
11/1/16	

1	

CS 422/522 Design & Implementation
of Operating Systems

Lecture 17: Files and Directories

Zhong Shao
Dept. of Computer Science

 Yale University

Acknowledgement: some slides are taken from previous versions of the CS422/522 lectures taught by Prof. Bryan Ford
and Dr. David Wolinsky, and also from the official set of slides accompanying the OSPP textbook by Anderson and Dahlin.

The big picture

◆  Lectures before the fall break:
–  Management of CPU & concurrency
–  Management of main memory & virtual memory

◆  Current topics --- “Management of I/O devices”
–  Last week: I/O devices & device drivers
–  Last week: storage devices
–  This week: file systems

*  File system structure
*  Naming and directories
*  Efficiency and performance
*  Reliability and protection

11/1/16	

2	

This lecture

◆  Implementing file system abstraction

Physical Reality File System Abstraction

block oriented byte oriented

physical sector #’s named files

no protection users protected from
 each other

data might be corrupted robust to machine failures
if machine crashes

File system components

◆  Disk management
–  Arrange collection of disk blocks

into files
◆  Naming

–  User gives file name, not track or
sector number, to locate data

◆  Security / protection
–  Keep information secure

◆  Reliability/durability
–  When system crashes, lose stuff

in memory, but want files to be
durable

User

File
Naming

File
access

Disk
management

Disk
drivers

11/1/16	

3	

User vs. system view of a file

◆  User’s view
–  Durable data structures

◆  System’s view (system call interface)
–  Collection of bytes (Unix)

◆  System’s view (inside OS):
–  Collection of blocks
–  A block is a logical transfer unit, while a sector is the physical

transfer unit. Block size >= sector size.

File structure

◆  None - sequence of words, bytes
◆  Simple record structure

–  Lines
–  Fixed length
–  Variable length

◆  Complex structures
–  Formatted document
–  Relocatable load file

◆  Can simulate last two with first method by inserting appropriate
control characters.

◆  Who decides:
–  Operating system
–  Program

11/1/16	

4	

File attributes

◆  Name – only information kept in human-readable form.
◆  Type – needed for systems that support different

types.
◆  Location – pointer to file location on device.
◆  Size – current file size.
◆  Protection – controls who can do reading, writing,

executing.
◆  Time, date, and user identification – data for

protection, security, and usage monitoring.
◆  Information about files are kept in the directory

structure, which is maintained on the disk.

File operations

◆  create
◆  write
◆  read
◆  reposition within file – file seek
◆  delete
◆  truncate
◆  open(Fi) – search the directory structure on disk for

entry Fi, and move the content of entry to memory.
◆  close (Fi) – move the content of entry Fi in memory to

directory structure on disk.

11/1/16	

5	

File types – name, extension

E xecutable exe,	com,	bin	or
none

ready-to-run	machine-
language	program

Object obj,	o complied,	machine
language,	not	linked

S ource	code c,	p,	pas ,	177,
asm,	a

source	code	in	various
languages

Batch bat,	sh commands 	to	the
command	interpreter

Text txt,	doc textual	data	documents

Word	processor wp,	tex,	rrf,	etc. various 	word-processor
formats

L ibrary lib,	a libraries 	of	routines

P rint	or	view ps,	dvi,	gif AS C II	or	binary	file

Archive arc,	z ip,	tar related	files 	grouped
into	one	file,	sometimes
compressed.

F ile	Type Usual	extens ion Function

Data structures for a typical file system

Process
control
block

. . .

Open
file

pointer
array

Open file
table

(systemwide)
File descriptors

(Metadata)

File
descriptors

File system
info

Directories

File data

11/1/16	

6	

Open a file

◆  File name lookup and
authenticate

◆  Copy the file descriptors
into the in-memory data
structure, if it is not in yet

◆  Create an entry in the open
file table (system wide) if
there isn’t one

◆  Create an entry in PCB
◆  Link up the data structures
◆  Return a pointer to user

PCB

fd = open(FileName, access)

Open
file

table

Metadata

Allocate & link up
data structures

File name lookup
& authenticate

File system on disk

Translating from user to system view

◆  What happens if user wants to read 10 bytes from a file starting
at byte 2?
–  seek byte 2
–  fetch the block
–  read 10 bytes

◆  What happens if user wants to write 10 bytes to a file starting at
byte 2?
–  seek byte 2
–  fetch the block
–  write 10 bytes
–  write out the block

◆  Everything inside file system is in whole size blocks
–  Even getc and putc buffers 4096 bytes
–  From now on, file is collection of blocks.

