
10/22/16	

1	

CS 422/522  Design & Implementation  
of Operating Systems 

 
Lecture 14: Cache & Virtual Memory 

  

Zhong Shao 
Dept. of Computer Science 

 Yale University 

Acknowledgement: some slides are taken from previous versions of the CS422/522 lectures taught by Prof. Bryan Ford 
and Dr. David Wolinsky, and also from the official set of slides accompanying the OSPP textbook by Anderson and Dahlin.  

Definitions 

◆  Cache 
–  Copy of data that is faster to access than the original 
–  Hit: if cache has copy 
–  Miss: if cache does not have copy 

◆  Cache block 
–  Unit of cache storage (multiple memory locations) 

◆  Temporal locality 
–  Programs tend to reference the same memory locations multiple 

times 
–  Example: instructions in a loop 

◆  Spatial locality 
–  Programs tend to reference nearby locations 
–  Example: data in a loop 



10/22/16	

2	

Cache concept (read) 

Fetch 
Address

Fetch 
Address

Cache

Address In
Cache? No

Store Value
in Cache

Yes

Cache concept (write) 

Store Value
at Address

Fetch 
Address

Cache

Address In
Cache?

Store Value
in Cache

Store Value
at Address

Store Value
at Address

If Write Through

WriteBuffer

Yes

No

Write through: changes sent 
immediately to next level of 
storage 
 
Write back: changes stored in 
cache until cache block is 
replaced 



10/22/16	

3	

Memory hierarchy 

i7 has 8MB as shared 3rd level cache; 2nd level cache is per-core 

Main points 

◆  Can we provide the illusion of near infinite memory in 
limited physical memory? 
–  Demand-paged virtual memory 
–  Memory-mapped files 

◆  How do we choose which page to replace? 
–  FIFO, MIN, LRU, LFU, Clock 

◆  What types of workloads does caching work for, and 
how well? 
–  Spatial/temporal locality vs. Zipf workloads 



10/22/16	

4	

Hardware address translation is a power tool 

◆  Kernel trap on read/write to selected addresses 
–  Copy on write 
–  Fill on reference 
–  Zero on use 
–  Demand paged virtual memory 
–  Memory mapped files 
–  Modified bit emulation 
–  Use bit emulation 

Demand paging (before) 

Physical Memory
Page Frames

DiskPage Table

Frame Access

Invalid

R/WFrame for A

Frame for BVirtual Page B

Virtual Page A

Page A

Page B

Page A



10/22/16	

5	

Demand paging (after) 

Physical Memory
Page Frames

DiskPage Table

Frame Access

R/W

InvalidFrame for A

Frame for B

Page B

Page A

Page BVirtual Page B

Virtual Page A

Demand paging 

1.  TLB miss 
2.  Page table walk 
3.  Page fault (page 

invalid in page table) 
4.  Trap to kernel 
5.  Convert virtual 

address to file + 
offset 

6.  Allocate page frame 
–  Evict page if needed 

7.  Initiate disk block 
read into page frame 

8.  Disk interrupt when 
DMA complete 

9.  Mark page as valid 
10.  Resume process at 

faulting instruction 
11.  TLB miss 
12.  Page table walk to 

fetch translation 
13.  Execute instruction 



10/22/16	

6	

Demand paging on MIPS (software TLB) 

1.  TLB miss 
2.  Trap to kernel 
3.  Page table walk 
4.  Find page is invalid 
5.  Convert virtual 

address to file + 
offset 

6.  Allocate page frame 
–  Evict page if needed 

7.  Initiate disk block 
read into page frame 

8.  Disk interrupt when 
DMA complete 

9.  Mark page as valid 
10.  Load TLB entry 
11.  Resume process at 

faulting instruction 
12.  Execute instruction 

Allocating a page frame 

◆  Select old page to evict 
◆  Find all page table entries that refer to old page 

–  If page frame is shared 
◆  Set each page table entry to invalid 
◆  Remove any TLB entries 

–  Copies of now invalid page table entry 
◆  Write changes on page back to disk, if necessary 



10/22/16	

7	

How do we know if page has been modified? 

