CS 422/522 Design & Implementation
of Operating Systems

Lecture 1: Introduction

Zhong Shao
Dept. of Computer Science
Yale University

Acknowledgement: some slides are taken from previous versions of the C5422/522 lectures taught by Prof. Bryan Ford
and Dr. David Wolinsky, and also from the official set of slides accompanying the OSPP textbook by Anderson and Dahlin.

Today's lecture

Why study operating systems ?

What is an OS? What does an OS do?
History of operating systems
Principles of operating system design
+ Course overview

- course information

- schedule, assignments, grading and policy

- other organization issues
- see web pages for more information

9/1/16

OS is pervasive

L

¥

Desktop

Mobile

S

cloud

&5

Financial

Transportation

em

©

Health

Aviation

Environment

OS is pervasive

Mobile

S

cloud

=5

Financial

j -
D Desktop

¥

Transportation

Applications

/ 0s
/ Hardware
K\\\\\~_—//// Aviation

Health

Environment

9/1/16

OS is pervasive & extremely important

“

Accident

Crash

Mobile Applications Life

/_1 0s
/ Hardware
clqud b Loss

‘:./:
o)

7,
Financial Environment

Why study operating systems ?

¢ Understand how "computers” work under the hood
- Magic for “infinite” CPUs, memory devices, network computing
- Tradeoffs btw. performance & functionality, division of labor btw. HW & SW
- Combine language, hardware, data structures, and algorithms

+ Help you make informed decisions
- What “computer” to buy? should I upgrade the HW or the 0S?
- What's going on with my PC, especially when I have to install something?
- Linux vs Mac OS X vs Windows 10 ..., what should I bet on?

+ Give you experience in hacking systems software
“this system is so slow, can I do anything about it ?"

9/1/16

What’s interesting?

¢ OS is a key part of a computer system
- it makes our life better (or worse)
- it is “magical” and we want to understand how
- it has “power” and we want to have the power

+ OS is complex
- how many procedures does a key stroke invoke?

- real OS is huge and insanely expensive to build
* Windows 8: many years, thousands of people. Still doesn’ + work well

+ How to deal with complexity?
- decomposition into many layers of abstraction
- fail early, fail fast, and learn how to make things work

What is an OS?

Software to manage
a computer’s
resources for its

(C

@

users & applications

APP APP APP

Operating System

Hardware

9/1/16

Users
Y7 -4
N N
User-mode
APP APP APP
System System System
Library Library Library
Kernel-user Interface
Kernel-mode (Abstract virtual machine)

File System Virtual Memory

TCP/IP Networking Scheduling

Hardware Abstraction Layer

Hardware-Specific Software
and Device Drivers

Hardware [——— Processors Address Translation

Disk
[Graphics Processor Network

What is an OS?

Android architecture & system stack

From https://thenewcircle.com/s/post/1031/android_stack source_to_device &
http://en.wikipedia.org/wiki/Android_(operating_system)

Android Stack: From Source to Device

APPLICATION:
LICATIONS System Apps User Apps
Contacts Phone Browser Device: systomiapp! Davice: data/app
ste: packages/ S devicomarakanajaipha/app
API
S ——— o+ e Y
Android Framework Libraries Java Libraries
Activity Window Content View Notification) Gy
Manager Manager Providers Manager ey
Stc: rameworks/oase/core
Package Telephony Resource Location BINge -+ e ————— = [N
Manager M; r Manager Manager S: System Services (Java.* ana javax.")
Dovice: systom/app S
LIBRARIES ANDROID RUNTIME sre:
rameworks/Dase/cmas/system_servar
rameworks/baseicore!

Surface Media soLite Core

v

Manager Framework

Lib -
il Dalvik Runtime
OpenGLIES FreeType Webkit Devis:aysambidatkm and sysiofvoepp process
B B SRR, W T
Init/Toolbo> Native Lijs

Device:

ant
LINUX KERNEL Isystemibin

Sre: system/core!

Display Camera Bluetooth Flash Memory Binder (IPC)

Driver Driver Driver Driver Driver
Linux Kernel
UsB Keypad WiFi Audio Power Notpart ot (A0SP)

Driver Driver Driver Drivers Management

9/1/16

What is an 0S?

Visible software components of the Linux desktop stack
From http://en.wikipedia.org/wiki/Linux

idgets for
3D Application
Desktop widgets ZD Appllcatlon Medla Appllcatlon m and Plasma

Desktop Shells: User Interface Toolkits (in the form of libraries): tu Android

isplay server: System libraries: ~ System daemons: Alternative display servers:

in

evdev kms ? kdbus ?

binder ashmem pmem
wakelocks logger ...

