
10/6/16	

1	

CS 422/522 Design & Implementation
of Operating Systems

Lecture 11: CPU Scheduling

Zhong Shao
Dept. of Computer Science

 Yale University

Acknowledgement: some slides are taken from previous versions of the CS422/522 lectures taught by Prof. Bryan Ford
and Dr. David Wolinsky, and also from the official set of slides accompanying the OSPP textbook by Anderson and Dahlin.

CPU scheduler

◆  Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of
them.

◆  CPU scheduling decisions may take place when a
process:
1. switches from running to waiting state.
2. switches from running to ready state.
3. switches from waiting to ready.
4. terminates.

◆  Scheduling under 1 and 4 is nonpreemptive.
◆  All other scheduling is preemptive.

10/6/16	

2	

Main points

◆  Scheduling policy: what to do next, when there are
multiple threads ready to run
–  Or multiple packets to send, or web requests to serve, or …

◆  Definitions
–  response time, throughput, predictability

◆  Uniprocessor policies
–  FIFO, round robin, optimal
–  multilevel feedback as approximation of optimal

◆  Multiprocessor policies
–  Affinity scheduling, gang scheduling

◆  Queueing theory
–  Can you predict/improve a system’s response time?

Example

◆  You manage a web site, that suddenly becomes wildly
popular. Do you?
–  Buy more hardware?
–  Implement a different scheduling policy?
–  Turn away some users? Which ones?

◆  How much worse will performance get if the web site
becomes even more popular?

10/6/16	

3	

Definitions

◆  Task/Job
–  User request: e.g., mouse click, web request, shell command, …

◆  Latency/response time
–  How long does a task take to complete?

◆  Throughput
–  How many tasks can be done per unit of time?

◆  Overhead
–  How much extra work is done by the scheduler?

◆  Fairness
–  How equal is the performance received by different users?

◆  Predictability
–  How consistent is the performance over time?

More definitions

◆  Workload
–  Set of tasks for system to perform

◆  Preemptive scheduler
–  If we can take resources away from a running task

◆  Work-conserving
–  Resource is used whenever there is a task to run
–  For non-preemptive schedulers, work-conserving is not always

better
◆  Scheduling algorithm

–  takes a workload as input
–  decides which tasks to do first
–  Performance metric (throughput, latency) as output
–  Only preemptive, work-conserving schedulers to be considered

10/6/16	

4	

Scheduling policy goals

◆  minimize response time : elapsed time to do an
operation (or job)
–  Response time is what the user sees: elapsed time to

*  echo a keystroke in editor
*  compile a program
*  run a large scientific problem

◆  maximize throughput : operations (jobs) per second
–  two parts to maximizing throughput

*  minimize overhead (for example, context switching)
*  efficient use of system resources (not only CPU, but disk, memory, etc.)

◆  fair : share CPU among users in some equitable way

First In First Out (FIFO)

◆  Schedule tasks in the order they arrive
–  Continue running them until they complete or give up the

processor

◆  Example: memcached
–  Facebook cache of friend lists, …

◆  On what workloads is FIFO particularly bad?

10/6/16	

5	

FIFO scheduling

◆  Example: Process Burst Time
 P1 24
 P2 3
 P3 3

◆  Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

◆  Waiting time for P1 = 0; P2 = 24; P3 = 27
◆  Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

FIFO scheduling (cont’d)

Suppose that the processes arrive in the order
 P2 , P3 , P1 .
◆ The Gantt chart for the schedule is:

–  Waiting time for P1 = 6; P2 = 0; P3 = 3
–  Average waiting time: (6 + 0 + 3)/3 = 3
–  Much better than previous case.

◆  FIFO Pros: simple; Cons: short jobs get stuck behind long jobs

P1P3P2

63 300

10/6/16	

6	

Shortest-Job-First (SJF) scheduling

◆  Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with
the shortest time.

◆  Two schemes:
–  nonpreemptive – once given CPU it cannot be preempted until

completes its CPU burst.
–  preemptive – if a new process arrives with CPU burst length

less than remaining time of current executing process,
preempt. A.k.a. Shortest-Remaining-Time-First (SRTF).

