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CS 422/522  Design & Implementation  
of Operating Systems 

 
Lecture 13: Address Translation 

  

Zhong Shao 
Dept. of Computer Science 

 Yale University 

Acknowledgement: some slides are taken from previous versions of the CS422/522 lectures taught by Prof. Bryan Ford 
and Dr. David Wolinsky, and also from the official set of slides accompanying the OSPP textbook by Anderson and Dahlin.  

Main points 

◆  Address translation concept 
–  How do we convert a virtual address to a physical address? 

◆  Flexible address translation 
–  Base and bound 
–  Segmentation 
–  Paging 
–  Multilevel translation 

◆  Efficient address translation 
–  Translation Lookaside Buffers 
–  Virtually and physically addressed caches 
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Address translation goals 

◆  Memory protection 
◆  Memory sharing 

–  Shared libraries, interprocess communication 
◆  Sparse addresses 

–  Multiple regions of dynamic allocation (heaps/stacks) 
◆  Efficiency 

–  Memory placement 
–  Runtime lookup 
–  Compact translation tables 

◆  Portability 
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Bonus feature 

◆  What can you do if you can (selectively) gain control 
whenever a program reads or writes a particular 
virtual memory location? 

◆  Examples: 
–  Copy on write 
–  Zero on reference 
–  Fill on demand 
–  Demand paging 
–  Memory mapped files 
–  … 

 

A Preview: MIPS address translation 

◆  Software-Loaded Translation lookaside buffer (TLB) 
–  Cache of virtual page -> physical page translations 
–  If TLB hit, physical address 
–  If TLB miss, trap to kernel 
–  Kernel fills TLB with translation and resumes execution 

◆  Kernel can implement any page translation 
–  Page tables 
–  Multi-level page tables 
–  Inverted page tables 
–  … 



10/13/16	

4	

Physical
Memory

Frame Offset

Physical 
Address

Page# Offset

Virtual
Address

Translation Lookaside Buffer (TLB)

Virtual 
Page

Page 
Frame Access

Matching Entry

Page Table 
Lookup

A Preview: MIPS lookup 

Virtually addressed base and bounds 
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Virtually addressed base and bounds 

◆  Pros? 
–  Simple 
–  Fast (2 registers, adder, comparator) 
–  Safe 
–  Can relocate in physical memory without changing process 

◆  Cons? 
–  Can’t keep program from accidentally overwriting its own code 
–  Can’t share code/data with other processes 
–  Can’t grow stack/heap as needed 

Segmentation 

◆  Segment is a contiguous region of virtual memory 
◆  Each process has a segment table (in hardware) 

–  Entry in table = segment 
◆  Segment can be located anywhere in physical memory 

–  Each segment has: start, length, access permission 
◆  Processes can share segments 

–  Same start, length, same/different access permissions 
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Segmentation 
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UNIX fork and copy on write 

◆  UNIX fork 
–  Makes a complete copy of a process 

◆  Segments allow a more efficient implementation 
–  Copy segment table into child 
–  Mark parent and child segments read-only 
–  Start child process; return to parent 
–  If child or parent writes to a segment (ex: stack, heap) 

*  trap into kernel 
*  make a copy of the segment and resume 
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Unix fork and copy on write (cont’d) 
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Zero-on-reference 

◆  How much physical memory is needed for the stack or 
heap? 
–  Only what is currently in use 

◆  When program uses memory beyond end of stack 
–  Segmentation fault into OS kernel 
–  Kernel allocates some memory 

*  How much? 
–  Zeros the memory 

*  avoid accidentally leaking information! 
–  Modify segment table 
–  Resume process 
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Segmentation 

◆  Pros? 
–  Can share code/data segments between processes 
–  Can protect code segment from being overwritten 
–  Can transparently grow stack/heap as needed 
–  Can detect if need to copy-on-write 

◆  Cons? 
–  Complex memory management 

*  Need to find chunk of a particular size 
–  May need to rearrange memory from time to time to make 

room for new segment or growing segment 
*  External fragmentation: wasted space between chunks 

Paged translation 

◆  Manage memory in fixed size units, or pages 
◆  Finding a free page is easy 

–  Bitmap allocation: 0011111100000001100 
–  Each bit represents one physical page frame 