◆  Every page table entry has some bookkeeping  
–  Has page been modified? 

*  Set by hardware on store instruction 
*  In both TLB and page table entry 

–  Has page been recently used? 
*  Set by hardware in page table entry on every TLB miss 

◆  Bookkeeping bits can be reset by the OS kernel 
–  When changes to page are flushed to disk 
–  To track whether page is recently used 

Keeping track of page modifications (before) 

Physical Memory
Page Frames

DiskPage Table

Frame Access Dirty

Invalid

R/W NoFrame for A

Frame for B

Page A

Old Page A

Old Page B

TLB 

R/W No

Virtual Page B

Virtual Page A

Frame Access Dirty



10/22/16	

8	

Keeping track of page modifications (after) 

Disk

Old Page A

Old Page B

Physical Memory
Page Frames

Page Table

Frame Access Dirty

Invalid

R/W YesFrame for A

Frame for B

New Page A

TLB 

R/W Yes

Virtual Page B

Virtual Page A

Frame Access Dirty

Virtual or physical dirty/use bits 

◆  Most machines keep dirty/use bits in the page table entry 

◆  Physical page is 
–  modified if any page table entry that points to it is modified 
–  recently used if any page table entry that points to it is recently 

used 

◆  On MIPS, simpler to keep dirty/use bits in the core map 
–  Core map: map of physical page frames 



10/22/16	

9	

Emulating a modified bit (Hardware Loaded TLB) 

◆  Some processor architectures do not keep a modified 
bit per page 
–  Extra bookkeeping and complexity 

◆  Kernel can emulate a modified bit: 
–  Set all clean pages as read-only 
–  On first write to page, trap into kernel 
–  Kernel sets modified bit, marks page as read-write 
–  Resume execution 

◆  Kernel needs to keep track of both 
–  Current page table permission (e.g., read-only) 
–  True page table permission (e.g., writeable, clean) 

Emulating a recently used bit (Hardware Loaded TLB) 

◆  Some processor architectures do not keep a recently 
used bit per page 
–  Extra bookkeeping and complexity 

◆  Kernel can emulate a recently used bit: 
–  Set all recently unused pages as invalid 
–  On first read/write, trap into kernel 
–  Kernel sets recently used bit 
–  Marks page as read or read/write 

◆  Kernel needs to keep track of both 
–  Current page table permission (e.g., invalid) 
–  True page table permission (e.g., read-only, writeable) 



10/22/16	

10	

Models for application file I/O 

◆  Explicit read/write system calls 
–  Data copied to user process using system call 
–  Application operates on data 
–  Data copied back to kernel using system call 

◆  Memory-mapped files 
–  Open file as a memory segment 
–  Program uses load/store instructions on segment memory, 

implicitly operating on the file 
–  Page fault if portion of file is not yet in memory 
–  Kernel brings missing blocks into memory, restarts process 

Advantages to memory-mapped files 

◆  Programming simplicity, esp for large files 
–  Operate directly on file, instead of copy in/copy out 

◆  Zero-copy I/O 
–  Data brought from disk directly into page frame 

◆  Pipelining 
–  Process can start working before all the pages are populated 

◆  Interprocess communication 
–  Shared memory segment vs. temporary file 



10/22/16	

11	

From memory-mapped files to demand-paged 
virtual memory 

◆  Every process segment backed by a file on disk 
–  Code segment -> code portion of executable 
–  Data, heap, stack segments -> temp files 
–  Shared libraries -> code file and temp data file 
–  Memory-mapped files -> memory-mapped files 
–  When process ends, delete temp files 

◆  Unified memory management across file buffer and 
process memory 

Cache replacement policy 

◆  On a cache miss, how do we choose which entry to 
replace? 
–  Assuming the new entry is more likely to be used in the near 

future 
–  In direct mapped caches, not an issue! 

◆  Policy goal: reduce cache misses 
–  Improve expected case performance 
–  Also: reduce likelihood of very poor performance 



10/22/16	

12	

A simple policy 

◆  Random? 
–  Replace a random entry 

◆  FIFO? 
–  Replace the entry that has been in the cache the longest time 
–  What could go wrong? 

