Executable and Linkable Format (ELF)

Contents

Preface

1 OBJECT FILES

Introduction 1-1

ELF Header 1-3

Sections 1-8

String Table 1-16

Symbol Table 1-17

Relocation 1-21
2 PROGRAM LOADING AND DYNAMIC LINKING

Introduction 2-1

Program Header 2-2

Program Loading 2-7

Dynamic Linking 2-10
3 C LIBRARY

C Library 3-1
| Index

Index I-1

Tool Interface Standards (TIS)

Portable Formats Specification, Version 1.1

ELF: Executable and Linkable Format

ii Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

Figures and Tables

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 1-4:
Figure 1-5:
Figure 1-6:
Figure 1-7:
Figure 1-8:
Figure 1-9:

Figure 1-10:
Figure 1-11:
Figure 1-12:
Figure 1-13:
Figure 1-14:
Figure 1-15:
Figure 1-16:
Figure 1-17:
Figure 1-18:
Figure 1-19:
Figure 1-20:
Figure 1-21:
Figure 1-22:

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:

Figure 2-10:
Figure 2-11:
Figure 2-12:
Figure 2-13:
Figure 2-14:
Figure 2-15:

Figure 3-1:
Figure 3-2:
Figure 3-3:

Tool Interface Standards (TIS)

Object File Format
32-Bit Data Types
ELF Header
e_ident[] Identification Indexes
Data Encoding ELFDATA2LSB
Data Encoding ELFDATA2VEB
32-bit Intel Architecture Identification, e_i dent
Special Section Indexes
Section Header
Section Types, sh_t ype
Section Header Table Entry: Index O
Section Attribute Flags, sh_f | ags
sh_link and sh_i nf o Interpretation
Special Sections
String Table Indexes
Symbol Table Entry
Symbol Binding, ELF32_ST_BI ND
Symbol Types, ELF32_ST_TYPE
Symbol Table Entry: Index 0
Relocation Entries
Relocatable Fields
Relocation Types
Program Header
Segment Types, p_t ype
Note Information
Example Note Segment
Executable File
Program Header Segments
Process Image Segments
Example Shared Object Segment Addresses
Dynamic Structure
Dynamic Array Tags, d_t ag
Global Offset Table
Absolute Procedure Linkage Table
Position-Independent Procedure Linkage Table
Symbol Hash Table
Hashing Function
|'i bc Contents, Names without Synonyms
|'i bc Contents, Names with Synonyms
I'i bc Contents, Global External Data Symbols

Portable Formats Specification, Version 1.1

1-10
1-11
1-12
1-13
1-13
1-16
1-17
1-18
1-19
1-20
1-21
1-22
1-23

Preface

ELF: Executable and Linking Format

The Executable and Linking Format was originally developed and published by UNIX System Labora-
tories (USL) as part of the Application Binary Interface (ABI). The Tool Interface Standards committee
(TIS) has selected the evolving ELF standard as a portable object file format that works on 32-bit Intel
Architecture environments for a variety of operating systems.

The ELF standard is intended to streamline software development by providing developers with a set of
binary interface definitions that extend across multiple operating environments. This should reduce the

number of different interface implementations, thereby reducing the need for recoding and recompiling
code.

About This Document
This document is intended for developers who are creating object or executable files on various 32-bit
environment operating systems. It is divided into the following three parts:

m Part 1, “Object Files” describes the ELF object file format for the three main types of object files.

m Part 2, “Program Loading and Dynamic Linking’ describes the object file information and system
actions that create running programs.

m Part 3, “C Library” lists the symbols contained in | i bsys, the standard ANSI C and | i bc routines,
and the global data symbols required by the | i bc routines.

References to X86 architecture have been changed to Intel Architecture.
NOTE

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1

OBJECT FILES

Tool Interface Standards (TIS)

Introduction 1-1
File Format 1-1
Data Representation 1-2
ELF Header 1-3
ELF Identification 1-5
Machine Information 1-7
Sections 1-8
Special Sections 1-13
String Table 1-16
Symbol Table 1-17
Symbol Values 1-20
Relocation 1-21
Relocation Types 1-22

Portable Formats Specification, Version 1.1

Introduction

Part 1 describes the iABI object file format, called ELF (Executable and Linking Format). There are three
main types of object files.

m A relocatable file holds code and data suitable for linking with other object files to create an execut-
able or a shared object file.

m An executable file holds a program suitable for execution; the file specifies how exec (BA_QOS) creates
a program’s process image.

m A shared object file holds code and data suitable for linking in two contexts. First, the link editor [see
| d(SD_CMD)] may process it with other relocatable and shared object files to create another object
file. Second, the dynamic linker combines it with an executable file and other shared objects to
create a process image.

Created by the assembler and link editor, object files are binary representations of programs intended to
execute directly on a processor. Programs that require other abstract machines, such as shell scripts, are
excluded.

After the introductory material, Part 1 focuses on the file format and how it pertains to building pro-
grams. Part 2 also describes parts of the object file, concentrating on the information necessary to execute
a program.

File Format
Obiject files participate in program linking (building a program) and program execution (running a pro-

gram). For convenience and efficiency, the object file format provides parallel views of a file’s contents,
reflecting the differing needs of these activities. Figure 1-1 shows an object file’s organization.