◆  SJF is optimal but unfair
–  pros: gives minimum average response time
–  cons: long-running jobs may starve if too many short jobs;
–  difficult to implement (how do you know how long it will take)

 Process Arrival Time Burst Time
 P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

◆ SJF (non-preemptive)

◆ Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of non-preemptive SJF

P1 P3 P2

73 160

P4

8 12

10/6/16	

7	

Example of preemptive SJF

 Process Arrival Time Burst Time
 P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

◆ SJF (preemptive)

◆ Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

FIFO vs. SJF

(1)

Tasks

(3)

(2)

(5)

(4)

FIFO

(1)

Tasks

(3)

(2)

(5)

(4)

SJF

Time

10/6/16	

8	

Starvation and sample bias

◆  Suppose you want to compare two scheduling
algorithms
–  Create some infinite sequence of arriving tasks
–  Start measuring
–  Stop at some point
–  Compute average response time as the average for completed

tasks between start and stop

◆  Is this valid or invalid?

Sample bias solutions

◆  Measure for long enough that
–  # of completed tasks >> # of uncompleted tasks
–  For both systems!

◆  Start and stop system in idle periods
–  Idle period: no work to do
–  If algorithms are work-conserving, both will complete the

same tasks

10/6/16	

9	

Round Robin (RR)

◆  Each process gets a small unit of CPU time (time
quantum). After time slice, it is moved to the end of
the ready queue.

Time Quantum = 10 - 100 milliseconds on most OS

◆  n processes in the ready queue; time quantum is q
–  each process gets 1/n of the CPU time in q time units at once.
–  no process waits more than (n-1)q time units.
–  each job gets equal shot at the CPU

◆  Performance
–  q large ⇒ FIFO
–  q too small ⇒ throughput suffers. Spend all your time context

switching, not getting any real work done

Round Robin

(1)

Tasks

(3)

(2)

(5)

(4)

Round Robin (100 ms time slice)

(1)

Tasks

(3)

(2)

(5)

(4)

Round Robin (1 ms time slice)

Time

Rest of Task 1

Rest of Task 1

10/6/16	

10	

Example: RR with time quantum = 20

 Process Burst Time
 P1 53
 P2 17
 P3 68
 P4 24
◆ The Gantt chart is:

◆ Typically, higher average turnaround than
SJF, but better response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

RR vs. FIFO

◆  Assuming zero-cost time slice, is RR always better
than FIFO?
–  10 jobs, each take 100 secs, RR time slice 1 sec
–  what would be the average response time under RR and FIFO ?

◆  RR
–  job1: 991s, job2: 992s, ... , job10: 1000s

◆  FIFO
–  job 1: 100s, job2: 200s, ... , job10: 1000s

◆  Comparisons
–  RR is much worse for jobs about the same length
–  RR is better for short jobs

10/6/16	

11	

RR vs. FIFO (cont’d)

(1)

Tasks

(3)

(2)

(5)

(4)

FIFO and SJF

(1)

Tasks

(3)

(2)

(5)

(4)

Round Robin (1 ms time slice)

Time

Mixed workload

I/O Bound

Tasks

CPU Bound

CPU Bound

Time

Issues
I/O

Request

I/O
Completes

Issues
I/O

Request

I/O
Completes

10/6/16	

12	

Max-Min Fairness

◆  How do we balance a mixture of repeating tasks:
–  Some I/O bound, need only a little CPU
–  Some compute bound, can use as much CPU as they are assigned

◆  One approach: maximize the minimum allocation given to a
task
–  If any task needs less than an equal share, schedule the smallest

of these first
–  Split the remaining time using max-min
–  If all remaining tasks need at least equal share, split evenly

◆  Approximation: every time the scheduler needs to make a
choice, it chooses the task for the process with the least
accumulated time on the processor

Multi-level Feedback Queue (MFQ)

◆  Goals:
–  Responsiveness
–  Low overhead
–  Starvation freedom
–  Some tasks are high/low priority
–  Fairness (among equal priority tasks)

◆  Not perfect at any of them!
–  Used in Linux (and probably Windows, MacOS)