FIFO in action 

Worst case for FIFO is if program strides 
through memory that is larger than the 
cache 



10/22/16	

13	

MIN, LRU, LFU 

◆  MIN 
–  Replace the cache entry that will not be used for the longest 

time into the future 
–  Optimality proof based on exchange: if evict an entry used 

sooner, that will trigger an earlier cache miss 
◆  Least Recently Used (LRU) 

–  Replace the cache entry that has not been used for the 
longest time in the past 

–  Approximation of MIN 
◆  Least Frequently Used (LFU) 

–  Replace the cache entry used the least often (in the recent 
past) 

LRU/MIN for sequential scan 



10/22/16	

14	

More page frames → fewer page faults? 

◆  Consider the following reference string with 3 page 
frames 
–  FIFO replacement 
–  A, B, C, D, A, B, E, A, B, C, D, E 
–  9 page faults! 

◆  Consider the same reference string with 4 page frames 
–  FIFO replacement 
–  A, B, C, D, A, B, E, A, B, C, D, E 
–  10 page faults 

◆  This is called Belady’s anomaly 



10/22/16	

15	

Belady’s anomaly (cont’d) 

Clock algorithm 

◆  Approximate LRU 
◆  Replace some old page, not the oldest unreferenced page 
◆  Arrange physical pages in a circle with a clock hand 

–  Hardware keeps “use bit” per physical page frame 
–  Hardware sets “use bit” on each reference 
–  If “use bit” isn’t set, means not referenced in a long time 

◆  On page fault: 
–  Advance clock hand 
–  Check “use bit” 
–  If “1” clear, go on 
–  If “0”, replace page 

1 

1 

0 

1 

1 

0 

1 

1 

1 

1 

0 

0 



10/22/16	

16	

Nth chance: Not Recently Used 

◆  Instead of one bit per page, keep an integer 
–  notInUseSince: number of sweeps since last use 

◆  Periodically sweep through all page frames 
 
if (page is used) { 
    notInUseSince = 0; 
} else if (notInUseSince < N) { 
    notInUseSince++; 
} else { 
     reclaim page; 
} 

Implementation note 

◆  Clock and Nth Chance can run synchronously 
–  In page fault handler, run algorithm to find next page to evict 
–  Might require writing changes back to disk first 

◆  Or asynchronously 
–  Create a thread to maintain a pool of recently unused, clean 

pages 
–  Find recently unused dirty pages, write mods back to disk 
–  Find recently unused clean pages, mark as invalid and move to 

pool 
–  On page fault, check if requested page is in pool! 
–  If not, evict that page 



10/22/16	

17	

Recap 

◆  MIN is optimal 
–  replace the page or cache entry that will be used farthest into 

the future 
◆  LRU is an approximation of MIN 

–  For programs that exhibit spatial and temporal locality 
◆  Clock/Nth Chance is an approximation of LRU 

–  Bin pages into sets of “not recently used” 

How many pages allocated to each process ?  

◆  Each process needs minimum number of pages. 

◆  Example:  IBM 370 – 6 pages to handle SS MOVE 
instruction: 
–  instruction is 6 bytes, might span 2 pages. 
–  2 pages to handle from. 
–  2 pages to handle to. 

◆  Two major allocation schemes. 
–  fixed allocation 
–  priority allocation 



10/22/16	

18	

Fixed allocation 

◆  Equal allocation – e.g., if 100 frames and 5 
processes, give each 20 pages. 

◆  Proportional allocation – Allocate according to 
the size of process. 

m
S
spa

m
sS

ps

i
ii

i

ii

×==

=

∑=

=

 for allocation 

frames of number total 

 process of size 

59 64 
137 
127 

5 64 
137 
10 
127 
10 
64 

2 

1 

2 

≈ × = 

≈ × = 

= 
= 
= 

a 

a 

s 
s 
m 
1 

Priority allocation 

◆  Use a proportional allocation scheme using priorities 
rather than size. 

◆  If process Pi generates a page fault, 
–  select for replacement one of its frames. 
–  select for replacement a frame from a process with lower 

priority number. 



