
10/13/16	

1	

CS 422/522 Design & Implementation
of Operating Systems

Lecture 12: Message Passing

Zhong Shao
Dept. of Computer Science

 Yale University

Acknowledgement: some slides are taken from previous versions of the CS422/522 lectures taught by Prof. Bryan Ford
and Dr. David Wolinsky, and also from the official set of slides accompanying the OSPP textbook by Anderson and Dahlin.

Motivation

◆  Locks, semaphores, monitors are good but they only
work under the shared-memory model

◆  How to synchronize / schedule / communicate between
processes that reside in different address spaces /
different machines ?

◆  Can we have a single set of primitives that are
transparently extensible to the distributed
environment ?

10/13/16	

2	

Interprocess communication (IPC)

◆  Mechanism for processes to communicate and to synchronize
their actions.

◆  Message system – processes communicate with each other
without resorting to shared variables.

◆  IPC facility provides two operations:
–  send a message – message size fixed or variable
–  receive a message

◆  If P and Q wish to communicate, they need to:
–  establish a communication link between them
–  exchange messages via send/receive

◆  Implementation of communication link
–  physical (e.g., shared memory, hardware bus)
–  logical (e.g., logical properties)

The big picture

Process

Sender

Process

Receiver

10/13/16	

3	

Message passing API

◆  Generic API
–  send(dest, msg), receive(src, msg)

◆  What should the “dest” and “src” be?
–  pid
–  file: e.g. a pipe
–  port: network address, pid, etc
–  no src: receive any message
–  src combines both specific and any

◆  What should “msg” be?
–  Need both buffer and size for a variable sized message

Implementation issues

◆  Asynchronous vs. synchronous
◆  Event handler vs. receive
◆  How to buffer messages?
◆  Direct vs. indirect
◆  1-to-1 vs. 1-to-many vs.

many-to-one vs. many-to-many
◆  Unidirectional vs. bidirectional
◆  What is the size of a message?
◆  How to handle exceptions

(when bad things happen)?

…

…

10/13/16	

4	

Synchronous vs. asynchronous: send

◆  Synchronous
–  Will not return until data is

out of its source memory
–  Block on full buffer

◆  Asynchronous
–  Return as soon as initiating

its hardware
–  Completion

*  Require applications to check
status

*  Notify or signal the
application

–  Block on full buffer

send(dest, msg)

Msg transfer resource

status = async_send(dest, msg)
…
if !send_complete(status)
 wait for completion;
…
use msg data structure;
…

Synchronous vs. asynchronous: receive

◆  Synchronous
–  Return data if there is a

message
–  Block on empty buffer

◆  Asynchronous

–  Return data if there is a
message

–  Return status if there is no
message (probe)

recv(src, msg)

status = async_recv(src, msg);
if (status == SUCCESS)
 consume msg;

while (probe(src) != HaveMSG)
 wait for msg arrival
recv(src, msg);
consume msg;

Msg transfer resource

10/13/16	

5	

Event handler vs. receive

◆  hrecv(src, msg, func)
–  msg is an arg of func
–  Execute “func” on a message arrival

◆  Which one is more powerful?
–  Recv with a thread can emulate a

Handler
–  Handler can be used to emulate Recv

by using Monitor
◆  Pros and Cons

–  Handler is better for event-based
applications (no need to think about
threads), but concurrent executions
require more thoughts

–  Recv with a thread require thread
context switches but can run
concurrently

void func(char * msg) {
 …
}

…
hrecv(src, msg, func)
…

while(1) {
 recv(src,msg);
 func(msg);
}

program
Create a thread

…

Buffering

◆  No buffering
–  Sender must wait until the

receiver receives the message
–  Rendezvous on each message

◆  Bounded buffer
–  Finite size
–  Sender blocks on buffer full
–  Use mesa-monitor to solve the

problem
◆  Unbounded buffer

–  “Infinite” size
–  Sender never blocks

buffer

10/13/16	

6	

Direct communication

◆  A single buffer at the
receiver
–  More than one process may

send messages to the receiver
–  To receive from a specific

sender, it requires searching
through the whole buffer

◆  A buffer at each sender
–  A sender may send messages

to multiple receivers
–  To get a message, it also

requires searching through
the whole buffer

…

…

Indirect communication

◆  Use a "mailbox” to allow many-to-
many communication
–  Requires open/close a mailbox before

using it

◆  Where should the buffer be?
–  A buffer, its mutex and condition

variables should be at the mailbox

◆  Fixed sized messages?
–  Not necessarily. One can break a

large message into packets

◆  Are there any differences between a
mailbox and a pipe?
–  A mailbox allows many to many

communication
–  A pipe implies one sender and one

receiver

mbox

mbox

10/13/16	

7	

Indirect communication (cont’d)

◆  Mailbox sharing
–  P1, P2, and P3 share mailbox A.
–  P1, sends; P2 and P3 receive.
–  Who gets the message?

◆  Solutions
–  Allow a link to be associated with at most two processes.
–  Allow only one process at a time to execute a receive

operation.
–  Allow the system to select arbitrarily the receiver. Sender is

notified who the receiver was.

Example: keyboard input

◆  How do you implement keyboard input?
–  Need an interrupt handler
–  Generate a mbox message from the interrupt handler

◆  Suppose a keyboard device thread converts input
characters into an mbox message
–  How would you synchronize between the keyboard interrupt

handler and device thread?
–  How can a device thread convert input into mbox messages?

Receiver
Process

V(s);

…

while (1) {
 P(s);
 Acquire(m);
 convert …
 Release(m);
};

interrupt handler
device thread

 mbox

10/13/16	

8	

Example: Sockets API

◆  Abstraction for TCP and UDP
–  Learn more about internetworking in the future

◆  Addressing
–  IP address and port number (216 ports available for users)

◆  Create and close a socket
sockid = socket (af, type, protocol);

sockerr = close(sockid);

◆  Bind a socket to a local address
sockerr = bind(sockid, localaddr, addrlength);

◆  Negotiate the connection
listen(sockid, length);

accept(sockid, addr, length);

◆  Connect a socket to destination
Connect(sockid, destaddr, addrlength);

Unix pipes

◆  An output stream connected to an input stream by a
chunk of memory (a queue of bytes).

◆  Send (called write) is non-blocking
◆  Receive (called read) is blocking

◆  Buffering is provided by OS

◆  Message boundaries erased while reading

10/13/16	

9	

Exception: losing messages

◆  Use ack and timeout to detect
and retransmit a lost message
–  Require the receiver to send an ack

message for each message
–  Sender blocks until an ack message

is back or timeout
status = send(dest, msg, timeout);

–  If timeout happens and no ack, then
retransmit the message

◆  Issues
–  Duplicates
–  Losing ack messages

P Q
send
ack

Exception: losing messages (cont’d)

◆  Retransmission must handle
–  Duplicate messages on receiver side
–  Out-of-sequence ack messages on

sender side
◆  Retransmission

–  Use sequence number for each
message to identify duplicates

–  Remove duplicates on receiver side
–  Sender retransmits on an out-of-

sequence ack
◆  Reduce ack messages

–  Bundle ack messages
–  Receiver sends noack messages: can

be complex
–  Piggy-back acks in send messages

P Q

send1
ack1

send2
ack2

10/13/16	

10	

Summary

◆  Message passing
–  Move data between processes
–  Implicit synchronization

◆  Implementation issues
–  Synchronous method is most common
–  Asynchronous method provides overlapping but requires

careful design considerations
–  Indirection makes implementation flexible
–  Exception needs to be carefully handled

