CS 422/522 Design & Implementation
of Operating Systems

Lecture 13: Address Translation

Zhong Shao
Dept. of Computer Science
Yale University

Acknowledgement: some slides are taken from previous versions of the C5422/522 lectures taught by Prof. Bryan Ford

and Dr. David Wolinsky, and also from the official set of slides accompanying the OSPP textbook by Anderson and Dahlin.

Main points

Address translation concept
- How do we convert a virtual address to a physical address?

+ Flexible address translation
- Base and bound
- Segmentation
- Paging
- Multilevel translation

o Efficient address translation
- Translation Lookaside Buffers
- Virtually and physically addressed caches

10/13/16

Address translation concept

Virtual
Address Rai
Processor |--+----------->| Translation | Invalid --------> a'se_
Exception
Valid
H i Physical
E Memor
Data Physical)
Address

Data

Address translation goals

*

Memory protection
Memory sharing
- Shared libraries, interprocess communication
& Sparse addresses
- Multiple regions of dynamic allocation (heaps/stacks)
o Efficiency
- Memory placement
- Runtime lookup
- Compact translation tables

+ Portability

4

10/13/16

10/13/16

Bonus feature

¢ What can you do if you can (selectively) gain control
whenever a program reads or writes a particular
virtual memory location?

o Examples:

- Copy on write

- Zero on reference
Fill on demand
Demand paging
- Memory mapped files

A Preview: MIPS address translation

¢ Software-Loaded Translation lookaside buffer (TLB)
- Cache of virtual page -> physical page translations
- If TLB hit, physical address
- If TLB miss, trap to kernel
- Kernel fills TLB with translation and resumes execution

+ Kernel can implement any page translation
- Page tables
- Multi-level page tables
- Inverted page tables

. . Physical
Virtual
Address
""""""" Translation Lookaside Buffer (TLB)
Virtual Page
Page Frame Access Physical
>@ . Address
Matching Entry ,@ ,
N
,@
N W Page Table
)@ > Lookup
Virtually addressed base and bounds
Processor’s View Implementation Physical
Memory
Vi Memory . T . Base
irtual Virtual i Physical
Add! Add v Add
Processor |- r o8 Processor o ® e =
I
Base+
Bound
: Raise
................... ,@, Exception

10/13/16

Virtually addressed base and bounds

& Pros?
- Simple
- Fast (2 registers, adder, comparator)
- Safe
- Can relocate in physical memory without changing process
+ Cons?
- Can't keep program from accidentally overwriting its own code
- Can't share code/data with other processes
- Can't grow stack/heap as needed

Segmentation

+ Segment is a contiguous region of virtual memory

Each process has a segment table (in hardware)
- Entry in table = segment

+ Segment can be located anywhere in physical memory
- Each segment has: start, length, access permission

¢ Processes can share segments
- Same start, length, same/different access permissions

10/13/16

10/13/16

Processor’s View Implementation Physical
Memory
Virtual Base 3
Memory Stack
. Processor Base+
Virtual Bound 3
Address | Code . Virtual Segment Table
Processorf- Address Base Bound Access
H Base 0
e > ‘~~>| Segment‘ Offset | Read
Data T RIW Code
Base+
R/W Bound 0
R/W
Heap
Base 1
-]
Physical Add Pata
A ysica ress i Base+
Stack ()] Bound 1
Raise
S e Exception
Base 2
Heap
Base+
Bound 2

UNIX fork and copy on write

¢ UNIX fork

- Makes a complete copy of a process

¢ Segments allow a more efficient implementation
- Copy segment table into child
- Mark parent and child segments read-only
- Start child process; return to parent

- If child or parent writes to a segment (ex: stack, heap)
* tfrap into kernel
* make a copy of the segment and resume