Figure 1-1: Object File Format

Linking View Execution View
u ELF header ELF header

Section header table
optional

Section header table

HDrogram header table Program header table
0 optional
O Section 1
n — Segment 1
-
Section n
g — Segment 2
=
[
O

MmOoOoOngopoOdg
MofooOopoopogdg
MoOofQoopoopogo

An ELF header resides at the beginning and holds a “‘road map’’ describing the file’s organization. Sec-
tions hold the bulk of object file information for the linking view: instructions, data, symbol table, reloca-
tion information, and so on. Descriptions of special sections appear later in Part 1. Part 2 discusses seg-
ments and the program execution view of the file.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1-1

ELF: Executable and Linkable Format

A program header table, if present, tells the system how to create a process image. Files used to build a pro-
cess image (execute a program) must have a program header table; relocatable files do not need one. A
section header table contains information describing the file’s sections. Every section has an entry in the
table; each entry gives information such as the section name, the section size, etc. Files used during link-
ing must have a section header table; other object files may or may not have one.

Although the figure shows the program header table immediately after the ELF header, and the section
NoTE | header table following the sections, actual files may differ. Moreover, sections and segments have no
specified order. Only the ELF header has a fixed position in the file.

Data Representation

As described here, the object file format supports various processors with 8-bit bytes and 32-bit architec-
tures. Nevertheless, it is intended to be extensible to larger (or smaller) architectures. Obiject files there-
fore represent some control data with a machine-independent format, making it possible to identify
object files and interpret their contents in a common way. Remaining data in an object file use the encod-
ing of the target processor, regardless of the machine on which the file was created.

Figure 1-2: 32-Bit Data Types

Name Size Alignment Purpose
B f32_Addr 04 0O 4 OUnsigned program address
B f32_Hal f o O 2 Uunsigned medium integer
Bf32 Of E 4 E 4 DUnsigned file offset
B f32_Sword 04 o 4 rSigned large integer
B f32 Wrd o4 QO 4 OUnsigned large integer
unsi gned char % 1 E 1 %Unsigned small integer

All data structures that the object file format defines follow the “‘natural’’ size and alignment guidelines
for the relevant class. If necessary, data structures contain explicit padding to ensure 4-byte alignment for
4-byte objects, to force structure sizes to a multiple of 4, etc. Data also have suitable alignment from the
beginning of the file. Thus, for example, a structure containing an B f 32_Addr member will be aligned
on a 4-byte boundary within the file.

For portability reasons, ELF uses no bit-fields.

1-2 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF Header

Some object file control structures can grow, because the ELF header contains their actual sizes. If the
object file format changes, a program may encounter control structures that are larger or smaller than
expected. Programs might therefore ignore ““extra’ information. The treatment of ““‘missing” informa-
tion depends on context and will be specified when and if extensions are defined.

Figure 1-3: ELF Header

-

#define El _N DENT 16

typedef struct {
unsi gned char e_ident [El _N DENT];
Hf32_Hal f e_type;
Hf32 Hal f e_machi ne;
B f32_Wrd e_version;
H f 32_Addr e entry;
BHf32 Of e_phof f;
Bf32_Of e_shof f;
Hf32_Wrd e_flags;
Hf32 Hal f e_ehsi ze;
Hf32 Hal f e_phentsi ze;
Hf32_Hal f e_phnum
Hf32 Hal f e_shentsi ze;
B f32_Hal f e_shnum
Hf32_Hal f e_shst rndx;

} B f32_Ehdr;

~

/

e_ident

e_type

Tool Interface Standards (TIS)

The initial bytes mark the file as an object file and provide machine-independent data
with which to decode and interpret the file’s contents. Complete descriptions appear
below, in “ELF Identification.”

This member identifies the object file type.

Name Value Meaning
ET_NONE a 0 ONo file type
ET_REL O 1 URelocatable file
ET_EXEC E 2 —Executable file
ET_DYN 0 3 [Shared object file
ET_CORE 0 4 [Core file

ET_LOPROC 00xff00
ET_H PROC HOxf fff

OProcessor-specific
E Processor-specific

Although the core file contents are unspecified, type ET_CORE is reserved to mark the
file. Values from ET_LOPROC through ET_HI PROC (inclusive) are reserved for
processor-specific semantics. Other values are reserved and will be assigned to new
object file types as necessary.

Portable Formats Specification, Version 1.1 1-3

ELF: Executable and Linkable Format

e_machi ne

e_version

e_entry

e_phof f

e _shof f

e flags

e_ehsi ze

e_phentsi ze

e_phnum

e _shentsi ze

e_shnum

This member’s value specifies the required architecture for an individual file.

Name Value Meaning
EMNONE O O UNo machine
EMM2 U 1 OAT&T WE 32100
EM_SPARC B 2 Hsparc
EM386 7 3 [intel 80386
EM 68K 0o 4 1Motorola 68000
EM 88K O 5 OMotorola 88000
EM860 U 7 Uintel 80860
EM M PS g 8 EMIPS RS3000

Other values are reserved and will be assigned to new machines as necessary.
Processor-specific ELF hames use the machine name to distinguish them. For example,
the flags mentioned below use the prefix EF_; a flag named W DGET for the EM_XYZ
machine would be called EF_XYZ_W DGET.

This member identifies the object file version.

