
9/11/16	

1	

CS 422/522 Design & Implementation
of Operating Systems

Lecture 3: Project Overview

Zhong Shao
Dept. of Computer Science

 Yale University

Acknowledgement: some slides are taken from previous versions of the CS422/522 lectures taught by Prof. Bryan Ford
and Dr. David Wolinsky, and also from the official set of slides accompanying the OSPP textbook by Anderson and Dahlin.

Debugging as engineering

◆  Much of your time in this course will be spent
debugging
–  In industry, 50% of software dev is debugging
–  Even more for kernel development

◆  How do you reduce time spent debugging?
–  Produce working code with smallest effort

◆  Optimize a process involving you, code, computer

9/11/16	

2	

Debugging as science

◆  Understanding -> design -> code
–  not the opposite

◆  Form a hypothesis that explains the bug
–  Which tests work, which don’t. Why?
–  Add tests to narrow possible outcomes

◆  Use best practices
–  Always walk through your code line by line
–  Module tests – narrow scope of where problem is
–  Develop code in stages, with dummy replacements for later

functionality

x86 abstract model

◆  I/O: Communicating data to and from devices
◆  CPU: Logic for performing computation
◆  Memory: Storage

9/11/16	

3	

x86 CPU/memory interaction

◆  Memory stores instruction and data
◆  CPU interprets instructions

x86 implementation

◆  EIP points to next instruction
◆  Incremented after each instruction
◆  x86 instructions are not fixed length
◆  EIP modified by CALL, RET, JMP, and conditional JMP

9/11/16	

4	

x86 general purpose registers (GPR)

◆  Temporary registers
◆  Contents may be changed by instructions
◆  Contents not changed by interrupts / exceptions / traps
◆  EDI/ESI used by string ops but also as GPR

x86 memory models

◆  Real mode with segmentation (16-bit mode)
–  Used by early OSes
–  All x86 still boots in Real Mode for “compatibility” reasons
–  You can only use 1MB memory (4-bit segment + 16-bit address)

PhysicalAddress = segment * 16 + offset

◆  Protected mode w. segmentation & paging (32-bit)
–  4GB memory
–  Segmentation done via GDT (Global Descriptor Table)

*  A code segment descriptor holding a base address
*  A data segment descriptor holding a base address
*  A TSS segment descritor …

9/11/16	

5	

x86 segmentation registers

◆  8086 registers 16-bit w/20-bit bus addresses

◆  Solution: segment registers
–  CS: code segment, EIP
–  SS: stack segment, ESP and EBP
–  DS: data segment, register mem ops
–  ES: string segment, string ops

◆  Linear address computation:
–  EIP => CS:EIP = 0x8000:0x1000 = 0x81000
–  ESP => SS:ESP = 0xF800:0x1000 = 0xF9000
–  (EAX) => DS:EAX = 0xC123:0x1000 = 0xC2230

x86 real mode

◆  8086 16-bit with
20-bit address bus

◆  Stored in segment
registers CS, DS,
ES, FS

◆  Logical address:
segment:offset

◆  Physical address:
segment*0x10 +
offset

9/11/16	

6	

x86: the runtime stack

◆  Additional (temporary) storage
◆  Stack registers --- 32-bits long
◆  ESP – stack pointer
◆  EBP – base pointer

x86 EFLAGS register

9/11/16	

7	

Using EFLAGS register

◆  Lots of conditional jumps
en.wikibooks.org/wiki/X86_Assembly/Control_Flow

mov $5, %ecx
mov $5, %edx
cmp %ecx, %edx # ZF = 1
je equal
...
equal:
...

x86 assembly

We will use AT&T syntax

int main(void)
{
 return f(3) + 1;
}

int f(int x)
{
 return x + 4;
}

_main:
 pushl %ebp # prologue
 movl %esp, %ebp

 pushl $3 # body

 call _f
 addl $1, %eax

 movl %ebp, %esp
 popl %ebp
 ret

_f:
 pushl %ebp
 movl %esp, %ebp

 pushl %ebx # don't clobber registers

 movl 8(%ebp), %ebx # access argument

 addl $4, %ebx
 movl %ebx, %eax

 popl %ebx # restore

 movl %ebp, %esp # epilogue
 popl %ebp
 ret

9/11/16	

8	

x86 memory layout

CS422/522 Lab 1: Bootloader & Physical
Memory Management (due 9/20/2016)

◆  Learn how to use git

◆  Part 1: PC Bootstrap
–  x86 assembly & QEMU & BIOS

◆  Part 2: Bootloader
–  Learn how to use QEMU & GDB & read ELF file

◆  Part 3: Physical Memory Management
–  The MATIntro Layer
–  The MATInit Layer
–  The MATOp Layer

◆  Enrichment (optional)