10/6/16	

13	

MFQ

◆  Set of Round Robin queues
–  Each queue has a separate priority

◆  High priority queues have short time slices
–  Low priority queues have long time slices

◆  Scheduler picks first thread in highest priority queue
◆  Tasks start in highest priority queue

–  If time slice expires, task drops one level

MFQ

Priority

1

Time Slice (ms)

Time Slice
Expiration

New or I/O
Bound Task

2

4

3

80

40

20

10

Round Robin Queues

10/6/16	

14	

Uniprocessor summary (1)

◆  FIFO is simple and minimizes overhead.
◆  If tasks are variable in size, then FIFO can have very

poor average response time.
◆  If tasks are equal in size, FIFO is optimal in terms of

average response time.
◆  Considering only the processor, SJF is optimal in terms

of average response time.
◆  SJF is pessimal in terms of variance in response time.

Uniprocessor summary (2)

◆  If tasks are variable in size, Round Robin
approximates SJF.

◆  If tasks are equal in size, Round Robin will have very
poor average response time.

◆  Tasks that intermix processor and I/O benefit from
SJF and can do poorly under Round Robin.

10/6/16	

15	

Uniprocessor summary (3)

◆  Max-Min fairness can improve response time for I/O-
bound tasks.

◆  Round Robin and Max-Min fairness both avoid
starvation.

◆  By manipulating the assignment of tasks to priority
queues, an MFQ scheduler can achieve a balance
between responsiveness, low overhead, and fairness.

Multiprocessor scheduling

◆  What would happen if we used MFQ on a
multiprocessor?

–  Contention for scheduler spinlock

–  Cache slowdown due to ready list data structure pinging from
one CPU to another

–  Limited cache reuse: thread’s data from last time it ran is
often still in its old cache

10/6/16	

16	

Per-processor affinity scheduling

◆  Each processor has its own ready list
–  Protected by a per-processor spinlock

◆  Put threads back on the ready list where it had most
recently run
–  Ex: when I/O completes, or on Condition->signal

◆  Idle processors can steal work from other processors

Per-processor Multi-level Feedback
with affinity scheduling

Processor 3Processor 2Processor 1

10/6/16	

17	

Scheduling parallel programs

◆  What happens if one thread gets time-sliced while
other threads from the same program are still
running?
–  Assuming program uses locks and condition variables, it will

still be correct
–  What about performance?

Bulk synchronous parallelism

◆  Loop at each processor:
–  Compute on local data (in parallel)
–  Barrier
–  Send (selected) data to other processors (in parallel)
–  Barrier

◆  Examples:
–  MapReduce
–  Fluid flow over a wing
–  Most parallel algorithms can be recast in BSP

*  Sacrificing a small constant factor in performance

10/6/16	

18	

Tail latency
Ti

m
e

Processor 1 Processor 2 Processor 3 Processor 4

Barrier
Local Computation

Local Computation

Communication

Barrier

Scheduling parallel programs

Oblivious: each processor time-slices its ready list
independently of the other processors

Processor 3Processor 2Processor 1

Ti
m

e

p1.4

p2.3

p3.1

p2.1

p3.4

p2.4

p1.2

p1.3

p2.2

px.y = Thread y in process x

10/6/16	

19	

Gang scheduling

px.y = Thread y in process x

Processor 3Processor 2Processor 1

Ti
m

e

p1.1

p2.1

p3.1

p1.2

p2.2

p3.2

p1.3

p2.3

p3.3

Number of Processors

Pe
rf

or
m

an
ce

(In
ve

rs
e

Re
sp

on
se

 T
im

e)

Perfectly Parallel

Diminishing Returns

Limited Parallelism

Parallel program speedup

10/6/16	

20	

Processor 5 Processor 6Processor 3 Processor 4Processor 2Processor 1

Process 1 Process 2

Ti
m

e
Space sharing

Scheduler activations: kernel tells each application its # of
processors with upcalls every time the assignment changes

Queueing theory

◆  Can we predict what will happen to user performance:
–  If a service becomes more popular?
–  If we buy more hardware?
–  If we change the implementation to provide more features?

