
9/1/16	

1	

CS 422/522 Design & Implementation
of Operating Systems

Lecture 1: Introduction

Zhong Shao
Dept. of Computer Science

 Yale University

Acknowledgement: some slides are taken from previous versions of the CS422/522 lectures taught by Prof. Bryan Ford
and Dr. David Wolinsky, and also from the official set of slides accompanying the OSPP textbook by Anderson and Dahlin.

Today’s lecture

◆  Why study operating systems ?

◆  What is an OS? What does an OS do?

◆  History of operating systems

◆  Principles of operating system design

◆  Course overview
–  course information
–  schedule, assignments, grading and policy
–  other organization issues
–  see web pages for more information

9/1/16	

2	

OS is pervasive 	

Computer
System

Transportation

Health

Aviation

Environment

Desktop

Mobile

Financial

cloud

Compute
r System

OS is pervasive	

Transportation

Health

Aviation

Environment

Desktop

Mobile

Financial

cloud

Hardware
OS

Applications

9/1/16	

3	

Compute
r System

OS is pervasive & extremely important 	

Accident

Life

Loss

Environment

Crash

Mobile

Financial

cloud

Hardware
OS

Applications

Why study operating systems ?

◆  Understand how “computers” work under the hood
–  Magic for “infinite” CPUs, memory devices, network computing
–  Tradeoffs btw. performance & functionality, division of labor btw. HW & SW
–  Combine language, hardware, data structures, and algorithms

◆  Help you make informed decisions
–  What “computer” to buy? should I upgrade the HW or the OS?
–  What’s going on with my PC, especially when I have to install something?
–  Linux vs Mac OS X vs Windows 10 …, what should I bet on?

◆  Give you experience in hacking systems software
“this system is so slow, can I do anything about it ?”

9/1/16	

4	

What’s interesting?

◆  OS is a key part of a computer system
–  it makes our life better (or worse)
–  it is “magical” and we want to understand how
–  it has “power” and we want to have the power

◆  OS is complex
–  how many procedures does a key stroke invoke?
–  real OS is huge and insanely expensive to build

*  Windows 8: many years, thousands of people. Still doesn’t work well

◆  How to deal with complexity?
–  decomposition into many layers of abstraction
–  fail early, fail fast, and learn how to make things work

What is an OS?

Software to manage
a computer’s
resources for its
users & applications

Operating System

Hardware

APP APP APP

9/1/16	

5	

TCP/IP Networking

Virtual Memory

Hardware-Specific Software
and Device Drivers

File System

Scheduling

Graphics Processor

Address TranslationProcessors

Network

Hardware

Users

User-mode

Kernel-mode
Kernel-user Interface

(Abstract virtual machine)

Hardware Abstraction Layer

APP

System
Library

APP

System
Library

APP

System
Library

Disk

What is an OS?

 Android architecture & system stack

From https://thenewcircle.com/s/post/1031/android_stack_source_to_device &
http://en.wikipedia.org/wiki/Android_(operating_system)

9/1/16	

6	

What is an OS?

 Visible software components of the Linux desktop stack

From http://en.wikipedia.org/wiki/Linux

What is an OS?

 Linux Kernel Map: Kernel components are sorted into different
stacks of abstraction layers based on their underlying HW devices

From http://www.makelinux.net/kernel_map/

9/1/16	

7	

What is an OS?

Cloud Software

APP

Server Server Server Server

APP APP

Browser

Web Page

Operating System

Web Page

Good Web Site Script

Plug-in

Script Evil Web Site

Database

Operating System

APP APP APP

DataData Data

Cloud computing

Multi-user
database systems

Web browsers

Other instances: multiplayer
games, media players, social
networking app, internet, …

Operating system roles

◆  Referee:
–  Resource allocation among users, applications
–  Isolation of different users, applications from each other
–  Communication between users, applications

◆  Illusionist
–  Each application appears to have the entire machine to itself
–  Infinite number of processors, (near) infinite amount of

memory, reliable storage, reliable network transport

◆  Glue
–  Libraries, user interface widgets, …

9/1/16	

8	

Example: file systems

◆  Referee
–  Prevent users from accessing each other’s files without

permission
–  Even after a file is deleted and its space re-used

◆  Illusionist
–  Files can grow (nearly) arbitrarily large
–  Files persist even when the machine crashes in the middle of a

save

◆  Glue
–  Named directories, printf, …

Question

◆  What (hardware, software) do you need to be able to
run an untrustworthy application?

