
10/13/16	

1	

CS 422/522 Design & Implementation
of Operating Systems

Lecture 13: Address Translation

Zhong Shao
Dept. of Computer Science

 Yale University

Acknowledgement: some slides are taken from previous versions of the CS422/522 lectures taught by Prof. Bryan Ford
and Dr. David Wolinsky, and also from the official set of slides accompanying the OSPP textbook by Anderson and Dahlin.

Main points

◆  Address translation concept
–  How do we convert a virtual address to a physical address?

◆  Flexible address translation
–  Base and bound
–  Segmentation
–  Paging
–  Multilevel translation

◆  Efficient address translation
–  Translation Lookaside Buffers
–  Virtually and physically addressed caches

10/13/16	

2	

Address translation concept

Translation

Physical
Memory

Virtual
Address

Raise
Exception

Physical
Address

Valid

Processor

Data

Data

Invalid

Address translation goals

◆  Memory protection
◆  Memory sharing

–  Shared libraries, interprocess communication
◆  Sparse addresses

–  Multiple regions of dynamic allocation (heaps/stacks)
◆  Efficiency

–  Memory placement
–  Runtime lookup
–  Compact translation tables

◆  Portability

10/13/16	

3	

Bonus feature

◆  What can you do if you can (selectively) gain control
whenever a program reads or writes a particular
virtual memory location?

◆  Examples:
–  Copy on write
–  Zero on reference
–  Fill on demand
–  Demand paging
–  Memory mapped files
–  …

A Preview: MIPS address translation

◆  Software-Loaded Translation lookaside buffer (TLB)
–  Cache of virtual page -> physical page translations
–  If TLB hit, physical address
–  If TLB miss, trap to kernel
–  Kernel fills TLB with translation and resumes execution

◆  Kernel can implement any page translation
–  Page tables
–  Multi-level page tables
–  Inverted page tables
–  …

10/13/16	

4	

Physical
Memory

Frame Offset

Physical
Address

Page# Offset

Virtual
Address

Translation Lookaside Buffer (TLB)

Virtual
Page

Page
Frame Access

Matching Entry

Page Table
Lookup

A Preview: MIPS lookup

Virtually addressed base and bounds

Base

Bound

Physical
Memory

Processor’s View Implementation

Virtual
Address

Virtual
Memory

Physical
Address

Base

Base+
Bound

Raise
Exception

Processor

Virtual
Address

Processor

10/13/16	

5	

Virtually addressed base and bounds

◆  Pros?
–  Simple
–  Fast (2 registers, adder, comparator)
–  Safe
–  Can relocate in physical memory without changing process

◆  Cons?
–  Can’t keep program from accidentally overwriting its own code
–  Can’t share code/data with other processes
–  Can’t grow stack/heap as needed

Segmentation

◆  Segment is a contiguous region of virtual memory
◆  Each process has a segment table (in hardware)

–  Entry in table = segment
◆  Segment can be located anywhere in physical memory

–  Each segment has: start, length, access permission
◆  Processes can share segments

–  Same start, length, same/different access permissions

10/13/16	

6	

Segmentation

Base Bound Access

Read

R/W

R/W

R/W

Segment Offset

Raise
Exception

Physical
Memory

ProcessRU·V View Implementation

Virtual
Address

Virtual
Memory

Physical Address

Base 3

Base+
Bound 3

Base 0

Base+
Bound 0

Base 1

Base+
Bound 1

Base 2

Base+
Bound 2

Processor
Virtual

Address
Segment Table

Processor

Code

Data

Heap

Stack

Stack

Data

Code

Heap

UNIX fork and copy on write

◆  UNIX fork
–  Makes a complete copy of a process

◆  Segments allow a more efficient implementation
–  Copy segment table into child
–  Mark parent and child segments read-only
–  Start child process; return to parent
–  If child or parent writes to a segment (ex: stack, heap)

*  trap into kernel
*  make a copy of the segment and resume

10/13/16	

7	

Unix fork and copy on write (cont’d)