11/1/16	

7	

Read a block

PCB

Open
file

table

Metadata

read(fd, userBuf, size)

Find open file
descriptor

read(fileDesc, userBuf, size)

Logical → phyiscal

read(device, phyBlock, size)
Get physical block to sysBuf

copy to userBuf

Disk device driver

Buffer
cache

File system design constraints

◆  For small files:
–  Small blocks for storage efficiency
–  Files used together should be stored together

◆  For large files:
–  Contiguous allocation for sequential access
–  Efficient lookup for random access

◆  May not know at file creation
–  Whether file will become small or large

11/1/16	

8	

File system design

◆  Data structures
–  Directories: file name -> file metadata

*  Store directories as files
–  File metadata: how to find file data blocks
–  Free map: list of free disk blocks

◆  How do we organize these data structures?
–  Device has non-uniform performance

Design challenges

◆  Index structure
–  How do we locate the blocks of a file?

◆  Index granularity
–  What block size do we use?

◆  Free space
–  How do we find unused blocks on disk?

◆  Locality
–  How do we preserve spatial locality?

◆  Reliability
–  What if machine crashes in middle of a file system op?

11/1/16	

9	

File system design options

FAT FFS NTFS ZFS

Index
structure

Linked list Tree
(fixed,
assym)

Tree
(dynamic)

Tree
(COW,

dynamic)
granularity block block extent block

free space
allocation

FAT array Bitmap
(fixed

location)

Bitmap
(file)

Space map
(log-

structured)
Locality defragmenta

tion
Block groups

+ reserve
space

Extents
Best fit
defrag

Write-
anywhere

Block-groups

Named data in a file system

file name
offset

directory file number
offset

storage
block

index
structure

11/1/16	

10	

A disk layout for a file system

◆  Superblock defines a file system
–  size of the file system
–  size of the file descriptor area
–  free list pointer, or pointer to bitmap
–  location of the file descriptor of the root directory
–  other meta-data such as permission and various times

Super
block

File descriptors
(i-node in Unix) File data blocks Boot

block

File usage patterns

◆  How do users access files?
–  Sequential: bytes read in order
–  Random: read/write element out of middle of arrays
–  Content-based access: find me next byte starting with

“CS422”
◆  How are files used?

–  Most files are small
–  Large files use up most of the disk space
–  Large files account for most of the bytes transferred

◆  Bad news
–  Need everything to be efficient

11/1/16	

11	

Data structures for disk management

◆  A file header for each file (part of the file meta-
data)
–  Disk sectors associated with each file

◆  A data structure to represent free space on disk
–  Bit map

*  1 bit per block (sector)
*  blocks numbered in cylinder-major order, why?

–  Linked list
–  Others?

◆  How much space does a bitmap need for a 4G disk?

Contiguous allocation

◆  Request in advance for the size of the file
◆  Search bit map or linked list to locate a space
◆  File header

–  first sector in file
–  number of sectors

◆  Pros
–  Fast sequential access
–  Easy random access

◆  Cons
–  External fragmentation
–  Hard to grow files

11/1/16	

12	

Linked files

◆  File header points to 1st
block on disk

◆  A block points to the next
◆  Pros

–  Can grow files dynamically
–  Free list is similar to a file
–  No waste of space

◆  Cons
–  random access: horrible
–  unreliable: losing a block

means losing the rest

File header

null

. . .

Linked files (cont’d)

11/1/16	

13	

File Allocation Table (FAT)

◆  Approach (used by MSDOS)
–  A section of disk for each

partition is reserved
–  One entry for each block
–  A file is a linked list of blocks
–  A directory entry points to

the 1st block of the file

619

399

foo 217

EOF

FAT

0

217

399

619

FAT

11/1/16	

14	

FAT

◆  Pros:
–  Easy to find free block
–  Easy to append to a file
–  Easy to delete a file

◆  Cons:
–  Small file access is slow
–  Random access is very slow
–  Fragmentation

*  File blocks for a given file may be scattered
*  Files in the same directory may be scattered
*  Problem becomes worse as disk fills

Single-level indexed files

◆  A user declares max size
◆  A file header holds an array of

pointers to point to disk blocks
◆  Pros

–  Can grow up to a limit
–  Random access is fast
–  No external fragmentation

◆  Cons
–  Clumsy to grow beyond the limit
–  Still lots of seeks

File header
Disk
blocks

11/1/16	

15	

Single-level indexed files (cont’d)

Multi-level indexed files

!

outer-index

index table file

11/1/16	

16	

Combined scheme (Unix 4.1, 1 KB / block)

◆  13 Pointers in a header
–  10 direct pointers
–  11: 1-level indirect
–  12: 2-level indirect
–  13: 3-level indirect

◆  Pros & Cons
–  In favor of small files
–  Can grow
–  Limit is 16G and lots of

seek
◆  What happens to reach

block 23, 5, 340?