Name Value Meaning

EV_NONE g o Olnvalid version
EV_CURRENTB 1 BCurrentversion

The value 1 signifies the original file format; extensions will create new versions with
higher numbers. The value of EV_CURRENT, though given as 1 above, will change as
necessary to reflect the current version number.

This member gives the virtual address to which the system first transfers control, thus
starting the process. If the file has no associated entry point, this member holds zero.

This member holds the program header table’s file offset in bytes. If the file has no
program header table, this member holds zero.

This member holds the section header table’s file offset in bytes. If the file has no sec-
tion header table, this member holds zero.

This member holds processor-specific flags associated with the file. Flag names take
the form EF_machine_flag. See *“Machine Information” for flag definitions.

This member holds the ELF header’s size in bytes.

This member holds the size in bytes of one entry in the file’s program header table; all
entries are the same size.

This member holds the number of entries in the program header table. Thus the pro-
duct of e_phent si ze and e_phnumgives the table’s size in bytes. If a file has no pro-
gram header table, e_phnumholds the value zero.

This member holds a section header’s size in bytes. A section header is one entry in
the section header table; all entries are the same size.

This member holds the number of entries in the section header table. Thus the product
of e_shent si ze and e_shnumgives the section header table’s size in bytes. If a file
has no section header table, e _shnumholds the value zero.

Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

e_shstrndx This member holds the section header table index of the entry associated with the sec-
tion name string table. If the file has no section name string table, this member holds
the value SHN_UNDEF. See ‘“‘Sections’ and *‘String Table”” below for more informa-

tion.

ELF Identification

As mentioned above, ELF provides an object file framework to support multiple processors, multiple data
encodings, and multiple classes of machines. To support this object file family, the initial bytes of the file
specify how to interpret the file, independent of the processor on which the inquiry is made and indepen-

dent of the file’s remaining contents.

The initial bytes of an ELF header (and an object file) correspond to the e_i dent member.

Figure 1-4: e_i dent[] Identification Indexes

Name Value Purpose
El _MAGD O 0 [OFile identification
El _MAGL U 1 UFile identification
El MAR2 E 2 UFile identification
El MAG3 0 3 File identification
El _CLASS 0 4 [Fileclass
El _DATA 0 5 [ODataencoding
El_VERSION U 6 UFile version
El _PAD E 7 Ustart of padding bytes
El NI DENT E 16 ESize ofe_ident[]

These indexes access bytes that hold the following values.

El _MAGD to El _MVAG3

Afile’s first 4 bytes hold a ‘““magic number,” identifying the file as an ELF object file.

Name Value Position

ELFMAGD 0OO0x7f Oe_ident[El _MAGD]
ELFMAGL U ' B Ue ident[El _MAGL]
ELFVAG2 g 'L Belident[BI_MA®)]
ELFMAG3 5 'F ge_ident[El _MAGS]

El _CLASS The next byte, e_i dent [El _CLASS] , identifies the file’s class, or capacity.

Tool Interface Standards (TIS)

Portable Formats Specification, Version 1.1 1-5

ELF: Executable and Linkable Format

El _DATA
El _VERSI ON
El _PAD

Name Value Meaning
ELFCLASSNONE O O OlInvalid class
ELFCLASS32 U 1 U32-bit objects
ELFCLASS64 H 2 [He4-bit objects

The file format is designed to be portable among machines of various sizes, without
imposing the sizes of the largest machine on the smallest. Class ELFCLASS32 supports
machines with files and virtual address spaces up to 4 gigabytes; it uses the basic types
defined above.

Class ELFCLASS64 is reserved for 64-bit architectures. Its appearance here shows how
the object file may change, but the 64-bit format is otherwise unspecified. Other classes
will be defined as necessary, with different basic types and sizes for object file data.

Byte e_i dent [El _DATA] specifies the data encoding of the processor-specific data in
the object file. The following encodings are currently defined.

Name Value Meaning

ELFDATANONE O O OlInvalid data encoding
ELFDATA2LSB U 1 Usee below
ELFDATA2MSB 2 2 Hsee below

More information on these encodings appears below. Other values are reserved and
will be assigned to new encodings as nhecessary.

Byte e_i dent [El _VERSI O\] specifies the ELF header version number. Currently, this
value must be EV_CURRENT, as explained above for e_ver si on.

This value marks the beginning of the unused bytes in e_i dent . These bytes are
reserved and set to zero; programs that read object files should ignore them. The value
of EI _PAD will change in the future if currently unused bytes are given meanings.

A file’s data encoding specifies how to interpret the basic objects in a file. As described above, class
ELFCLASS3?2 files use objects that occupy 1, 2, and 4 bytes. Under the defined encodings, objects are
represented as shown below. Byte numbers appear in the upper left corners.

Encoding ELFDATA2L SB specifies 2’s complement values, with the least significant byte occupying the

lowest address.

Figure 1-5: Data Encoding ELFDATA2LSB

ox01 | o1

0x0102 |° 02 01

0x01020304 ° 04 03 02 01

Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

Encoding ELFDATA2MSB specifies 2’s complement values, with the most significant byte occupying the
lowest address.

Figure 1-6: Data Encoding ELFDATA2NVSB

0x01 | o1
0 1
0x0102 01 02
0 1 2 3
0x01020304 01 02 03 04

Machine Information

For file identification in e_i dent , the 32-bit Intel Architecture requires the following values.

