc
ret

FPrine endp

;» T->G| (B

T proc

; Try T -> G here.
cal
jnc
ret

; Try T -> (B here.

di

near

G
TryPar ens

%

5/1

don't restore di.

;Start with “*7?

;Skip the “*”.

;Start with “/”?
; Succeed anyway.
;Skip the “/7.

return success anyway because we've got

TryPar ens: push di
cnp byte ptr es:[di], ‘(°
j ne T Failed
i nc di
cal | E
jnc T Fail ed
cnp byte ptr es:[di], ‘)’
j ne T Fail ed
i nc di
add sp, 2
stc
ret
T Fail ed: pop di
cle
ret
T endp

The following is a free-formtransl ati on of

G->H| HG
H->0] 1] 2| 3| 45| 6] 7] 8|9

one or nore digits.

G proc near
cnp byte ptr es:[di], ‘0O
ib G Fail ed
cnp byte ptr es:[di], ‘9
ja G Fail ed

D gi t Loop: inc di
cnp byte ptr es:[di], ‘0O
ib G _Succeeds
cnp byte ptr es:[di], ‘9
j be D gi t Loop

G _Succeeds: stc
ret

G Fail ed: clc
ret

G endp

Control Structures

;Preserve if we fail.
;Start with “(*?
;Fail if no.

;Skip “(“ char.

;End with “)”?
;Fail if no.
;$<Ip u)”

;Don't restore di,
; we've succeeded.

This routine checks to see if there is at least one digit. It fails if there
isn't at least one digit; it succeeds and skips over all

digits if there are

; Check for at |east
; one digit.

; Ski p any renai ni ng

; digits found.

;Fail if no digits
; at all.

; This main programtests the matching functions above and denonstrates

; howto call the matching functions.

Mai n proc
nov ax, seg dseg ;Set up the segnent registers
nov ds, ax
nmov es, ax
printf
byt e “Enter an arithmetic expression: “,0
| esi I nput Li ne
gets
cal l E
jnc BadExp

; Good so far, but are we at the end of the string?

cnp byte ptr es:[di], O
j ne BadExp

; Ckay, it truly is a good expression at this point.

printf

Page 911

Chapter 16

byt e “‘98’ is avalid expression”,cr,If,0
dword I nput Li ne
jnp Qui't

BadExp: printf
byt e “‘o8" is aninvalid arithnetic expression”,cr,If,0
dword I nput Li ne

Qit: Exi t Pgm

Mai n endp

cseg ends

sseg segment para stack ‘stack’

stk byt e 1024 dup (“stack “)

sseg ends

zzz7777S€g segnent para public ‘zzzzzz’

Last Byt es byt e 16 dup (?)

zz72727s€eg ends
end Mai n

16.1.7

Some Final Comments on CFGs

The techniques presented in this chapter for converting CFGs to assembly code do not
work for all CFGs. They only work for a (large) subset of the CFGs known as LL(1) gram-
mars. The code that these techniques produce is a recursive descent predictive parsere.
Although the set of context free languages recognizable by an LL(1) grammar is a subset
of the context free languages, it is a very large subset and you shouldn’t run into too many

difficulties using this technique.

One important feature of predictive parsers is that they do not require any backtrack-
ing. If you are willing to live with the inefficiencies associated with backtracking, it is easy
to extended a recursive descent parser to handle any CFG. Note that when you use back-
tracking, the predictive adjective goes away, you wind up with a nondeterministic system
rather than a deterministic system (predictive and deterministic are very close in meaning
in this case).

There are other CFG systems as well as LL(1). The so-called operator precedence and
LR(k) CFGs are two examples. For more information about parsing and grammars, con-
sult a good text on formal language theory or compiler construction (see the bibliogra-

phy).

16.1.8

Beyond Context Free Languages

Although most patterns you will probably want to process will be regular or context
free, there may be times when you need to recognize certain types of patterns that are
beyond these two (e.g., context sensitive languages). As it turns out, the finite state autom-
ata are the simplest machines; the pushdown automata (that recognize context free lan-
guages) are the next step up. After pushdown automata, the next step up in power is the
Turing machine. However, Turing machines are equivalent in power to the 80x86’, so
matching patterns recognized by Turing machines is no different than writing a normal
program.

The key to writing functions that recognize patterns that are not context free is to
maintain information in variables and use the variables to decide which of several pro-
ductions you want to use at any one given time. This technique introduces context sensitiv-

6. A parser is a function that determines whether a pattern belongs to a language.
7. Actually, they are more powerful, in theory, because they have an infinite amount of memory available.

Page 912

Control Structures

ity. Such techniques are very useful in artificial intelligence programs (like natural
language processing) where ambiguity resolution depends on past knowledge or the cur-
rent context of a pattern matching operation. However, the uses for such types of pattern
matching quickly go beyond the scope of a text on assembly language programming, so
we will let some other text continue this discussion.

16.2 The UCR Standard Library Pattern Matching Routines

The UCR Standard Library provides a very sophisticated set of pattern matching rou-
tines. They are patterned after the pattern matching facilities of SNOBOL4, support CFGs,
and provide fully automatic backtracking, as necessary. Furthermore, by writing only five
assembly language statements, you can match simple or complex patterns.

There is very little assembly language code to worry about when using the Standard
Library’s pattern matching routines because most of the work occurs in the data segment.
To use the pattern matching routines, you first construct a pattern data structure in the
data segment. You then pass the address of this pattern and the string you wish to test to
the Standard Library match routine. The match routine returns failure or success depend-
ing on the state of the comparison. This isn’t quite as easy as it sounds, though; learning
how to construct the pattern data structure is almost like learning a new programming
language. Fortunately, if you’ve followed the discussion on context free languages, learn-
ing this new “language” is a breeze.

The Standard Library pattern data structure takes the following form:

Pattern struct

Mat chFuncti on dwor d ?
Mat chPar m dwor d ?
Mat chAl t dwor d ?
Next Pat t er n dwor d ?
EndPatt ern wor d ?
StartPattern wor d ?
StrSeg wor d ?
Pattern ends

The MatchFunction field contains the address of a routine to call to perform some sort
of comparison. The success or failure of this function determines whether the pattern
matches the input string. For example, the UCR Standard Library provides a MatchStr
function that compares the next n characters of the input string against some other char-
acter string.

The MatchParm field contains the address or value of a parameter (if appropriate) for
the MatchFunction routine. For example, if the MatchFunction routine is MatchStr, then the
MatchParm field contains the address of the string to compare the input characters against.
Likewise, the MatchChar routine compares the next input character in the string against the
L.O. byte of the MatchParm field. Some matching functions do not require any parameters,
they will ignore any value you assign to MatchParm field. By convention, most program-
mers store a zero in unused fields of the Pattern structure.

The MatchAlt field contains either zero (NULL) or the address of some other pattern
data structure. If the current pattern matches the input characters, the pattern matching
routines ignore this field. However, if the current pattern fails to match the input string,
then the pattern matching routines will attempt to match the pattern whose address
appears in this field. If this alternate pattern returns success, then the pattern matching
routine returns success to the caller, otherwise it returns failure. If the MatchAlt field con-
tains NULL, then the pattern matching routine immediately fails if the main pattern does
not match.

The Pattern data structure only matches one item. For example, it might match a single
character, a single string, or a character from a set of characters. A real world pattern will
probably contain several small patterns concatenated together, e.g., the pattern for a Pas-
cal identifier consists of a single character from the set of alphabetic characters followed

Page 913

Chapter 16

by one or more characters from the set [a-zA-Z0-9_]. The NextPattern field lets you create a
composite pattern as the concatenation of two individual patterns. For such a composite
pattern to return success, the current pattern must match and then the pattern specified by
the NextPattern field must also match. Note that you can chain as many patterns together
as you please using this field.

The last three fields, EndPattern, StartPattern, and StrSeg are for the internal use of the
pattern matching routine. You should not modify or examine these fields.

Once you create a pattern, it is very easy to test a string to see if it matches that pat-
tern. The calling sequence for the UCR Standard Library match routine is

| esi « Input string to match »

| dxi « Pattern to match string against »
nov cx, 0

mat ch

jc Success

The Standard Library match routine expects a pointer to the input string in the es:di
registers; it expects a pointer to the pattern you want to match in the dx:si register pair. The
cx register should contain the length of the string you want to test. If cx contains zero, the
match routine will test the entire input string. If cx contains a nonzero value, the match
routine will only test the first cx characters in the string. Note that the end of the string
(the zero terminating byte) must not appear in the string before the position specified in
cx. For most applications, loading cx with zero before calling match is the most appropri-
ate operation.

On return from the match routine, the carry flag denotes success or failure. If the carry
flag is set, the pattern matches the string; if the carry flag is clear, the pattern does not
match the string. Unlike the examples given in earlier sections, the match routine does not
modify the di register, even if the match succeeds. Instead, it returns the failure/success
position in the ax register. The is the position of the first character after the match if match
succeeds, it is the position of the first unmatched character if match fails.

16.3 The Standard Library Pattern Matching Functions

The UCR Standard Library provides about 20 built-in pattern matching functions.
These functions are based on the pattern matching facilities provided by the SNOBOL4
programming language, so they are very powerful indeed! You will probably discover
that these routines solve all your pattern matching need, although it is easy to write your
own pattern matching routines (see “Designing Your Own Pattern Matching Routines” on
page 922) if an appropriate one is not available. The following subsections describe each
of these pattern matching routines in detail.

There are two things you should note if you’re using the Standard Library’s
SHELL.ASM file when creating programs that use pattern matching and character sets.
First, there is a line at the very beginning of the SHELL.ASM file that contains the state-
ment “matchfuncs”. This line is currently a comment because it contains a semicolon in
column one. If you are going to be using the pattern matching facilities of the UCR Stan-
dard Library, you need to uncomment this line by deleting the semicolon in column one. If
you are going to be using the character set facilities of the UCR Standard Library (very
common when using the pattern matching facilities), you may want to uncomment the
line containing “include stdsets.a” in the data segment. The “stdsets.a” file includes sev-
eral common character sets, including alphabetics, digits, alphanumerics, whitespace, and
soon.

16.3.1

Page 914

Spancset

The spancset routine skips over all characters belonging to a character set. This routine
will match zero or more characters in the specified set and, therefore, always succeeds.

Control Structures

The MatchParm field of the pattern data structure must point at a UCR Standard Library
character set variable (see “The Character Set Routines in the UCR Standard Library” on
page 856).

Example:
Ski pAl phas pattern {spancset, al pha}
| esi Stri ngWAl phas
| dxi Ski pAl phas
xor CX, CX
mat ch
16.3.2 Brkcset
Brkcset is the dual to spancset — it matches zero or more characters in the input string
which are not members of a specified character set. Another way of viewing brkcset is that
it will match all characters in the input string up to a character in the specified character
set (or to the end of the string). The matchparm field contains the address of the character
set to match.
Example:
DoDigits pattern {brkcset, digits, 0, DoD gits2}
DoDi gi ts2 pattern {spancset, digits}
| esi StringWigits
| dxi DoDigits
xor CX, CX
nmat ch
jnc NoDigits
The code above matches any string that contains a string of one or more digits somewhere
in the string.
16.3.3 Anycset

Anycset matches a single character in the input string from a set of characters. The
matchparm field contains the address of a character set variable. If the next character in the
input string is a member of this set, anycset set accepts the string and skips over than char-
acter. If the next input character is not a member of that set, anycset returns failure.

Example:
Dol D pattern {anycset, alpha, 0, Dol D2}
Dol D2 pattern {spancset, al phanun}

| esi StringwD

| dxi Dol D

Xor cX, CX

mat ch

jnc Nol D

This code segment checks the string StringWID to see if it begins with an identifier specified
by the regular expression [a-zA-Z][a-zA-Z0-9]*. The first subpattern with anycset makes
sure there is an alphabetic character at the beginning of the string (alpha is the stdsets.a set
variable that has all the alphabetic characters as members). If the string does not begin
with an alphabetic, the DolD pattern fails. The second subpattern, DolD2, skips over any
following alphanumeric characters using the spancset matching function. Note that
spancset always succeeds.

Page 915

Chapter 16

The above code does not simply match a string that is an identifier; it matches strings
that begin with a valid identifier. For example, it would match “ThisIsAnID” as well as
“ThislsAnID+SolsThis - 5”. If you only want to match a single identifier and nothing else,
you must explicitly check for the end of string in your pattern. For more details on how to
do this, see “EOS” on page 919.

16.3.4 Notanycset
Notanycset provides the complement to anycset — it matches a single character in the
input string that is not a member of a character set. The matchparm field, as usual, contains
the address of the character set whose members must not appear as the next character in
the input string. If notanycset successfully matches a character (that is, the next input char-
acter is not in the designated character set), the function skips the character and returns
success; otherwise it returns failure.
Example:
DoSpeci al pattern {notanycset, digits, 0, DoSpecial 2}
DoSpeci al 2 pattern {spancset, al phanun}
| esi St ri ngWepeci al
| dxi DoSpeci al
xor CX, CX
nmat ch
jnc NoSpeci al
This code is similar to the DolD pattern in the previous example. It matches a string
containing any character except a digit and then matches a string of alphanumeric charac-
ters.
16.3.5 MatchStr
Matchstr compares the next set of input characters against a character string. The
matchparm field contains the address of a zero terminated string to compare against. If
matchstr succeeds, it returns the carry set and skips over the characters it matched; if it
fails, it tries the alternate matching function or returns failure if there is no alternate.
Example:
DoString pattern {matchstr, M/Str}
M/Str byt e “Match this!”, 0
| esi String
| dxi DoString
xor CX, CX
mat ch
jnc Not Mat chThi s
This sample code matches any string that begins with the characters “Match This!”
16.3.6 MatchiStr

Page 916

Matchistr is like matchstr insofar as it compares the next several characters against a
zero terminated string value. However, matchistr does a case insensitive comparison. Dur-
ing the comparison it converts the characters in the input string to upper case before com-
paring them to the characters that the matchparm field points at. Therefore, the string
pointed at by the matchparm field must contain uppercase wherever alphabetics appear. If the
matchparm string contains any lower case characters, the matchistr function will always fail.

Control Structures

Example:
DoString pattern {matchistr, M/Str}
M/Str byt e “MATCH TH S ", 0

| esi String

| dxi Dostring

xor cX, CX

mat ch

jnc Not Mat chThi s

This example is identical to the one in the previous section except it will match the charac-
ters “match this!” using any combination of upper and lower case characters.

16.3.7 MatchToStr

Matchtostr matches all characters in an input string up to and including the characters
specified by the matchparm parameter. This routine succeeds if the specified string appears
somewhere in the input string, it fails if the string does not appear in the input string. This
pattern function is quite useful for locating a substring and ignoring everything that came
before the substring.

Example:
Dostring pattern {matchtostr, M/Str}
M/Str byte “Match this!”, 0

| esi String

| dxi DoString

xor CX, CX

mat ch

jnc Not Mat chThi s

Like the previous two examples, this code segment matches the string “Match this!” How-
ever, it does not require that the input string (String) begin with “Match this!” Instead, it
only requires that “Match this!” appear somewhere in the string.

16.3.8 MatchChar

The matchchar function matches a single character. The matchparm field’s L.O. byte
contains the character you want to match. If the next character in the input string is that
character, then this function succeeds, otherwise it fails.

Example:
DoSpace pattern {matchchar, * ‘}
| esi String
| dxi DoSpace
Xor cX, CX
mat ch
jnc NoSpace

This code segment matches any string that begins with a space. Keep in mind that the
match routine only checks the prefix of a string. If you wanted to see if the string contained
only a space (rather than a string that begins with a space), you would need to explicitly
check for an end of string after the space. Of course, it would be far more efficient to use
stremp (see “Stremp, Strempl, Stricmp, Stricmpl” on page 848) rather than match for this
purpose!

Page 917

Chapter 16

Note that unlike matchstr, you encode the character you want to match directly into
the matchparm field. This lets you specify the character you want to test directly in the pat-
tern definition.

16.3.9 MatchToChar

Like matchtostr, matchtochar matches all characters up to and including a character you
specify. This is similar to brkcset except you don’t have to create a character set containing
a single member and brkcset skips up to but not including the specified character(s). Match-
tochar fails if it cannot find the specified character in the input string.

Example:
DoToSpace pattern {matchtochar, * ‘}
| esi String
| dxi DoSpace
xor CX, CX
mat ch
jnc NoSpace

This call to match will fail if there are no spaces left in the input string. If there are, the call
to matchtochar will skip over all characters up to, and including, the first space. This is a
useful pattern for skipping over words in a string.

16.3.10 MatchChars

Matchchars skips zero or more occurrences of a singe character in an input string. It is
similar to spancset except you can specify a single character rather than an entire character
set with a single member. Like matchchar, matchchars expects a single character in the L.O.
byte of the matchparm field. Since this routine matches zero or more occurrences of that
character, it always succeeds.

Example:
Ski p2Next Wr d pattern {matchtochar, * ‘, 0, SkipSpcs}
Ski pSpcs pattern {matchchars, * '}

| esi String

| dxi Ski p2Next Wr d

Xor cX, CX

mat ch

jnc NoVér d

The code segment skips to the beginning of the next word in a string. It fails if there are no
additional words in the string (i.e., the string contains no spaces).

16.3.11 MatchToPat

Matchtopat matches all characters in a string up to and including the substring
matched by some other pattern. This is one of the two facilities the UCR Standard Library
pattern matching routines provide to allow the implementation of nonterminal function
calls (also see “SL_Match2” on page 922). This matching function succeeds if it finds a
string matching the specified pattern somewhere on the line. If it succeeds, it skips the
characters through the last character matched by the pattern parameter. As you would
expect, the matchparm field contains the address of the pattern to match.

Example:

Page 918

Control Structures

; Assune there is a pattern “expression” that natches arithmetic
; expressions. The following pattern determines if there is such an
; expression on the line followed by a sem col on.

Fi ndExp pattern {matchtopat, expression, 0, MatchSeni}
Mat chSeni pattern {matchchar, ‘;‘}
| esi String
| dxi Fi ndExp
Xor cX, CX
mat ch
jnc NoExp
16.3.12 EOS

The EOS pattern matches the end of a string. This pattern, which must obviously
appear at the end of a pattern list if it appears at all, checks for the zero terminating byte.
Since the Standard Library routines only match prefixes, you should stick this pattern at
the end of a list if you want to ensure that a pattern exactly matches a string with no left
over characters at the end. EOS succeeds if it matches the zero terminating byte, it fails

otherwise.
Example:
Ski pNunber pattern {anycset, digits, 0, SkipDgits}
SkipDigits pattern {spancset, digits, 0, ECSPat}
ECSPat pattern {ECS}

| esi String

| dxi Ski pNunber

xor CX, CX

mat ch

jnc NoNunber

The SkipNumber pattern matches strings that contain only decimal digits (from the start of
the match to the end of the string). Note that EOS requires no parameters, not even a
matchparm parameter.

16.3.13 ARB

ARB matches any number of arbitrary characters. This pattern matching function is
equivalent to >*. Note that ARB is a very inefficient routine to use. It works by assuming it
can match all remaining characters in the string and then tries to match the pattern speci-
fied by the nextpattern field®. If the nextpattern item fails, ARB backs up one character and
tries matching nextpattern again. This continues until the pattern specified by nextpattern
succeeds or ARB backs up to its initial starting position. ARB succeeds if the pattern speci-
fied by nextpattern succeeds, it fails if it backs up to its initial starting position.

Given the enormous amount of backtracking that can occur with ARB (especially on
long strings), you should try to avoid using this pattern if at all possible. The matchtostr,
matchtochar, and matchtopat functions accomplish much of what ARB accomplishes, but
they work forward rather than backward in the source string and may be more efficient.
ARB is useful mainly if you’re sure the following pattern appears late in the string you’re
matching or if the string you want to match occurs several times and you want to match
the last occurrence (matchtostr, matchtochar, and matchtopat always match the first occur-
rence they find).

8. Since the match routine only matches prefixes, it does not make sense to apply ARB to the end of a pattern list,
the same pattern would match with or without the final ARB. Therefore, ARB usually has a nextpattern field.

Page 919

Chapter 16

Example:
Ski pNunber pattern {ARB,0,0,SkipDgit}
SkipDigit pattern {anycset, digits, 0, SkipD gits}
SkipDigits pattern {spancset, digits}
| esi String
| dxi Ski pNunber
Xor cX, CX
mat ch
jnc NoNunber

This code example matches the last number that appears on an input line. Note that ARB
does not use the matchparm field, so you should set it to zero by default.

16.3.14 ARBNUM

ARBNUM matches an arbitrary number (zero or more) of patterns that occur in the
input string. If R represents some nonterminal number (pattern matching function), then
ARBNUM(R) is equivalent to the production ARBNUM — R ARBNUM | €.

The matchparm field contains the address of the pattern that ARBNUM attempts to
match.

Example:
Ski pNurber s pattern {ARBNUM Ski pNunber}
Ski pNunber pattern {anycset, digits, 0, SkipDigits}
SkipDigits pattern {spancset, digits, 0, EndDi gits}
EndDigits pattern {matchchars, ‘ ‘, EndString}
EndString pattern {ECS}

| esi String

| dxi Ski pNurber s

xor CX, CX

mat ch

jnc Il egal Nunber s

This code accepts the input string if it consists of a sequence of zero or more numbers sep-
arated by spaces and terminated with the EOS pattern. Note the use of the matchalt field in
the EndDigits pattern to select EOS rather than a space for the last number in the string.