1
2

data

data
. . .
11
12
13

data
. . .

. . .

data
. . .

. . .

data
. . .
 . . .

Berkeley UNIX FFS (Fast File System)

◆  inode table
–  Analogous to FAT table

◆  inode
–  Metadata

*  File owner, access permissions, access times, …

–  Set of 12 data pointers
–  With 4KB blocks => max size of 48KB files

11/1/16	

17	

FFS inode

◆  Metadata
–  File owner, access permissions, access times, …

◆  Set of 12 data pointers
–  With 4KB blocks => max size of 48KB files

◆  Indirect block pointer
–  pointer to disk block of data pointers

◆  Indirect block: 1K data blocks => 4MB (+48KB)

FFS inode

◆  Metadata
–  File owner, access permissions, access times, …

◆  Set of 12 data pointers
–  With 4KB blocks => max size of 48KB

◆  Indirect block pointer
–  pointer to disk block of data pointers
–  4KB block size => 1K data blocks => 4MB

◆  Doubly indirect block pointer
–  Doubly indirect block => 1K indirect blocks
–  4GB (+ 4MB + 48KB)

11/1/16	

18	

FFS inode

◆  Metadata
–  File owner, access permissions, access times, …

◆  Set of 12 data pointers
–  With 4KB blocks => max size of 48KB

◆  Indirect block pointer
–  pointer to disk block of data pointers
–  4KB block size => 1K data blocks => 4MB

◆  Doubly indirect block pointer
–  Doubly indirect block => 1K indirect blocks
–  4GB (+ 4MB + 48KB)

◆  Triply indirect block pointer
–  Triply indirect block => 1K doubly indirect blocks
–  4TB (+ 4GB + 4MB + 48KB)

FFS inode (cont’d)

Inode Array

File Metadata

Indirect Pointer
Dbl. Indirect Ptr.
Tripl. Indirect Ptr.

Inode
Data

Blocks
Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

DP
Direct Pointer

DP
DP
DP
DP
DP
DP
DP
DP
DP

Direct Pointer

11/1/16	

19	

FFS asymmetric tree

◆  Small files: shallow tree
–  Efficient storage for small files

◆  Large files: deep tree
–  Efficient lookup for random access in large files

◆  Sparse files: only fill pointers if needed

FFS small files: shallow tree
Inode Array

File Metadata

NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL

Inode
Data

Blocks

DP
DP

Direct Pointer

Direct Pointer

11/1/16	

20	

FFS large files: deep tree

Inode Array

File Metadata

Indirect Pointer
Dbl. Indirect Ptr.
Tripl. Indirect Ptr.

Inode
Data

Blocks
Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

DP
Direct Pointer

DP
DP
DP
DP
DP
DP
DP
DP
DP

Direct Pointer

FFS sparse files: only fill pointers if needed

File Metadata

Dbl. Indirect Ptr.

Inode

Data
Blocks

Indirect
Blocks

Double
Indirect
Blocks

Triple
Indirect
Blocks

NIL
NIL
NIL
NIL
NIL

Direct Pointer
NIL
NIL
NIL

NIL
NIL
NIL
NIL

NIL

11/1/16	

21	

FFS locality

◆  Block group allocation
–  Block group is a set of nearby cylinders
–  Files in same directory located in same group
–  Subdirectories located in different block groups

◆  inode table spread throughout disk
–  inodes, bitmap near file blocks

◆  First fit allocation
–  Small files fragmented, large files contiguous

Block Group 0

Block Group 1

Block Group 2

Free Space Bitmap Inodes

Data Blocks for files in directories /a, /d, and /b/c

Inodes

Free Space Bitm
ap

Data Blocks for files in directories /b, /a/g, /z

Data Blocks for files in dire
ct

or
ie

s
/d

/q
, /

c,
 a

nd
 /

a/
p

In
od

es

Free Space Bi tm
ap

FFS block groups for better locality

11/1/16	

22	

FFS first fit block allocation

...