Base Bound Access

0 500

Physical
Memory

Processor’s View Implementation

Virtual
Address
0x0500

Virtual
Memory

Process 1`s View

Physical Address

Processor

Seg. Offset

Virtual
Address

Virtual
Address

Segment Table

Processor

Base Bound Access

Read

R/W

R/W

R/W

Read

R/W

R/W

R/W

0 500

Seg. Offset

Segment Table

Processor

Code

Code

Data

Heap

Stack

Code

Data

Heap

Stack

Data

Heap

Stack

P2`s
Data

Virtual
Address
0x0500

Process 2`s View

Processor
Code

Data

Heap

Stack

P1`s
Heap

P1`s
Stack

P1`s
Data

P2`s
Heap

P1’s+
P2`s
Code

P2`s
Stack

Zero-on-reference

◆  How much physical memory is needed for the stack or
heap?
–  Only what is currently in use

◆  When program uses memory beyond end of stack
–  Segmentation fault into OS kernel
–  Kernel allocates some memory

*  How much?
–  Zeros the memory

*  avoid accidentally leaking information!
–  Modify segment table
–  Resume process

10/13/16	

8	

Segmentation

◆  Pros?
–  Can share code/data segments between processes
–  Can protect code segment from being overwritten
–  Can transparently grow stack/heap as needed
–  Can detect if need to copy-on-write

◆  Cons?
–  Complex memory management

*  Need to find chunk of a particular size
–  May need to rearrange memory from time to time to make

room for new segment or growing segment
*  External fragmentation: wasted space between chunks

Paged translation

◆  Manage memory in fixed size units, or pages
◆  Finding a free page is easy

–  Bitmap allocation: 0011111100000001100
–  Each bit represents one physical page frame

◆  Each process has its own page table
–  Stored in physical memory
–  Hardware registers

*  pointer to page table start
*  page table length

10/13/16	

9	

Paging and copy on write

◆  Can we share memory between processes?
–  Set entries in both page tables to point to same page frames
–  Need core map of page frames to track which processes are

pointing to which page frames (e.g., reference count)
◆  UNIX fork with copy on write

–  Copy page table of parent into child process
–  Mark all pages (in new and old page tables) as read-only
–  Trap into kernel on write (in child or parent)
–  Copy page
–  Mark both as writeable
–  Resume execution

Fill on demand

◆  Can I start running a program before its code is in
physical memory?
–  Set all page table entries to invalid
–  When a page is referenced for first time, kernel trap
–  Kernel brings page in from disk
–  Resume execution
–  Remaining pages can be transferred in the background while

program is running

10/13/16	

10	

Sparse address spaces

◆  Might want many separate dynamic segments
–  Per-processor heaps
–  Per-thread stacks
–  Memory-mapped files
–  Dynamically linked libraries

◆  What if virtual address space is large?
–  32-bits, 4KB pages => 500K page table entries
–  64-bits => 4 quadrillion page table entries

Multi-level translation

◆  Tree of translation tables
–  Paged segmentation
–  Multi-level page tables
–  Multi-level paged segmentation

◆  Fixed-size page as lowest level unit of allocation
–  Efficient memory allocation (compared to segments)
–  Efficient for sparse addresses (compared to paging)
–  Efficient disk transfers (fixed size units)
–  Easier to build translation lookaside buffers
–  Efficient reverse lookup (from physical -> virtual)
–  Variable granularity for protection/sharing

10/13/16	

11	

Paged segmentation

◆  Process memory is segmented
◆  Segment table entry:

–  Pointer to page table
–  Page table length (# of pages in segment)
–  Access permissions

◆  Page table entry:
–  Page frame
–  Access permissions

◆  Share/protection at either page or segment-level

Paged segmentation (implementation)
Physical
Memory

Implementation

Frame Access

Page Table

Page Table Size Access

Read

R/W

Read

Read

R/W

R/W

Segment Table

Virtual
Address

OffsetPageSegment

Exception

Frame Offset

Physical
Address

Processor

10/13/16	

12	

Multilevel paging

Physical
Memory

Implementation

Level 1

Level 2

Level 3

Processor

Virtual
Address

OffsetIndex 3Index 2Index 1

Frame Offset

Physical
Address

X86 multilevel paged segmentation

◆  Global Descriptor Table (segment table)
–  Pointer to page table for each segment
–  Segment length
–  Segment access permissions
–  Context switch: change global descriptor table register

