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Main points

# Address translation concept
- How do we convert a virtual address to a physical address?

+ Flexible address translation
- Base and bound
- Segmentation
- Paging
- Multilevel translation

o Efficient address translation
- Translation Lookaside Buffers
- Virtually and physically addressed caches
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Address translation concept
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Address translation goals

*

Memory protection
Memory sharing
- Shared libraries, interprocess communication
& Sparse addresses
- Multiple regions of dynamic allocation (heaps/stacks)
o Efficiency
- Memory placement
- Runtime lookup
- Compact translation tables

+ Portability
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Bonus feature

¢ What can you do if you can (selectively) gain control
whenever a program reads or writes a particular
virtual memory location?

o Examples:

- Copy on write

- Zero on reference
Fill on demand
Demand paging
- Memory mapped files

A Preview: MIPS address translation

¢ Software-Loaded Translation lookaside buffer (TLB)
- Cache of virtual page -> physical page translations
- If TLB hit, physical address
- If TLB miss, trap to kernel
- Kernel fills TLB with translation and resumes execution

+ Kernel can implement any page translation
- Page tables
- Multi-level page tables
- Inverted page tables
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Virtually addressed base and bounds

& Pros?
- Simple
- Fast (2 registers, adder, comparator)
- Safe
- Can relocate in physical memory without changing process
+ Cons?
- Can't keep program from accidentally overwriting its own code
- Can't share code/data with other processes
- Can't grow stack/heap as needed

Segmentation

+ Segment is a contiguous region of virtual memory

# Each process has a segment table (in hardware)
- Entry in table = segment

+ Segment can be located anywhere in physical memory
- Each segment has: start, length, access permission

¢ Processes can share segments
- Same start, length, same/different access permissions

10/13/16



10/13/16

Processor’s View Implementation Physical
Memory
Virtual Base 3
Memory Stack
. Processor Base+
Virtual Bound 3
Address | Code . Virtual Segment Table
Processorf- Address Base Bound  Access
H Base 0
e > ‘~~>| Segment‘ Offset | Read
Data T RIW Code
Base+
R/W Bound 0
R/W
Heap
Base 1
-]
Physical Add Pata
A ysica ress i Base+
Stack ()] Bound 1
Raise
S e Exception
Base 2
Heap
Base+
Bound 2

UNIX fork and copy on write

¢ UNIX fork

- Makes a complete copy of a process

¢ Segments allow a more efficient implementation
- Copy segment table into child
- Mark parent and child segments read-only
- Start child process; return to parent

- If child or parent writes to a segment (ex: stack, heap)
* tfrap into kernel
* make a copy of the segment and resume
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Unix fork and copy on write (cont'd)
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Zero-on-reference

+ How much physical memory is needed for the stack or
heap?
- Only what is currently in use

+ When program uses memory beyond end of stack
Segmentation fault into OS kernel

Kernel allocates some memory
* How much?
Zeros the memory
* avoid accidentally leaking information!

Modify segment table
Resume process




Segmentation

¢ Pros?
- Can share code/data segments between processes
- Can protect code segment from being overwritten
- Can transparently grow stack/heap as needed
- Can detect if need to copy-on-write

¢ Cons?
- Complex memory management
* Need to find chunk of a particular size
- May need to rearrange memory from time to time to make

room for new segment or growing segment
* External fragmentation: wasted space between chunks

Paged translation

+ Manage memory in fixed size units, or pages
+ Finding a free page is easy

- Bitmap allocation: 0011111100000001100

- Each bit represents one physical page frame
+ Each process has its own page table

- Stored in physical memory

- Hardware registers
* pointer to page table start
* page table length

10/13/16



Paging and copy on write

¢ Can we share memory between processes?
- Set entries in both page tables to point to same page frames
- Need core map of page frames to track which processes are
pointing to which page frames (e.g., reference count)
¢ UNIX fork with copy on write
- Copy page table of parent into child process
- Mark all pages (in new and old page tables) as read-only
- Trap into kernel on write (in child or parent)
- Copy page
- Mark both as writeable
- Resume execution

Fill on demand

¢ Can I start running a program before its code is in
physical memory?
- Set all page table entries to invalid
- When a page is referenced for first time, kernel trap
- Kernel brings page in from disk
- Resume execution

- Remaining pages can be transferred in the background while
program is running
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Sparse address spaces

¢ Might want many separate dynamic segments
- Per-processor heaps

Per-thread stacks

Memory-mapped files

Dynamically linked libraries

¢ What if virtual address space is large?
- 32-bits, 4KB pages => 500K page table entries
- 64-bits => 4 quadrillion page table entries

Multi-level translation

¢ Tree of translation tables
- Paged segmentation
- Multi-level page tables
- Multi-level paged segmentation

+ Fixed-size page as lowest level unit of allocation
- Efficient memory allocation (compared to segments)

Efficient for sparse addresses (compared to paging)

Efficient disk transfers (fixed size units)

Easier to build translation lookaside buffers

Efficient reverse lookup (from physical -> virtual)

Variable granularity for protection/sharing
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Paged segmentation

& Process memory is segmented
¢ Segment table entry:
- Pointer to page table
- Page table length (# of pages in segment)
- Access permissions
¢ Page table entry:
- Page frame
- Access permissions
+ Share/protection at either page or segment-level

Paged segmentation (implementation)
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Multilevel paging
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X86 multilevel paged segmentation

¢ Global Descriptor Table (segment table)
- Pointer to page table for each segment
- Segment length
- Segment access permissions
- Context switch: change global descriptor table register
(6DTR, pointer to global descriptor table)
¢ Multilevel page table
- 4KB pages: each level of page table fits in one page
- 32-bit: two level page table (per segment)
- 64-bit: four level page table (per segment)
- Omit sub-tree if no valid addresses
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Multilevel translation