Figure 1-7: 32-bit Intel Architecture Identification, e_i dent

Position Value

e_ident[El _CLASS] UELFCLASS32
e_ident[El_DATA] UELFDATA2LSB

Processor identification resides in the ELF header’s e_nmachi ne member and must have the value
EM 386.

The ELF header’s e_f | ags member holds bit flags associated with the file. The 32-bit Intel Architecture
defines no flags; so this member contains zero.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1-7

Sections

An object file’s section header table lets one locate all the file’s sections. The section header table is an
array of El f 32_Shdr structures as described below. A section header table index is a subscript into this
array. The ELF header’s e_shof f member gives the byte offset from the beginning of the file to the sec-
tion header table; e_shnumtells how many entries the section header table contains; e_shent si ze
gives the size in bytes of each entry.

Some section header table indexes are reserved; an object file will not have sections for these special
indexes.

Figure 1-8: Special Section Indexes

Name Value

SHN_UNDEF 0 0
SHN_LORESERVE Uoxf f 00
SHN_LOPROC BOxf f00
SHN_H PROC OXf f 1f
SHN_ABS OOxfffl
SHN_COVMVON DOoxfff2
SHN_H RESERVE EOxffff

SHN_UNDEF This value marks an undefined, missing, irrelevant, or otherwise meaningless section
reference. For example, a symbol “defined” relative to section number SHN_UNDEF
is an undefined symbol.

index 0. Thatis, if the e_shnummember of the ELF header says a file has 6 entries in the section
header table, they have the indexes 0 through 5. The contents of the initial entry are specified later in

Although index 0 is reserved as the undefined value, the section header table contains an entry for
NOTE
this section.

SHN_LORESERVE This value specifies the lower bound of the range of reserved indexes.

SHN_LOPROC through SHN_HI PROC
Values in this inclusive range are reserved for processor-specific semantics.

SHN_ABS This value specifies absolute values for the corresponding reference. For example,
symbols defined relative to section number SHN_ABS have absolute values and are
not affected by relocation.

SHN_COVMON Symbols defined relative to this section are common symbols, such as FORTRAN
COWMMON or unallocated C external variables.

SHN_HI RESERVE This value specifies the upper bound of the range of reserved indexes. The system
reserves indexes between SHN LORESERVE and SHN HI RESERVE, inclusive; the
values do not reference the section header table. That is, the section header table
does not contain entries for the reserved indexes.

Sections contain all information in an object file, except the ELF header, the program header table, and the
section header table. Moreover, object files’ sections satisfy several conditions.

1-8 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

m Every section in an object file has exactly one section header describing it. Section headers may
exist that do not have a section.

m Each section occupies one contiguous (possibly empty) sequence of bytes within a file.
m Sections in a file may not overlap. No byte in afile resides in more than one section.

m An object file may have inactive space. The various headers and the sections might not “‘cover”
every byte in an object file. The contents of the inactive data are unspecified.

A section header has the following structure.

Figure 1-9: Section Header

a N

typedef struct {
H f32_Wrd sh_narre;
Hf32 Wrd sh_type;
Hf32 Wrd sh_f 1l ags;
E f 32_Addr sh_addr;
Bf32_Of sh_of f set;
Hf32_ Wrd sh_si ze;
H f32_Word sh_link;
B f32_Wrd sh_info;
Hf32_ Wrd sh_addral i gn;
H f32_Word sh_ent si ze;
} B f32_Shdr; /
sh_name This member specifies the name of the section. Its value is an index into the section

header string table section [see *‘String Table” below], giving the location of a null-
terminated string.

sh_type This member categorizes the section’s contents and semantics. Section types and their
descriptions appear below.

sh_fl ags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions
appear below.

sh_addr If the section will appear in the memory image of a process, this member gives the
address at which the section’s first byte should reside. Otherwise, the member con-
tains 0.

sh_of f set This member’s value gives the byte offset from the beginning of the file to the first

byte in the section. One section type, SHT _NOBI TS described below, occupies no
space in the file, and its sh_of f set member locates the conceptual placement in the
file.

sh_si ze This member gives the section’s size in bytes. Unless the section type is
SHT_NOBI TS, the section occupies sh_si ze bytes in the file. A section of type
SHT_NOBI TS may have a non-zero size, but it occupies no space in the file.

sh_link This member holds a section header table index link, whose interpretation depends
on the section type. A table below describes the values.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1-9

ELF: Executable and Linkable Format

sh_ info

sh_addralign

sh_entsi ze

This member holds extra information, whose interpretation depends on the section
type. A table below describes the values.

Some sections have address alignment constraints. For example, if a section holds a
doubleword, the system must ensure doubleword alignment for the entire section.
That is, the value of sh_addr must be congruent to 0, modulo the value of
sh_addr al i gn. Currently, only 0 and positive integral powers of two are allowed.
Values 0 and 1 mean the section has no alignment constraints.

Some sections hold a table of fixed-size entries, such as a symbol table. For such a sec-
tion, this member gives the size in bytes of each entry. The member contains 0 if the
section does not hold a table of fixed-size entries.

A section header’s sh_t ype member specifies the section’s semantics.