(GDTR, pointer to global descriptor table)
◆  Multilevel page table

–  4KB pages; each level of page table fits in one page
–  32-bit: two level page table (per segment)
–  64-bit: four level page table (per segment)
–  Omit sub-tree if no valid addresses

10/13/16	

13	

Multilevel translation

◆  Pros:
–  Allocate/fill only page table entries that are in use
–  Simple memory allocation
–  Share at segment or page level

◆  Cons:
–  Space overhead: one pointer per virtual page
–  Two (or more) lookups per memory reference

Portability

◆  Many operating systems keep their own memory
translation data structures
–  List of memory objects (segments)
–  Virtual page -> physical page frame
–  Physical page frame -> set of virtual pages

◆  One approach: Inverted page table
–  Hash from virtual page -> physical page
–  Space proportional to # of physical pages

10/13/16	

14	

Efficient address translation

◆  Translation lookaside buffer (TLB)
–  Cache of recent virtual page -> physical page translations
–  If cache hit, use translation
–  If cache miss, walk multi-level page table

◆  Cost of translation =
Cost of TLB lookup +
Prob(TLB miss) * cost of page table lookup

TLB and page table translation

TLB

Physical
Memory

Virtual
Address

Virtual
Address

Frame Frame

Raise
Exception

Physical
Address

Hit
Valid

Processor Page
Table

Data

Data

Miss Invalid

Offset

10/13/16	

15	

Physical
Memory

Frame Offset

Physical
Address

Page# Offset

Virtual
Address

Translation Lookaside Buffer (TLB)

Virtual
Page

Page
Frame Access

Matching Entry

Page Table
Lookup

TLB lookup

MIPS software loaded TLB

◆  Software defined translation tables
–  If translation is in TLB, ok
–  If translation is not in TLB, trap to kernel
–  Kernel computes translation and loads TLB
–  Kernel can use whatever data structures it wants

◆  Pros/cons?

10/13/16	

16	

Question

◆  What is the cost of a TLB miss on a modern processor?
–  Cost of multi-level page table walk
–  MIPS: plus cost of trap handler entry/exit

Hardware design principle

The bigger the memory, the slower the memory

10/13/16	

17	

Intel i7

Memory hierarchy

i7 has 8MB as shared 3rd level cache; 2nd level cache is per-core

10/13/16	

18	

Question

◆  What is the cost of a first level TLB miss?
–  Second level TLB lookup

◆  What is the cost of a second level TLB miss?
–  x86: 2-4 level page table walk

◆  How expensive is a 4-level page table walk on a modern
processor?

Virtually addressed vs. physically addressed
caches

◆  Too slow to first access TLB to find physical address,
then look up address in the cache

◆  Instead, first level cache is virtually addressed

◆  In parallel, access TLB to generate physical address in
case of a cache miss

10/13/16	

19	

Virtually addressed caches

Physical
Memory

Virtual
Address

Virtual
Address

Virtual
Address

Frame Frame

Raise
Exception

Physical
Address

Data

Hit Hit
Valid

Processor
Virtual
Cache

TLB Page
Table

Data

Data

Miss Miss Invalid

Offset

Physically addressed cache

Virtual
Address

Virtual
Address

Virtual
Address

Physical
Address

Frame Frame

Raise
Exception

Physical
Address

Data

Hit Hit
Valid

Processor
Virtual
Cache

TLB Page
Table

Physical
Cache

Physical
Memory

Data

Data
Hit

Data

Miss Miss

Miss

Invalid

Offset

10/13/16	

20	

When do TLBs work/not work?