10/22/16	

19	

Global vs. local allocation 

◆  Global replacement – process selects a replacement 
frame from the set of all frames; one process can take 
a frame from another. 

◆  Local replacement – each process selects from only its 
own set of allocated frames. 

What to do when not enough memory?  

◆  Thrashing: processes on system require more memory 
than it has.   

*  Each time one page is brought in, another page, whose contents will soon be 
referenced, is thrown out. 

*  Processes will spend all of their time blocked, waiting for pages to be 
fetched from disk 

*  I/O devices at 100% utilization but system not getting much useful work 
done 

◆  What we wanted: virtual memory the size of disk with access 
time of physical memory 

◆  What we have: memory with access time = disk access  

Real mem 

P1 P2 P3 



10/22/16	

20	

Thrashing 

◆  Process(es) “frequently”reference page not in mem  
–  Spend more time waiting for I/O then getting work done 

◆  Three different reasons 
–  process doesn’t reuse memory, so caching doesn’t work  
–  process does reuse memory, but it does not “fit” 

–  individually, all processes fit and reuse memory, but too many 
for system. 

◆  Which can we actually solve? 

mem 

P1 

Making the best of a bad situation 

◆  Single process thrashing? 
–  If process does not fit or does not reuse memory, OS can do 

nothing except contain damage. 

◆  System thrashing?  
–  If thrashing arises because of the sum of several processes 

then adapt: 
*  figure out how much memory each process needs 
*  change scheduling priorities to run processes in groups whose memory 

needs can be satisfied  (shedding load) 
*  if new processes try to start, can refuse (admission control) 



10/22/16	

21	

Working set model 

◆  Working Set: set of memory locations that need 
to be cached for reasonable cache hit rate 

◆  Size of working set = the important threshold  

◆  The size may change even during execution of the 
same program.  

Cache working set 

Cache Size (KB)

Hi
t R

ate

0%

25%

50%

75%

100%

1 2 4 8 16



10/22/16	

22	

Phase change behavior 

Time

H
it 

R
at

e

0%

25%

50%

75%

100%

Question 

◆  What happens to system performance as we increase 
the number of processes? 
–  If the sum of the working sets > physical memory? 



10/22/16	

23	

Zipf distribution 

◆  Caching behavior of many systems are not well 
characterized by the working set model 

◆  An alternative is the Zipf distribution 
–  Popularity ~ 1/k^c, for kth most popular item,        1 < c < 2 
–  “frequency inversely proportional to its rank in the frequency 

table (e.g., frequency word in English natural language) 
*   Rank 1:   “the”     7%    (69,971 out of 1 million in “Brown Corpus”) 
*   Rank 2:   “of”      3.5%  (36,411 out of 1 million) 
*   Rank 3:  “and”    2.3%  (28,852 out of 1 million) 

Zipf distribution 

Rank

Po
pu
la
rit
y

1
kњ



10/22/16	

24	

Zipf examples 

◆  Web pages 
◆  Movies 
◆  Library books 
◆  Words in text 
◆  Salaries 
◆  City population 
◆  … 
Common thread: popularity is self-reinforcing 

Zipf and caching 

Cache Size (Log Scale)

Ca
ch

e H
it R

ate

.001%

0

1

.01% 1%.1% 10% all

Increasing the cache size continues to improve cache hit rates, but 
with diminishing returns   



10/22/16	

25	

Cache lookup: fully associative 

address value

=?

match at any address?

yes

return value

address =?

=?

=?

Cache lookup: direct mapped 

address value

=? match at hash(address)?

yes

return value

hash(address)



10/22/16	

26	

Cache lookup: set associative 

address value

=? match at hash(address)?

yes

return value

hash(address)

address value

=? match at hash(address)?

yes

return value

0x120d0x0053

Page coloring 

◆  What happens when cache size >> page size? 
–  Direct mapped or set associative 
–  Multiple pages map to the same cache line 

◆  OS page assignment matters!  
–  Example: 8MB cache, 4KB pages 
–  1 of every 2K pages lands in same place in cache 

◆  What should the OS do? 



10/22/16	

27	

Page coloring 

O

K

2K

3K

Virtual
Address

Address
Mod K

Processors

Cache

Memory