Figure 1-10: Section Types, sh_t ype

Name Value
SHT_NULL
SHT_PROGBI TS
SHT_SYMIAB
SHT_STRTAB
SHT_RELA
SHT_HASH
SHT_DYNAM C
SHT_NOTE
SHT_NOBI TS
SHT_REL
SHT_SHLI B 10
SHT_DYNSYM 11
SHT_LOPROC ~ £0x70000000
SHT_HIPROC [OX7fffffff
SHT_LOUSER [J0x80000000
SHT_HIUSER [OXffffffff

e
©CooO~NOOOUTSWNEFO

SHT_NULL

SHT_PROGBI TS

This value marks the section header as inactive; it does not have an associated section.
Other members of the section header have undefined values.

The section holds information defined by the program, whose format and meaning are
determined solely by the program.

SHT_SYMTAB and SHT_DYNSYM

1-10

These sections hold a symbol table. Currently, an object file may have only one sec-
tion of each type, but this restriction may be relaxed in the future. Typically,
SHT_SYMTAB provides symbols for link editing, though it may also be used for
dynamic linking. As a complete symbol table, it may contain many symbols unneces-
sary for dynamic linking. Consequently, an object file may also contain a
SHT_DYNSYMsection, which holds a minimal set of dynamic linking symbols, to save
space. See ‘“‘Symbol Table” below for details.

Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

SHT _STRTAB The section holds a string table. An object file may have multiple string table sections.
See “‘String Table’” below for details.

SHT RELA The section holds relocation entries with explicit addends, such as type El f 32_Rel a
for the 32-bit class of object files. An object file may have multiple relocation sections.
See ““Relocation’” below for details.

SHT_HASH The section holds a symbol hash table. All objects participating in dynamic linking
must contain a symbol hash table. Currently, an object file may have only one hash
table, but this restriction may be relaxed in the future. See ‘“Hash Table™ in Part 2 for
details.

SHT _DYNAM C The section holds information for dynamic linking. Currently, an object file may have
only one dynamic section, but this restriction may be relaxed in the future. See
“Dynamic Section” in Part 2 for details.

SHT_NOTE The section holds information that marks the file in some way. See ‘“Note Section’ in
Part 2 for details.

SHT _NOBI TS A section of this type occupies no space in the file but otherwise resembles
SHT_PROGBI TS. Although this section contains no bytes, the sh_of f set member
contains the conceptual file offset.

SHT_REL The section holds relocation entries without explicit addends, such as type
El f 32_Rel for the 32-bit class of object files. An object file may have multiple reloca-
tion sections. See ““Relocation’ below for details.

SHT _SHLI B This section type is reserved but has unspecified semantics. Programs that contain a
section of this type do not conform to the ABI.

SHT_LOPROC through SHT_HI PROC
Values in this inclusive range are reserved for processor-specific semantics.

SHT LOUSER This value specifies the lower bound of the range of indexes reserved for application
programs.
SHT_HI USER This value specifies the upper bound of the range of indexes reserved for application

programs. Section types between SHT LOUSER and SHT _HI USER may be used by
the application, without conflicting with current or future system-defined section

types.

Other section type values are reserved. As mentioned before, the section header for index 0
(SHN_UNDEF) exists, even though the index marks undefined section references. This entry holds the fol-
lowing.

Figure 1-11: Section Header Table Entry: Index O

Name Value Note
sh_nane a 0 ONo name
sh_type U SHT NULL Dinactive
sh_f1l ags E 0 UNo flags
sh_addr 0 0 pNo address
sh_of f set O 0 ONo file offset
sh_si ze g 0 HNo size

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1-11

ELF: Executable and Linkable Format

Figure 1-11: Section Header Table Entry: Index 0 (continued)

sh_I'ink 0OSHN_UNDEF [No link information
sh_info g 0 UNo auxiliary information
sh_addralign U 0 UNo alignment

sh_entsi ze 5 0 ElNo entries

A section header’s sh_f | ags member holds 1-bit flags that describe the section’s attributes. Defined
values appear below; other values are reserved.

Figure 1-12: Section Attribute Flags, sh_f | ags

Name Value
SHF_WRI TE 0 0x1
SHF _ALLOC U 0x2
SHF_EXECI NSTR B 0x4

SHF_ MASKPROC E|0Xf 0000000

If a flag bitis setin sh_f | ags, the attribute is “‘on” for the section. Otherwise, the attribute is *‘off”’ or
does not apply. Undefined attributes are set to zero.

SHF WRI TE The section contains data that should be writable during process execution.

SHF _ALLQC The section occupies memory during process execution. Some control sections do
not reside in the memory image of an object file; this attribute is off for those sections.

SHF _EXECI NSTR The section contains executable machine instructions.

SHF_MASKPROC All bits included in this mask are reserved for processor-specific semantics.

Two members in the section header, sh_1 i nk and sh_i nf o, hold special information, depending on
section type.

1-12 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

Figure 1-13: sh_Il i nk and sh_

i nf o Interpretation

sh_type sh_link sh_info
SHT_DYNAM C [OThe section header index of [0
Uthe string table used by §
Dentries in the section. E
SHT_HASH UThe section header index of 00
Uthe symbol table to which U
Ethe hash table applies. E
SHT _REL OThe section header index of OThe section header index of
SHT_RELA Uthe associated symbol table. Uthe section to which the
E |Trelocation applies.
SHT_SYMTAB [The section header index of [One greater than the sym-
SHT_DYNSYM Uthe associated string table. ~ Ubol table index of the last
B Elocal symbol (binding
0 OSTB_LOCAL).
other %SHN_UNDEF Eo

Special Sections

Various sections hold program and control information. Sections in the list below are used by the system
and have the indicated types and attributes.