¢ Pros:
- Allocate/fill only page table entries that are in use
- Simple memory allocation
- Share at segment or page level
* Cons:
- Space overhead: one pointer per virtual page
- Two (or more) lookups per memory reference

Portability

+ Many operating systems keep their own memory
translation data structures
- List of memory objects (segments)
- Virtual page -> physical page frame
- Physical page frame -> set of virtual pages
+ One approach: Inverted page table
- Hash from virtual page -> physical page
- Space proportional to # of physical pages
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Efficient address translation

o Translation lookaside buffer (TLB)
- Cache of recent virtual page -> physical page translations
- If cache hit, use translation
- If cache miss, walk multi-level page table

& Cost of translation =

Cost of TLB lookup +
Prob(TLB miss) * cost of page table lookup

TLB and page table translation
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TLB lookup
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MIPS software loaded TLB

¢ Software defined translation tables

& Pros/cons?

If translation is in TLB, ok
If translation is not in TLB, trap to kernel
Kernel computes translation and loads TLB
Kernel can use whatever data structures it wants
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Question

¢ What is the cost of a TLB miss on a modern processor?
- Cost of multi-level page table walk
- MIPS: plus cost of trap handler entry/exit

Hardware design principle

The bigger the memory, the slower the memory

16



Intel i7

| IntegratediMembry Controller-13iCh DDR3

Co‘re 0] Cdre |

Core 2 ®¢3§

Shared L3 Cache

Memory hierarchy

Cache Hit Cost Size
1st level cacheffirst level TLB ins 64KB
2nd level cache/second level TLB 4ns 256 KB
3rd level cache 12ns 2MB
Memory (DRAM) 100ns 10GB

Data center memory (DRAM)
Local non-volatile memory
Local disk

Data center disk

Remote data center disk

100us 100TB
100us 100GB

10ms 1TB
10ms 100PB
200 ms 1XB

i7 has 8MB as shared 3 level cache;

29 level cache is per-core
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Question

¢ What is the cost of a first level TLB miss?
- Second level TLB lookup

+ What is the cost of a second level TLB miss?
- x86: 2-4 level page table walk

+ How expensive is a 4-level page table walk on a modern
processor?

Virtually addressed vs. physically addressed
caches

¢ Too slow to first access TLB to find physical address,
then look up address in the cache

¢ Instead, first level cache is virtually addressed

# In parallel, access TLB to generate physical address in
case of a cache miss
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When do TLBs work/not work?

Video Frame Buffer

¢ Video Fr‘ame Page#
Buffer: 32 bits x 0
1K x 1K = 4MB ;
3
1021
1022
1023
Superpages

¢ On many systems, TLB entry can be
- A page
- A superpage: a set of contiguous pages

+ x86: superpage is set of pages in one page table
- x86 TLB entries
* 4KB
* 2MB
* 168
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Superpages
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When do TLBs work/not work, part 2

¢ What happens when the OS changes the permissions
on a page?
- For demand paging, copy on write, zero on reference, ...

+ TLB may contain old ftranslation
- OS must ask hardware to purge TLB entry

¢ On a multicore: TLB shootdown
- OS must ask each CPU to purge TLB entry
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TLB shootdown
Process
ID VirtualPage PageFrame Access
0 0x0053 0x0003 R/W
Processor 1 TLB
= 1 0x40FF 0x0012 R/W
= 0 0x0053 0x0003 R/W
Processor 2 TLB
= 0 0x0001 0x0005 Read
1 0x40FF 0x0012 R/W
Processor 3 TLB
= 0 0x0001 0x0005 Read

When do TLBs work/not work, part 3

¢ What happens on a context switch?
- Reuse TLB?
- Discard TLB?

+ Solution: Tagged TLB
- Each TLB entry has process ID
- TLB hit only if process ID matches current process
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Aliasing

o Alias: two (or more) virtual cache entries that refer to
the same physical memory
- A consequence of a tagged virtually addressed cachel!
- A write to one copy needs to update all copies

+ Typical solution

- Keep both virtual and physical address for each entry in
virtually addressed cache

- Lookup virtually addressed cache and TLB in parallel

- Check if physical address from TLB matches multiple entries,
and update/invalidate other copies
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Multicore and hyperthreading

+ Modern CPU has several functional units
- Instruction decode
Arithmetic/branch
Floating point
Instruction/data cache
- TLB
¢ Multicore: replicate functional units (i7: 4)
- Share second/third level cache, second level TLB
¢ Hyperthreading: logical processors that share
functional units (i7: 2)
- Beftter functional unit utilization during memory stalls
+ No difference from the OS/programmer perspective
- Except for performance, affinity, ...

Address translation uses

& Process isolation

- Keep a process from touching anyone else's memory, or the
kernel's

+ Efficient inter-process communication

- Shared regions of memory between processes
¢ Shared code segments

- E.g., common libraries used by many different programs
& Program initialization

- Start running a program before it is entirely in memory
¢ Dynamic memory allocation

- Allocate and initialize stack/heap pages on demand
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Address translation (more)

¢ Cache management
- Page coloring
# Program debugging
- Data breakpoints when address is accessed
¢ Zero-copy I/0
- Directly from I/0 device into/out of user memory
¢ Memory mapped files
- Access file data using load/store instructions
+ Demand-paged virtual memory

- Illusion of near-infinite memory, backed by disk or memory
on other machines

Address translation (even more)

¢ Checkpointing/restart

- Transparently save a copy of a process, without stopping the
program while the save happens

# Persistent data structures
- Implement data structures that can survive system reboots
¢ Process migration
- Transparently move processes between machines
¢ Information flow control
- Track what data is being shared externally
+ Distributed shared memory
- TIllusion of memory that is shared between machines
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