10/13/16

Unix fork and copy on write (cont'd)
Memory p2s
Data
.........
H Code
H P1's
Processor |-+ Processor
Virtual s Heap
Address - egment Table
0x0500 it Seg. Offset Base Bound Access
L[] 500 | Code Read o
i : Data R/W Stack
Heap Virtual :
Address H Heap R/W
; P1's
i Stack R/W Data
Stack Physical Address
’ ® P2s
Heap
Process 2's View
H Code ; Pﬂéﬁ
Processor |-+ Processor @ i Codse
Virtual 7 .
Address - Segment Table P2's
0x0500 Data Seg. Offset Ba:se Bound Access Stack
io[o] 500 | cose| ¢ Read
Heap Virtual Data RIW
Address Heap R/W
Ctanl, DM

Zero-on-reference

+ How much physical memory is needed for the stack or
heap?
- Only what is currently in use

+ When program uses memory beyond end of stack
Segmentation fault into OS kernel

Kernel allocates some memory
* How much?
Zeros the memory
* avoid accidentally leaking information!

Modify segment table
Resume process

Segmentation

¢ Pros?
- Can share code/data segments between processes
- Can protect code segment from being overwritten
- Can transparently grow stack/heap as needed
- Can detect if need to copy-on-write

¢ Cons?
- Complex memory management
* Need to find chunk of a particular size
- May need to rearrange memory from time to time to make

room for new segment or growing segment
* External fragmentation: wasted space between chunks

Paged translation

+ Manage memory in fixed size units, or pages
+ Finding a free page is easy

- Bitmap allocation: 0011111100000001100

- Each bit represents one physical page frame
+ Each process has its own page table

- Stored in physical memory

- Hardware registers
* pointer to page table start
* page table length

10/13/16

Paging and copy on write

¢ Can we share memory between processes?
- Set entries in both page tables to point to same page frames
- Need core map of page frames to track which processes are
pointing to which page frames (e.g., reference count)
¢ UNIX fork with copy on write
- Copy page table of parent into child process
- Mark all pages (in new and old page tables) as read-only
- Trap into kernel on write (in child or parent)
- Copy page
- Mark both as writeable
- Resume execution

Fill on demand

¢ Can I start running a program before its code is in
physical memory?
- Set all page table entries to invalid
- When a page is referenced for first time, kernel trap
- Kernel brings page in from disk
- Resume execution

- Remaining pages can be transferred in the background while
program is running

10/13/16

Sparse address spaces

¢ Might want many separate dynamic segments
- Per-processor heaps

Per-thread stacks

Memory-mapped files

Dynamically linked libraries

¢ What if virtual address space is large?
- 32-bits, 4KB pages => 500K page table entries
- 64-bits => 4 quadrillion page table entries

Multi-level translation

¢ Tree of translation tables
- Paged segmentation
- Multi-level page tables
- Multi-level paged segmentation

+ Fixed-size page as lowest level unit of allocation
- Efficient memory allocation (compared to segments)

Efficient for sparse addresses (compared to paging)

Efficient disk transfers (fixed size units)

Easier to build translation lookaside buffers

Efficient reverse lookup (from physical -> virtual)

Variable granularity for protection/sharing

10/13/16

10

Paged segmentation

& Process memory is segmented
¢ Segment table entry:
- Pointer to page table
- Page table length (# of pages in segment)
- Access permissions
¢ Page table entry:
- Page frame
- Access permissions
+ Share/protection at either page or segment-level

Paged segmentation (implementation)

Processor

Implementation

Physical

Frame Offset

Memory
Virtual
Address
sreennns| Segment Page ‘ Offset I
> Exception
SegmeEtTabIe

Page Table Sifze Access

............. : Read

R/W

R/W

Page Table R/W

Frame Access
Read Physical
Read Address

10/13/16

11

Multilevel paging

Implementation Physical
Memory

Processor

Virtual
Address

“o| Index1 [index2 | index3 [offset |

Physical
Address

Frame Offset [-->

Level 1

Level 2

Level 3

X86 multilevel paged segmentation

¢ Global Descriptor Table (segment table)
- Pointer to page table for each segment
- Segment length
- Segment access permissions
- Context switch: change global descriptor table register
(6DTR, pointer to global descriptor table)
¢ Multilevel page table
- 4KB pages: each level of page table fits in one page
- 32-bit: two level page table (per segment)
- 64-bit: four level page table (per segment)
- Omit sub-tree if no valid addresses