16.3.15 Skip

Page 920

Skip matches n arbitrary characters in the input string. The matchparm field is an inte-
ger value containing the number of characters to skip. Although the matchparm field is a
double word, this routine limits the number of characters you can skip to 16 bits (65,535
characters); that is, n is the L.O. word of the matchparm field. This should prove sufficient
for most needs.

Skip succeeds if there are at least n characters left in the input string; it fails if there are
fewer than n characters left in the input string.

Example:
Ski plst 6 pattern {skip, 6, 0, SkipNunber}
Ski pNunber pattern {anycset, digits, 0, SkipDgits}
SkipDigits pattern {spancset, digits, 0, EndD gits}
EndDigits pattern {ECS}

| esi String

| dxi Ski plst 6

Xor cX, CX

Control Structures

mat ch
jnc Illegal ltem

This example matches a string containing six arbitrary characters followed by one or more
decimal digits and a zero terminating byte.

16.3.16 Pos

Pos succeeds if the matching functions are currently at the n" character in the string,
where n is the value in the L.O. word of the matchparm field. Pos fails if the matching func-
tions are not currently at position n in the string. Unlike the pattern matching functions
you’ve seen so far, pos does not consume any input characters. Note that the string starts
out at position zero. So when you use the pos function, it succeeds if you’ve matched n
characters at that point.

Example:
Ski pNunber pattern {anycset, digits, 0, SkipDgits}
SkipDigits pattern {spancset, digits, 0, EndDi gits}
EndDigits pattern {pos, 4}

| esi String

| dxi Ski pNunber

xor CX, CX

mat ch

jnc Illegal ltem

This code matches a string that begins with exactly 4 decimal digits.

16.3.17 RPos

Rpos works quite a bit like the pos function except it succeeds if the current position is
n character positions from the end of the string. Like pos, n is the L.O. 16 bits of the
matchparm field. Also like pos, rpos does not consume any input characters.

Example:
Ski pNunber pattern {anycset, digits, 0, SkipDgits}
SkipDigits pattern {spancset, digits, 0, EndD gits}
EndDigits pattern {rpos, 4}

| esi String

| dxi Ski pNunber

Xor cX, CX

mat ch

jnc Illegalltem

This code matches any string that is all decimal digits except for the last four characters of
the string. The string must be at least five characters long for the above pattern match to
succeed.

16.3.18 GotoPos

Gotopos skips over any characters in the string until it reaches character position n in
the string. This function fails if the pattern is already beyond position n in the string. The
L.O. word of the matchparm field contains the value for n.

Example:
Ski pNunber pattern {gotopos, 10, 0, MatchNrbr}
Vat chNbr pattern {anycset, digits, 0, SkipD gits}

Page 921

Chapter 16

SkipDigits pattern {spancset, digits, 0, EndD gits}
EndDigits pattern {rpos, 4}

| esi String

| dxi Ski pNunber

Xor cX, CX

mat ch

jnc Illegal ltem

This example code skips to position 10 in the string and attempts to match a string of dig-
its starting with the 11™" character. This pattern succeeds if the there are four characters
remaining in the string after processing all the digits.

16.3.19 RGotoPos

Rgotopos works like gotopos except it goes to the position specified from the end of the
string. Rgotopos fails if the matching routines are already beyond position n from the end
of the string. As with gotopos, the L.O. word of the matchparm field contains the value for n.

Example:
Ski pNunber pattern {rgotopos, 10, O, MatchNrbr}
Vat chNbr pattern {anycset, digits, 0, SkipD gits}
SkipDigits pattern {spancset, digits}
| esi String
| dxi Ski pNunber
xor CX, CX
mat ch
jnc Illegal ltem

This example skips to ten characters from the end of the string and then attempts to match
one or digits starting at that point. It fails if there aren’t at least 11 characters in the string
or the last 10 characters don’t begin with a string of one or more digits.

16.3.20 SL_Match?2

The sl_match2 routine is nothing more than a recursive call to match. The matchparm
field contains the address of pattern to match. This is quite useful for simulating parenthe-
sis around a pattern in a pattern expression. As far as matching strings are concerned,
pattern1 and pattern2, below, are equivalent:

Pattern2 pattern {sl_match2, Patternl}
Patternl pattern {matchchar, ‘a}

The only difference between invoking a pattern directly and invoking it with sl_match2 is
that sl_match2 tweaks some internal variables to keep track of matching positions within
the input string. Later, you can extract the character string matched by sl_match2 using the
patgrab routine (see “Extracting Substrings from Matched Patterns” on page 925).

16.4 Designing Your Own Pattern Matching Routines

Although the UCR Standard Library provides a wide variety of matching functions,
there is no way to anticipate the needs of all applications. Therefore, you will probably
discover that the library does not support some particular pattern matching function you
need. Fortunately, it is very easy for you to create your own pattern matching functions to
augment those available in the UCR Standard Library. When you specify a matching func-

Page 922

Control Structures

tion name in the pattern data structure, the match routine calls the specified address using
a far call and passing the following parameters:

es:di- Points at the next character in the input string. You should not look at any charac-
ters before this address. Furthermore, you should never look beyond the end of
the string (see cx below).

ds:isi- Contains the four byte parameter found in the matchparm field.

cx- Contains the last position, plus one, in the input string you’re allowed to look at.
Note that your pattern matching routine should not look beyond location es:cx or
the zero terminating byte; whichever comes first in the input string.

On return from the function, ax must contain the offset into the string (di’s value) of
the last character matched plus one, if your matching function is successful. It must also set
the carry flag to denote success. After your pattern matches, the match routine might call
another matching function (the one specified by the next pattern field) and that function
begins matching at location es:ax.

If the pattern match fails, then you must return the original di value in the ax register
and return with the carry flag clear. Note that your matching function must preserve all
other registers.

There is one very important detail you must never forget with writing your own pat-
tern matching routines — ds does not point at your data segment, it contains the H.O. word
of the matchparm parameter. Therefore, if you are going to access global variables in your
data segment you will need to push ds, load it with the address of dseg, and pop ds before
leaving. Several examples throughout this chapter demonstrate how to do this.

There are some obvious omissions from (the current version of) the UCR Standard
Library’s repertoire. For example, there should probably be matchtoistr, matchichar, and
matchtoichar pattern functions. The following example code demonstrates how to add a
matchtoistr (match up to a string, doing a case insensitive comparison) routine.

.xlist
i ncl ude stdlib.a
includelib stdlib.lib
mat chf uncs
st
dseg segment para public ‘data’
Test String byt e “This is the string ‘xyz’ init”,cr,If,0
Test Pat pattern {matchtoistr, xyz}
Xyz byt e “XYZ', 0
dseg ends
cseg segment para public ‘code’

assune cs: cseg, ds:dseg

Mat chToi Str- Mat ches all characters in a string up to, and including, the
speci fied paraneter string. The paraneter string nust be
al | upper case characters. This guy natches string using
a case insensitive conparison.

i nputs:
es: di - Sour ce string
ds: si - String to match
CX- Maxi mum mat ch position
; outputs:
; ax- Points at first character beyond the end of the

mat ched string i f success, contains the initial D
value if failure occurs.
carry- Oif failure, 1 if success.

Page 923

Chapter 16

Page 924

Mat chToi Str

pr oc
pushf
push
push
cld

far

di
si

; Check to see if we're already past the point were we're allowed
; to scan in the input string.

cnp
j ae

di, cx
MTi SFai | ure

; If the pattern string is the enpty string, always natch.

cnp
je

byte ptr ds:[si], O
MI'Ssuccess

; The following | oop scans through the input string |ooking for
; the first character in the pattern string.

ScanlLoop:

Fi ndFi r st :

DoOnp:

push
| odsb

dec
i nc
cnp

Si
;Get first char of string
di
di ;Move on to next (or 1st) char.
di, cx ;If at cx, then we’'ve got to

jae CantFindlst; fail.

nov
cnp
ib

cnp
ja

and
cnp
j ne

ah, es:[di] ;CGet input character.

ah, ‘a’ ; Convert input character to
DoOnp ; upper case if it's a |lower

ah, ‘'z’ ;. case character.

DoCp

ah, 5fh

al, ah ; Conpare input character agai nst
Fi ndFi r st ; pattern string.

; At this point, we've located the first character in the input string
; that matches the first character of the pattern string. See if the
; strings are equal .

OnplLoop:

DoQmp2:

St r Not Ther e:
Cant Fi ndlst :
MTi SFai | ure:

push

cnp

j ae

| odsb
cnp
je

di ; Save restart point.

di, cx ;See if we’ve gone beyond the
StrNot There; |ast position allowable.

; Get next input character.
al, 0 ;At the end of the paraneter
Mr'Ssuccess2; string? |f so, succeed.

di

ah, es:[di] ;GCet the next input character.
ah, ‘a’ ; Convert input character to
DoOnp2 ; upper case if it’s a | ower
ah, 'z’ ; case character.

DoCp2

ah, 5fh

al, ah ; Conpare input character agai nst
OnpLoop

di

si

ScanLoop

sp, 2 ; Renove di from stack.

sp, 2 ; Renove si from st ack.

Si

di

ax, di ;Return failure position in AX

Control Structures

cle ;Return failure
ret
MI'SSuccess2: add sp, 2 ; Renove DI val ue from stack
MI'SSuccess: add sp, 2 ; Renove S| val ue from stack
nov ax, di ; Return next position in AX
pop si
pop di
popf
stc ; Return success.
ret
Mat chToi Str endp
Mai n proc
nov ax, dseg
nov ds, ax
nmov es, ax
mem ni t
| esi Test String
| dxi Test Pat
xor cX, CX
mat ch
jnc NoMat ch
print
byt e “Mat ched”,cr,If,0
jnp Qi t
NoMat ch: print
byt e “Dd not match”,cr,If,0
Qit: Exi t Pgm
Mai n endp
cseg ends
sseg segment para stack ‘stack
stk db 1024 dup (“stack “)
sseg ends
zzz7277S€g segnment para public ‘zzzzzz
Last Byt es db 16 dup (?)
z272727s€egQ ends
end Mai n

16.5 Extracting Substrings from Matched Patterns

Often, simply determining that a string matches a given pattern is insufficient. You
may want to perform various operations that depend upon the actual information in that
string. However, the pattern matching facilities described thus far do not provide a mech-
anism for testing individual components of the input string. In this section, you will see
how to extract portions of a pattern for further processing.

Perhaps an example may help clarify the need to extract portions of a string. Suppose
you are writing a stock buy/sell program and you want it to process commands described
by the following regular expression:

(buy | sell) [0-9]" shares of (ibm| apple | hp | dec)

While it is easy to devise a Standard Library pattern that recognizes strings of this form,
calling the match routine would only tell you that you have a legal buy or sell command. It
does not tell you if you are to buy or sell, who to buy or sell, or how many shares to buy or
sell. Of course, you could take the cross product of (buy | sell) with (ibm | apple | hp |
dec) and generate eight different regular expressions that uniquely determine whether
you’re buying or selling and whose stock you’re trading, but you can’t process the integer
values this way (unless you willing to have millions of regular expressions). A better solu-

Page 925

Chapter 16

Page 926

tion would be to extract substrings from the legal pattern and process these substrings
after you verify that you have a legal buy or sell command. For example, you could
extract buy or sell into one string, the digits into another, and the company name into a
third. After verifying the syntax of the command, you could process the individual strings
you’ve extracted. The UCR Standard Library patgrab routine provides this capability for
you.

You normally call patgrab after calling match and verifying that it matches the input
string. Patgrab expects a single parameter — a pointer to a pattern recently processed by
match. Patgrab creates a string on the heap consisting of the characters matched by the
given pattern and returns a pointer to this string in es:di. Note that patgrab only returns a
string associated with a single pattern data structure, not a chain of pattern data struc-
tures. Consider the following pattern:

Pat ToG ab pattern {matchstr, strl, 0, Pat2}
Pat 2 pattern {matchstr, str2}

strl byt e “Hello”, 0

str2 byt e “ there”,0

Calling match on PatToGrab will match the string “Hello there”. However, if after calling
match you call patgrab and pass it the address of PatToGrab, patgrab will return a pointer to
the string “Hello”.

Of course, you might want to collect a string that is the concatenation of several
strings matched within your pattern (i.e., a portion of the pattern list). This is where call-
ing the sl_match2 pattern matching function comes in handy. Consider the following pat-
tern:

Nunber s pattern {sl_match2, FirstNunber}
Fi r st Nunber pattern {anycset, digits, 0, QherD gs}
G herD gs pattern {spancset, digits}

This pattern matches the same strings as

Nunber s pattern {anycset, digits, 0, CherD gs}
G herD gs pattern {spancset, digits}

So why bother with the extra pattern that calls sl_match2? Well, as it turns out the
sl_match2 matching function lets you create parenthetical patterns. A parenthetical pattern is
a pattern list that the pattern matching routines (especially patgrab) treat as a single pat-
tern. Although the match routine will match the same strings regardless of which version
of Numbers you use, patgrab will produce two entirely different strings depending upon
your choice of the above patterns. If you use the latter version, patgrab will only return the
first digit of the number. If you use the former version (with the call to sI_match2), then pat-
grab returns the entire string matched by sl_match2, and that turns out to be the entire
string of digits.

The following sample program demonstrates how to use parenthetical patterns to
extract the pertinent information from the stock command presented earlier. It uses paren-
thetical patterns for the buy/sell command, the number of shares, and the company
name.

.xli st
i ncl ude stdlib.a
includelib stdlib.lib
nat chf uncs
st
dseg segment para public ‘data’

; Variabl es used to hold the nunber of shares bought/sold, a pointer to
a string containing the buy/sell command, and a pointer to a string
cont ai ning the conpany nane.

Count wor d 0
QmPt r dword ?
ConpPt r dwor d ?

Control Structures

; Some test strings to try out:

Ondl byt e “Buy 25 shares of apple stock”, 0
Ond2 byt e “Sell 50 shares of hp stock”,0
Ond3 byt e “Buy 123 shares of dec stock”, 0
Ond4 byt e “Sell 15 shares of ibmstock”, 0
BadOndO byt e “This is not a buy/sell command”, 0

Patterns for the stock buy/sell conmand:

; StkOmd matches buy or sell and creates a parenthetical pattern
; that contains the string “buy” or “sell”.

St kO pattern {sl_natch2, buyPat, 0, skipspcsl}
buyPat pattern {matchistr, buystr, sellpat}

buystr byt e “BUY", 0

sel | pat pattern {matchistr,sellstr}

sellstr byt e “SELL", 0

; Skip zero or nore white space characters after the buy command.
ski pspcsl pattern {spancset, whitespace, 0, CountPat}

; CountPat is a parenthetical pattern that natches one or nore
; digits.

Count Pat pattern {sl_match2, Nunbers, 0, skipspcs2}
Nunber s pattern {anycset, digits, 0, RestCNun}
Rest O Num pattern {spancset, digits}

; The following patterns nmatch “ shares of “ allow ng any anmount
; of white space between the words.

ski pspcs2 pattern {spancset, whitespace, 0, sharesPat}
shar esPat pattern {matchistr, sharesStr, 0, skipspcs3}
sharesStr byt e “SHARES’, O

ski pspcs3 pattern {spancset, whitespace, 0, ofPat}

of Pat pattern {matchistr, ofStr, 0, skipspcs4}

of Str byt e “CF", 0

ski pspcs4 pattern {spancset, whitespace, 0, ConpanyPat}

; The follow ng parenthetical pattern natches a conpany nane.
; The patgrab-available string will contain the corporate nane.

ConpanyPat pattern {sl_match2, ibnpat}
i brrpat pattern {matchistr, ibm applePat}
i bm byt e “1BM, 0
appl ePat pattern {matchistr, apple, hpPat}
appl e byt e “APPLE’, 0
hpPat pattern {matchistr, hp, decPat}
hp byt e “H”,0
decPat pattern {matchistr, decstr}
decstr byt e “DEC’, 0

include stdsets.a
dseg ends
cseg segment para public ‘code’

assune cs: cseg, ds:dseg

Page 927

Chapter 16

; DoBuySel | - This routine processes a stock buy/sell command.

; After matching the coomand, it grabs the conponents
; of the command and out puts them as appropri ate.

; Thi s routine denonstrates how to use patgrab to

; extract substrings froma pattern string.

O entry, es:di nust point at the buy/sell command
you want to process.

DoBuy Sel | proc near
| dxi StkOmd
xor CX, CX
mat ch
jnc NoMat ch
| esi St kOmd
pat gr ab
nov word ptr OwPtr, di
nov word ptr OwPtr+2, es
| esi Count Pat
pat gr ab
at oi ;Convert digits to integer
nmov Count, ax
free ;Return storage to heap.
| esi ConpanyPat
pat gr ab
nov word ptr ConpPtr, di
nov word ptr ConpPtr+2, es
printf
byte “Stock command: 9%'s\n”
byt e “Nunber of shares: %l\n”
byt e “Conpany to trade: %s\n\n”,0
dword OndPtr, Count, ConpPtr
I es di, QmPtr
free
I es di, ConpPtr
free
ret
NoMat ch: print
byt e “Il'l egal buy/sell comand”,cr,|f,0
ret
DoBuy Sel | endp
Mai n proc
nov ax, dseg
nov ds, ax
nmov es, ax
nmem ni t
| esi Ondl
cal | DoBuySel |
| esi Ond2
cal l DoBuySel |
| esi Omd3
cal | DoBuySel |
| esi Ond4
cal | DoBuySel |
| esi BadOmd0
cal | DoBuySel |
Qit: Exi t Pgm
Mai n endp

Page 928

Control Structures

cseg ends
sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends
zz77727s€g segnent para public ‘zzzzzz’
Last Byt es db 16 dup (?)
zz7777s€g ends

end Mai n

Sample program output:

St ock command: Buy
Nunber of shares: 25
Conpany to trade: apple

St ock command: Sel |
Nunber of shares: 50
Conpany to trade: hp

St ock command: Buy
Nunber of shares: 123
Conpany to trade: dec

Stock command: Sel |
Nunber of shares: 15
Conpany to trade: ibm

I'llegal buy/sell comrand

16.6 Semantic Rules and Actions

Automata theory is mainly concerned with whether or not a string matches a given
pattern. Like many theoretical sciences, practitioners of automata theory are only con-
cerned if something is possible, the practical applications are not as important. For real
programs, however, we would like to perform certain operations if we match a string or
perform one from a set of operations depending on how we match the string.

A semantic rule or semantic action is an operation you perform based upon the type of
pattern you match. This is, it is the piece of code you execute when you are satisfied with
some pattern matching behavior. For example, the call to patgrab in the previous section is
an example of a semantic action.

Normally, you execute the code associated with a semantic rule after returning from
the call to match. Certainly when processing regular expressions, there is no need to pro-
cess a semantic action in the middle of pattern matching operation. However, this isn’t the
case for a context free grammar. Context free grammars often involve recursion or may
use the same pattern several times when matching a single string (that is, you may refer-
ence the same nonterminal several times while matching the pattern). The pattern match-
ing data structure only maintains pointers (EndPattern, StartPattern, and StrSeg) to the last
substring matched by a given pattern. Therefore, if you reuse a subpattern while matching
a string and you need to execute a semantic rule associated with that subpattern, you will
need to execute that semantic rule in the middle of the pattern matching operation, before
you reference that subpattern again.

It turns out to be very easy to insert semantic rules in the middle of a pattern matching
operation. All you need to do is write a pattern matching function that always succeeds
(i.e., it returns with the carry flag clear). Within the body of your pattern matching routine
you can choose to ignore the string the matching code is testing and perform any other
actions you desire.

Page 929

Chapter 16

Page 930

Your semantic action routine, on return, must set the carry flag and it must copy the
original contents of di into ax. It must preserve all other registers. Your semantic action
must not call the match routine (call sl_match2 instead). Match does not allow recursion (it
is not reentrant) and calling match within a semantic action routine will mess up the pat-

tern match in progress.

The following example provides several examples of semantic action routines within
a program. This program converts arithmetic expressions in infix (algebraic) form to

reverse polish notation (RPN) form.

I NFI X. ASM

to postfix (rpn) notation.