9/1/16	

9	

Question

◆  How should an operating system allocate processing
time between competing uses?
–  Give the CPU to the first to arrive?

–  To the one that needs the least resources to complete? To
the one that needs the most resources?

Example: web service

◆  How does the server manage many simultaneous client
requests?

◆  How do we keep the client safe from spyware embedded
in scripts on a web site?

◆  How to make updates to the web site so that clients
always see a consistent view?

Client Server index.html

 (1)
HTTP GET index.html

(4)
HTTP web page

(2)
Read file: index.html

(3)
File data

9/1/16	

10	

What does an OS do ?

◆  OS converts bare HW into nicer abstraction
–  provide coordination: allow multiple applications/users to work

together in efficient and fair way (memory protection,
concurrency, file systems, networking)

–  provide standard libraries and services (program execution,
I/O operations, file system manipulations, communications,
resource allocation and accounting)

◆  For each OS area, you ask
–  what is the hardware interface --- the physical reality ?
–  what is the application interface (API) --- the nicer

abstraction?

Example of OS coordination: protection

Goal: isolate bad programs and people (security)

Solutions:
–  CPU Preemption

*  give application something, can always take it away (via clock interrupts)
–  Dual mode operation

*  when in the OS, can do anything (kernel-mode)
*  when in a user program, restricted to only touching that program’s

memory (user-mode)
–  Interposition

*  OS between application and “stuff”
*  track all pieces that application allowed to use (in a table)
*  on every access, look in table to check that access legal

–  Memory protection: address translation

9/1/16	

11	

Example: address translation

Restrict what a program can do by restricting what it can touch!

◆  Definitions:
–  Address space: all addresses a program can touch
–  Virtual address: addresses in process’ address space
–  Physical address: address of real memory
–  Translation: map virtual to physical addresses

◆  Virtual memory
–  Translation done using per-process tables (page table)
–  done on every load and store, so uses hardware for speed
–  protection? If you don’t want process to touch a piece of

physical memory, don’t put translation in table.

OS history

Descendant

Level 4

Level 5

Level 6

Level 3

Level 2

Level 1

Influence

MVS Multics

MS/DOS VM/370VMS UNIX

Windows BSD UNIX Mach

Windows NT VMWare Linux NEXT MacOS

iOSAndroid

Windows 8 MacOS X

9/1/16	

12	

Challenges in writing OS

◆  Concurrent programming is hard

◆  Hard to use high-level programming languages
–  device drivers are inherently low-level
–  real-time requirement (garbage collection? probably not)
–  lack of debugging support (use simulation)

◆  Tension between functionality and performance

◆  Portability and backward compatibility
–  many APIs are already fixed (e.g., GUI, networking)
–  OS design tradeoffs change as HW changes !

Challengs in writing OS (cont’d)

◆  Reliability
–  Does the system do what it was designed to do?

◆  Availability
–  What portion of the time is the system working?

–  Mean Time To Failure (MTTF), Mean Time to Repair

◆  Security
–  Can the system be compromised by an attacker?

◆  Privacy
–  Data is accessible only to authorized users

9/1/16	

13	

 Main techniques & design principles

◆  Keep things simple !

◆  Use abstraction
–  hide implementation complexity behind simple interface

◆  Use modularity
–  decompose system into isolated pieces

◆  But what about performance
–  find bottlenecks --- the 80-20 rule
–  use prediction and exploits locality (cache)

◆  What about security and reliability?

More research is necessary!