Linux kernel

Linux kernel, device drivers & other modules

(Android-forked)

What is an 0OS?

Linux Kernel Map: Kernel components are sorted into different

stacks of abstraction layers based on their underlying HW devices
From http://www.makelinux.net/kernel map/

memory disk controllers network controllers

-

9/1/16

What is an OS?

Web browsers
®

24

APP APP APP [

Cloud computing

Web Page Web Page

’ Database ‘

Good Web Site—> «— Evil Web Site

Browser

APP ApP APP ’ Operating System ‘

_— ey
Data Data
] == =

Cloud Software)
Operating System

Server

Server |

Server | Server |

Multi-user

database systems Other instances: multiplayer
games, media players, social

networking app, interneft, ...

Operating system roles

+ Referee:
- Resource allocation among users, applications
- Isolation of different users, applications from each other
- Communication between users, applications

¢ Illusionist
- Each application appears to have the entire machine to itself

- Infinite number of processors, (near) infinite amount of
memory, reliable storage, reliable network transport

* Glue
- Libraries, user interface widgefts, ...

9/1/16

Example: file systems

¢ Referee

- Prevent users from accessing each other's files without
permission
- Even after a file is deleted and its space re-used

¢ Illusionist
- Files can grow (nearly) arbitrarily large

- Files persist even when the machine crashes in the middle of a
save

* Glue
- Named directories, printf, ...

Question

¢ What (hardware, software) do you need to be able to
run an untrustworthy application?

9/1/16

Question

+ How should an operating system allocate processing
time between competing uses?
- Give the CPU to the first to arrive?

- To the one that needs the least resources to complete? To
the one that needs the most resources?

Example: web service

Client

(1)

HTTP GET index.html

(4)

HTTP web page

Server

()

Read file: index.html

index.html

3)

File data

+ How does the server manage many simultaneous client

requests?

+ How do we keep the client safe from spyware embedded

in scripts on a web site?

+ How to make updates o the web site so that clients
always see a consistent view?

9/1/16

What does an OS do ?

+ OS converts bare HW into nicer abstraction
- provide coordination: allow multiple applications/users to work
together in efficient and fair way (memory protection,
concurrency, file systems, networking)
- provide standard libraries and services (program execution,
I/0 operations, file system manipulations, communications,
resource allocation and accounting)

+ For each OS areaq, you ask
- what is the hardware interface --- the physical reality ?

- what is the application interface (API) --- the nicer
abstraction?

Example of OS coordination: protection

Goal: isolate bad programs and people (security)

Solutions:
CPU Preemption

* give application something, can always take it away (via clock interrupts)
Dual mode operation

* when in the OS, can do anything (kernel-mode)

* when in a user program, restricted to only touching that program's
memory (user-mode)

Interposition
* OS between application and "stuff"
* track all pieces that application allowed to use (in a table)
* on every access, look in table to check that access legal

Memory protection: address translation

9/1/16

10

Example: address translation

Restrict what a program can do by restricting what it can touch!

& Definitions:

Physical address: address of real memory

¢ Virtual memory

Address space: all addresses a program can touch
Virtual address: addresses in process’ address space

Translation: map virtual to physical addresses

- Translation done using per-process tables (page table)

- done on every load and store, so uses hardware for speed

- protection? If youdon't want process to touch a piece of
physical memory, don't put franslation in table.

OS history

MVS Multics
MS/DOS VMS VM(37O UNIX
Windows BSD UNIX
Windows NT VM\;Vare Linux
Windows 8
s Influence
Descendant Android

Mach

NEXT MacOS

MacOS X

i0s

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

9/1/16

11

9/1/16

Challenges in writing OS

¢ Concurrent programming is hard

+ Hard to use high-level programming languages
- device drivers are inherently low-level
- real-time requirement (garbage collection? probably not)
- lack of debugging support (use simulation)

+ Tension between functionality and performance

Portability and backward compatibility
- many APIs are already fixed (e.g., GUI, networking)
- OS design tradeoffs change as HW changes !

Challengs in writing OS (cont'd)

+ Reliability
- Does the system do what it was designed to do?
¢ Availability
- What portion of the time is the system working?
- Mean Time To Failure (MTTF), Mean Time to Repair
+ Security
- Can the system be compromised by an attacker?
+ Privacy

- Data is accessible only to authorized users

12

Main techniques & design principles

4

Keep things simple !