.xli st
i ncl ude stdlib.a
includelib stdlib.lib
nat chf uncs
st
dseg segment para public ‘data’

Gammar for sinmple infix -> postfix translation operation
(the semantic actions are enclosed in braces}:

;. E->FE

; E ->+F {output ‘+} E | -F{output ‘-'} E | <enpty string>
; F->TF

;i F->*T {output ‘*'} F | /T {output ‘/'} F | <enpty string>
; T->-T{output ‘neg’'} | S

; S -> <constant> {output constant} | (E

UCR Standard Library Pattern which handl es the grammar above:

; An expression consists of an “E’ itemfollowed by the end of the string:

i nfix2rpn pattern {sl_Match2, E , EndX Stri ng}
EndOF String pattern {ECS}

; An “E’ itemconsists of an “F’ itemoptionally followed by “+" or “-~
; and another “E’ item

E pattern {sl_Match2, F,,Eprine}

Epri ne pattern {MatchChar, ‘+, Eprime2, epf}

epf pattern {sl_Match2, F,,epPlus}

epPl us pattern {QutputPl us,,, Eprine} ; Senmantic rul e
Epri ne2 pattern {MatchChar, ‘-’, Succeed, enf}

enf pattern {sl_Match2, F,,epM nus}

epM nus pattern {QutputM nus,,, Eprine} ;Semantic rul e

; An “F" itemconsists of a “T" itemoptionally followed by “*” or “/”
; followed by another “T" item

F pattern {sl_Match2, T,,Fprine}

Fpri ne pattern {MatchChar, ‘*', Fprime2, fnf}

f nf pattern {sl_Match2, T, 0, pMwil}

pwul pattern {QutputMil,,, Fprine} ; Semantic rul e
Fpri nme2 pattern {MatchChar, ‘/’, Succeed, fdf}

f df pattern {sl_Match2, T, 0, pDv}

ph v pattern {QutputDiv, O, O,Fprine} ;Semantic rule

A sinpl e program whi ch denonstrates the pattern matching routines in the
UCR library. This programaccepts an arithnetic expression on the command
line (no interleaving spaces in the expression is allowed, that is, there
must be only one command |ine paraneter) and converts it frominfix notation

Control Structures

; Titemconsists of an “S” itemor a “-” followed by another “T" item
T pattern {MtchChar, ‘-', S TT}

T pattern {sl_Match2, T, O,tpn}

tpn pattern {Qutput Neg} ; Senmantic rul e

; An “S itemis either a string of one or more digits or “(“ followed by
; and “E’ itemfollowed by “)”:

Const pattern {sl_Match2, DoDigits, 0, spd}

spd pattern {QutputD gits} ; Senmantic rul e
DoDigits pattern {Anycset, Digits, 0, SpanD gits}

SpanDigits pattern {Spancset, D gits}

S pattern {MatchChar, ‘(‘, Const, IntE

IntE pattern {sl_Match2, E 0, d oseParen}

d osePar en pattern {MtchChar,)’}

Succeed pattern {DoSucceed}

include stdsets.a

dseg ends

cseg segment para public ‘code’
assune cs: cseg, ds:dseg

; DoSucceed nmatches the enpty string. In other words, it natches anything
; and al ways returns success without eating any characters fromthe input
; string.

DoSucceed proc far
nmov ax, di
stc
ret

DoSucceed endp

; QutputPlus is a semantic rule which outputs the “+" operator after the
; parser sees a valid addition operator in the infix string.

Qut put Pl us proc far
print
byt e “ 47,0
nov ax, di ; Required by sl _Match
stc
ret
Qut put Pl us endp

w

; QutputMnus is a semantic rul e which outputs the operator after the
; parser sees a valid subtraction operator in the infix string.

Qut put M nus proc far
print
byt e “ =70
nov ax, di ; Requi red by sl _Match
stc
ret
Qut put M nus endp

; QutputMul is a senantic rule which outputs the “*” operator after the
; parser sees a valid nmultiplication operator in the infix string.

Page 931

Chapter 16

Qut put Mul proc far
print
byt e “oxm0
nov ax, di ; Required by sl _Match
stc
ret
Qut put Mul endp

; QutputDv is a senantic rule which outputs the “/” operator after the
; parser sees a valid division operator in the infix string.

QutputD v proc far
print
byt e “ 17,0
nov ax, di ; Required by sl _Match
stc
ret
Qut put D v endp

; QutputNeg is a senantic rule which outputs the unary “-" operator after the
; parser sees a valid negation operator in the infix string.

Qut put Neg proc far
print
byt e “ neg”, 0
nov ax, di ; Required by sl _Match
stc
ret
Qut put Neg endp

; QutputDgits outputs the nuneric value when it encounters a | egal integer
; value in the input string.

QutputDigits pr oc far
push es
push di
nmov al, ‘!
put c
| esi const
pat gr ab
put s
free
stc
pop di
nmov ax, di
pop es
ret
QutputDigits endp

; Ckay, here’s the nain programwhich fetches the command |ine parareter
; and parses it.

Mai n proc
nov ax, dseg
nov ds, ax
nmov es, ax
mem ni t ; menory to the heap.
print
byte “Enter an arithmetic expression: “,0
getsm
print
byt e “Expression in postfix form “,0

Page 932

Control Structures

| dxi i nfix2rpn
Xor cX, CX
mat ch

jc Succeeded

print
byt e “Syntax error”,0

Succeeded: put cr

Qit: Exi t Pgm
Mai n endp

cseg ends

; Allocate a reasonabl e anount of space for the stack (8k).

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

; zzzzzzseg nust be the |ast segment that gets | oaded into menory!

zz77277S€eg segnent para public ‘zzzzzz’
Last Byt es db 16 dup (?)
z777727s€eg ends

end Mai n

16.7 Constructing Patterns for the MATCH Routine

A major issue we have yet to discuss is how to convert regular expressions and con-
text free grammars into patterns suitable for the UCR Standard Library pattern matching
routines. Most of the examples appearing up to this point have used an ad hoc translation
scheme; now it is time to provide an algorithm to accomplish this.

The following algorithm converts a context free grammar to a UCR Standard Library
pattern data structure. If you want to convert a regular expression to a pattern, first con-
vert the regular expression to a context free grammar (see “Converting REs to CFGs” on
page 905). Of course, it is easy to convert many regular expression forms directly to a pat-
tern, when such conversions are obvious you can bypass the following algorithm; for
example, it should be obvious that you can use spancset to match a regular expression like
[0-97*.

The first step you must always take is to eliminate left recursion from the grammar.
You will generate an infinite loop (and crash the machine) if you attempt to code a gram-
mar containing left recursion into a pattern data structure. For information on eliminating
left recursion, see “Eliminating Left Recursion and Left Factoring CFGs” on page 903. You
might also want to left factor the grammar while you are eliminating left recursion. The
Standard Library routines fully support backtracking, so left factoring is not strictly neces-
sary, however, the matching routine will execute faster if it does not need to backtrack.

If a grammar production takes the form A — B C where A, B, and C are nonterminal
symbols, you would create the following pattern:

A pattern {sl_match2,B,0,C

This pattern description for A checks for an occurrence of a B pattern followed by a C
pattern.

Page 933

Chapter 16

Page 934

If B is a relatively simple production (that is, you can convert it to a single pattern
data structure), you can optimize this to:

A pattern {B's Matching Function, B's paraneter, 0, G
The remaining examples will always call sl_match2, just to be consistent. However, as long
as the nonterminals you invoke are simple, you can fold them into A”s pattern.

If a grammar production takes the form A - B | C where A, B, and C are nontermi-
nal symbols, you would create the following pattern:

A pattern {sl_match2, B, G

This pattern tries to match B. If it succeeds, A succeeds; if it fails, it tries to match C. At this
point, A”s success or failure is the success or failure of C.

Handling terminal symbols is the next thing to consider. These are quite easy — all you
need to do is use the appropriate matching function provided by the Standard Library,
e.g., matchstr or matchchar. For example, if you have a production of the form A — abc |y
you would convert this to the following pattern:

A pattern {matchstr, abc, ypat}
abc byt e “abc”, 0
ypat pattern {matchchar,’'y’}

The only remaining detail to consider is the empty string. If you have a production of
the form A — € then you need to write a pattern matching function that always succeed.
The elegant way to do this is to write a custom pattern matching function. This function is

succeed proc far
nov ax, di ; Required by sl _natch
stc ; Always succeed.
ret

succeed endp

Another, sneaky, way to force success is to use matchstr and pass it the empty string to
match, e.g.,

success pattern {matchstr, enptystr}
enptystr byte 0

The empty string always matches the input string, no matter what the input string con-
tains.

If you have a production with several alternatives and € is one of them, you must pro-
cess € last. For example, if you have the productions A - abc | y | BC | € you would
use the following pattern:

A pattern {matchstr,abc, tryY}

abc byt e “abc”, 0

tryY pattern {matchchar, 'y, tryBG
tryBC pattern {sl_match2, B, DoSuccess, G
DoSuccess pattern {succeed}

While the technique described above will let you convert any CFG to a pattern that
the Standard Library can process, it certainly does not take advantage of the Standard
Library facilities, nor will it produce particularly efficient patterns. For example, consider
the production:

Dgits -~ 0] 1] 2| 3] 4] 5|6 7] 8] 29

Converting this to a pattern using the techniques described above will yield the pattern:

Digits pattern {matchchar, ‘0’, try1}
tryl pattern {matchchar, ‘1’, try2}
try2 pattern {matchchar, ‘2, try3}
try3 pattern {matchchar, ‘3’, try4}
try4 pattern {matchchar, ‘4’, try5}
try5 pattern {matchchar, ‘5’, try6}
try6 pattern {matchchar, ‘6’, try7}

Control Structures

try7 pattern {matchchar, ‘7’, try8}
try8 pattern {matchchar, ‘8’, try9}
try9 pattern {matchchar, ‘9'}

Obviously this isn’t a very good solution because we can match this same pattern with the
single statement:

Dgits pattern {anycset, digits}

If your pattern is easy to specify using a regular expression, you should try to encode
it using the built-in pattern matching functions and fall back on the above algorithm once
you’ve handled the low level patterns as best you can. With experience, you will be able to
choose an appropriate balance between the algorithm in this section and ad hoc methods
you develop on your own.

16.8 Some Sample Pattern Matching Applications

The best way to learn how to convert a pattern matching problem to the respective
pattern matching algorithms is by example. The following sections provide several exam-
ples of some small pattern matching problems and their solutions.

16.8.1 Converting Written Numbers to Integers

One interesting pattern matching problem is to convert written (English) numbers to
their integer equivalents. For example, take the string “one hundred ninety-two” and con-
vert it to the integer 192. Although written numbers represent a pattern quite a bit more
complex than the ones we’ve seen thus far, a little study will show that it is easy to decom-
pose such strings.

The first thing we will need to do is enumerate the English words we will need to pro-
cess written numbers. This includes the following words:

zero, one, two, three, four, five, six, seven, eight, nine, ten, eleven twelve,
thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty,
thirty, forty, fifty sixty, seventy, eighty, ninety, hundred, and thousand.

With this set of words we can build all the values between zero and 65,535 (the values we
can represent in a 16 bit integer.

Next, we’ve got to decide how to put these words together to form all the values
between zero and 65,535. The first thing to note is that zero only occurs by itself, it is never
part of another number. So our first production takes the form:

Number - zero | NonZero

The next thing to note is that certain values may occur in pairs, denoting addition. For
example, eighty-five denotes the sum of eighty plus five. Also note that certain other pairs
denote multiplication. If you have a statement like “two hundred” or “fifteen hundred”
the “hundred” word says multiply the preceding value by 100. The multiplicative words,
“hundred” and “thousand” , are also additive. Any value following these terms is added
in to the total®; e.g., “one hundred five” means 1*100+5. By combining the appropriate
rules, we obtain the following grammar

NonZero - Thousands Maybel00s | Hundreds
Thousands - Uhder 100 t housand

MaybelO0s - Hundreds | €

Hundreds - Uhder 100 hundred After100 | Uhder 100
After100 - Lhder100 | €

9. We will ignore special multiplicative forms like “one thousand thousand” (one million) because these forms are
all too large to fit into 16 bits. .

Page 935

Chapter 16

Page 936

Uhder 100 - Tens Maybels| Teens | ones

Maybels - hes | €

ones -~ one | tw | three | four | five | six | seven | eight | nine

teens - ten | eleven | twelve | thirteen | fourteen | fifteen | sixteen |
seventeen | eighteen | nineteen

tens - twenty | thirty | forty | fifty | sixty | seventy | eighty | ninety

The final step is to add semantic actions to actually convert the strings matched by
this grammar to integer values. The basic idea is to initialize an accumulator value to zero.
Whenever you encounter one of the strings that ones, teens, or tens matches, you add the
corresponding value to the accumulator. If you encounter the hundred or thousand
strings, you multiply the accumulator by the appropriate factor. The complete program to
do the conversion follows:

Nunber s. asm

to “sixty five thousand five hundred thirty five” to the correspondi ng

; This programconverts witten English nunbers in the range “zero”
; integer val ue.

.xlist
i ncl ude stdlib.a
includelib stdlib.lib
mat chf uncs
st
dseg segment para public ‘data’
Val ue wor d 0 :Store results here.
Hundr edsVal wor d 0
ThousandsVal wor d 0
Str0 byt e “twenty one”, 0
Strl byt e “nineteen hundred thirty-five”, 0
Str2 byt e “thirty three thousand two hundred nineteen”, O
Str3 byt e “three”, 0
Str4 byt e “fourteen”, 0
Str5 byt e “fifty two”,0
Str6 byt e “seven hundred”, O
Str7 byt e “two thousand seven”, O
Str8 byt e “four thousand ninety six”,0
Str9 byt e “five hundred twel ve”, 0
Str10 byt e “twenty three thousand two hundred ninety-five”, 0
Strll byt e “seventy-five hundred”, O
Stri12 byt e “sixty-five thousand”, O
Stri3 byt e “one thousand”, 0

The following grammar is what we use to process the nunbers.
Semantic actions appear in the braces.

Note: begin by initializing Value, HundredsVal, and ThousandsVal to zero.

N -> separators zero

; | N4

N4 -> dol1000s naybel00s

; | do100s

© Maybe100s -> do100s

; | <enpty string>

do1000s -> Under 100 “ THOUSAND' separators

; {ThousandsVal := Val ue*1000}
do100s -> Under 100 “HUNDRED'

Af t er 100

Under 100

tryls

try20

doTeens

dols

separators
delin2
doSuccess
At Last

At ECS

Maybel00s

do1000s
do1000s2
do1000s3
do1000s4
do1000s5
str1000

do100s

do100s1
do100s2
do100s3
do100s4
do100s5
str100

After 100
Aft er 100a

Under 100
Under 100a
Under 100b

DolorE

NunPat

Control Structures

{HundredsVal := Val ue*100} After100
| Under 100
-> {Val ue := 0} Under 100
| {Value := 0} <enpty string>
->{Value := 0} try20 tryls
| {Value := 0} doTeens
| {Value := 0} dols
-> dols | <enpty string>

-> “TWENTY” {Val ue : =

| “THRTY" {Val ue :

-> “TEN'
I
I
I

s OE
| HT\,DV
| ...

| HN’\EV

pattern
pattern
pattern
pattern
pattern

pattern
pattern
byt e

pattern
pattern
pattern

pattern
pattern
pattern
pattern
pattern
byt e

pattern
pattern
pattern
pattern
pattern
pattern
byt e

pattern
pattern

pattern
pattern
pattern

pattern

nacr o

“ELEVEN' {Val ue

{Val ue : = Va

{Val ue : = Va
{Val ue : = Va

{Val ue : = Va

{anycset, de
{spancset, d
{succeed}

{sl _mat ch2,
{EC8}

{sl _mat ch2,
{mat chi str,
“ZERT', 0

{sl _mat ch2,
{sl _mat ch2,
{sl _mat ch2,

{sl _mat ch2,
{mat chi str,
{sl _mat ch2,
{ECS, 0, O,
{Get 1000s}
“THOUSAND', O

{sl _mat ch2,
{sl _mat ch2,
{mat chi str,
{sl _mat ch2,
{ECS, 0, O,
{Get 100s}

“HUNDRED', O

{SetVal, 0,
{sl _mat ch2,

{SetVal, 0,
{sl _mat ch2,
{sl _mat ch2,

{sl _mat ch2,

Val ue + 20}

= Val ue + 30}

| NI\ETY {Val ue : = Val ue + 90}

| ue + 10}

1= Value + 11}

“ Nl NETEEN {Val ue : = Val ue + 19}

lue + 1}
lue + 2}

lue + 9}

limters, 0, deling}
elimters}

separators, AtECS, At ECS

separators, N2, N2}
zero, N3, Atlast}

N4, 0, Atlast}
do1000s, dol00s, Maybel0Os}
dol00s, Atlast, AtlLast}

Under 100, 0, dol000s2}
str1000, 0, dol000s3}

separat ors, dol000s4, dol000s5}
do1000s5}

dol100s1, Under 100, After 100}
Under 100, 0, dol00s2}
str100, 0, dol00s3}

separat ors, dol00s4, dol00s5}
dol100s5}

0, After100a}
Under 100, doSuccess}

0, Under 100a}
try20, Under100b, Dolor E}
doTeens, dols}

dols, doSuccess, 0}

I bl, next, Constant, string

Page 937

Chapter 16

| ocal try, SkipSpcs, val, str, tryECS
I bl pattern {sl_match2, try, next}
try pattern {matchistr, str, 0, SkipSpcs}
Ski pSpcs pattern {sl_match2, separators, tryECS, val}
tryecs pattern {EGCs, 0, 0, val}
val pattern {AddVal, Constant}
str byt e string
byt e 0
endm

NunPat doTeens, tryll, 10, “TEN
NunPat tryll, tryl2, 11, “ELEVEN’
NunPat tryl2, try13, 12, “TVELWF
NunPat tryl3, tryl4, 13, “TH RTEEN
NunPat tryld, tryl5, 14, “FCOURTEEN'
NunPat tryl5, try16, 15, “FlI FTEEN’
NunPat tryl6, tryl7, 16, “SI XTEEN’
NunPat tryl7, tryl18, 17, “SEVENTEEN'
NunPat try18, try19, 18, “El GHTEEN
NunPat try19, 0, 19, “N NETEEN’

NunPat dols, try2,
NunPat try2, try3,
NunPat try3, try4,
NunPat try4, trys,
NunPat try5, try6,
NunPat try6, try7,
NunPat try7, try8,
NunPat try8, try9,
NunPat try9, 0, 9,

8335

FONO U WNE
Py
figges
bed
527

NunPat try20, try30, 20, “TVENTY’
NunPat try30, try40, 30, “TH RTY’
NunPat try40, try50, 40, “FORTY’

NunPat try50, try60, 50, “FlFTY’

NunPat try60, try70, 60, “SIXTY’

NunPat try70, try80, 70, “SEVENTY”
NunPat try80, try90, 80, “El GHTY’
NunPat try9o, 0, 90, “N NETY”

include stdsets.a

dseg ends

cseg segment para public ‘code’
assune cs: cseg, ds:dseg

Semantic actions for our grammar:

Get 1000s- VW' ve just processed the value one..nine, grab it from
the value variable, multiply it by 1000, and store it
i nto thousandsval .

1
)
’
’
)
)
’

Get 1000s proc far
push ds
push dx
nov ax, dseg
nov ds, ax
mv ax, 1000
mul Val ue
nov ThousandsVal , ax
nov Val ue, 0
pop dx

Page 938

Control Structures

nov ax, di ; Required by sl _match.
pop ds
stc ; Always return success.
ret

Get 1000s endp

; CGet 100s- VW' ve just processed the value one..nine, grab it from

; the value variable, multiply it by 100, and store it
; i nto hundredsval .

Get 100s proc far
push ds
push dx
nov ax, dseg
nov ds, ax
mov ax, 100
mul Val ue
nov Hundr edsVal , ax
nov Val ue, 0
pop dx
nov ax, di ; Required by sl _match.
pop ds
stc ; Always return success.
ret
Get 100s endp
; Set Val - This routine sets Value to whatever is in si
Set Val proc far
push ds
nov ax, dseg
nov ds, ax
nov Val ue, si
mv ax, di
pop ds
stc
ret
Set Val endp
; Addval - This routine sets adds whatever is in si to Value
AddVal proc far
push ds
nov ax, dseg
nov ds, ax
add Val ue, si
mov ax, di
pop ds
stc
ret
AddVal endp

; Succeed matches the enpty string. In other words, it matches anything
; and al ways returns success wi thout eating any characters fromthe input
; string.

Succeed proc far
nmov ax, di
stc
ret

Succeed endp

; This subroutine expects a pointer to a string containing the English
; version of an integer nunmber. It converts this to an integer and

Page 939

Chapter 16

; prints the result.

Conver t Nunber proc near
nov val ue, 0
nov HundredsVal, 0
nov ThousandsVal , 0
| dxi N
xor CcX, CX
mat ch
jnc NoMat ch
nov al, “”
put ¢
put s
print
byt e =0
nov ax, ThousandsVal
add ax, HundredsVal
add ax, Val ue
put u
put cr
jnp Done
NoMat ch: print
byt e “Illegal number”,cr,If,0
Done: ret

Conver t Nurrber endp

Mai n proc

nov ax, dseg

nov ds, ax

nov es, ax

mem ni t ;Init mermory manager.
; Unionina “-" tothe delimters set because nunbers can have

; dashes in them

| esi delimters
mov al, ‘-’
addchar

; Some calls to test the ConvertNunber routine and the conversion process.

| esi Str0

cal | Conver t Nunber
| esi Stri

cal | Conver t Nunber
| esi Str2

cal | Conver t Nunber
| esi Str3

cal | Conver t Nunber
| esi Str4

cal | Conver t Nunber
| esi Str5

cal | Conver t Nunber
| esi Stré

cal | Conver t Nunber
| esi Str7

cal | Conver t Nunber
| esi Str8

cal | Conver t Nunber
| esi Str9

cal | Conver t Nunber
| esi Stri10

cal | Conver t Nunber
| esi Stril

Page 940

Control Structures

cal Conver t Nurrber

| esi Stri12

cal | Conver t Nurrber

| esi Stri13

cal | Conver t Nurrber
Qit: Exi t Pgm
Mai n endp
cseg ends
sseg segment para stack ‘stack
stk db 1024 dup (“stack “)
sseg ends
zz77277S€g segnment para public ‘zzzzzz
Last Byt es db 16 dup (?)
z72727s€eg ends

end Mai n

Sample output:

‘twenty one’ = 21

‘nineteen hundred thirty-five = 1935

‘thirty three thousand two hundred ni neteen’ = 33219
‘three’ =3

‘fourteen’ = 14

‘fifty two’ = 52

‘seven hundred’ = 700

‘two thousand seven’ = 2007

‘four thousand ninety six’ = 4096

‘five hundred twelve' = 512

‘twenty three thousand two hundred ninety-five = 23295
‘seventy-five hundred’ = 7500

‘sixty-five thousand’ = 65000

‘one thousand’ = 1000

16.8.2

Processing Dates

Another useful program that converts English text to numeric form is a date proces-
sor. A date processor takes strings like “Jan 23, 1997” and converts it to three integer val-
ues representing the month, day, and year. Of course, while we’re at it, it’s easy enough to
modify the grammar for date strings to allow the input string to take any of the following
common date formats:

Jan 23, 1997
January 23, 1997
23 Jan, 1997

23 January, 1997
1/ 23/ 97

1-23-97

1/ 23/ 1997
1-23-1997

In each of these cases the date processing routines should store one into the variable
month, 23 into the variable day, and 1997 into the year variable (we will assume all years
are in the range 1900-1999 if the string supplies only two digits for the year). Of course, we
could also allow dates like “January twenty-third, nineteen hundred and ninety seven” by
using an number processing parser similar to the one presented in the previous section.
However, that is an exercise left to the reader.