Course information

Required textbook:

Operating Systems: Principles & Practice (2nd Edition) by T.
Anderson and M. Dahlin

information, assignments, & lecture notes are available on-line

we won’t use much paper

Official URL: http://flint.cs.yale.edu/cs422

for help, go to the piazza site:

 https://piazza.com/yale/fall2016/cpsc422522

9/1/16	

14	

Course information (cont’d)

◆  13 week lectures on OS fundamentals
–  class participation is strongly recommended

◆  Course requirements
–  70% on assignments (as1 – as6)
–  25% open-book, in-class midterm (Thursday, November 17th)
–  5% class participation

◆  Assignments (as1-as6) and course policies
–  build a small but real OS kernel, bootable on real PCs.
–  extensive hacking (in C & x86 assembly) but highly rewarding
–  2 persons / team (one person team is OK too).
–  5 free late days (3 day late max per assignment).

Programming assignments

◆  Assignment topics (tentative)
–  Bootloader & physical memory management
–  Container and virtual memory management
–  Process management & trap handling
–  Multicore and preemption
–  File system
–  IPC, Shell, and Extensions

◆  How
–  Each assignment takes two weeks
–  Most assignments due Tuesdays 11:59pm

◆  The Lab
–  Linux cluster in ZOO
–  You can setup your own machine to do projects

9/1/16	

15	

Programming assignments (cont’d)

Based on mCertiKOS (Yale FLINT) & JOS (from MIT)

Programming assignments (cont’d)

◆  Break kernel interdependency by insisting
on careful layer decomposition

◆  With the right methodology, every CS
major should be able to write an OS
kernel from scratch

PreInit

MATIntro x86bootloader machine mem

x86bootloader machine mem

AT nps

MATOp x86pmem_init machine mem AT nps

MAT CR2pmem_init machine mem page

MPTIntro

CR2
/ Container

pmem_init abstract mem

page

PMap0

MPTOp pmem_init abstract mem PMap1

MPTCom ptcom_init abstract mem PMap2

MPTKern ptkern_init abstract mem PMap2

MPTInit pt_init abstract mem PMap2

MPTBit pt_init abstract mem PMap2BitMap

MPMap pmap_init abstract mem PMap page

MShIntro pmap_init abstract mem

MShareOp share_init abstract mem

PMap

page

ShMem1

PMapShMem1

MShare share_init abstract mem PMapShMem

PKCtxIntro share_init

ShMem
/ page
/ CR2

/ Container

KCtx0

PKCtx share_init PMapKCtx

PTCBIntro share_init

KCtx

iTCB0

PTCB tcb_init iTCB

PTdQIntro tcb_init iTCBiTdQ0

PTdQ tdq_init iTCBiTdQ

PAbQ abq_init TCBAbQ

PMap
PCurID abq_init KCtxTCBAbQ

PTDIntro abq_init Thread0

PThread thread_init Thread

PIPCIntro thread_init ThreadIPC

PIPC thread_init ThreadIPC

PUCtx thread_init ThreadIPCUCtx

PProc proc_init Proc

ShMem PMapTTrapArg vm_init Proc Arg

TTrap vm_init Proc SysHandler

pageCR2

ExceptionHandler

vm_init ProcSysDispatch ExceptionHandlerTDispatch

ctos_init SysCall ExceptionHandlerTSyscall

PMap

abstract mem

abstract mem

abstract mem

abstract mem

abstract mem

abstract mem

abstract mem

abstract mem

abstract mem

cid

abstract mem

abstract mem

abstract mem

abstract mem

abstract mem

guest mem

guest mem

guest mem

guest mem

MContainer x86bootloader machine mem AT npsContainer

Container

Container

Container

Container

Container

Container

Container

ShMem
/ page
/ CR2

/ PMap
/ Proc

/ Container

EPTIntro proc_init EPT0guest mem

EPTOp ept_init guest mem

EPT ept_init guest mem

VMCSIntro ept_init VMCS0guest mem EPT

VMCS vmcs_init guest mem

VMXIntro vmcs_init VMXguest mem

VM vm_init guest mem

VMInfo

EPT0 VMInfo

EPT VMInfo

VMCS EPT

VMCS EPT

VM

VM