Figure 1-14: Special Sections

Name Type Attributes
. bss OSHT_NOBI TS [OSHF_ALLOC+SHF_WRI TE
.comment USHT PROGBI TS Unone
.data BSHT_PROGBI Ts UsSHF ALLOC+SHF WRI TE
.datal OSHT_PROGBI TS SHF_ALLOC+SHF_WRI TE
. debug OSHT _PROGBI TS [jhone
.dynam ¢ OSHT _DYNAM C [see below
.dynstr UsHT STRTAB USHF _ALLOC
. dynsym BSHT_DYNSYM BSHF_ALL@
Cfini DSHT_PR%BI TS DSHF_ALL@+ SHF_EXECI NSTR
. got OSHT _PROGBI TS [jsee below
. hash [JSHT_HASH OSHF_ALLOC
cinit USHT PROGBI TS USHF_ALLOC+ SHF_EXECI NSTR
.interp BSHT_PROGBI TS —see below
.line qSHT_PROGBI TS none
. note OSHT_NOTE gnone
.plt OSHT _PROGBI TS [see below
.rel name HSHT REL Hsee below

Tool Interface Standards (TIS)

Portable Formats Specification, Version 1.1

1-13

ELF: Executable and Linkable Format

Figure 1-14: Special Sections (continued)

.rel aname [SHT_ RELA see below
.rodata USHT PROGBI TS OSHF ALLCC
.rodatal USHT PROGBI TS USHF ALLOC
.shstrtab ESHT_STRTAB Dnone
.strtab OSHT_STRTAB see below
.synt ab OSHT_SYMTAB [see below

. text HSHT_PR(IBBI TS HSHF_ALL(I.‘& SHF_EXECI NSTR

. bss

. coment

This section holds uninitialized data that contribute to the program’s memory image. By
definition, the system initializes the data with zeros when the program begins to run. The
section occupies no file space, as indicated by the section type, SHT _NOBI TS.

This section holds version control information.

.dataand. dat al

. debug

.dynam ¢

.dynstr

.dynsym

Cfini

. got

. hash

.init

.interp

.line

1-14

These sections hold initialized data that contribute to the program’s memory image.
This section holds information for symbolic debugging. The contents are unspecified.

This section holds dynamic linking information. The section’s attributes will include the
SHF_ALLQOCbit. Whether the SHF_WRI TE bit is set is processor specific. See Part 2 for
more information.

This section holds strings needed for dynamic linking, most commonly the strings that
represent the names associated with symbol table entries. See Part 2 for more information.

This section holds the dynamic linking symbol table, as ““Symbol Table”” describes. See
Part 2 for more information.

This section holds executable instructions that contribute to the process termination code.
That is, when a program exits normally, the system arranges to execute the code in this
section.

This section holds the global offset table. See ‘‘Special Sections” in Part 1 and “Global
Offset Table” in Part 2 for more information.

This section holds a symbol hash table. See ‘““Hash Table” in Part 2 for more information.

This section holds executable instructions that contribute to the process initialization code.
That is, when a program starts to run, the system arranges to execute the code in this sec-
tion before calling the main program entry point (called mai n for C programs).

This section holds the path name of a program interpreter. If the file has a loadable seg-
ment that includes the section, the section’s attributes will include the SHF_ALLCC bit; oth-
erwise, that bit will be off. See Part 2 for more information.

This section holds line number information for symbolic debugging, which describes the
correspondence between the source program and the machine code. The contents are
unspecified.

Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

.hot e This section holds information in the format that ‘“Note Section’ in Part 2 describes.

.plt This section holds the procedure linkage table. See *‘Special Sections” in Part 1 and “‘Pro-
cedure Linkage Table” in Part 2 for more information.

.rel nameand. r el aname
These sections hold relocation information, as “‘Relocation’ below describes. If the file has
a loadable segment that includes relocation, the sections’ attributes will include the
SHF_ALLQC bit; otherwise, that bit will be off. Conventionally, name is supplied by the
section to which the relocations apply. Thus a relocation section for . t ext normally
would havethename . rel .text or.rel a. text.

.rodataand. rodatal
These sections hold read-only data that typically contribute to a non-writable segment in
the process image. See ‘‘Program Header” in Part 2 for more information.

.shstrtab This section holds section names.

.strtab This section holds strings, most commonly the strings that represent the names associated
with symbol table entries. If the file has a loadable segment that includes the symbol string
table, the section’s attributes will include the SHF_ALLCC bit; otherwise, that bit will be off.

.synt ab This section holds a symbol table, as ‘“Symbol Table™ in this section describes. If the file
has a loadable segment that includes the symbol table, the section’s attributes will include
the SHF_ALLQC bit; otherwise, that bit will be off.

. text This section holds the ““text,”” or executable instructions, of a program.