The grammar to process dates is

Date - Enghbn | nt eger I nteger |
I nt eger Enghbn | nt eger

Page 941

Chapter 16

Integer | Integer | Integer |
Integer - Integer - Integer

Enghbn — JAN | JANUARY | FEB | FEBRUARY | ...| DEC | DECEMBER
I nteger - digit Integer | digit
digit - 0] 1] 2| 3| 4| 5| 6] 7] 8|9

We will use some semantic rules to place some restrictions on these strings. For exam-
ple, the grammar above allows integers of any size; however, months must fall in the
range 1-12 and days must fall in the range 1-28, 1-29, 1-30, or 1-31 depending on the year
and month. Years must fall in the range 0-99 or 1900-1999.

Here is the 80x86 code for this grammar:

dat epat . asm

Thi s programconverts dates of various formats to a three integer
conponent val ue- nonth, day, and year.

xli st
. 286
i ncl ude stdlib.a
includelib stdlib.lib
nmat chf uncs
st
Jlall
dseg segment para public ‘data’

; The following three variables hold the result of the conversion.

nont h wor d 0
day wor d 0
year wor d 0

; StrPtr is a double word val ue that points at the string under test.
; The output routines use this variable. It is declared as two word

; values so it is easier to store es:di intoit.

strptr wor d 0,0

; Value is a generic variable the Convertlnt routine uses

val ue wor d 0

; Nunber of valid days in each month (Feb is handl ed specially)

Days| nhont h byte 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31

; Sone sanple strings to test the date conversion routines.

Str0 byt e “Feb 4, 1956”,0
Stri byt e “July 20, 1960",0
Str2 byt e “Jul 8, 1964”",0
Str3 byt e “1/1/97",0

Str4 byt e “1-1-1997",0

Str5 byt e “12-25-74",0

Stré byt e “3/28/1981",0

Str7 byt e “January 1, 1999”,0
Str8 byt e “Feb 29, 1996”,0
Str9 byt e “30 June, 1990",0
Str10 byt e “August 7, 1945”",0
Stri1 byt e “30 Septenber, 1992”,0
Stri2 byt e “Feb 29, 1990",0
Stri13 byt e “29 Feb, 1992”,0

Page 942

Control Structures

The foll owing grammar is what we use to process the dates

Date -> EngMon | nt eger | nteger
| I nt eger Enghon I nteger
| Integer “/” Integer “/” Integer
| Integer “-" Integer “-" |nteger
EngMon- > Jan | January | Feb | February | ... | Dec | Decenber
I nt eger - > digit integer | digit
digit-> o] 1] ...19

Sone senmantic rules this code has to check:

If the year is in the range 0-99, this code has to add 1900 to it.

If the year is not in the range 0-99 or 1900-1999 then return an error.
The nmonth nust be in the range 1-12, else return an error.

The day nmust be between one and 28, 29, 30, or 31. The exact maximum
day depends on the nonth.

separators pattern {spancset, deliniters}

; DatePat processes dates of the form*“MnlnEnglish Day Year”

Dat ePat pattern {sl_natch2, EngMon, DatePat2, DayYear}
DayYear pattern {sl_match2, Daylnteger, 0, YearPat}
Year Pat pattern {sl_natch2, Yearlnteger}

; DatePat2 processes dates of the form*“Day MnlnEng Year”

Dat ePat 2
Mont hYear

{sl _match2, Daylnteger, DatePat3, MonthYear}
{sl _match2, Enghon, O, YearPat}

pattern
pattern

; DatePat 3 processes dates of the form*“mmdd-yy”

Dat ePat 3 pattern {sl_match2, Monlnteger, DatePat4, DatePat3a}
Dat ePat 3a pattern {sl_natch2, separators, DatePat3b, DatePat3b}
Dat ePat 3b pattern {matchchar, ‘-', 0, DatePat3c}

Dat ePat 3c pattern {sl_match2, Daylnteger, 0, DatePat3d}

Dat ePat 3d pattern {sl_natch2, separators, DatePat3e, DatePat3e}
Dat ePat 3e pattern {matchchar, ‘-', 0, DatePat3f}

Dat ePat 3f pattern {sl_match2, Yearlnteger}

; DatePat4 processes dates of the form*“nm dd/yy”

Dat ePat 4

Dat ePat 4a
Dat ePat 4b
Dat ePat 4c
Dat ePat 4d
Dat ePat 4e
Dat ePat 4f

; Dayl nt eger
; stores the

Dayl nt eger
Set DayPat

;. Monl nt eger
; stores the

Monl nt eger
Set MonPat

pattern
pattern
pattern
pattern
pattern
pattern
pattern

mat ches an deci mal

{sl _mat ch2,
{sl _mat ch2,
{mat chchar,
{sl _mat ch2,
{sl _mat ch2,
{mat chchar,
{sl _mat ch2,

string,

Monl nt eger, 0, DatePat4a}
separat ors, DatePat4b, DatePat4b}
‘/", 0, DatePatd4c}

Dayl nt eger, 0, DatePat4d}
separat ors, DatePat4e, DatePat4e}
“/’, 0, DatePat4f}

Year | nt eger }

result away in the Day variable.

pattern
pattern

mat ches an deci nmal

{sl _mat ch2,
{ Set Day}

string,

converts it to an integer, and
Integer, 0, SetDayPat}
converts it to an integer, and

result away in the Month variabl e.

pattern
pattern

{sl _mat ch2,
{ Set Mon}

Integer, 0, SetMnPat}

Page 943

Chapter 16

Page 944

; Yearlnteger matches an deci mal string, converts it to an integer,
; stores the result away in the Year variabl e.

Year | nt eger pattern {sl_match2, Integer, 0, SetYearPat}
Set Year Pat pattern {SetYear}

; Integer skips any leading delimter characters and then natches a
; decimal string. The IntegerO pattern natches exactly the deci nal

; characters; the code does a patgrab on Integer0 when converting

; this string to an integer.

| nt eger pattern {sl_natch2, separators, 0, Integer0}
I nt eger 0 pattern {sl_match2, nunber, 0, Convert2int}
nunber pattern {anycset, digits, 0, nunber?2}

nunber 2 pattern {spancset, digits}

Convert 21 nt pattern {Convertlnt}

; Anmacro to make it easy to declare each of the 24 English nonth
; patterns (24 because we allow the full nonth nane and an
; abbreviation).

MoPat nmacr o name, next, str, str2, value
local SetM, string, full, short, string2, doMn

nanme pattern {sl_match2, short, next}
short pattern {matchistr, string2, full, SetM}
full pattern {matchistr, string, 0, SetM}
string byte str

byt e 0
string2 byt e str2

byt e 0
Set Mo pattern {Monthval, val ue}

endm

; EnghMbn is a chain of patterns that match one of the strings
; JAN, JANUARY, FEB, FEBRUARY, etc. The |ast paraneter to the
MoPat nmacro is the nonth nunber.

Enghbn pattern {sl _match2, separators, jan, jan}
MoPat jan, feb, “JAN', “JANUARY", 1
MoPat feb, mar, “FEB’, “FEBRUARY", 2
MoPat mar, apr, “NMAR', “MARCH', 3
MoPat apr, may, “APR', “APRIL", 4
MoPat may, jun, “MAY", “MAY’, 5
MoPat jun, jul, “JUN', “JUNE’, 6
MoPat jul, aug, “Jwr, “Juy', 7
MoPat aug, sep, “AUG, “AUGASST", 8
MoPat sep, oct, “SEP’, “SEPTEMBER’, 9
MoPat oct, nov, “CCr", “CCTCBER', 10
MoPat nov, decem “NOV', “NOVEMBER', 11
MoPat decem 0, “DEC’, “DECEMBER’, 12

and

; W use the “digits” and “delimters” sets fromthe standard library.

include stdsets.a

dseg ends

cseg

; Convertlnt-

Convert | nt

Convert | nt
; SetDay, SetMn
; variabl e.

Set Day

Set Day

Set Mon

Set Mon

Set Year

Control Structures

segment para public ‘code’
assune cs: cseg, ds:dseg

Mat ches a sequence of digits and converts themto an integer.

proc far

push ds

push es

push di

nov ax, dseg

nov ds, ax

lesi Integer0 ;Integer0 contains the decina

pat gr ab ; string we matched, grab that
at ou ; string and convert it to an

nov Val ue, ax ; integer and save the result.
free ;Free mem al | ocat ed by patgrab
pop di

nov ax, di ; Required by sl _match

pop es

pop ds

stc ; Always succeed.

ret

endp

and Set Year sinply copy value to the appropriate

proc far

push ds

nov ax, dseg
nov ds, ax
nov ax, value
nov day, ax
nmov ax, di
pop ds

stc

ret

endp

proc far

push ds

nov ax, dseg
nov ds, ax
nov ax, value
nov Mont h, ax
nmov ax, di
pop ds

stc

ret

endp

proc far

push ds

nov ax, dseg
nov ds, ax
nov ax, value
nmov Year, ax
nmov ax, d

pop ds

stc

ret

Page 945

Chapter 16

Page 946

Set Year

;. Mont hval

endp

is a pattern used by the English nmonth patterns.

; This pattern function sinply copies the matchparmfield to
; the nonth variable (the matchparmfield is passed in si).

Mont hval

Mont hval

;. ChkDat e-

ChkDat e

proc far

push ds

nov ax, dseg
nov ds, ax
nov Month, s
nov ax, di
pop ds

stc

ret

endp

Checks a date to see if it is valid. Returns with the
carry flag set if it is, clear if not.

proc far

push ds

push ax

push bx

nov ax, dseg
nov ds, ax

; If the year is in the range 0-99, add 1900 to it.
; Then check to see if it’s in the range 1900- 1999.

Not b100:

cnp Year, 100
ja Not b100
add Year, 1900
cnp Year, 2000
j ae BadDat e
cnp Year, 1900
ib BadDat e

; Ckay, make sure the nonth is in the range 1-12

cnp Mont h, 12
ja BadDat e
cnp Month, 1
ib BadDat e

; See if the nunber of days is correct for all nonths except Feb:

nov bx, Month

nov ax, Day ; Make sure Day <> O.
test ax, ax

je BadDat e

cnp ah, 0 ; Make sure Day < 256.
j ne BadDat e

cnp bx, 2 ; Handl e Feb el sewhere.
je DoFeb

cnp al , Daysl nMont h[bx- 1] ; Check agai nst nax val .
ja BadDat e

jmp GoodDat e

; Kludge to handl e | eap years. Note that 1900 is *not* a | eap year.

DoFeb:

cnp ax, 29 ;Only applies if day is
ib GoodDat e ; equal to 29.

ja BadDat e ;Error if Day > 29.

nov bx, Year ;1900 is not a | eap year

Control Structures

cnp bx, 1900 ; s0 handl e that here.
je BadDat e
and bx, 11b ;Else, Year nod 4 is a
j ne BadDat e ; leap year.

GoodDat e: pop bx
pop ax
pop ds
stc
ret

BadDat e: pop bx
pop ax
pop ds
cle
ret

ChkDat e endp

Convert Dat e- ES: D contains a pointer to a string containing a valid

; date. This routine converts that date to the three

; i nteger values found in the Month, Day, and Year

; variables. Then it prints themto verify the pattern
; nat chi ng routi ne.

Convert Dat e proc near
| dxi Dat ePat
Xor cX, CX
mat ch
jnc NoMat ch
nov strptr, di ; Save string pointer for
nov strptr+2, es ; use by printf
cal | ChkDat e ;Validate the date.
jnc NoMat ch
printf
byt e “%20"s = Month: %d Day: 9%d Year: %d\n",0
dwor d strptr, Mnth, Day, Year
jmp Done
NoMat ch: printf
byt e “Illegal date (‘9%s’)",cr,If,0
dword strptr
Done: ret
Convert Dat e endp
Mai n proc
nov ax, dseg
nov ds, ax
nmov es, ax
mem ni t ;I nit memory manager.

; Call ConvertDate to test several different date strings.

| esi Str0
cal | Convert Dat e
| esi Stri
cal | Convert Dat e
| esi Str2
cal | Convert Dat e
| esi Str3
cal | Convert Dat e

Page 947

Chapter 16

| esi Str4

cal | Convert Dat e

| esi Str5

cal l Convert Dat e

| esi Stré

cal Convert Dat e

| esi Str7

cal Convert Dat e

| esi Str8

cal | Convert Dat e

| esi Str9

cal | Convert Dat e

| esi Str10

cal Convert Dat e

| esi Strlil

cal Convert Dat e

| esi Stri2

call Convert Dat e

| esi Stri13

call Convert Dat e
Qit: Exi t Pgm
Mai n endp
cseg ends
sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends
zzz77277S€eg segnent para public ‘zzzzzz’
Last Byt es db 16 dup (?)
z777727s€eg ends

end Mai n
Sample Output:
Feb 4, 1956 = Month: 2 Day: 4 Year: 1956
July 20, 1960 = Month: 7 Day: 20 Year: 1960
Jul 8, 1964 = Month: 7 Day: 8 Year: 1964
1/ 1/ 97 = Mnth: 1 Day: 1 Year: 1997
1-1- 1997 = Mnth: 1 Day: 1 Year: 1997
12-25-74 = Month: 12 Day: 25 Year: 1974
3/ 28/ 1981 = Month: 3 Day: 28 Year: 1981
January 1, 1999 = Mnth: 1 Day: 1 Year: 1999
Feb 29, 1996 = Month: 2 Day: 29 Year: 1996
30 June, 1990 = Month: 6 Day: 30 Year: 1990
August 7, 1945 = Month: 8 Day: 7 Year: 1945
30 Septenber, 1992 = Month: 9 Day: 30 Year: 1992
Illegal date (‘Feb 29, 1990')
29 Feb, 1992 = Month: 2 Day: 29 Year: 1992

16.8.3

Page 948

Evaluating Arithmetic Expressions

Many programs (e.g., spreadsheets, interpreters, compilers, and assemblers) need to
process arithmetic expressions. The following example provides a simple calculator that
operates on floating point numbers. This particular program uses the 80x87 FPU chip,
although it would not be too difficult to modify it so that it uses the floating point routines
in the UCR Standard Library.

;AR TH2. ASM

; Asinple floating point cal culator that denonstrates the use of the
; UCR Standard Library pattern matching routines. Note that this

; programrequires an FPU.

.xli st
. 386
. 387
option segment:usel6
i ncl ude stdlib.a
includelib stdlib.lib
nmat chf uncs
st
dseg segment para public ‘data’

Control Structures

; The following is a tenporary used when converting a floating point

; string to a 64 bit real

Cur Val ue real 8

; Sone sanpl e strings containing expressions to try out:

Stri byt e
Str2 byt e
Str3 byt e
Str4 byt e
Str5 byt e
Str6 byt e
Str7 byt e
Str8 byt e
Str9 byt e
str10 byt e

FE {print result}
> +F {fadd} E | -F
TF

-T {fchs} | S

val ue.

0.0

“5+2%(3-1)",0
“(5+2)*(7-10)", 0
“5 0

“(6+2)/ (5+1) - 7€5*2/ 1. 3e2+1. 5", 0

“2.5%(2-(3+1)/4+1)”, 0
u6+(_5*2)11,0

g 170
“1.2e5/ 2. 1e5", 0

“0. 9999999999999999+1e- 15", 0

“2.1-1.17,0

Gammar for sinple infix -> postfix translation operation:
Semantic rul es appear in braces.

->
- {fsub} E | <enpty string>
->
->*T {fnul} F | /T {fdiv} F | <enpty string>
->
->

<constant> {fld constant} | (B

UCR Standard Library Pattern which handl es the grammar above:

; An expression consists of an “E’ itemfollowed by the end of the string:

Expr essi on pattern
EndOF String pattern

; An “E’ itemconsists of
; and another “E' item

E pattern
Epri me pattern
epf pattern
epPl us pattern
Epri me2 pattern
enf pattern
epM nus pattern

; An “F" itemconsists of
; followed by another “T"

F pattern
Fpri ne pattern
f nf pattern
pwul pattern

{sl _Match2, E, , EndCX Stri ng}

{EC8}

an “F" itemoptionally followed by “+" or

{sl _Match2, F,, Eprine}

{Mat chChar, ‘+, Eprime2, epf}

{sl _Match2, F,,epPlus}
{DoFadd, , , Epri ne}

{Mat chChar, ‘-’, Succeed, enf}

{sl _Match2, F,,epM nus}
{DoFsub, , , Epri ne}

“_n

a“T itemoptionally followed by “*” or “/”

item

{sl _Match2, T,, Fprine}

{Mat chChar, ‘*’, Fprime2, fnf}

{sl _Match2, T, 0, pMil}
{DoFmul , , , Fpri ne}

Page 949

Chapter 16

Fpri ne2 pattern {MatchChar, ‘/’, Succeed, fdf}

f df pattern {sl_Match2, T, 0, pD v}

pD v pattern {DoFdiv, 0, O, Fprine}

; Titemconsists of an “S” itemor a “-” followed by another “T" item
T pattern {MatchChar, ‘-', S, TT}

T pattern {sl_Match2, T, O,tpn}

tpn pattern {DoFchs}

An “S’ itemis either a floating point constant or “(“ followed by
and “E’ itemfollowed by “)”.

: The regul ar expression for a floating point constant is
; [0-9]+ (“.” [0-91* |) (((elB) (+-]) [0-9]1+4) |)
: Note: the pattern “Const” matches exactly the characters specified

by the above regul ar expression. It is the pattern the cal c-
ul at or grabs when converting a string to a floating point nunber.

Const pattern {sl_match2, ConstStr, 0, FLDConst}
Const Str pattern {sl_natch2, DoDigits, 0, Const?2}
Const 2 pattern {matchchar, ‘.’, Const4, Const3}
Const 3 pattern {sl_match2, DoDigits, Const4, Const4}
Const 4 pattern {matchchar, ‘e, const5, const6}
Const 5 pattern {matchchar, ‘E, Succeed, const6}
Const 6 pattern {matchchar, ‘+, const7, const8}
Const 7 pattern {matchchar, ‘-', const8, const8}
Const 8 pattern {sl_match2, DoD gits}

FI dConst pattern {PushVal ue}

; DoDgits handl es the regul ar expression [0-9]+

DoDigits pattern {Anycset, Digits, 0, SpanD gits}
SpanDigits pattern {Spancset, D gits}

; The S production handl es constants or an expression in parentheses.

S pattern {MatchChar, ‘(‘, Const, IntE
IntE pattern {sl_Match2, E 0, d oseParen}
d osePar en pattern {MtchChar,)’}

; The Succeed pattern al ways succeeds.

Succeed pattern {DoSucceed}

; W use digits fromthe UCR Standard Library cset standard sets.
include stdsets.a

dseg ends

cseg segment para public ‘code’
assune cs: cseg, ds:dseg

; DoSucceed nmatches the enpty string. In other words, it natches anything
; and al ways returns success wi thout eating any characters fromthe input

; string.

DoSucceed proc far
nmov ax, di
stc
ret

DoSucceed endp

Page 950

Control Structures

; DoFadd - Adds the two itens on the top of the FPU stack

DoFadd

DoFadd

proc far

faddp st(1), st

nov ax, di ; Required by sl _Match
stc ; Always succeed.

ret

endp

; DoFsub - Subtracts the two values on the top of the FPU stack

DoFsub

DoFsub

proc far

f subp st(1), st

nov ax, di ; Required by sl _Match
stc

ret

endp

; DoFmul - Miltiplies the two val ues on the FPU stack

DoFrmul

DoFrmul

proc far

frul p st(1), st

nov ax, di ; Required by sl _Match
stc

ret

endp

; DoFdiv- Divides the two val ues on the FPU st ack.

DoFDi v

DoFDi v

proc far

fdivp st(1), st

nov ax, di ; Required by sl _Match
stc

ret

endp

; DoFchs- Negates the val ue on the top of the FPU stack

DoFchs

DoFchs

;. PushVal ue-

1

PushVal ue

proc
fchs
nov
stc
ret
endp

far

ax, di ; Required by sl _Match

W' ve just nmatched a string that corresponds to a
floating point constant. Convert it to a floating
poi nt val ue and push that value onto the FPU stack.

proc far

push ds

push es

pusha

nov ax, dseg

nov ds, ax

| esi Const ; FP val matched by this pat

pat gr ab ;Get a copy of the string

at of ; Convert to real.

free ; Return nemused by patgrab.

| esi Qur Val ue ; Copy floating point accumul at or
sdf pa ; to alocal variable and then
fld Qur Val ue ; copy that value to the FPU stk
popa

nmov ax, d

pop es

pop ds

Page 951

Chapter 16

stc
ret
PushVal ue endp
;. DoExp- This routine expects a pointer to a string containing

; an arithmetic expression in ES:D. It evaluates the
; gi ven expression and prints the result.