◆  Each process has its own page table 
–  Stored in physical memory 
–  Hardware registers 

*  pointer to page table start 
*  page table length 
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Paging and copy on write 

◆  Can we share memory between processes? 
–  Set entries in both page tables to point to same page frames 
–  Need core map of page frames to track which processes are 

pointing to which page frames (e.g., reference count) 
◆  UNIX fork with copy on write 

–  Copy page table of parent into child process 
–  Mark all pages (in new and old page tables) as read-only 
–  Trap into kernel on write (in child or parent) 
–  Copy page 
–  Mark both as writeable 
–  Resume execution 

Fill on demand 

◆  Can I start running a program before its code is in 
physical memory? 
–  Set all page table entries to invalid 
–  When a page is referenced for first time, kernel trap 
–  Kernel brings page in from disk 
–  Resume execution 
–  Remaining pages can be transferred in the background while 

program is running 
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Sparse address spaces 

◆  Might want many separate dynamic segments 
–  Per-processor heaps 
–  Per-thread stacks 
–  Memory-mapped files 
–  Dynamically linked libraries 

◆  What if virtual address space is large? 
–  32-bits, 4KB pages => 500K page table entries 
–  64-bits => 4 quadrillion page table entries 

Multi-level translation 

◆  Tree of translation tables 
–  Paged segmentation  
–  Multi-level page tables 
–  Multi-level paged segmentation 

◆  Fixed-size page as lowest level unit of allocation 
–  Efficient memory allocation (compared to segments) 
–  Efficient for sparse addresses (compared to paging) 
–  Efficient disk transfers (fixed size units) 
–  Easier to build translation lookaside buffers 
–  Efficient reverse lookup (from physical -> virtual) 
–  Variable granularity for protection/sharing 
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Paged segmentation 

◆  Process memory is segmented 
◆  Segment table entry: 

–  Pointer to page table 
–  Page table length (# of pages in segment) 
–  Access permissions 

◆  Page table entry: 
–  Page frame 
–  Access permissions 

◆  Share/protection at either page or segment-level 
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Multilevel paging 
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X86 multilevel paged segmentation 

◆  Global Descriptor Table (segment table) 
–  Pointer to page table for each segment 
–  Segment length 
–  Segment access permissions 
–  Context switch: change global descriptor table register 

(GDTR, pointer to global descriptor table) 
◆  Multilevel page table 

–  4KB pages; each level of page table fits in one page 
–  32-bit: two level page table (per segment) 
–  64-bit: four level page table (per segment) 
–  Omit sub-tree if no valid addresses 
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Multilevel translation 

◆  Pros: 
–  Allocate/fill only page table entries that are in use 
–  Simple memory allocation 
–  Share at segment or page level 

◆  Cons: 
–  Space overhead: one pointer per virtual page 
–  Two (or more) lookups per memory reference 

Portability 

◆  Many operating systems keep their own memory 
translation data structures 
–  List of memory objects (segments) 
–  Virtual page -> physical page frame 
–  Physical page frame -> set of virtual pages 

◆  One approach: Inverted page table 
–  Hash from virtual page -> physical page 
–  Space proportional to # of physical pages 
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Efficient address translation 

◆  Translation lookaside buffer (TLB) 
–  Cache of recent virtual page -> physical page translations 
–  If cache hit, use translation 
–  If cache miss, walk multi-level page table 

◆  Cost of translation = 
Cost of TLB lookup + 
Prob(TLB miss) * cost of page table lookup 

TLB and page table translation 
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MIPS software loaded TLB 

◆  Software defined translation tables 
–  If translation is in TLB, ok 
–  If translation is not in TLB, trap to kernel 
–  Kernel computes translation and loads TLB 
–  Kernel can use whatever data structures it wants 

◆  Pros/cons? 
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Question 

◆  What is the cost of a TLB miss on a modern processor? 
–  Cost of multi-level page table walk 
–  MIPS: plus cost of trap handler entry/exit 

Hardware design principle 

 
 
The bigger the memory, the slower the memory 
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Intel i7 

Memory hierarchy 

i7 has 8MB as shared 3rd level cache; 2nd level cache is per-core 
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Question 

◆  What is the cost of a first level TLB miss? 
–  Second level TLB lookup 

◆  What is the cost of a second level TLB miss? 
–  x86: 2-4 level page table walk 

◆  How expensive is a 4-level page table walk on a modern 
processor? 