Section names with a dot (.) prefix are reserved for the system, although applications may use these sec-
tions if their existing meanings are satisfactory. Applications may use names without the prefix to avoid
conflicts with system sections. The object file format lets one define sections not in the list above. An
object file may have more than one section with the same name.

Section names reserved for a processor architecture are formed by placing an abbreviation of the architec-
ture name ahead of the section name. The name should be taken from the architecture names used for
e_machi ne. For instance .FOO.psect is the psect section defined by the FOO architecture. Existing
extensions are called by their historical names.

Pre-existing Extensions

. sdat a .tdesc

. Sbss dit4
.1it8 .reginfo
. gptab .liblist
.conflict

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1-15

String Table

String table sections hold null-terminated character sequences, commonly called strings. The object file
uses these strings to represent symbol and section names. One references a string as an index into the
string table section. The first byte, which is index zero, is defined to hold a null character. Likewise, a
string table’s last byte is defined to hold a null character, ensuring null termination for all strings. A
string whose index is zero specifies either no name or a null name, depending on the context. An empty
string table section is permitted; its section header’s sh_si ze member would contain zero. Non-zero
indexes are invalid for an empty string table.

A section header’s sh_nane member holds an index into the section header string table section, as desig-
nated by the e_shst r ndx member of the ELF header. The following figures show a string table with 25
bytes and the strings associated with various indexes.

Index +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

0 O\0O On Oa Om Oe O. 0O\O OV Oa Or 0O
10 Zi Ha =b 1 e S\0 Ea Eb BHI e S
20 g\oR\0ORAx AXx A\O/ /7 H H A A
Figure 1-15: String Table Indexes
Index String
0 UOnone
1 Unpane.
7 DVariable
a
11 able
16 [pable

24 Hnull string

As the example shows, a string table index may refer to any byte in the section. A string may appear
more than once; references to substrings may exist; and a single string may be referenced multiple times.
Unreferenced strings also are allowed.

1-16 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

Symbol Table

An object file’s symbol table holds information needed to locate and relocate a program’s symbolic
definitions and references. A symbol table index is a subscript into this array. Index 0 both designates
the first entry in the table and serves as the undefined symbol index. The contents of the initial entry are
specified later in this section.

Name Value
STN_UNDEF H 0

A symbol table entry has the following format.

Figure 1-16: Symbol Table Entry

-

typedef struct {

Hf32 Wrd st _nare;
B f32_Addr st _val ue;
Hf32_Wrd st_si ze;

unsi gned char st_info;

unsi gned char st_ot her;

Hf32_Hal f st _shndx;
} Bf32_Sym

/

st _name

This member holds an index into the object file’s symbol string table, which holds the
character representations of the symbol names. If the value is non-zero, it represents a
string table index that gives the symbol name. Otherwise, the symbol table entry has no
name.

. External C symbols have the same names in C and object files’ symbol tables.
NOTE

st _val ue

st _size

st _info

This member gives the value of the associated symbol. Depending on the context, this
may be an absolute value, an address, etc.; details appear below.

Many symbols have associated sizes. For example, a data object’s size is the number of
bytes contained in the object. This member holds 0 if the symbol has no size or an
unknown size.

This member specifies the symbol’s type and binding attributes. A list of the values and
meanings appears below. The following code shows how to manipulate the values.

#define ELF32_ST BIND(i) ((i)>>4)
#define ELF32_ST TYPE(i) ((i)&0xf)
#defi ne ELF32_ST_INFQ(b, t) (((b)<<4)+((t)&0xf))

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1-17

ELF: Executable and Linkable Format

st _ot her This member currently holds 0 and has no defined meaning.

st _shndx Every symbol table entry is ‘““defined” in relation to some section; this member holds the
relevant section header table index. As Figure 1-7 and the related text describe, some
section indexes indicate special meanings.

A symbol’s binding determines the linkage visibility and behavior.

Figure 1-17: Symbol Binding, ELF32_ST_BI ND

Name Value
STBLOCAL O 0
STB GLOBAL U 1
STB_WEAK g 2
STB_LOPROC [13

STB_H PROC [15

STB_LOCAL Local symbols are not visible outside the object file containing their definition. Local
symbols of the same name may exist in multiple files without interfering with each
other.

STB_GQ.OBAL Global symbols are visible to all object files being combined. One file’s definition of a
global symbol will satisfy another file’s undefined reference to the same global symbol.

STB_VEAK Weak symbols resemble global symbols, but their definitions have lower precedence.

STB_LOPROC through STB_HI PROC
Values in this inclusive range are reserved for processor-specific semantics.

Global and weak symbols differ in two major ways.

m When the link editor combines several relocatable object files, it does not allow multiple definitions
of STB_G.OBAL symbols with the same name. On the other hand, if a defined global symbol
exists, the appearance of a weak symbol with the same name will not cause an error. The link edi-
tor honors the global definition and ignores the weak ones. Similarly, if a common symbol exists
(i.e., a symbol whose st_shndx field holds SHN_COVMON), the appearance of a weak symbol with
the same name will not cause an error. The link editor honors the common definition and ignores
the weak ones.

m When the link editor searches archive libraries, it extracts archive members that contain definitions
of undefined global symbols. The member’s definition may be either a global or a weak symbol.
The link editor does not extract archive members to resolve undefined weak symbols. Unresolved
weak symbols have a zero value.