DoExp proc near
finit ;Be sure to do this!
fwait

puts ;Print the expression

| dxi Expr essi on

xor CX, CX

mat ch

jc GoodVal

printff

byt e “is an illegal expression”,cr,If,0
ret

GoodVal : fstp Qur Val ue
printff
byt e “ = 042.6ge\n", 0
dwor d Qur Val ue
ret
DoExp endp

; The main programtests the expression eval uator.

Mai n proc

nov ax, dseg

nov ds, ax

nmov es, ax

mem ni t

| esi Stri

call DoExp

| esi Str2

call DoExp

| esi Str3

call DoExp

| esi Str4

call DoExp

| esi Str5

cal l DoExp

| esi Stré

cal DoExp

| esi Str7

cal DoExp

| esi Str8

cal | DoExp

| esi Str9

cal | DoExp

| esi Str10

cal | DoExp
Qit: Exi t Pgm
Mai n endp
cseg ends
sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends
zzz7777S€g segnment para public ‘zzzzzz’
Last Byt es db 16 dup (?)

Page 952

Control Structures

zz77277s€g ends
end Mai n

Sample Output:

5+2%(3-1) = 9. 000E+0000
(5+2)*(7-10) = - 2. 100E+0001

5 = 5. 000E+0000

(6+2)/ (5+1) - 7€5*2/ 1. 3e2+1. 5 = - 1. 077E+0004
2.5%(2- (3+1)/4+1) = 5. 000E+0000

6+(-5*2) = - 4. 000E+0000

6*-1 = - 6. 000E+0000

1.2e5/ 2. 1e5 = 5. 714E- 0001

0. 9999999999999999+1e- 15 = 1. 000E+0000
2.1-1.1 = 1. 000E+0000

16.8.4 A Tiny Assembler

Although the UCR Standard Library pattern matching routines would probably not
be appropriate for writing a full lexical analyzer or compiler, they are useful for writing
small compilers/assemblers or programs where speed of compilation/assembly is of little
concern. One good example is the simple nonsymbolic assembler appearing in the
SIM886° simulator for an earlier version of the x86 processorst. This “mini-assembler”
accepts an x86 assembly language statement and immediately assembles it into memory.
This allows SIM886 users to create simple assembly language programs within the
SIM886 monitor/debuggerlz. Using the Standard Library pattern matching routines
makes it very easy to implement such an assembler.

The grammar for this miniassembler is

Stnt - apl reg “,” operand |
a@p2reg “,” reg*“,” constant |
@ p3 operand |
got o operand |
hal t
apl - load | store | add | sub
ap2 - ifeq | iflt | ifgt
ap3 - get | put
reg - ax | bx | cx | dx
operand - reg | constant | [bx] | constant [bx]
const ant - hexdi git constant | hexdigit
hexdigit - 0| 1] 2| 3| 45| 6| 7] 8| 9] al b]
c|l d| e]| f

There are some minor semantic details that the program handles (such as disallowing
stores into immediate operands). The assembly code for the miniassembler follows:

; ASM ASM

’

.xlist

i ncl ude stdlib.a
mat chf uncs
includelib stdlib.lib
list

10. SIM886 is an earlier version of SIMx86. It is also available on the Companion CD-ROM.

11. The current x86 system is written with Borland’s Delphi, using a pattern matching library written for Pascal
that is very similar to the Standard Library’s pattern matching code.

12. See the lab manual for more details on SIM886.

Page 953

Chapter 16

dseg segment para public ‘data’

; Sone sanpl e statenents to assenbl e:

Stri byt e “load ax, 0",0

Str2 byt e “load ax, bx",0

Str3 byt e “load ax, ax”,0

Str4 byt e “add ax, 15",0

Str5 byt e “sub ax, [bx]”,0
Str6 byt e “store bx, [1000]",0
Str7 byt e “load bx, 2000[bx]",0
Str8 byt e “got o 30007, 0

Str9 byt e “iflt ax, bx, 100",0
Stri10 byt e “halt”, 0

Stril byt e “This is illegal”,0
Stri2 byt e “l oad ax, store”,0
Stri3 byt e “store ax, 1000”,0
Stri4 byt e “ifeq ax, 0, 0",0

; Variabl es used by the assenbl er.

AsnConst wor d 0
Asnpcode byt e 0
AsnQpr nd1 byt e 0
AsnQpr nd2 byt e 0
include stdsets.a ;Bring in the standard char sets.

; Patterns for the assenbler:

; Patternis (
; (I oad| store| add| sub) reg “,” operand |

; (ifeq|iflt]ifgt) regl “,” reg2 “,” const |
; (get| put) operand |

; got o operand |

hal t
)
; Wth a few senantic additions (e.g., cannot store to a const).
I nstr Pat pattern {spancset, WiiteSpace, Q pl, G pl}
Qpl pattern {sl_Mtch2, @plStrs, G p2 , qplQrnds}
QplsStrs pattern {TryLoad,, @ plStore}
QG plStore pattern {TryStore,, @ plAdd}
Q plAdd pattern {TryAdd,, G plSub}
Q plSub pattern {TrySub}

; Patterns for the LOAD, STORE, ADD, and SUB instructions.

LoadPat pattern {MatchStr, Loadl nstr2}
Loadl nstr2 byt e “LOAD, 0

St or ePat pattern {MatchStr, Storel nstr2}
Storelnstr2 byt e “STCRE’, 0

AddPat pattern {MatchStr, Addl nstr2}
Addl nstr2 byt e “ADD', 0

SubPat pattern {MatchStr, Subl nstr2}
Subl nstr2 byt e “SUB’, 0

; Patterns for the group one (LQAD STORE/ ADDY SUB) instruction operands:

Q plQpr nds pattern {spancset, Wi teSpace, G plreg, @ plreg}

Q plReg pattern {MatchReg, Asmprndl, , G plws2}

Q plws2 pattern {spancset, Wit eSpace, G plConmma, G plComa}
Q plComma pattern {MatchChar,’,’,0, G plws3}

G plws3 pattern {spancset, Wit eSpace, G p1(2, G p1(2}

Page 954

Control Structures

Q plp2 pattern {MatchGen,,, EndO Li ne}

EndC Li ne pattern {spancset, WiteSpace, Nul | Char, Nul | Char}
Nul | Char pattern {ECS}

Q p12Reg pattern {MatchReg, AsnQprnd2}

; Patterns for the group two instructions (IFEQ |FLT, |FGI):

Qp2 pattern {sl_Mtch2, @p2Strs, G p3 , Q p2Qor nds}
Qp2Strs pattern {Tryl FEQ,6 Q p2l FLT}

Q p2l FLT pattern {Tryl FLT,, G p2l FGI}

Q p2l FGT pattern {Tryl FGT}

Q p2Qpr nds pattern {spancset, Wi teSpace, G p2reg, @ p2reg}

Q p2Reg pattern {MatchReg, Asmprndl, , G p2ws2}

Q p2ws2 pattern {spancset, Wit eSpace, G p2Comma, G p2Conma}
G p2Comma pattern {MatchChar,’,’,0, G p2ws3}

QG p2ws3 pattern {spancset, Wit eSpace, G p2Reg2, @ p2Reg?2}

Q p2Reg2 pattern {MatchReg, AsnQprnd2, , G p2ws4}

Q p2ws4 pattern {spancset, Wit eSpace, G p2Conma2, G p2Conma2}
Q p2Comma2 pattern {MatchChar,’,’,0, Q p2ws5}

Q p2ws5 pattern {spancset, Wi teSpace, G p23, @ p2p3}

Q p2p3 pattern {ConstPat,,, End Li ne}

; Patterns for the IFEQ I|FLT, and | FGT instructions.

| FEQPat pattern {MatchStr,|FEQnnstr2}
| FEQ nstr 2 byt e “IFEQ, 0
| FLTPat pattern {MatchStr,|FLTInstr2}
I FLTI nstr2 byt e “IFLT", 0
| FGTPat pattern {MatchStr,|FGIlnstr2}
| FGTI nstr2 byt e “1FGI”, 0

; G p3 Patterns:

Qp3 pattern {sl_Mtch2, @p3Strs, G p4 , q p3qrnds}
Qp3Strs pattern {TryGet,, G p3Put}

Q p3Put pattern {TryPut,, G p3COTG

QG p3Goto pattern {TryQOrGg

; Patterns for the GET and PUT instructions.

Get Pat pattern {MatchStr, Getlnstr2}
Getlnstr2 byt e “CET", 0
Put Pat pattern {MatchStr, Putlnstr2}
Put I nstr2 byt e “PUT, 0
QOTCPat pattern {MatchStr, GOTQ nstr2}
Qoranstr2 byt e “@Qorao, 0

; Patterns for the group three (PUT/ GET/ GOTO i nstruction operands:

Q p3Qpr nds pattern {spancset, WiteSpace, G p3Qp, G p3p}
Q p3d pattern {MatchGen,,, End(Li ne}

; Patterns for the group four instruction (HALT).

Qp4 pattern {TryHalt,,, EndCf Li ne}
Hal t Pat pattern {MatchStr, Haltlnstr2}
Haltlnstr2 byt e “HALT", 0

; Patterns to match the four non-register addressing nodes:

BXI ndr ct Pat pattern {MatchStr,BXIndrctStr}
BXI ndrct Str byte “[BY”",0

Page 955

Chapter 16

Page 956

BXl ndexedPat pattern
D rect Pat pattern
DP2 pattern
DP3 pattern
| mredi at ePat pattern
; Pattern to match a hex
HexConst Pat pattern
dseg ends
cseg segnent
assune

{Const Pat, , , BXI ndr ct Pat }

{Mat chChar,'[*,, DP2}

{Const Pat, , , DP3}
{Mat chChar, ']}

{Const Pat }
const ant :

{Spancset, xdi gits}

para public ‘code’
cs: cseqg, ds:dseg

; The store macro tweaks the DS register and stores into the
; specified variable in DSEG

store nacr o
push
push
nov
nov
nov
pop
pop
endm

Pattern natching routines for the assenbl er.

Wiere, Wiat
ds

ax

ax, seg Were
ds, ax
Wiere, Wat
ax

ds

; Each mmenonic has its own correspondi ng natching function that
; attenpts to match the mmenonic. If it does,
; AsnCpcode variable with the base opcode of the instruction.

; Conpare agai nst the “LQAD’ string.

TrylLoad proc
push
push
| dxi
nmat ch2
jnc

store

NoTLMat ch: pop

pop
ret
TrylLoad endp

far

dx

si
LoadPat

NoTLMat ch
Asnpcode, 0

si
dx

; Conpare agai nst the “STCRE’ string.

TryStore proc
push
push
| dxi
nmat ch2
jnc
store

NoTSMat ch: pop

pop
ret
TryStore endp

far

dx

si

St or ePat

NoTSMat ch
Asnpcode, 1

si
dx

; Conpare agai nst the “ADD’ string.

TryAdd proc
push

far
dx

it

initializes the

;Initialize base opcode.

;Initialize base opcode.

Control Structures

push si

| dxi AddPat

nmat ch2

jnc NoTAMat ch

store Asnpcode, 2 ;Initialize ADD opcode.
NoTAMat ch: pop si

pop dx

ret
TryAdd endp

; Conpare agai nst the “SUB" string.

TrySub proc far
push dx
push si
| dxi SubPat
mat ch2
jnc NoTMvat ch
store Asnpcode, 3 ;Initialize SUB opcode.
NoTMvat ch: pop Si
pop dx
ret
TrySub endp

; Conpare agai nst the “I FEQ string.

Tryl FEQ proc far
push dx
push si
| dxi | FECPat
mat ch2
jnc Nol EMat ch
store Asnpcode, 4 ;Initialize | FEQ opcode.
Nol EMat ch: pop Si
pop dx
ret
Tryl FEQ endp

; Conpare agai nst the “I FLT" string.

Tryl FLT proc far
push dx
push si
| dxi | FLTPat
nmat ch2
jnc Nol Livat ch
store Asnpcode, 5 ;Initialize | FLT opcode.
Nol Livat ch: pop Si
pop dx
ret
Tryl FLT endp

; Conpare agai nst the “I FGI” string.

Tryl FGT proc far
push dx
push si
| dxi | FGTPat
mat ch2
jnc Nol Qvat ch
store Asnpcode, 6 ;Initialize | FGT opcode.
Nol Gvat ch: pop Si
pop dx
ret
Tryl FGT endp

Page 957

Chapter 16

; Conpare agai nst the “CET" string.

TryCGET proc far
push dx
push si
| dxi Get Pat
nmat ch2
jnc NoGMat ch
store Asnpcode, 7 ;Initialize Special opcode.
store AsnQprndl, 2 ; GET' s Speci al opcode.
NoG\at ch: pop Si
pop dx
ret
TryCGET endp

; Conpare agai nst the “PUT" string.

TryPut proc far
push dx
push si
| dxi Put Pat
mat ch2
jnc NoPMat ch
store Asnpcode, 7 ;Initialize Special opcode.
store AsnQprndl, 3 ; PUT" s Speci al opcode.
NoPMat ch: pop Si
pop dx
ret
TryPUT endp

; Conpare agai nst the “QOTO" string.

TryQOTO proc far
push dx
push si
| dxi QOTCPat
mat ch2
jnc NoGMat ch
store Asnpcode, 7 ;Initialize Special opcode.
store Asnprndl, 1 ; PUT" s Speci al opcode.
NoG\at ch: pop Si
pop dx
ret
TryQOTO endp
; Conpare agai nst the “HALT” string.
TryHal t proc far
push dx
push si
| dxi Hal t Pat
nmat ch2
jnc NoHWat ch
store Asnpcode, 7 ;Initialize Special opcode.
store Asnprndl, O ;Halt’ s special opcode.
store Asnprnd2, 0
NoH\Vat ch: pop Si
pop dx
ret
TryHALT endp

Mat chReg checks to see if we’'ve got a valid register value. On entry,
DS: Sl points at the location to store the byte opcode (0, 1, 2, or 3) for
a reasonabl e register (AX, BX CX, or DX); ESSD points at the string
contai ning (hopefully) the register operand, and CX points at the |ast

Page 958

I ocation plus one we can check in the string.

; O return,

Mat chReg proc

Carry=1 for success,

far

Control Structures

0 for failure. ES:AX nust point beyond
the characters which nake up the register if we have a match.

; ES:D Points at two characters which shoul d be AX/ BX/ CX DX. Anyt hi ng

; else is an error.

cnp
j ne
xor
cnp
je
i nc
cnp
je
inc
cnp
je
inc
cnp
je
BadReg: clc
nov
ret

GoodReg:
nov
| ea
cnp
ja
stc
ret

Mat chReg endp

Mat chGen-

Mat ches a gener al
addr essi ng node code into AsnmCprnd2.

byte ptr es:1[di], ‘X
BadReg

ax, ax

byte ptr es:[di], ‘A
GoodReg

ax

byte ptr es:[di], ‘B
GoodReg

ax

byte ptr es:[di], ‘C
GoodReg

ax

byte ptr es:[di], ‘D
GoodReg

ax, di

ds:[si], al
ax, 2[di]
ax, cx
BadReg

; Everyone needs this

; 886 “AX’ reg code.

; AX?

: BX?

; CX?

: DX?

; Save regi ster opcode.
; Skip past register.
;Be sure we didn't go

; too far.

addressing nmode. Stuffs the appropriate
If a 16-bit constant

is required by this addressing node, this code shoves that
; into the AsnConst vari abl e.

Mat chGen proc
push

push

; Try a register operand.

| dxi

mat ch2

jc
;o Try “[bx]”.
| dxi

mat ch2

jnc
store
I np

; Look for an operand of the form “xxxx[bx]

TryBXl ndexed:
| dxi

mat ch2

jnc
store
I np

far
dx
si

@ p1p2Reg

MZDone

BXI ndr ct Pat

TryBXl ndexed
Asnprnd2, 4
MZDone

”

BXl ndexedPat

TryD rect
Asnprnd2, 5
M=Done

; Try a direct address operand “[xxxx]”.

Page 959

Chapter 16

TryDrect:
| dxi
nmat ch2
jnc
store
Jnmp

D rect Pat
Tryl mredi at e
Asnprnd2, 6
MZDone

; Look for an inmedi ate operand “xxxx”.

Tryl mredi at e:
| dxi
nmat ch2
jnc
store

M=Done:
pop
pop
ret
Mat chGen endp

; Const Pat -

Mat ches a 16-bit hex constant. If it matches,

| medi at ePat
MZzDone
AsnQprnd2, 7
si

dx

it converts

; the string to an integer and stores it into AsnConst.

Const Pat proc
push
push
| dxi
nat ch2

jnc

push
push
nov
nov
at oh
nov
pop
pop
stc

CPDone: pop
pop
ret

Const Pat endp

; Assenbl e-

far

dx

si

HexConst Pat

CPDone

ds

ax

ax, seg AsmConst
ds, ax

AsmConst, ax
ax
ds

si
dx

Thi s code assenbles the instruction that ES:D points

; at and di splays the hex opcode(s) for that instruction.

Assenbl e proc

near

; Print out the instruction we're about to assenbl e.

print
byt e
st rupr
puts
put cr

; Assenbl e the instruction:

| dxi
xor
mat ch
jnc

; Quick check for illegal

cnp

Page 960

“Assenbling: “,0

I nst r Pat
CX, CX

Synt axError

instructions:

Asn(pcode, 7 ; Special /Get instr.

TryStorelnstr:

Seel f | mm

I sGOTO

Control Structures

j ne TryStorel nstr

cnp AsnQprndl, 2 ; GET opcode

je Seel f1 mm

cnp AsnmQprndl, 1 ; Got o opcode

je | sGQOTO

cnp Asnpcode, 1 ;Store Instruction
j ne I nstr Ckay

cnp Asnprnd2, 7 ;I medi ate Adrs Mbde
j ne I nst r Ckay

print

db “Syntax error: store/get inmediate not allowed.”
db “ Try Again”,cr,lf,0

jmp ASMXone

cnp Asnprnd2, 7 ; | medi at e node for QOTO
je I nstr Ckay

print

db “Syntax error: QIO only allows inmrediate “

byte “mode.”, cr, | f

db 0

jmp ASMXone

; Merge the opcode and operand fields together in the instruction byte,
; then out put the opcode byte.

I nstr Ckay:

Sinplelnstr:

nov al, AsnCpcode

shl al, 1

shl al, 1

or al, AsnQprndl

shl al, 1

shl al, 1

shl al, 1

or al , AsnQprnd2

put h

cnp Asnpcode, 4 ;IFEQ instruction
ib Sinpl el nstr

cnp Asnpcode, 6 ;I FGT instruction
j be Put Const ant

cnp Asnprnd2, 5

j b ASMDone

; If this instruction has a 16 bit operand, output it here.

Put Const ant :

SyntaxError:

ASMDone:

Assenbl e

mov al,
put c

nmov ax, ASMonst
put h

mv al,
put c

xchg al, ah
put h

jmp ASMXone

print
db “Syntax error in instruction.”
db cr,lf,0

putcr
ret
endp

; Main programthat tests the assenbler.

Mai n

proc
nov ax, seg dseg ;Set up the segnent registers
nov ds, ax
nov es, ax

Page 961

Chapter 16

Page 962

Qi t:
Mai n
cseg

sseg
stk
sseg

7272777s€eg
Last Byt es
2272777s€eg

nmem ni t

| esi
cal
| esi
cal
| esi
cal
| esi
call
| esi
call
| esi
call
| esi
call
| esi
cal |
| esi
cal |
| esi
cal |
| esi
cal |
| esi
cal |
| esi
cal |
| esi
cal |

Exi t Pgm
endp
ends

segnent
db
ends

segnent
db
ends
end

Sample Output:

Assenbl i ng

07 00 00

Assenbl i ng

01

Assenbl i ng

00

Assenbl i ng

47 15 00

Assenbl i ng

64

Assenbl i ng

2E 00 10

Assenbl i ng

0D 00 20

Assenbl i ng

EF 00 30

Assenbl i ng

Al 00 01

Assenbl i ng

EO

Assenbl i ng

LOAD AX, O
LOAD AX, BX
LOAD AX, AX
ADD AX, 15

SUB AX, [BX]

Strl
Assenbl e
Str2
Assenbl e
Str3
Assenbl e
Str4
Assenbl e
Str5
Assenbl e
Str6
Assenbl e
Str7
Assenbl e
Str8
Assenbl e
Str9
Assenbl e
Str10
Assenbl e
Stril
Assenbl e
Stri12
Assenbl e
Stri3
Assenbl e
Strl14
Assenbl e

para stack ‘stack
256 dup (“stack “)

para public ‘zzzzzz
16 dup (?)

Mai n

STCRE BX, [1000]

LOAD BX, 2000[BX]

GOro 3000

| FLT AX, BX, 100

HALT

TH S IS | LLEGAL
Syntax error in instruction.

Control Structures

Assenbl i ng: LOAD AX, STORE
Syntax error in instruction.

Assenbl i ng: STCRE AX, 1000
Syntax error: store/get inmediate not allowed. Try Again

Assenbling: IFEQ AX, 0, O
Syntax error in instruction.