◆  Video Frame
Buffer: 32 bits x
1K x 1K = 4MB

Video Frame Buffer
Page#

0

1

2

3

1021

1022

1023

Superpages

◆  On many systems, TLB entry can be
–  A page
–  A superpage: a set of contiguous pages

◆  x86: superpage is set of pages in one page table
–  x86 TLB entries

*  4KB
*  2MB
*  1GB

10/13/16	

21	

Superpages
Physical
Memory

Frame Offset

Physical
Address

SP Offset

Page# Offset

Virtual
Address

SF Offset

Translation Lookaside Buffer (TLB)

Superpage
(SP) or
Page#

Superframe
(SF) or
Frame Access

Matching Entry

Matching
Superpage

Page Table
Lookup

When do TLBs work/not work, part 2

◆  What happens when the OS changes the permissions
on a page?
–  For demand paging, copy on write, zero on reference, …

◆  TLB may contain old translation
–  OS must ask hardware to purge TLB entry

◆  On a multicore: TLB shootdown
–  OS must ask each CPU to purge TLB entry

10/13/16	

22	

TLB shootdown

Processor 1 TLB

VirtualPage PageFrame Access

0x00530

Process
ID

=

=

0x0003 R/W

0x4OFF1 0x0012 R/W

Processor 2 TLB 0x00530=

=

0x0003 R/W

0x00010 0x0005 Read

Processor 3 TLB 0x4OFF1=

=

0x0012 R/W

0x00010 0x0005 Read

When do TLBs work/not work, part 3

◆  What happens on a context switch?
–  Reuse TLB?
–  Discard TLB?

◆  Solution: Tagged TLB
–  Each TLB entry has process ID
–  TLB hit only if process ID matches current process

10/13/16	

23	

Physical
Memory

Frame Offset

Physical
Address

Page
Frame

Page# Offset

Virtual
Address

Translation Lookaside Buffer (TLB)

Implementation

PageProcess ID Frame Access

Matching Entry

Process ID

Processor

Page Table
Lookup

Aliasing

◆  Alias: two (or more) virtual cache entries that refer to
the same physical memory
–  A consequence of a tagged virtually addressed cache!
–  A write to one copy needs to update all copies

◆  Typical solution
–  Keep both virtual and physical address for each entry in

virtually addressed cache
–  Lookup virtually addressed cache and TLB in parallel
–  Check if physical address from TLB matches multiple entries,

and update/invalidate other copies

10/13/16	

24	

Multicore and hyperthreading

◆  Modern CPU has several functional units
–  Instruction decode
–  Arithmetic/branch
–  Floating point
–  Instruction/data cache
–  TLB

◆  Multicore: replicate functional units (i7: 4)
–  Share second/third level cache, second level TLB

◆  Hyperthreading: logical processors that share
functional units (i7: 2)
–  Better functional unit utilization during memory stalls

◆  No difference from the OS/programmer perspective
–  Except for performance, affinity, …

Address translation uses

◆  Process isolation
–  Keep a process from touching anyone else’s memory, or the

kernel’s
◆  Efficient inter-process communication

–  Shared regions of memory between processes
◆  Shared code segments

–  E.g., common libraries used by many different programs
◆  Program initialization

–  Start running a program before it is entirely in memory
◆  Dynamic memory allocation

–  Allocate and initialize stack/heap pages on demand

10/13/16	

25	

Address translation (more)

◆  Cache management
–  Page coloring

◆  Program debugging
–  Data breakpoints when address is accessed

◆  Zero-copy I/O
–  Directly from I/O device into/out of user memory

◆  Memory mapped files
–  Access file data using load/store instructions

◆  Demand-paged virtual memory
–  Illusion of near-infinite memory, backed by disk or memory

on other machines

Address translation (even more)

◆  Checkpointing/restart
–  Transparently save a copy of a process, without stopping the

program while the save happens
◆  Persistent data structures

–  Implement data structures that can survive system reboots
◆  Process migration

–  Transparently move processes between machines
◆  Information flow control

–  Track what data is being shared externally
◆  Distributed shared memory

–  Illusion of memory that is shared between machines