+ Use abstraction
- hide implementation complexity behind simple interface

¢ Use modularity
- decompose system into isolated pieces

¢ But what about performance
- find bottlenecks --- the 80-20 rule
- use prediction and exploits locality (cache)

+ What about security and reliability?

More research is necessary!

Course information

Required textbook:

Operating Systems: Principles & Practice (2" Edition) by T.

Anderson and M. Dahlin

information, assignments, & lecture notes are available on-line
we won't use much paper

Official URL: http://flint.cs.yale.edu/cs422

for help, go to the piazza site:
https://piazza.com/yale/fall2016/cpsc422522

9/1/16

13

Course information (cont'd)

¢ 13 week lectures on OS fundamentals
- class participation is strongly recommended

+ Course requirements
- 70% on assignments (asl - as6)
- 25% open-book, in-class midterm (Thursday, November 17th)
- 5% class participation

+ Assignments (as1-as6) and course policies
- build a small but real OS kernel, bootable on real PCs.
- extensive hacking (in C & x86 assembly) but highly rewarding
- 2 persons / team (one person team is OK t00).
- b5 free late days (3 day late max per assignment).

Programming assignments

+ Assignment topics (fentative)
- Bootloader & physical memory management
- Container and virtual memory management
- Process management & trap handling
- Multicore and preemption
- File system
- IPC, Shell, and Extensions

* How
- Each assignment takes two weeks
- Most assighments due Tuesdays 11:59pm

¢ Thelab
- Linux cluster in ZOO
- You can setup your own machine to do projects

9/1/16

14

Programming assignments (cont'd)

Based on mCertiKOS (Yale FLINT) & JOS (from MIT)

User-space User-space Virtual Virtual Virtual Certified = Uncertified
Machine Manager Device 1 Device N App App
Trap Trap Handlers
(interrupts, exceptions, system call handlers)
Virtuglization AMD SVM Abstraction
(primitives for VMCB & NPT)
Process)
Process & Thread Management & IPC Certified
Thread Kernel
MM Memory Management
(Physical Memory & Virtual Memory Management)
Drivers
Preinit
Hw PIC Timer IDE
Sl RETER (i8259) (i8254) Controller
P mming assignments (cont'd)
Break kernel interdependency by insisting
H H st mem sCall_|ExceptionHandler[Containe{
on careful layer decomposition o e o P
Tie vt ouestmem prod =

¢ With the right methodology, every CS
major should be able to write an OS

User-space

kernel from scratch

User-space Virtual | Vitual | Virtual | | Certified | Uncertified
Machine Manager | Device 1 Device N | | App: App
Trap Trap Handlers
(interrupts, exceptions, system call handers)
Virtualization AMD SVM Abstraction
(primitives for VMCB & NPT)
Process
Process & Thread Management & IPC
Thread
M Memory Management
(Physical Memory & Virtual Memory Management)
Drivers
& Preinit PIC Driver Timer Driver IDE Driver SVM Driver
Preinit
HW

PIC imer
‘ cePy Memory (i8259) (18254)

IDE
Controller

Certified

>

Kernel WSHinto pmap._int. sbsirsct mem eues |
MPVop pmap_init absiact mom

METBL gt int sbeirsctmem [Eian] P

PTIO pint abstractmem Prag:

VWX vms.int guestmem i [WS [T spatem
VHCS vmcs it guestmom Tpoge
VMCSIntro ept_init juest mem iord
oL init guest IPMap
EPT| cpink | gueatimam Tproe
EPTOp ept_init guest mem |/ Container
EPTID proc it guestmem
PProc proc it sbstact mem
PUCK thead_int abstct mem
PIPC tread_int absractmom
PIPGIN tvead it absat mem
PThvend vead i abstact mem
PO aba. it abotactmem o] St
PCurlD abg_init abstract mem ! page
PABQ abg_init abstract mem o2y
Q. abg Int abstract | Container|
PTEQ g it abstoctmem
PTaQIwo ct it abaoctmom
PICE. tch ot absvactmom
PTCBING share.int absot mam
PKCH shar_in absractmom]
PGS hare it absactmom ol
MShare shar it abswact et
MSre0p shar_int abovectmom
cre
Conaiet
MPTHem piem_int sbstct mem o
MPTCom picom_init abstract mem PMapz pege
MPTOD pmen_nt absactmem Pt
WP pmam it aberactmem P
P T —— |
MATOD pmem_ ik machine mem [A[conainer] s [385]
MATINS bootoader machine mem AT [conana] e [s35]
WContaner bootioader machine mem AT [conaner] s [1a5]
Preiit baotosder machine mem

9/1/16

15