10/13/16

12

Multilevel translation

¢ Pros:
- Allocate/fill only page table entries that are in use
- Simple memory allocation
- Share at segment or page level
* Cons:
- Space overhead: one pointer per virtual page
- Two (or more) lookups per memory reference

Portability

+ Many operating systems keep their own memory
translation data structures
- List of memory objects (segments)
- Virtual page -> physical page frame
- Physical page frame -> set of virtual pages
+ One approach: Inverted page table
- Hash from virtual page -> physical page
- Space proportional to # of physical pages

10/13/16

13

Efficient address translation

o Translation lookaside buffer (TLB)
- Cache of recent virtual page -> physical page translations
- If cache hit, use translation
- If cache miss, walk multi-level page table

& Cost of translation =

Cost of TLB lookup +
Prob(TLB miss) * cost of page table lookup

TLB and page table translation

Virtual
Address

Processor

Data

Virtual
Address
TLB MiSS +ereereereeed Page Invalid -«
Table
Hit
: Valid
Fra;me Fra;me
Offset é Physical
Memor
Physical y
Address
Data

Exception

10/13/16

14

TLB lookup

Physical
Memory

Virtual
Address

Matching Entry :...

Translation Lookaside Buffer (TLB)

Virtual Page

Page Frame Access Physical
............ Address
------------ i Frame ‘ Offset |
L
......... , Page Table
Lookup

MIPS software loaded TLB

¢ Software defined translation tables

& Pros/cons?

If translation is in TLB, ok
If translation is not in TLB, trap to kernel
Kernel computes translation and loads TLB
Kernel can use whatever data structures it wants

10/13/16

15

10/13/16

Question

¢ What is the cost of a TLB miss on a modern processor?
- Cost of multi-level page table walk
- MIPS: plus cost of trap handler entry/exit

Hardware design principle

The bigger the memory, the slower the memory

16

Intel i7

| IntegratediMembry Controller-13iCh DDR3

Co‘re 0] Cdre |

Core 2 ®¢3§

Shared L3 Cache

Memory hierarchy

Cache Hit Cost Size
1st level cacheffirst level TLB ins 64KB
2nd level cache/second level TLB 4ns 256 KB
3rd level cache 12ns 2MB
Memory (DRAM) 100ns 10GB

Data center memory (DRAM)
Local non-volatile memory
Local disk

Data center disk

Remote data center disk

100us 100TB
100us 100GB

10ms 1TB
10ms 100PB
200 ms 1XB

i7 has 8MB as shared 3 level cache;

29 level cache is per-core

10/13/16

17

Question

¢ What is the cost of a first level TLB miss?
- Second level TLB lookup

+ What is the cost of a second level TLB miss?
- x86: 2-4 level page table walk

+ How expensive is a 4-level page table walk on a modern
processor?

Virtually addressed vs. physically addressed
caches

¢ Too slow to first access TLB to find physical address,
then look up address in the cache

¢ Instead, first level cache is virtually addressed

In parallel, access TLB to generate physical address in
case of a cache miss

10/13/16

18

Virtual Virtual Virtual
Address Virtual Address Address Rai
Processor U8 Mg s| TLB Migs -] Page [Invalid --eeeee > alse-
Cache Exception
Table
Hit Hit
: : Valid
D;ta Frr;me Frz;me
Offset é Physical
Memor:
Physical y
Address
Data
H ‘
Data
Virtual Virtual Virtual
Address Virtual Address Address Rai
Processor Iriua MiSS +eveerereened TLB MiSS cvereereeeerd Page Invalid -+ > alse_
Cache Exception
Table
Hit Hit
: : valid
Da;ta Fra'me Fr;me
Offset @ Physical Miss - Physical
Physical Gache 1" prysical | MemOry
Address Hit Address
Data
Data Data

10/13/16

When do TLBs work/not work?