16.8.5

The “MADVENTURE” Game

Computer games are a perfect example of programs that often use pattern matching.
One class of computer games in general, the adventure game13, is a perfect example of
games that use pattern matching. An adventure style game excepts English-like com-
mands from the user, parses these commands, and acts upon them. In this section we will
develop an adventure game shell. That is, it will be a reasonably functional adventure style
game, capable of accepting and processing user commands. All you need do is supply a
story line and a few additional details to develop a fully functioning adventure class
game.

An adventure game usually consists of some sort of maze through which the player
moves. The program processes commands like go north or go right to move the player
through the maze. Each move can deposit the player in a new room of the game. Gener-
ally, each room or area contains objects the player can interact with. This could be reward
objects such as items of value or it could be an antagonistic object like a monster or enemy
player.

Usually, an adventure game is a puzzle of some sort. The player finds clues and picks
up useful object in one part of the maze to solve problems in other parts of the maze. For
example, a player could pick up a key in one room that opens a chest in another; then the
player could find an object in the chest that is useful elsewhere in the maze. The purpose
of the game is to solve all the interlocking puzzles and maximize one’s score (however
that is done). This text will not dwell upon the subtleties of game design; that is a subject
for a different text. Instead, we’ll look at the tools and data structures required to imple-
ment the game design.

The Madventure game’s use of pattern matching is quite different from the previous
examples appearing in this chapter. In the examples up to this point, the matching rou-
tines specifically checked the validity of an input string; Madventure does not do this.
Instead, it uses the pattern matching routines to simply determine if certain key words
appear on a line input by the user. The program handles the actual parsing (determining if
the command is syntactically correct). To understand how the Madventure game does
this, it would help if we took a look at how to play the Madventure game!*.

The Madventure prompts the user to enter a command. Unlike the original adventure
game that required commands like “GO NORTH” (with no other characters other than
spaces as part of the command), Madventure allows you to write whole sentences and
then it attempts to pick out the key words from those sentences. For example, Madventure
accepts the “GO NORTH” command; however, it also accepts commands like “North is
the direction | want to go” and “I want to go in the north direction.” Madventure doesn’t
really care as long as it can find “GO” and “NORTH” somewhere on the command line.
This is a little more flexible that the original Adventure game structure. Of course, this
scheme isn’t infallible, it will treat commands like “I absolutely, positively, do NOT want
to go anywhere near the north direction” as a “GO NORTH” command. Oh well, the user
almost always types just “GO NORTH” anyway.

13. These are called adventure games because the original program of the genre was called “Adventure.”
14. One word of caution, no one is going to claim that Madventure is a great game. If it were, it would be sold, it
wouldn’t appear in this text! So don’t expect too much from the design of the game itself.

Page 963

Chapter 16

A Madventure command usually consists of a noun keyword and a verb keyword.
The Madventure recognizes six verbs and fourteen nouns'®. The verbs are

verbs - go | get | drop | inventory | quit | help

The nouns are

nouns - north | south | east | west | line | beer | card |
sign | program| homework | noney | form| coupon

Obviously, Madventure does not allow all combinations of verbs and nouns. Indeed, the
following patterns are the only legal ones:

Legal Ords - go direction| get item| drop item| inventory |
quit | help

direction - north | south | east | west

item- lime | beer | card | sign | program| hormework |

noney | form| coupon

However, the pattern does not enforce this grammar. It just locates a noun and a verb
on the line and, if found, sets the noun and verb variables to appropriate values to denote
the keywords it finds. By letting the main program handle the parsing, the program is
somewhat more flexible.

There are two main patterns in the Madventure program: NounPat and VerbPat. These
patterns match words (nouns or verbs) using a regular expression like the following:

(ARB" * | & word (* “ | EOS)

This regular expression matches a word that appears at the beginning of a sentence, at the
end of a sentence, anywhere in the middle of a sentence, or a sentence consisting of a sin-
gle word. Madventure uses a macro (MatchNoun or MatchVerb) to create an expression for
each noun and verb in the above expression.

To get an idea of how Madvent processes words, consider the following VerbPat pat-
tern:

Ver bPat pattern {sl _match2, MatchGo}
Mat chVerb Match@) MatchGet, “Q0', 1
Mat chVerb Mat chGet, MatchDrop, “CET, 2
Mat chVerb Mat chDrop, Matchlnv, “DRCP’, 3
Mat chVerb Matchlnv, MatchQuit, “INVENTCRY', 4
MatchVerb MatchQuit, MatchHelp, “QU T, 5
Mat chVerb MatchHel p, 0, “HELP', 6

The MatchVerb macro expects four parameters. The first is an arbitrary pattern name; the
second is a link to the next pattern in the list; the third is the string to match, and the
fourth is a number that the matching routines will store into the verb variable if that string
matches (by default, the verb variable contains zero). It is very easy to add new verbs to
this list. For example, if you wanted to allow “run” and “walk” as synonyms for the “go”
verb, you would just add two patterns to this list:
Ver bPat pattern {sl _match2, NatchGo}

Mat chVerb MatchGO MatchCet, “GO0', 1

Mat chVerb MatchGet, MatchDrop, “CET", 2

Mat chVerb Mat chDrop, Matchlnv, “DROP’, 3

Mat chVerb Matchl nv, MatchQuit, “INVENTCRY", 4

Mat chVerb MatchQuit, MatchHelp, “QU T, 5

Mat chVerb Mat chHel p, Mat chRun, “HELP', 6

Mat chVerb Mat chRun, Matchwal k, “RUN’, 1
Mat chVerb Matchval k, 0, “WALK", 1

There are only two things to consider when adding new verbs: first, don’t forget that the
next field of the last verb should contain zero; second, the current version of Madventure

15. However, one beautiful thing about Madventure is that it is very easy to extend and add more nouns and

verbs.

Page 964

Control Structures

only allows up to seven verbs. If you want to add more you will need to make a slight
modification to the main program (more on that, later). Of course, if you only want to cre-
ate synonyms, as we’ve done here, you simply reuse existing verb values so there is no
need to modify the main program.

When you call the match routine and pass it the address of the VerbPat pattern, it scans
through the input string looking for the first verb. If it finds that verb (“GO”) it sets the
verb variable to the corresponding verb value at the end of the pattern. If match cannot find
the first verb, it tries the second. If that fails, it tries the third, and so on. If match cannot
find any of the verbs in the input string, it does not modify the verb variable (which con-
tains zero). If there are two or more of the above verbs on the input line, match will locate
the first verb in the verb list above. This may not be the first verb appearing on the line. For
example, if you say “Let’s get the money and go north” the match routine will match the
“go” verb, not the “get” verb. By the same token, the NounPat pattern would match the
north noun, not the money noun. So this command would be identical to “GO NORTH.”

The MatchNoun is almost identical to the MatchVerb macro; there is, however, one
difference — the MatchNoun macro has an extra parameter which is the name of the data
structure representing the given object (if there is one). Basically, all the nouns (in this ver-
sion of Madventure) except NORTH, SOUTH, EAST, and WEST have some sort of data
structure associated with them.

The maze in Madventure consists of nine rooms defined by the data structure:

Room struct

north wor d ?

south wor d ?

west wor d ?

east wor d ?

I teniist word Max\Vei ght dup (?)
Descri ption wor d ?

Room ends

The north, south, west, and east fields contain near pointers to other rooms. The program
uses the CurRoom variable to keep track of the player’s current position in the maze. When
the player issues a “GO” command of some sort, Madventure copies the appropriate
value from the north, south, west, or east field to the CurRoom variable, effectively changing
the room the user is in. If one of these pointers is NULL, then the user cannot move in that
direction.

The direction pointers are independent of one another. If you issue the command “GO
NORTH” and then issue the command “GO SOUTH” upon arriving in the new room,
there is no guarantee that you will wind up in the original room. The south field of the sec-
ond room may not point at the room that led you there. Indeed, there are several cases in
the Madventure game where this occurs.

The ItemList array contains a list of near pointers to objects that could be in the room.
In the current version of this game, the objects are all the nouns except north, south, east,
and west. The player can carry these objects from room to room (indeed, that is the major
purpose of this game). Up to MaxWeight objects can appear in the room (MaxWeight is an
assembly time constant that is currently four; so there are a maximum of four items in any
one given room). If an entry in the ItemList is non-NULL, then it is a pointer to an Item
object. There may be zero to MaxWeight objects in a room.

The Description field contains a pointer to a zero terminated string that describes the
room. The program prints this string each time through the command loop to keep the
player oriented.

The second major data type in Madventure is the Item structure. This structure takes
the form:

Page 965

Chapter 16

Item struct

Val ue wor d ?
Wi ght wor d ?
Key wor d ?
Shor t Desc wor d ?
LongDesc word ?
W nDesc wor d ?
Item ends

The Value field contains an integer value awarded to the player when the player drops
this object in the appropriate room. This is how the user scores points.

The Weight field usually contains one or two and determines how much this object
“weighs.” The user can only carry around MaxWeight units of weight at any one given
time. Each time the user picks up an object, the weight of that object is added to the user’s
total weight. When the user drops an object, Madventure subtracts the object’s weight
from the total.

The Key field contains a pointer to a room associated with the object. When the user
drops the object in the Key room, the user is awarded the points in the Value field and the
object disappears from the game. If the user drops the object in some other room, the
object stays in that room until the user picks it up again.

The ShortDesc, LongDesc, and WinDesc fields contain pointers to zero terminated
strings. Madventure prints the ShortDesc string in response to an INVENTORY command.
It prints the LongDesc string when describing a room’s contents. It prints the WinDesc
string when the user drops the object in its Key room and the object disappears from the
game.

The Madventure main program is deceptively simple. Most of the logic is hidden in
the pattern matching routines and in the parsing routine. We’ve already discussed the pat-
tern matching code; the only important thing to remember is that it initializes the noun
and verb variables with a value uniquely identifying each noun and verb. The main pro-
gram’s logic uses these two values as an index into a two dimensional table that takes the
following form:

Table 65: Madventure Noun/Verb Table

No Verb GO GET DROP Inven- Quit Help
tory
No Noun Inven- Quit Help
tory
North Do
North
South Do South
East Do East
West Do West
Lime Get Item Drop
Item
Beer Get Item Drop
Item
Card Get Item Drop
Item
Sign Get Item Drop
Item
Program Get Item Drop
Item

Page 966

Table 65: Madventure Noun/Verb Table

Control Structures

No Verb GO GET DROP Inven- Quit Help
tory
Home- Get Item Drop
work Item
Money Get Item Drop
Item
Form Get Item Drop
Item
Coupon Get Item Drop
Item

The empty entries in this table correspond to illegal commands. The other entries are
addresses of code within the main program that handles the given command.

.xlist
. 286
i ncl ude stdlib.a
includelib stdlib.lib
mat chf uncs
st
dseg segment para public ‘data’
; Equat es:
NULL equ 0
Max\Véi ght equ 4

To add more nouns (objects) to the game, you need only extend the NounPat pattern
and add additional rows to the table (of course, you may need to add code to handle the
new objects if they are not easily handled by the routines above). To add new verbs you
need only extended the VerbPat pattern and add new columns to this table'®.

Other than the goodies mentioned above, the rest of the program utilizes techniques
appearing throughout this and previous chapters. The only real surprising thing about
this program is that you can implement a fairly complex program with so few lines of
code. But such is the advantage of using pattern matching techniques in your assembly
language programs.

MADVENT. ASM

This is a “shell” of an adventure gane that you can use to create

; your own adventure styl e games.

; Max wei ght user can carry at one tinme.

The “ROOM data structure defines a room or area, where a player can
go. The NORTH, SQUTH, EAST, and WEST fields contain the address of

the roons to the north, south, east,

and west of the room The gane

transfers control to the roomwhose address appears in these fields

when the player supplies a GO NORTH @O SQUTH, etc.,

command.

The I TEMLIST field contains a |ist of pointers to objects appearing
inthis room In this gane, the user can pick up and drop these
objects (if there are any present).

The DESCR PTION field contains a (near) address of a short description

of the current roon area.

16. Currently, the Madventure program computes the index into this table (a 14x8) table by shifting to the left
three bits rather than multiplying by eight. You will need to modify this code if you add more columns to the

table.

Page 967

Chapter 16

Room struct

north wor d ? ;Near pointers to other structures where
sout h wor d ?; we wll wind up on the GO NORTH, QO SQUTH,
west wor d ? ; etc., commands.

east wor d ?

I teniist word Max\Vei ght dup (?)

Descri ption word ? ;Description of room

Room ends

; The I TEM data structure describes the objects that may appear

; Within a room(in the | TEM.I ST above). The VALUE fiel d contains
; the nunber of points this object is worth if the user drops it
; off in the proper room(i.e, solves the puzzle). The WE GHT

; field provides the weight of this object. The user can only

; carry four units of weight at a time. This field is usually

; one, but nay be nore for larger objects. The KEY field is the
; address of the roomwhere this object nmust be dropped to sol ve
; the problem The SHORTDESC field is a pointer to a string that
; the programprints when the user executes an | NVENTORY comrand.
; LONGDESC is a pointer to a string the program prints when des-
; cribing the contents of a room The WNDESC field is a pointer
; to astring that the programprints when the user solves the

; appropriate puzzle.

Item st ruct

Val ue wor d ?
Wi ght wor d ?
Key wor d ?
Shor t Desc wor d ?
LongDesc word ?
W nDesc wor d ?
Item ends

; State variables for the player:

Qur Room wor d Rool ; Roomthe player is in.

It emsOnHand wor d MaxVei ght dup (?) ;1tens the player carries.
Qur Vi ght wor d 0 ; Vi ght of itens carried.
Qur Scor e word 15 ;Player’s current score.
Tot al Count er wor d 9 ;ltems left to place.

Noun wor d 0 ; Qurrent noun val ue.

Ver b wor d 0 ;Qurrent verb val ue.
NounPt r wor d 0 ;Ptr to current noun item

; Input buffer for commands

I nput Li ne byt e 128 dup (?)

; The followi ng nmacros generate a pattern which will nmatch a single word
; which appears anywhere on a line. In particular, they match a word

; at the beginning of a line, somewhere in the mddl e of the line, or

; at the end of a line. This programdefines a word as any sequence

; of character surrounded by spaces or the beginning or end of a line.

Mat chNoun/ Verb mat ches |ines defined by the regul ar expression:

(ARB* * ' | € string (* ' | EO®

Mat chNoun nacro Name, next, WrdString, ItenmVal, ltenPtr
| ocal WB1, WR2, WB3, W4
| ocal WB5, WB6, WrdStr

Name Pattern {sl _match2, WB1, next}

W51 Pattern {MatchStr, WrdStr, W2, W55}

W52 Pattern {arb, 0, 0, W53}

W53 Pattern {Mat chchar, * ‘,0, W&}

Page 968

Control Structures

&4 Pattern {MatchStr, WrdStr, 0, W85}
B85 Pattern {Set Noun, | t enVal , 0, \&6}
\B6 Pattern {SetPtr, ItenPtr, 0, Vat chECS}
Vor dStr byt e WrdStri ng
byt e 0
endm
Mat chVer b nacro Name, next, WrdString, |tenVal
| ocal WE1, WR2, WB3, W4
| ocal WB5, Wordstr
Name Pattern {sl _match2, Ws1, next}
W51 Pattern {MatchStr, WrdStr, W2, W55}
W52 Pattern {arb, 0, 0, W53}
B3 Pattern {Mat chchar, * ‘,0, W&}
&4 Pattern {MatchStr, WrdStr, 0, W85}
WE5 Pattern {Set Verb, | tenVal , 0, Mat chECS}
\Wor dSt r byt e WrdString
byt e 0
endm

; CGeneric patterns which nmost of the patterns use:

Vat chECS Pattern { ECS, 0, Mat chSpc}
Mat chSpc Pattern {Mat chChar,’ '}

; Here are the list of nouns allowed in this program
NounPat pattern {sl _match2, WNatchNort h}

Mat chNoun MatchNorth, MatchSouth, “NORTH', 1, O
Mat chNoun Mat chSout h, MatchEast, “SQUTH', 2, O

Mat chNoun Mat chEast, MatchWest, “EAST', 3, 0

Mat chNoun Mat chWest, MatchLime, “WEST', 4, 0

Mat chNoun Mat chLi me, MatchBeer, “LIME’, 5, Iten8
Mat chNoun Mat chBeer, MatchCard, “BEER', 6, Iten®
Mat chNoun MatchCard, MatchSign, “CARD', 7, Iten?
Mat chNoun MatchSign, MatchPgm “SIGY’, 8, Itenil
Mat chNoun Mat chPgm Mat chHW “PROGRAM, 9, Itenv
Mat chNoun Mat chHW Mat chMbney, “ HOMBWORK', 10, |ten#t
Mat chNoun Mat chhMbney, MatchForm “MONEY”, 11, Itenbd
Mat chNoun Mat chForm Mat chCoupon, “FCRM, 12, Iten®
Mat chNoun Mat chCoupon, 0, “COUPQN’, 13, Iten8

; Here is the list of allowable verbs.
Ver bPat pattern {sl _match2, NatchGo}

MatchVerb Match®) MatchGet, “Q0, 1
MatchVerb MatchGet, MatchDrop, “CET", 2

Mat chVerb MatchDrop, Matchlnv, “DRCOP", 3

Mat chVerb Matchlnv, MatchQuit, “INVENTCRY", 4
MatchVerb MatchQuit, MatchHelp, “QU T, 5
Mat chVerb MatchHel p, 0, “HELP’, 6

; Data structures for the “naze”.

Rooni room {Roorml, Roonb, Roond, Roon2,
{Itent, 0O, O, O},
RooniDesc}

RooniDesc byt e “at the Conmons”, 0

I teml item {10, 2, Roon8, GS1, G32, GS3}

Page 969

Chapter 16

Gs1 byt e “a big sign”,0
G2 byt e “a big sign made of styrofoamwith funny
byt e “letters onit.”, 0
Gs3 byt e “The ETA Pl Fraternity thanks you for return”
byt e “ing their sign, they”,cr,|f
byt e “make you an honorary life nmenber, as long as “
byt e “you continue to pay”,cr,|f
byt e “your $30 monthly dues, that is.”,0
Roon® room {NULL, Roon®, Roonl, RoonB,
{Iten, 0,0, O},
RoongDesc}
Roon2Desc byt e ‘at the “C’ on the hill above canpus’, 0
I ten? item {10, 1, Roont, LC1, LC2, LC3}
LC1 byt e “a lunch card”, 0
Lc byt e “a lunch card whi ch someone nust have “
byt e “accidental |y dropped here.”, 0
LC3 byt e “You get a big nmeal at the Commons cafeteria”
byte cr,lf
byt e “I't would be a good idea to go visit the “
byte “student health center”,cr,|f
byt e “at this tine.”,0
Roon8 room {NULL, Roon®, Roon2, RoonZ,
{Itens, 0,0, 0},
Roon8Desc}
Roon8Desc byt e “at ETA Pl Frat House”, 0
Iten8 item {10, 2, Roon®, BL1, BL2, BL3}
BL1 byt e “a bag of lime”,0
BL2 byt e “a bag of baseball field |ime which someone “
byt e “is obviously saving for”,cr,|f
byte “a special occasion.”,0
BL3 byt e “You spread the lime out forning a big ‘++ *
byte “after the ‘C”,cr,If
byt e “Your friends in Conmputer Science hold you “
byt e “intotal awe.”,0
Roon# room {Roorml, Roon¥, RoonY, Roonb,
{Item, 0, 0, O},
RoomiDesc}
RoomDesc byt e “in Dr. John Smith's Ofice”, 0
I temt item {10, 1, Roon¥, HW\L, H\2, HVB}
HAL byt e “a honewor k assi gnnment”, 0
H\2 byt e “a honewor k assi gnment whi ch appears to “
byt e “to contain assenbly | anguage”, O
H\B byt e “The grader notes that your homework *
byt e “assignment | ooks quite”,cr,|f
byt e “simlar to soneone el se’s assignnent “
byt e “in the class and reports you”,cr,|f
byt e “to the instructor.”,0
Roon® room {Roorml, Roon®, Roon¥, Roon2,
{Itens, 0,0, O},
RoonbDesc}
RoonbDesc byt e “in the conputer lab”,0
Itend item {10, 1, Roon®, M, M2, VB}
ML byt e “sone noney”, 0
%4 byte “several dollars in an envelope in the “
byt e “trashcan”, 0
VB byt e “The waitress thanks you for your *
byt e “generous tip and gets you”,cr,|f
byt e “anot her pitcher of beer.

