CS 422/522 Design & Implementation
of Operating Systems

Lecture 3: Project Overview

Zhong Shao
Dept. of Computer Science
Yale University

Acknowledgement: some slides are taken from previous versions of the C5422/522 lectures taught by Prof. Bryan Ford

and Dr. David Wolinsky, and also from the official set of slides accompanying the OSPP textbook by Anderson and Dahlin.

Debugging as engineering

¢ Much of your time in this course will be spent
debugging
- Inindustry, 50% of software dev is debugging
- Even more for kernel development

+ How do you reduce time spent debugging?
- Produce working code with smallest effort

+ Optimize a process involving you, code, computer

9/11/16



Debugging as science

¢ Understanding -> design -> code
- not the opposite

+ Form a hypothesis that explains the bug
- Which tests work, which don't. Why?
- Add tests to narrow possible outcomes
+ Use best practices
- Always walk through your code line by line
- Module tests - narrow scope of where problem is

- Develop code in stages, with dummy replacements for later
functionality

x86 abstract model

<« DMA

Y

Memory ~ 1/O

+ I/0: Communicating data to and from devices
& CPU: Logic for performing computation
+ Memory: Storage

9/11/16



x86 CPU/memory interaction

CPU Memory

+ Memory stores instruction and data
& CPU interprets instructions

x86 implementation

CPU Memory

Dat
Date
Dat

# EIP points to next instruction

+ Incremented after each instruction

+ x86 instructions are not fixed length

# EIP modified by CALL, RET, JMP, and conditional JMP

9/11/16



x86 general purpose registers (GPR)

16-bits

8-bits 8-bits
EAX AX AH AL
EBX BX BH BL
ECX CX CH CL
EDX DX DH DL
EDI
ESI

32-bits

¢ Temporary registers

+ Contents may be changed by instructions

+ Contents not changed by interrupts / exceptions / traps
+ EDI/EST used by string ops but also as GPR

x86 memory models

+ Real mode with segmentation (16-bit mode)
- Used by early OSes
- All x86 still boots in Real Mode for “"compatibility” reasons
- You can only use IMB memory (4-bit segment + 16-bit address)
PhysicalAddress = segment * 16 + of fset

¢ Protected mode w. segmentation & paging (32-bit)
- 4GB memory
- Segmentation done via GDT (Global Descriptor Table)
* A code segment descriptor holding a base address

* A data segment descriptor holding a base address
* A TSS segment descritor ...

9/11/16



x86 segmentation registers

+ 8086 registers 16-bit w/20-bit bus addresses

& Solution: segment registers
- CS: code segment, EIP
- SS: stack segment, ESP and EBP

- DS: data segment, register mem ops

- ES: string segment, string ops

¢ Linear address computation:

- EIP=> CS:EIP = 0x8000:0x1000 = 0x81000
- ESP => SS:ESP = 0xF800:0x1000 = 0xF9000

- (EAX) => DS:EAX = 0xC123:0x1000 = 0xC2230

x86 real mode

8086 16-bit with
20-bit address bus

Stored in segment

registers CS, DS,
ES,FS

Logical address:
segment:offset

Physical address:
segment*0x10 +
offset

Start of segment 3

Address: 0x28C0:0000
—or-

0x2143:0x77D0

Linear address: 0x28C00

Start of segment
Address: 0x2143:0000
Linear address: 0x21430

Start of segment
Address: 0xOCEF:0000
Linear address: 0xOCEFO0

Segment 3
Segment address: 0x28C0

Segment 2
Segment address: 0x2143

Segment 1
Segment address: OXOCEF

Main memory

9/11/16



x86: the runtime stack

+ Additional (temporary) storage
+ Stack registers --- 32-bits long
+ ESP - stack pointer

+ EBP - base pointer

x86 EFLAGS register

313020282726252423222120191817 16151413 1211109 8 7

viv
1 A|VIR
DODOOOOOOODII(:MFO

= EIME
£ls FlF|F|=

00~

N
T

N

o
ne

no

no

X 1D Flag (ID¥ |
Virtual Interrupt Pending (VIP)
Virtual Interrupt Flag (VIF) ———
Alignment Check (AC)

Virtual-8086 Mode (VM)
Resume Flag (RF}
Nested Task (NT)
1/O Privilege Level (IOPL)
Overflow Flag (OF)
Direction Flag (DF})

Trap Flag (TF)
Sign Flag (SF)
Zero Flag (ZF)

Auxiliary Carry Flag (AF)

Parity Flag (PF)

Carry Flag (CF)

X

X

X

X

X

X

X

S

C

X Interrupt Enable Flag (IF)

X

S

S

S

S

S

S Indicates a Status Flag

C Indicates a Control Flag

X Indicates a System Flag
Reserved bit positions. DO NOT USE.
Always set to values previously read.

EFLAGS Register

9/11/16



Using EFLAGS register

¢ Lots of conditional jumps
en.wikibooks.org/wiki/X86_Assembly/Control_Flow

mov $5, %ecx

mov $5, %edx

cmp %ecx, %edx # ZF = 1
Jje equal

equal:

x86 assembly

We will use AT&T syntax .
pushl %ebp # prologue
movl %esp, %ebp
. . . hl $3 bod;
int main (void) pushl 9 # body
call _f
{ addl $1, %eax
return £(3) + 1; movl %ebp, %esp
} popl %ebp
ret
. . £:
int f(int x) =
pushl %ebp
{ movl %esp, %ebp
return x + 4; pushl %ebx # don't clobber registers
} movl 8 (%ebp), %ebx # access argument

addl $4, %ebx
movl %ebx, %eax

popl %ebx # restore
movl %ebp, %esp # epilogue
popl %ebp

ret

9/11/16



x86 memory layout

OxFFFFFFFF

Accessible RAM
Memory (nearly 3GB.

not to scale)

OxFFFFF

Accessible RAM
Memory (640KB is
enocugh for anyone -
old DOS area)

1TMB

960 KB

896 KB

768 KB

540 KB

CS422/522 Lab 1: Bootloader & Physical
Memory Management (due 9/20/2016)

& Learn how to use git

& Part 1: PC Bootstrap
- x86 assembly & QEMU & BIOS

& Part 2: Bootloader

- Learn how to use QEMU & GDB & read ELF file
# Part 3: Physical Memory Management

- The MATIntro Layer
- The MATInit Layer
- The MATOp Layer

¢ Enrichment (optional)

9/11/16