Virtually addressed vs. physically addressed 
caches 

◆  Too slow to first access TLB to find physical address, 
then look up address in the cache 

◆  Instead, first level cache is virtually addressed 

◆  In parallel, access TLB to generate physical address in 
case of a cache miss 
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Virtually addressed caches 
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When do TLBs work/not work? 

◆  Video Frame 
Buffer: 32 bits x 
1K x 1K = 4MB 

Video Frame Buffer
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Superpages 

◆  On many systems, TLB entry can be 
–  A page 
–  A superpage: a set of contiguous pages 

◆  x86: superpage is set of pages in one page table 
–  x86 TLB entries 

*  4KB 
*  2MB 
*  1GB 



10/13/16	

21	

Superpages 
Physical
Memory

Frame Offset

Physical 
Address

SP Offset

Page# Offset

Virtual
Address

SF Offset

Translation Lookaside Buffer (TLB)

Superpage
(SP) or
Page#

Superframe
(SF) or
Frame Access

Matching Entry

Matching
Superpage

Page Table 
Lookup

When do TLBs work/not work, part 2 

◆  What happens when the OS changes the permissions 
on a page? 
–  For demand paging, copy on write, zero on reference, … 

◆  TLB may contain old translation 
–  OS must ask hardware to purge TLB entry 

◆  On a multicore: TLB shootdown 
–  OS must ask each CPU to purge TLB entry 



10/13/16	

22	

TLB shootdown 
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When do TLBs work/not work, part 3 

◆  What happens on a context switch? 
–  Reuse TLB? 
–  Discard TLB? 

◆  Solution: Tagged TLB 
–  Each TLB entry has process ID 
–  TLB hit only if process ID matches current process 
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Aliasing 

◆  Alias: two (or more) virtual cache entries that refer to 
the same physical memory 
–  A consequence of a tagged virtually addressed cache! 
–  A write to one copy needs to update all copies 

◆  Typical solution 
–  Keep both virtual and physical address for each entry in 

virtually addressed cache 
–  Lookup virtually addressed cache and TLB in parallel 
–  Check if physical address from TLB matches multiple entries, 

and update/invalidate other copies 
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Multicore and hyperthreading 

◆  Modern CPU has several functional units 
–  Instruction decode 
–  Arithmetic/branch 
–  Floating point 
–  Instruction/data cache 
–  TLB 

◆  Multicore: replicate functional units (i7: 4) 
–  Share second/third level cache, second level TLB 

◆  Hyperthreading: logical processors that share 
functional units (i7: 2) 
–  Better functional unit utilization during memory stalls 

◆  No difference from the OS/programmer perspective 
–  Except for performance, affinity, … 

 

Address translation uses 

◆  Process isolation 
–  Keep a process from touching anyone else’s memory, or the 

kernel’s  
◆  Efficient inter-process communication 

–  Shared regions of memory between processes 
◆  Shared code segments  

–  E.g., common libraries used by many different programs 
◆  Program initialization 

–  Start running a program before it is entirely in memory 
◆  Dynamic memory allocation 

–  Allocate and initialize stack/heap pages on demand 
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Address translation (more) 

◆  Cache management 
–  Page coloring 

◆  Program debugging 
–  Data breakpoints when address is accessed 

◆  Zero-copy I/O 
–  Directly from I/O device into/out of user memory 

◆  Memory mapped files 
–  Access file data using load/store instructions 

◆  Demand-paged virtual memory 
–  Illusion of near-infinite memory, backed by disk or memory 

on other machines 

Address translation (even more) 

◆  Checkpointing/restart 
–  Transparently save a copy of a process, without stopping the 

program while the save happens 
◆  Persistent data structures 

–  Implement data structures that can survive system reboots 
◆  Process migration 

–  Transparently move processes between machines 
◆  Information flow control 

–  Track what data is being shared externally 
◆  Distributed shared memory 

–  Illusion of memory that is shared between machines 