Page 970

Roon6

Roon6Desc

Iten

Roonv

RoonvDesc

Itenv
AP1

Roon8

Roon8Desc

Iten8

Roon®

RoomdDesc
Itend
Bl

byt e
byt e

room

byt e

item
byt e
byt e
byt e
byt e
byt e
byt e
byt e
byt e

room

byt e

item
byt e
byt e
byt e
byt e
byt e
byt e
byt e
byt e
byt e

room

byt e

item
byt e
byt e
byt e
byt e
byt e
byt e
byt e
byt e
byt e

room

byt e
item
byt e
byt e
byt e
byt e
byt e
byt e
byt e
byt e

Control Structures

“Then she asks for your ID",cr,|f
“You are at least 21 aren't you?”,0

{Roon8, Roon®, Roonb, NULL,
{Itens, 0, 0, O},
Roon6Desc}

“at the canpus book store”, 0

{10, 1, Roon8, AD1, AD2, AD3}

“an add/ drop/ change forni, 0

“an add/drop/change formfilled out for *“
“assenbly to get a letter grade”, 0
“You got the formin just in tine.
“It woul d have been a shane to”,cr,|f
“have had to retake assenbly because *“
“you didn't realize you needed to “,cr,If
“get a letter grade in the course.”, 0

{Roorml, Roon¥, Roon¥, Roon8,
{Itenv, 0,0, 0},
RoonvDesc}

“in the assenbly lecture”, 0

{10, 1, Roon®, AP1, AP2, AP3}

“an assenbl y | anguage progrant, O

“an assenbly | anguage programdue in “
“the assenbl yl anguage class.”, 0

“The sanpl e programthe instructor gave “
“you provided all the information”,cr,|f
“you needed to conpl ete your assignment.
“You finish your work and”,cr,|f

“head to the local pub to celebrate.”
cr,lf,0

{Roonb, Roon6, RoonY, Roon®,
{Itens, 0,0, 0},
Roon8Desc}

“at the Registrar’'s office”,0

{10, 1, Roon®, C1, C2, C3}

“a coupon”, 0

“a coupon good for a free text book”, 0
‘You get a free copy of “Aiff Notes for
‘The Art of Assenbly’,cr,|f

‘ Language Progranm ng” Alas, it does not
“provide all the”,cr,If

“information you need for the class, so you
“sell it back during”,cr,If

“the book buy-back period.”, 0

“

{Roon6, Roon®, Roon8, Roon8,
{Iten®, 0,0, 0O},
Roon®Desc}

“at The Pub”,0

{10, 2, Room#, B1, B2, B3}

“a pitcher of beer”,0

“an ice cold pitcher of inported beer”, 0
“Dr. Snmith thanks you profusely for your
“good taste in brews.”,cr,|f

“He then invites you to the pub for a
“round of pool and”,cr,|f
“sone heavy duty hob- nobbi ng,
“CS Departnent style.”,0

“
“

“

Page 971

Chapter 16

Page 972

dseg ends
cseg segment para public ‘code’
assune ds: dseg
;. Set Noun- Copi es the value in Sl (the natchparmparameter) to the
; NCUN vari abl e.
Set Noun proc far
push ds
nov ax, dseg
nov ds, ax
nov Noun, si
nov ax, di
stc
pop ds
ret
Set Noun endp
; Set Verb- Copi es the value in Sl (the natchparm parameter) to the
; VERB vari abl e.
Set Verb proc far
push ds
nov ax, dseg
nov ds, ax
nov Verb, si
nmov ax, di
stc
pop ds
ret
Set Verb endp
; SetPtr- Copi es the value in Sl (the natchparm parameter) to the
; NOUNPTR vari abl e.
SetPtr proc far
push ds
nov ax, dseg
nov ds, ax
nov NounPtr, si
nmov ax, di
stc
pop ds
ret
SetPtr endp
CheckPresence-

; BX points at an item D points at an itemlist. This
; routine checks to see if that itemis present in the
; itemlist. Returns Carry set if itemwas found,

; clear if not found.

CheckPresence pr oc

; MaxWeight is an assenbly-time adjustabl e constant that deternines
; how many obj ects the user can carry, or can be in a room at one
; time. The following repeat macro emts “MixWight” conpare and

; branch sequences to test each itempointed at by DS: D .

It entOnt = 0
r epeat MaxViei ght
cnp bx, [di+ltenmnt]
je Cotlt
It ennt = It entnt +2
endm

Cotlt:
CheckPr esence

; Renmovel tem

Renovel t em

Control Structures

clc
ret

stc
ret
endp

BX contains a pointer to an item D contains a pointer
to an itemlist which contains that item This routine
searches the itemlist and renoves that itemfromthe
list. To renove an itemfromthe list, we need only
store a zero (NULL) over the top of its pointer entry
inthe list.

proc

; Once again, we use the repeat macro to automatically generate a chain
; of conpare, branch, and rermove code sequences for each possible item

;inthe list.

It emnt

Not Thi sOne:
It emnt

Renovel t em

; Insertltem

Insertltem

It emnt

Not Thi sOne:
It emOnt

Insertltem

= 0

r epeat MaxViei ght

| ocal Not Thi sOne

cnp bx, [di+ltenmnt]
j ne Not Thi sCne

nov word ptr [di+ltemOnt], NULL
ret

= It entnt +2

endm

ret

endp

BX contains a pointer to an item D contains a pointer to
and itemlist. This routine searches through the list for

the first enpty spot and copies the value in BX to that point.
It returns the carry set if it succeeds. It returns the
carry clear if there are no enpty spots avail abl e.

proc

= 0

r epeat MaxVei ght

| ocal Not Thi sOne

cnp word ptr [di+HltemOnt], O
j ne Not Thi sCne

nov [di +Itemnt], bx
stc

ret

= It enOnt +2

endm

clc

ret

endp

; LongDesc- Long description of an item
; DI points at an item- print the |long description of it.

LongDesc

proc

push di

test di, di

jz NoDescri ption

nov di, [di].item LongDesc
puts

put cr

Page 973

Chapter 16

NoDescri pti on: pop di
ret
LongDesc endp

; ShortDesc- Print the short description of an object.
; D points at an item(possibly NUL). Print the short description for it.

Short Desc proc
push di
t est di, di
jz NoDescri pti on
nov di, [di].item ShortDesc
put s
put cr
NoDescri pti on: pop di
ret
Short Desc endp
; Descri be: “QurRoont points at the current room Describe it and its
; contents.
Descri be proc
push es
push bx
push di
nov di, ds
nov es, di
nov bx, Qur Room
nov di, [bx].room Description
print
byte “You are currently “,0
put s
put cr
print
byt e “Here you find the follow ng:”,cr,If,0

; For each possible itemin the room print out the |ong description
; of that item The repeat nmacro generates a code sequence for each
; possible itemthat could be in this room

It enOnt = 0
r epeat MaxVieéi ght
nov di, [bx].roomlteniList[Itentnt]
call LongDesc
It enOnt = It entnt +2
endm
pop di
pop bx
pop es
ret
Descri be endp

; Here is the main program that actually plays the gare.

Mai n proc
nov ax, dseg
nov ds, ax
nov es, ax
nmem ni t
print
byt e crolf, If, If, If,If
byte “W\l cone to “,’ "MADVENTURE'’ , cr, | f
byt e “1f you need help, type the command “HELP"’

Page 974

Control Structures

byt e cr,lf,0
Roonioop: dec Qur Scor e ; One point for each nove.
jnz Not Over Yet

; |f they made too nany noves without dropping anything properly, boot them
; out of the gane.

print

byt e “WHQA! You lost! You get to join the | egions of “
byt e “the totally lame”,cr,If

byt e ‘who have failed at “MADVENTURE'' ,cr,If,0

jnp Qi t

; kay, tell ‘emwhere they are and get a new command fromthem

Not Over Yet : put cr
cal | Descri be
print
byte cr,lf
byt e “Conmmand: “,0
| esi I nput Li ne
gets
st rupr ;lgnore case by converting to U C

; Ckay, process the coomand. Note that we don't actually check to see

; if there is a properly forned sentence. Instead, we just |ook to see
; if any inportant keywords are on the line. If they are, the pattern

; matching routines | oad the appropriate values into the noun and verb
; variables (nouns: north=1, south=2, east=3, west=4, |ine=5, beer=6,

; card=7, sign=8, programF9, honewor k=10, noney=11, fornel2, coupon=13;
; verbs: go=1, get=2, drop=3, inventory=4, quit=5, hel p=6).

This code uses the noun and verb variables as indexes into a two
di mensi onal array whose el enents contain the address of the code
to process the given command. If a given cormand does not nake
any sense (e.g., “go coupon”) the entry in the table points at the
bad conmmand code.

mv Noun, O
nov Verb, 0
mv NounPtr, O
| dxi Ver bPat

xor CX, CX
mat ch

| esi I nput Li ne
| dxi NounPat

xor CX, CX
mat ch

Ckay, index into the coomand table and junp to the appropriate
handler. Note that we will cheat and use a 14x8 array. There

are really only seven verbs, not eight. But using eight nakes
things easier since it is easier to multiply by eight than seven.

nov si, QurRoom The conmands expect this here.
nov bx, Noun

shl bx, 3 ;Mil tiply by eight.

add bx, Verb

shli bx, 1 ;Miltiply by two - word tabl e.
jnp cseg: j npt bl [bx]

The following table contains the noun x verb cross product.
The verb values (in each row) are the foll ow ng:

NCNE Q CET DRCP I NVNTRY QT HELP unused
0 1 2 3 4 5 6 7

Page 975

Chapter 16

Page 976

There is one row for each noun (plus row zero, corresponding to no
noun found on |ine).

j npt bl word Bad ; No noun, no verb

wor d Bad ; No noun, QO

wor d Bad ; No noun, CET

wor d Bad ; No noun, DRCP

wor d Dol nventory ; No noun, | NVENTORY

wor d Qi t Garre ;No noun, QU T

wor d DoHel p ; No noun, HELP

wor d Bad s NA
Nor t hOmds wor d Bad, GoNorth, Bad, Bad, Bad, Bad, Bad, Bad
Sout hOmds wor d Bad, GoSouth, Bad, Bad, Bad, Bad, Bad, Bad
East Onds wor d Bad, GoEast, Bad, Bad, Bad, Bad, Bad, Bad
Wést Ords wor d Bad, GoWest, Bad, Bad, Bad, Bad, Bad, Bad
Li meQrds word Bad, Bad, Getltem Dropltem Bad, Bad, Bad, Bad
Beer Qrds word Bad, Bad, Getltem Dropltem Bad, Bad, Bad, Bad
Car dOnts word Bad, Bad, Getltem Dropltem Bad, Bad, Bad, Bad
Si gnOnds word Bad, Bad, Getltem Dropltem Bad, Bad, Bad, Bad
Pr ogr anOnds wor d Bad, Bad, Getltem Dropltem Bad, Bad, Bad, Bad
Homewor kQrds wor d Bad, Bad, Getltem Dropltem Bad, Bad, Bad, Bad
Money Qs wor d Bad, Bad, Getltem Dropltem Bad, Bad, Bad, Bad
For mOrds word Bad, Bad, Getltem Dropltem Bad, Bad, Bad, Bad
CouponQis word Bad, Bad, Getltem Dropltem Bad, Bad, Bad, Bad
; If the user enters a command we don’t know how to process, print an
; appropriate error message down here.
Bad: printf

byt e “I"'msorry, | don't understand howto ‘9%’'\n”,0

dwor d I nput Li ne

j mp Not Over Yet

field. A quick check for this case handles illegal noves.

GNort h: nmov Si, [si].room North
jmp MoveMe

GoSout h: nmov Si, [si].room South
jmp MoveMe

GoEast : nmov Si, [si].room East
jmp MoveMe

GoVest : nmov Si, [si].room Wst

MoveMe: test Si, si ;See if nove al | owed.
jnz Set Qur Room
printf
byt e “Sorry, you cannot go in this direction.”
byt e cr, If, O
j mp Roonioop

Set Qur Room nov QurRoom si ; Mbve to new room
jmp Roonioop

Handl e the nmovenent commands here.

Movenents are easy, all we've got to do is fetch the NORTH SOUTH,
EAST, or VEST pointer fromthe current roonis data structure and
set the current roomto that address. The only catch is that some
noves are not |egal. Such noves have a NULL (zero) in the direction

Handl e the Getltem command down here. At this tine the user
has entered GET and some noun that the player can pick up.

First, we will make sure that itemis in this room

Then we will check to make sure that picking up this object
won't overload the player. If these two conditions are net,
we' Il transfer the object fromthe roomto the player.

Getltem

Ckay,

Control Structures

nov bx, NounPtr ;Ptr to itemuser wants.

nov si, Qur Room

| ea di, [si].roomlIteniist;Ptr toitemlist in di.
call CheckPresence; See if in room

jc CGot Thel tem

printf

byt e “Sorry, that itemis not available here.”

byt e cr, If, O

jmp Roonioop

see if picking up this object will overload the player.

CGot Thel t em

nov ax, [bx].ltem Wi ght

add ax, Qur\Weight

cnp ax, Max\ei ght

j be Wi ght Ckay

printf

byt e “Sorry, you are already carrying too nany itens “
byt e “to safely carry\nthat object\n”,0

jnp Roonioop

Ckay, everything's cool, transfer the object fromthe roomto the user.

\\éi ght Ckay:

nov Qur Wi ght, ax; Save new wei ght .

call Renmoveltem ; Renmove item fromroom
| ea di, ItemsOnHand; Ptr to player’s list.
call Insertltem

jmp Roonioop

Handl e dr opped obj ects down here.

Dropl tem

Ckay,

| ea di, ItemsOnHand; See if the user has

nov bx, NounPtr ; this itemon hand.

call CheckPresence

jc CanDroplt1l

printf

byt e “You are not currently holding that itemn”,0
jnp Roonioop

let’s see if this is the magic roomwhere this itemis
; supposed to be dropped. If so, award the user sone points for
properly figuring this out.

CanDropl t 1:

)

)

’

)

Ckay,

success!

nov ax, [bx].itemkey
cnp ax, Qur Room
j ne Just Dropl t

Print the w nning message for this object.

nov di, [bx].item WnDesc
puts
put cr

Award the user some points.

nov ax, [bx].itemval ue
add Qur Score, ax

Since the user dropped it, they can carry nore things now

nov ax, [bx].item Wi ght
sub Qur Wi ght, ax

Ckay, take this fromthe user’s list.

| ea di, ItensChHand
cal | Renovel t em

Keep track of how may objects the user has successful |y dropped.

Page 977

Chapter 16

; When this counter hits zero, the gane is over.

dec Tot al Count er

jnz Roonioop

printf

byt e “Vel |, you' ve found where everything goes “
byt e “and your score is %l.\n"

byt e “You mght want to play again and see if *
byt e “you can get a better score.\n",0

dwor d Qur Scor e

jnp Qi t

; If this isn't the roomwhere this object belongs, just drop the thing
; off. If this object won't fit in this room ignore the drop command.

JustDroplt: nov di, Qur Room
| ea di, [di].roomltenkist
call Insertltem
jc Dr opped! t em
printf
byt e “There is insufficient roomto | eave “
byt e “that itemhere.\n",0
j mp Roonioop

; If they can drop it, do so. Don't forget we've just unburdened the
; user so we need to deduct the weight of this object fromwhat the
; user is currently carrying.

Dr opped! t em | ea di, ItemsOnHand
cal | Renovel t em
nov ax, [bx].item Wi ght
sub Qur Wi ght, ax
j mp Roonioop

; |f the user enters the | NVENTORY command, print out the objects on hand

Dol nvent ory: printf
byte “You currently have the followi ng itens in your
byte “possession:”,cr,If,0
nov di, ItenmsOnHand[0]
call Short Desc
nov di, ItemsOnHand[2]
call Short Desc
nov di, ItenmsOnHand[4]
call Short Desc
nov di, ItenmsOnHand[6]
call Short Desc
printf
byt e “\nCQurrent score: %l\n”
byt e “Carrying ability: %/4\n\n",0
dword Qur Scor e, Qur Wi ght
i nc Qur Scor e ; This conmand is free.
jmp Roonioop

; |f the user requests help, provide it here.

DoHel p: printf
byt e “List of conmmands:”,cr,If,If
byt e “Q0 {NORTH, EAST, WEST, SQUTH”,cr,|f
byt e “{GET, DROP} {LIME, BEER CARD, SIQ\, PROGRAM “
byt e “HOMBWORK, MONEY, FORM COUPONy”, cr, | f
byt e “SHOWNV | NVENTCRY”, cr, | f
byt e “QUT GAWE', cr, | f
byt e “HELP ME', cr, I f,If
byte “Each command costs you one point.”,cr,|f
byt e “You accumul ate points by picking up objects and “
byte “dropping themin their”,cr,|f
byt e “ appropriate locations.”,cr,|f

Page 978

Control Structures

byt e “If you drop an itemin its proper location, it *“
byt e “di sappears fromthe gare.”,cr,|f

byt e “The garme is over if your score drops to zero or *
byt e “you properly place”,cr,|f

byt e “all itenms.”,cr,If

byt e 0

j mp Roonioop

If they quit prenmaturely, let ‘emknow what a winp they are!

Qi t Garre: printf
byt e “So long, your score is %l and there are *“
byt e “still %l objects unplaced\n”, 0
dwor d Qur Score, Tot al Count er
Qit: Exi t Pgm ;DCB macro to quit program
Mai n endp
cseg ends
sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends
zz7277S€eg segnent para public ‘zzzzzz’
Last Byt es db 16 dup (?)
z772727s€eg ends
end Mai n

16.9 Laboratory Exercises

Programming with the Standard Library Pattern Matching routines doubles the com-
plexity. Not only must you deal with the complexities of 80x86 assembly language, you
must also deal with the complexities of the pattern matching paradigm, a programming
language in its own right. While you can use a program like CodeView to track down
problems in an assembly language program, no such debugger exists for “programs” you
write with the Standard Library’s pattern matching “language.” Although the pattern
matching routines are written in assembly language, attempting to trace through a pattern
using CodeView will not be very enlightening. In this laboratory exercise, you will learn
how to develop some rudimentary tools to help debug pattern matching programs.

16.9.1 Checking for Stack Overflow (Infinite Loops)

One common problem in pattern matching programs is the possibility of an infinite
loop occurring in the pattern. This might occur, for example, if you have a left recursive
production. Unfortunately, tracking down such loops in a pattern is very tedious, even
with the help of a debugger like CodeView. Fortunately, there is a very simple change you
can make to a program that uses patterns that will abort the program an warn you if infi-
nite recursion exists.

Infinite recursion in a pattern occurs when sl_Match2 continuously calls itself without
ever returning. This overflows the stack and causes the program to crash. There is a very
easy change you can make to your programs to check for stack overflow:

- In patterns where you would normally call sl_Match2, call MatchPat instead.

- Include the following statements near the beginning of your program (before any
patterns):

DEBUG = 0 ; Define for debuggi ng.

i f def DEBUG

Page 979

Chapter 16
Mat chPat

Mat chPat

t ext equ

el se

t ext equ

endi f

<Mat chSP>

<sl| _Mat ch2>

If you define the DEBUG symbol, your patterns will call the MatchSP pro-
cedure, otherwise they will call the sl|_Match2 procedure. During testing,
define the DEBUG symbol.

- Insert the following procedure somewhere in your program:
Mat chSP proc far
cnp sp, offset StkOvrfl
j be Abor t Pgm
jmp sl _Match2
Abor t Pgm print
byt e crylf,If
byt e "Error: Stack overflowin MatchSP routine.",cr,If,0
Exi t Pgm
Mvat chSP endp

This code sandwiches itself between your pattern and the sl_Match2 rou-
tine. It checks the stack pointer (sp) to see if it has dropped below a mini-
mally acceptable point in the stack segment. If not, it continues execution
by jumping to the sl_Match2 routine; otherwise it aborts program execu-
tion with an error message.

- The final change to your program is to modify the stack segment so that it looks
like the following:

sseg

StkOvrfl
stk
sseg

segnent
wor d
wor d
db
ends

para stack 'stack'

64 dup (?) ;Buffer for stack overflow
? ; Stack overflow if drops
1024 dup ("stack ") ; bel ow StkOurfl.

After making these changes, your program will automatically stop with an error mes-
sage if infinite recursion occurs since infinite recursion will most certainly cause a stack

overflow?’.

The following code (Ex16_1la.asm on the companion CD-ROM) presents a simple cal-
culator, similar to the calculator in the section “Evaluating Arithmetic Expressions” on
page 948, although this calculator only supports addition. As noted in the comments
appearing in this program, the pattern for the expression parser has a serious flaw - it
uses a left recursive production. This will most certainly cause an infinite loop and a stack
overflow. For your lab report: Run this program with and without the DEBUG symbol
defined (i.e., comment out the definition for one run). Describe what happens.

EX16_1a.asm

; Asinple floating point calculator that dermonstrates the use of the
UCR Standard Library pattern matching routines. Note that this

programrequires an FPU.

Xl st
. 386
. 387
option

i ncl ude

segment : usel6
stdlib.a

includelib stdlib.lib
mat chf uncs

st

17. This code will also abort your program if you use too much stack space without infinite recursion. A problem

in its own right.

Page 980

Control Structures

; If the synbol "DEBUG' is defined, then call the MatchSP routine
; to do stack overflow checking. |If "DEBUG' is not defined, just
; call the sl_Match2 routine directly.

DEBUG = 0 ; Define for debuggi ng.
i f def DEBUG

Mat chPat textequ <MatchSP>
el se

Mat chPat textequ <sl_Match2>
endi f

dseg segment para public 'data'

; The following is a tenporary used when converting a floating point
; string to a 64 bit real value.

Qur Val ue real 8 0.0
; A Test String:
Test Str byt e "5+2-(3-1)",0

Gammar for sinple infix -> postfix translation operation:
Senmantic rul es appear in braces.

NOTE: This code has a serious problem The first production
is left recursive and will generate an infinite |oop.

E -> BE+T {print result} | T {print result}
T -> <constant> {fld constant} | (E)

: UCR Standard Library Pattern that handl es the grammar above:

; An expression consists of an "E' itemfollowed by the end of the string:
Expr essi on pattern {MatchPat, E, , EndCr String}

EndOF String pattern {ECS}

; An "E' itemconsists of an "E' itemoptionally followed by "+" or "-"
; and a "T" item(E->ET | T):

E pattern {MatchPat, E T, Epl us}
Epl us pattern {MatchChar, '+, T, epPlus}
epPl us pattern {DoFadd}

"

A"T' itemis either a floating point constant or
an "E' itemfollowed by ")".