In each symbol table, all symbols with STB_LOCAL binding precede the weak and global symbols. As

““Sections’ above describes, a symbol table section’s sh_i nf o section header member holds the symbol
table index for the first non-local symbol.

1-18 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

ELF: Executable and Linkable Format

A symbol’s type provides a general classification for the associated entity.

Figure 1-18: Symbol Types, ELF32_ST_TYPE

Name Value
STT_NOTYPE
STT_OBJECT
STT_FUNC
STT_SECTI ON
STT_FI LE
STT_LOPROC
STT_HI PROC

ggwhwnNnEFL O

NOooOdOoOdodo
B

STT_NOTYPE
STT_OBJECT
STT_FUNC
STT_SECTI ON

STT_FI LE

The symbol’s type is not specified.
The symbol is associated with a data object, such as a variable, an array, etc.
The symbol is associated with a function or other executable code.

The symbol is associated with a section. Symbol table entries of this type exist pri-
marily for relocation and normally have STB_LOCAL binding.

Conventionally, the symbol’s name gives the name of the source file associated with the
object file. A file symbol has STB_LOCAL binding, its section index is SHN_ABS, and it
precedes the other STB_LOCAL symbols for the file, if it is present.

STT_LOPROC through STT_H PROC

Values in this inclusive range are reserved for processor-specific semantics.

Function symbols (those with type STT_FUNC) in shared object files have special significance. When
another object file references a function from a shared object, the link editor automatically creates a pro-
cedure linkage table entry for the referenced symbol. Shared object symbols with types other than
STT_FUNC will not be referenced automatically through the procedure linkage table.

If a symbol’s value refers to a specific location within a section, its section index member, st _shndx,
holds an index into the section header table. As the section moves during relocation, the symbol’s value
changes as well, and references to the symbol continue to “‘point” to the same location in the program.
Some special section index values give other semantics.

SHN_ABS
SHN_COVVON

SHN_UNDEF

The symbol has an absolute value that will not change because of relocation.

The symbol labels a common block that has not yet been allocated. The symbol’s value
gives alignment constraints, similar to a section’s sh_addr al i gn member. That is, the
link editor will allocate the storage for the symbol at an address that is a multiple of

st _val ue. The symbol’s size tells how many bytes are required.

This section table index means the symbol is undefined. When the link editor combines
this object file with another that defines the indicated symbol, this file’s references to the
symbol will be linked to the actual definition.

Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1 1-19

ELF: Executable and Linkable Format

As mentioned above, the symbol table entry for index 0 (STN_UNDEF) is reserved; it holds the following.

Figure 1-19: Symbol Table Entry: Index 0

Name Value Note
st _name O 0 ONo name
st _value U 0 UZero value
st_size B 0 UNo size
st_info g 0 No type, local binding
st_other g 0 O
st _shndx %SHN_UNDEF %No section

Symbol Values
Symbol table entries for different object file types have slightly different interpretations for the
st _val ue member.

m Inrelocatable files, st _val ue holds alignment constraints for a symbol whose section index is
SHN_COWVMON.

m Inrelocatable files, st _val ue holds a section offset for a defined symbol. Thatis, st _val ue isan
offset from the beginning of the section that st _shndx identifies.

m In executable and shared object files, st _val ue holds a virtual address. To make these files’ sym-
bols more useful for the dynamic linker, the section offset (file interpretation) gives way to a virtual
address (memory interpretation) for which the section number is irrelevant.

Although the symbol table values have similar meanings for different object files, the data allow efficient
access by the appropriate programs.

1-20 Portable Formats Specification, Version 1.1 Tool Interface Standards (TIS)

Relocation

Relocation is the process of connecting symbolic references with symbolic definitions. For example, when
a program calls a function, the associated call instruction must transfer control to the proper destination
address at execution. In other words, relocatable files must have information that describes how to
modify their section contents, thus allowing executable and shared object files to hold the right informa-
tion for a process’s program image. Relocation entries are these data.

Figure 1-20: Relocation Entries

a N

typedef struct {

H f 32_Addr r_of f set;
Hf32 Wrd r_info;
} Bf32_Rel;
typedef struct {
B f32_Addr r_of fset;
Hf32_Wrd r_info;
B f32_Sword r _addend;
} Bf32_Rela;

/

r _offset This member gives the location at which to apply the relocation action. For a relocatable
file, the value is the byte offset from the beginning of the section to the storage unit affected
by the relocation. For an executable file or a shared object, the value is the virtual address of
the storage unit affected by the relocation.

r_info This member gives both the symbol table index with respect to which the relocation must be
made, and the type of relocation to apply. For example, a call instruction’s relocation entry
would hold the symbol table index of the function being called. If the index is STN_UNDEF,
the undefined symbol index, the relocation uses 0 as the ‘‘symbol value.” Relocation types
are processor-specific. When the text refers to a relocation entry’s relocation type or symbol
table index, it means the result of applying ELF32_R TYPE or ELF32_R_SYM, respectively,
to the entry’sr _i nf o member.

#define ELF32_R SYMi) ((i)>>8)
#define ELF32_R TYPE(i) ((unsigned char)(i))
#define ELF32_R I NFQ(s,t) (((s)<<8)+(unsigned char)(t))

r _addend This member specifies a constant addend used to compute the value to be stored into the
relocatable field.