10/6/16	

21	

Departures
(Throughput)

Arrivals

Queue Server

Queueing model

Assumption: average performance in a stable system,
where the arrival rate (ƛ) matches the departure rate (µ)

Definitions

◆  Queueing delay (W): wait time
–  Number of tasks queued (Q)

◆  Service time (S): time to service the request
◆  Response time (R) = queueing delay + service time
◆  Utilization (U): fraction of time the server is busy

–  Service time * arrival rate (ƛ)
◆  Throughput (X): rate of task completions

–  If no overload, throughput = arrival rate

10/6/16	

22	

Little’s law

N = X * R

N: number of tasks in the system

Applies to any stable system – where arrivals match

departures.

Question

Suppose a system has throughput (X) = 100 tasks/s,
average response time (R) = 50 ms/task

◆  How many tasks are in the system on average?
◆  If the server takes 5 ms/task, what is its utilization?
◆  What is the average wait time?
◆  What is the average number of queued tasks?

10/6/16	

23	

Question

◆  From example:
X = 100 task/sec
R = 50 ms/task
S = 5 ms/task
W = 45 ms/task
Q = 4.5 tasks

◆  Why is W = 45 ms and not 4.5 * 5 = 22.5 ms?
–  Hint: what if S = 10ms? S = 1ms?

Queueing

◆  What is the best case scenario for minimizing queueing
delay?
–  Keeping arrival rate, service time constant

◆  What is the worst case scenario?

10/6/16	

24	

Best case: evenly spaced arrivals

Arrival Rate (λ)

Th
ro

ug
hp

ut
 (X

)

Arrival Rate (λ)

Re
sp

on
se

 Ti
m

e
(R

)

S

μ

Max throughputλ<μ
no queuing

R = S

λ>μ
growing queues

R undefined

μ

μ

Response time: best vs. worst case

Arrivals Per Second (λ)

Re
sp

on
se

 Ti
m

e
(R

)

μ

evenly spaced arrivals

bursty arrivals

S

λ<μ
queuing

depends on
burstiness

λ>μ
growing queues

R undefined

10/6/16	

25	

Queueing: average case?

◆  What is average?
–  Gaussian: Arrivals are spread out, around a mean value
–  Exponential: arrivals are memoryless
–  Heavy-tailed: arrivals are bursty

◆  Can have randomness in both arrivals and
service times

Exponential distribution

Pr
ob

ab
ili

ty
 o

f x

Exponential Distribution
f(x) = λe

x

-λx

10/6/16	

26	

Exponential distribution

0

λ

μ

1 2 3

λλλ

μμμ

λ

μ

4 ...

Permits closed form solution to state probabilities,
as function of arrival rate and service rate

Response time vs. utilization

0

20 S

40 S

60 S

80 S

100 S

0 0.2 0.4 0.6 0.8 1.0

R = S/(1-U)

Utilization U

Re
sp

on
se

 T
im

e
R

10/6/16	

27	

Question

◆  Exponential arrivals: R = S/(1-U)
◆  If system is 20% utilized, and load increases by 5%,

how much does response time increase?

◆  If system is 90% utilized, and load increases by 5%,
how much does response time increase?

Variance in response time

◆  Exponential arrivals
–  Variance in R = S/(1-U)^2

◆  What if less bursty than exponential?

◆  What if more bursty than exponential?

10/6/16	

28	

What if multiple resources?

◆  Response time =
Sum over all i
 Service time for resource i /
 (1 – Utilization of resource i)

◆  Implication
–  If you fix one bottleneck, the next highest utilized resource

will limit performance

Overload management

◆  What if arrivals occur faster than service can handle
them
–  If do nothing, response time will become infinite

◆  Turn users away?
–  Which ones? Average response time is best if turn away users

that have the highest service demand
–  Example: Highway congestion

◆  Degrade service?
–  Compute result with fewer resources
–  Example: CNN static front page on 9/11

10/6/16	

29	

Highway congestion (measured)

Why do metro buses cluster?

◆  Suppose two Metro buses start 15 minutes apart
–  Why might they arrive at the same time?