(" foll owed by

: The regul ar expression for a floating point constant is
g [0-91+ ("." [0-91* |) (((elB) (#[-]) [0-9]14) |)

Note: the pattern "Const" matches exactly the characters specified
by the above regul ar expression. It is the pattern the calc-
ul at or grabs when converting a string to a floating point nunber.

Const pattern {MatchPat, ConstStr, 0, FLDConst}
Const Str pattern {MatchPat, DoD gits, 0, Const2}
Const 2 pattern {matchchar, '.', Const4, Const3}
Const 3 pattern {MatchPat, DoDi gits, Const4, Const4}
Const 4 pattern {matchchar, 'e', const5, const6}
Const 5 pattern {matchchar, 'E, Succeed, const6}
Const 6 pattern {matchchar, '+, const7, const8}
Const 7 pattern {matchchar, '-', const8, const8}

Page 981

Chapter 16
Const 8 pattern {MatchPat, DoD gits}
FI dConst pattern {PushVal ue}
; DoDgits handl es the regul ar expression [0-9]+

DoDigits pattern {Anycset, Digits, 0, SpanD gits}
SpanDigits pattern {Spancset, D gits}

; The S production handl es constants or an expression in parentheses.

T pattern {MatchChar, '(', Const, IntE
IntE pattern {MatchPat, E, 0, O oseParen}
d oseParen pattern {MatchChar, ')'}

; The Succeed pattern al ways succeeds.

Succeed pattern {DoSucceed}

; W use digits fromthe UCR Standard Library cset standard sets.
include stdsets.a

dseg ends

cseg segment para public 'code'
assune cs: cseg, ds:dseg

; Debuggi ng feature #1:

; This is a special version of sl_Match2 that checks for

; stack overflow Stack overflow occurs whenever there

; isaninfinite loop (i.e., left recursion) in a pattern.

Mat chSP proc far
cnp sp, offset StkOvrfl
j be Abor t Pgm
jnp sl _Match2
Abor t Pgm print
byte cr I f,If
byt e "Error: Stack overflowin MatchSP routine.",cr,If,0
Exi t Pgm
Mat chSP endp
; DoSucceed matches the enpty string. In other words, it matches anything
; and al ways returns success wi thout eating any characters fromthe input
; string.
DoSucceed proc far
nmov ax, di
stc
ret
DoSucceed endp

; DoFadd - Adds the two itens on the top of the FPU stack.

DoFadd proc far
faddp st(1), st
nov ax, di ; Requi red by sl _Match
stc ; Always succeed.
ret
DoFadd endp
; PushVal ue- V' ve just nmatched a string that corresponds to a

; floating point constant. Convert it to a floating

Page 982

PushVal ue

PushVal ue

Control Structures

poi nt val ue and push that value onto the FPU stack

proc far

push ds

push es

pusha

nov ax, dseg

nov ds, ax

| esi Const ; FP val matched by this pat.

pat gr ab ;Get a copy of the string

at of ;Convert to real.

free ;Return nemused by patgrab.

| esi Qur Val ue ; Copy floating point accumul at or
sdf pa ; to alocal variable and then
fld Qur Val ue ; copy that value to the FPU stk
popa

nmov ax, di

pop es

pop ds

stc

ret

endp

; The main programtests the expression eval uator.

Mai n

GoodVal

Qit:
Mai n
cseg

sseg

St kOvr f
stk
sseg

z777277s€g
Last Byt es
z777277s€g

proc
nov ax, dseg

nov ds, ax

nov es, ax

nem ni t

finit ;Be sure to do this!
fwai t

| esi Test Str

put s ;Print the expression
| dxi Expr essi on

xor CX, CX

nat ch

jc GoodVal

printff

byt e "is an illegal expression",cr,If,0
ret

fstp CQur Val ue

printff

byt e " = 042.6ge\n", 0

dword Qur Val ue

Exi t Pgm

endp

ends

segment para stack 'stack

wor d 64 dup (?) ;Buffer for stack overfl ow

word ? ; Stack overflow if drops
db 1024 dup ("stack "); below StkOvrfl

ends

segnent para public 'zzzzzz'

db 16 dup (?)
ends
end Mai n

Page 983

Chapter 16

16.9.2

Page 984

Printing Diagnostic Messages from a Pattern

When there is no other debugging method available, you can always use print state-
ments to help track down problems in your patterns. If your program calls pattern match-
ing functions in your own code (like the DoFAdd, DoSucceed, and PushValue procedures in
the code above), you can easily insert print or printf statements in these functions that will
print an appropriate message when they execute. Unfortunately, a problem may develop
in a portion of a pattern that does not call any local pattern matching functions, so insert-
ing print statements within an existing (local) pattern matching function might not help.
To solve this problem, all you need to do is insert a call to a local pattern matching func-
tion in the patterns you suspect have a problem.

Rather than make up a specific local pattern to print an individual message, a better
solution is to write a generic pattern matching function whose whole purpose is to display
a message. The following PatPrint function does exactly this:

; PatPrint- A debugging aid. This "Pattern matching function" prints
; the string that DS: Sl points at.

Pat Pri nt proc far
push es
push di
nov di, ds
nov es, di
nov di, si
put s
nov ax, di
pop di
pop es
stc
ret

Pat Pri nt endp

From “Constructing Patterns for the MATCH Routine” on page 933, you will note that
the pattern matching system passes the value of the MatchParm parameter to a pattern
matching function in the ds:si register pair. The PatPrint function prints the string that ds:si
points at (by moving ds:si to es:di and calling puts).

The following code (Ex16_1b.asm on the companion CD-ROM) demonstrates how to
insert calls to PatPrint within your patterns to print out data to help you track down prob-
lems in your patterns. For your lab report: run this program and describe its output in
your report. Describe how this output can help you track down the problem with this pro-
gram. Modify the grammar to match the grammar in the corresponding sample program
(see “Evaluating Arithmetic Expressions” on page 948) while still printing out each pro-
duction that this program processes. Run the result and include the output in your lab
report.

EX16_1a. asm

; Asinple floating point cal culator that denmonstrates the use of the
; UCR Standard Library pattern natching routines. Note that this
; programrequires an FPU

.xlist

. 386

. 387

option segnent : usel6

i ncl ude stdlib.a

includelib stdlib.lib

mat chf uncs

st

; If the synbol "DEBUG' is defined, then call the MatchSP routine
; to do stack overflow checking. If "DEBUG' is not defined, just
; call the sl _Match2 routine directly.

Control Structures

DEBUG = 0 ; Define for debuggi ng.
i fdef DEBUG

Mat chPat textequ <MatchSP>
el se

Mat chPat textequ <sl_Match2>
endi f

dseg segment para public 'data'

; The following is a tenporary used when converting a floating point
; string to a 64 bit real value.

Qur Val ue real 8 0.0

; A Test String:

Test Str byt e "5+2-(3-1)",0

Gammar for sinple infix -> postfix translation operation:
Semantic rul es appear in braces.

NOTE: This code has a serious problem The first production
is left recursive and will generate an infinite |oop.

E -> E+T {print result} | T {print result}
T -> <constant> {fld constant} | (E)

UCR Standard Library Pattern that handl es the grammar above:

; An expression consists of an "E' itemfollowed by the end of the string:
Expr essi on pattern {MatchPat, E, , EndCr Stri ng}

EndOF String pattern {ECS}

; An "E' itemconsists of an "E' itemoptionally followed by "+" or "-"
; and a "T" item(E->ET | T):

E pattern {PatPrint, EMsg,, E2}

EMsg byt e "E->E+T | T',cr,If,0

E2 pattern {MtchPat, E T, Eplus}

Epl us pattern {MatchChar, '+, T, epPlus}
epPl us pattern {DoFadd,,, E3}

E3 pattern {PatPrint, EMsg3}

EMsg3 byt e "E->E+T",cr,If,0

"

A"T' itemis either a floating point constant or
an "E' itemfollowed by ")".

(" foll owed by

: The regul ar expression for a floating point constant is
; [0-91+ ("." [0-9]1* |) (((elB) (#[-]) [0-9]1+) |)

Note: the pattern "Const" matches exactly the characters specified
by the above regul ar expression. It is the pattern the calc-
ul at or grabs when converting a string to a floating point nunber.

Const pattern {MatchPat, ConstStr, 0, FLDConst}
Const Str pattern {MatchPat, DoD gits, 0, Const2}
Const 2 pattern {matchchar, '.', Const4, Const3}
Const 3 pattern {MatchPat, DoDigits, Const4, Const4}
Const 4 pattern {matchchar, 'e', const5, const6}
Const 5 pattern {matchchar, 'E, Succeed, const6}
Const 6 pattern {matchchar, '+, const7, const8}

Page 985

Chapter 16

Const 7 pattern {matchchar, '-', const8, const8}
Const 8 pattern {MatchPat, DoD gits}

FI dConst pattern {PushVal ue,,, Const Msg}

Const Msg pattern {PatPrint, CVsg}

Ovbg byt e "T->const",cr,If,0

; DoDgits handl es the regul ar expression [0-9]+

DoDigits pattern {Anycset, Digits, 0, SpanD gits}
SpanDigits pattern {Spancset, D gits}

; The S production handl es constants or an expression in parentheses.

T pattern {PatPrint, TMg,, T2}

TMsg byt e "T->(E) | const",cr,If,0

T2 pattern {MatchChar, '(', Const, IntE
IntE pattern {MatchPat, E 0, O oseParen}
d oseParen pattern {MatchChar, ')',, T3}

T3 pattern {PatPrint, TMsg3}

TMsg3 byt e "T->(Bp",cr,If,0

; The Succeed pattern al ways succeeds.

Succeed pattern {DoSucceed}

; W use digits fromthe UCR Standard Library cset standard sets.
include stdsets.a

dseg ends

cseg segment para public 'code'
assune cs: cseg, ds:dseg

; Debuggi ng feature #1:

; This is a special version of sl_Mtch2 that checks for

; stack overflow Stack overfl ow occurs whenever there

; isaninfinite loop (i.e., left recursion) in a pattern.

Mat chSP proc far
cnp sp, offset StkOvrfl
j be Abor t Pgm
jnp sl _Match2
Abor t Pgm print
byte crlf,If
byt e "Error: Stack overflowin MatchSP routine.",cr,If,0
Exi t Pgm
Mat chSP endp

; PatPrint- A debugging aid. This "Pattern matching function" prints
; the string that DS: Sl points at.

Pat Pri nt proc far
push es
push di
nov di, ds
nov es, di
nmov di, si
put s
nmov ax, di
pop di
pop es
stc
ret

Pat Pri nt endp

Page 986

; DoSucceed natches the enpty string.

Control Structures

In other words, it matches anything

; and al ways returns success without eating any characters fromthe input

; string.

DoSucceed proc far
nov ax, di
stc
ret

DoSucceed endp

; DoFadd - Adds the two itens on the top of the FPU stack.

; Required by sl _Match
; Always succeed.

VW' ve just matched a string that corresponds to a

Convert it to a floating

; poi nt val ue and push that value onto the FPU stack.

; FP val matched by this pat.

; Get a copy of the string.

; Convert to real.

; Return nemused by patgrab.

; Copy floating point accunul ator
; to alocal variable and then

; copy that value to the FPU stk.

DoFadd proc far
faddp st(1), st
nov ax, di
stc
ret
DoFadd endp
; PushVal ue-
; floating point constant.
PushVal ue proc far
push ds
push es
pusha
nov ax, dseg
nov ds, ax
| esi Const
pat gr ab
at of
free
| esi Qur Val ue
sdf pa
fld Qur Val ue
popa
nmov ax, di
pop es
pop ds
stc
ret
PushVal ue endp

; The main programtests the expression eval uator.

Mai n proc
nov ax, dseg
nov ds, ax
nov es, ax
nmem ni t
finit
fwait
| esi TestStr
puts
| dxi Expr essi on
xor CX, CX
nat ch
jc GoodVal
printff
byt e "
ret

;Be sure to do this!

;Print the expression

is an illegal expression,cr,|f,0

Page 987

Chapter 16

GoodVal : fstp CQur Val ue
printff
byt e " = 042.6ge\n", 0
dwor d Qur Val ue
Qit: Exi t Pgm
Mai n endp
cseg ends
sseg segment para stack 'stack'
wor d 64 dup (?) ;Buffer for stack overfl ow
StkOvrfl word ? ; Stack overflow if drops
stk db 1024 dup ("stack ") ; bel ow StkOurfl.
sseg ends
zz772727s€g segnent para public 'zzzzzz'
Last Byt es db 16 dup (?)
zz77727s€eg ends
end Mai n

16.10 Programming Projects

1

2)

3)

4)

5)

6)

Modify the program in Section 16.8.3 (Arith2.asm on the companion CD-ROM) so that it
includes some common trigonometric operations (sin, cos, tan, etc.). See the chapter on
floating point arithmetic to see how to compute these functions. The syntax for the func-
tions should be similar to “sin(E)” where “E” represents an arbitrary expression.

Modify the (English numeric input problem in Section 16.8.1 to handle negative numbers.
The pattern should allow the use of the prefixes “negative” or “minus” to denote a nega-
tive number.

Modify the (English) numeric input problem in Section 16.8.1 to handle four byte
unsigned integers.

Write your own “Adventure” game based on the programming techniques found in the
“Madventure” game in Section 16.8.5.

Write a “tiny assembler” for the modern version of the x86 processor using the techniques
found in Section 16.8.4.

Write a simple “DOS Shell” program that reads a line of text from the user and processes
valid DOS commands found on that line. Handle at least the DEL, RENAME, TYPE, and
COPY commands. See “MS-DOS, PC-BIOS, and File 1/0” on page 699 for information
concerning the implementation of these DOS commands.

16.11 Summary

Page 988

This has certainly been a long chapter. The general topic of pattern matching receives
insufficient attention in most textbooks. In fact, you rarely see more than a dozen or so
pages dedicated to it outside of automata theory texts, compiler texts, or texts covering
pattern matching languages like Icon or SNOBOL4. That is one of the main reasons this
chapter is extensive, to help cover the paucity of information available elsewhere. How-
ever, there is another reason for the length of this chapter and, especially, the number of
lines of code appearing in this chapter — to demonstrate how easy it is to develop certain
classes of programs using pattern matching techniques. Could you imagine having to
write a program like Madventure using standard C or Pascal programming techniques?
The resulting program would probably be longer than the assembly version appearing in
this chapter! If you are not impressed with the power of pattern matching, you should
probably reread this chapter. It is very surprising how few programmers truly understand
the theory of pattern matching; especially considering how many program use, or could
benefit from, pattern matching techniques.

Control Structures

This chapter begins by discussing the theory behind pattern matching. It discusses
simple patterns, known as regular languages, and describes how to design nondeterministic
and deterministic finite state automata — the functions that match patterns described by regu-
lar expressions. This chapter also describes how to convert NFAs and DFAs into assembly
language programs. For the details, see

= “An Introduction to Formal Language (Automata) Theory” on page 883
= “Machines vs. Languages” on page 883

= “Regular Languages” on page 884

= “Regular Expressions” on page 885

= “Nondeterministic Finite State Automata (NFASs)” on page 887

= “Converting Regular Expressions to NFAs” on page 888

= “Converting an NFA to Assembly Language” on page 890

= “Deterministic Finite State Automata (DFASs)” on page 893

= “Converting a DFA to Assembly Language” on page 895

Although the regular languages are probably the most commonly processed patterns
in modern pattern matching programs, they are also only a small subset of the possible
types of patterns you can process in a program. The context free languages include all the
regular languages as a subset and introduce many types of patterns that are not regular.
To represent a context free language, we often use a context free grammar. A CFG contains a
set of expressions known as productions. This set of productions, a set of nonterminal sym-
bols, a set of terminal symbols, and a special nonterminal, the starting symbol, provide the
basis for converting powerful patterns into a programming language.

In this chapter, we’ve covered a special set of the context free grammars known as
LL(1) grammars. To properly encode a CFG as an assembly language program, you must
first convert the grammar to an LL(1) grammar. This encoding yields a recursive descent
predictive parser. Two primary steps required before converting a grammar to a program
that recognizes strings in the context free language is to eliminate left recursion from the
grammar and left factor the grammar. After these two steps, it is relatively easy to convert
a CFG to an assembly language program.

For more information on CFGs, see

= “Context Free Languages” on page 900

= “Eliminating Left Recursion and Left Factoring CFGs” on page 903
= “Converting CFGs to Assembly Language” on page 905

= “Some Final Comments on CFGs” on page 912

Sometimes it is easier to deal with regular expressions rather than context free gram-
mars. Since CFGs are more powerful than regular expressions, this text generally adopts
grammars whereever possible However, regular expressions are generally easier to work
with (for simple patterns), especially in the early stages of development. Sooner or later,
though, you may need to convert a regular expression to a CFG so you can combine it
with other components of the grammar. This is very easy to do and there is a simple algo-
rithm to convert REs to CFGs. For more details, see

= “Converting REs to CFGs” on page 905

Although converting CFGs to assembly language is a straightforward process, it is
very tedious. The UCR Standard Library includes a set of pattern matching routines that
completely eliminate this tedium and provide many additional capabilities as well (such
as automatic backtracking, allowing you to encode grammars that are not LL(1)). The pat-
tern matching package in the Standard Library is probably the most novel and powerful
set of routines available therein. You should definitely investigate the use of these rou-
tines, they can save you considerable time. For more information, see

= “The UCR Standard Library Pattern Matching Routines” on page 913
= “The Standard Library Pattern Matching Functions” on page 914

One neat feature the Standard Library provides is your ability to write customized
pattern matching functions. In addition to letting you provide pattern matching facilities

Page 989

Chapter 16

Page 990

missing from the library, these pattern matching functions let you add semantic rules to
your grammars. For all the details, see

= “Designing Your Own Pattern Matching Routines” on page 922
= ‘“Extracting Substrings from Matched Patterns” on page 925
= “Semantic Rules and Actions” on page 929

Although the UCR Standard Library provides a powerful set of pattern matching rou-
tines, its richness may be its primary drawback. Those who encounter the Standard
Library’s pattern matching routines for the first time may be overwhelmed, especially
when attempting to reconcile the material in the section on context free grammars with
the Standard Library patterns. Fortunately, there is a straightforward, if inefficient, way to
translate CFGs into Standard Library patterns. This technique is outlined in

= “Constructing Patterns for the MATCH Routine” on page 933

Although pattern matching is a very powerful paradigm that most programmers
should familiarize themselves with, most people have a hard time seeing the applications
when they first encounter pattern matching. Therefore, this chapter concludes with some
very complete programs that demonstrate pattern matching in action. These examples
appear in the section:

= “Some Sample Pattern Matching Applications” on page 935

Control Structures

16.12 Questions

1)

13)
14)

15)

Assume that you have two inputs that are either zero or one. Create a DFA to implement the following
logic functions (assume that arriving in a final state is equivalent to being true, if you wind up in a
non-accepting state you return false)

a) OR b) XOR ¢) NAND d) NOR
e) Equals (XNOR) f) AND
A Input B Input
O—O—0
Example, A<B

Ifr,s,and t are regular expressions, what strings with the following regular expressions match?

ar b)rs ort dr]s

Provide a regular expression for integers that allow commas every three digits as per U.S. syntax (e.g., for
every three digits from the right of the number there must be exactly one comma). Do not allow misplaced
commas.

Pascal real constants must have at least one digit before the decimal point. Provide a regular expression for
FORTRAN real constants that does not have this restriction.

In many language systems (e.g., FORTRAN and C) there are two types of floating point numbers, single
precision and double precision. Provide a regular expression for real numbers that allows the input of
floating point numbers using any of the characters [dDeE] as the exponent symbol (d/D stands for double
precision).

Provide an NFA that recognizes the mnemonics for the 886 instruction set.

Convert the NFA above into assembly language. Do not use the Standard Library pattern matching rou-
tines.

Repeat question (7) using the Standard Library pattern matching routines.
Create a DFA for Pascal identifiers.
Convert the above DFA to assembly code using straight assembly statements.

Convert the above DFA to assembly code using a state table with input classification. Describe the data in
your classification table.

Eliminate left recursion from the following grammar:

St nt - if expression then Stnt endif
| if expression then Stnt else Stnt endif
| Sm o, St
| €

Left factor the grammar you produce in problem 12.

Convert the result from question (13) into assembly language without using the Standard Library pattern
matching routines.

Convert the result from question (13) in assembly language using the Standard Library pattern matching
routines.

Page 991

Chapter 16

16)
17)

18)

19)

20)
21)
22)

Page 992

Convert the regular expression obtained in question (3) to a set of productions for a context free grammar.

Why is the ARB matching function inefficient? Describe how the pattern (ARB “hello” ARB) would match
the string “hello there”.

Spancset matches zero or more occurrences of some characters in a character set. Write a pattern match-
ing function, callable as the first field of the pattern data type, that matches one or more occurrences of
some character (feel free to look at the sources for spancset).

Write the matchichar pattern matching function that matches an individual character regardless of case
(feel free to look at the sources for matchchar).

Explain how to use a pattern matching function to implement a semantic rule.
How would you extract a substring from a matched pattern?
What are parenthetical patterns? How to you create them?