Video Frame Buffer

¢ Video Fr‘ame Page#
Buffer: 32 bits x 0
1K x 1K = 4MB ;
3
1021
1022
1023
Superpages

¢ On many systems, TLB entry can be
- A page
- A superpage: a set of contiguous pages

+ x86: superpage is set of pages in one page table
- x86 TLB entries
* 4KB
* 2MB
* 168

10/13/16

20

Superpages

Physical
Memory
Virtual
Address
Page# ‘ Offset
sp | offset
Translation Lookaside Buffer (TLB)
Superpage Superframe
(SP) or (SF) or H
Page# Frame Access Physical :
,@ Address V
Matching Entry ,@ H Frame ‘ Offset |

Matching
superpage > [

Page Table > v
)@) Lookup

When do TLBs work/not work, part 2

¢ What happens when the OS changes the permissions
on a page?
- For demand paging, copy on write, zero on reference, ...

+ TLB may contain old ftranslation
- OS must ask hardware to purge TLB entry

¢ On a multicore: TLB shootdown
- OS must ask each CPU to purge TLB entry

10/13/16

21

10/13/16

TLB shootdown
Process
ID VirtualPage PageFrame Access
0 0x0053 0x0003 R/W
Processor 1 TLB
= 1 0x40FF 0x0012 R/W
= 0 0x0053 0x0003 R/W
Processor 2 TLB
= 0 0x0001 0x0005 Read
1 0x40FF 0x0012 R/W
Processor 3 TLB
= 0 0x0001 0x0005 Read

When do TLBs work/not work, part 3

¢ What happens on a context switch?
- Reuse TLB?
- Discard TLB?

+ Solution: Tagged TLB
- Each TLB entry has process ID
- TLB hit only if process ID matches current process

22

10/13/16

Implementation Physical
Memory
Processor
. Page
Virtual Frame
Address
> Page# Offset
Translation Lookaside Buffer (TLB)
Process ID Page Frame Access Physical
NS Address
Matching Entry :..>(= [
9 O] | Frame oOffset |-

@ Page Table

.............

Lookup

Aliasing

o Alias: two (or more) virtual cache entries that refer to
the same physical memory
- A consequence of a tagged virtually addressed cachel!
- A write to one copy needs to update all copies

+ Typical solution

- Keep both virtual and physical address for each entry in
virtually addressed cache

- Lookup virtually addressed cache and TLB in parallel

- Check if physical address from TLB matches multiple entries,
and update/invalidate other copies

23

Multicore and hyperthreading

+ Modern CPU has several functional units
- Instruction decode
Arithmetic/branch
Floating point
Instruction/data cache
- TLB
¢ Multicore: replicate functional units (i7: 4)
- Share second/third level cache, second level TLB
¢ Hyperthreading: logical processors that share
functional units (i7: 2)
- Beftter functional unit utilization during memory stalls
+ No difference from the OS/programmer perspective
- Except for performance, affinity, ...

Address translation uses

& Process isolation

- Keep a process from touching anyone else's memory, or the
kernel's

+ Efficient inter-process communication

- Shared regions of memory between processes
¢ Shared code segments

- E.g., common libraries used by many different programs
& Program initialization

- Start running a program before it is entirely in memory
¢ Dynamic memory allocation

- Allocate and initialize stack/heap pages on demand

10/13/16

24

Address translation (more)

¢ Cache management
- Page coloring
Program debugging
- Data breakpoints when address is accessed
¢ Zero-copy I/0
- Directly from I/0 device into/out of user memory
¢ Memory mapped files
- Access file data using load/store instructions
+ Demand-paged virtual memory

- Illusion of near-infinite memory, backed by disk or memory
on other machines

Address translation (even more)

¢ Checkpointing/restart

- Transparently save a copy of a process, without stopping the
program while the save happens

Persistent data structures
- Implement data structures that can survive system reboots
¢ Process migration
- Transparently move processes between machines
¢ Information flow control
- Track what data is being shared externally
+ Distributed shared memory
- TIllusion of memory that is shared between machines

10/13/16

25