In-Use
BlockStart of

Block
Group

Free
Block

FFS first fit block allocation

...Start of
Block
Group

Write Two Block File

11/1/16	

23	

FFS first fit block allocation

...Start of
Block
Group

Write Large File

FFS

◆  Pros
–  Efficient storage for both small and large files
–  Locality for both small and large files
–  Locality for metadata and data

◆  Cons
–  Inefficient for tiny files (a 1 byte file requires both an inode and

a data block)
–  Inefficient encoding when file is mostly contiguous on disk (no

equivalent to super pages)
–  Need to reserve 10-20% of free space to prevent fragmentation

11/1/16	

24	

File header storage

◆  Where is file header stored on disk?
–  In (early) Unix & DOS FAT file sys, special array in outermost

cylinders

◆  Unix refers to file by index into array --- tells it
where to find the file header
–  “i-node” --- file header; “i-number” --- index into the array

◆  Unix file header organization (seems strange):
–  header not anywhere near the data blocks. To read a small

file, seek to get header, seek back to data.

–  fixed size, set when disk is formatted.

File header storage (cont’d)

◆  Why not put headers near data?
–  Reliability: whatever happens to the disk, you can find all of

the files.
–  Unix BSD 4.2 puts portion of the file header array on each

cylinder. For small directories, can fit all data, file headers,
etc. in same cylinder è no seeks!

–  File headers are much smaller than a whole block (a few
hundred bytes), so multiple file headers fetched from disk at
same time.

◆  Q: do you ever look at a file header without reading
the file ?
–  Yes! Reading the header is 4 times more common than reading

the file (e.g., ls, make).

11/1/16	

25	

Naming and directories

◆  Options
–  Use index (ask users specify inode number). Easier for system,

not as easy for users.
–  Text name (need to map to index)
–  Icon (need to map to index; or map to name then to index)

◆  Directories
–  Directory map name to file index (where to find file header)
–  Directory is just a table of file name, file index pairs.

–  Each directory is stored as a file, containing a (name, index)
pair.

–  Only OS permitted to modify directory

◆  Approach 1: have a single directory for entire system.
*  put directory at known location on disk
*  directory contains <name, index> pairs
*  if one user uses a name, no one else can
*  many older personal computers work this way.

◆  Approach 2: have a single directory for each user
*  still clumsy. And ls on 10,000 files is a real pain
*  many older mathematicians work this way.

◆  Approach 3: hierarchical name spaces
*  allow directory to map names to files or other dirs
*  file system forms a tree (or graph, if links allowed)
*  large name spaces tend to be hierarchical (ip addresses, domain names,

scoping in programming languages, etc.)

Directory structure

11/1/16	

26	

◆  Used since CTSS (1960s)
–  Unix picked up and used really nicely.

◆  Directories stored on disk just like regular files
–  inode contains special flag bit set
–  user’s can read just like any other file
–  only special programs can write

–  file pointed to by the index may be
 another directory

–  makes FS into hierarchical tree
 (what needed to make a DAG?)

◆  Simple. Plus speeding up file ops = speeding up dir ops!

Hierarchical Unix

<name, inode#>
<afs, 1021>
<tmp, 1020>
<bin, 1022>
<cdrom, 4123>
<dev, 1001>
<sbin, 1011>
 ...

/

afs bin cdrom dev sbin tmp

awk chmod chown

◆  Bootstrapping: Where do you start looking?
–  Root directory
–  inode #2 on the system
–  0 and 1 used for other purposes

◆  Special names:
–  Root directory: “/” (bootstrap name system for users)
–  Current directory: “.”
–  Parent directory: “..” (otherwise how to go up??)
–  user’s home directory: “~”

◆  Using the given names, only need two operations to
navigate the entire name space:
–  cd ‘name’: move into (change context to) directory “name”
–  ls : enumerate all names in current directory (context)

Naming magic

11/1/16	

27	

Unix example: /a/b/c.c

a

b

c.c

Name space

“.”

“..”

“.” Physical organization

Inode table

disk

<a,3> What inode holds file for
 a? b? c.c?

How many disk I/O’s to
access first byte of c.c?

2
3
4
5
...

<b,5>

<c.c, 14>

◆  Cumbersome to constantly specify full path names
–  in Unix, each process associated with a “current working

directory”
–  file names that do not begin with “/” are assumed to be

relative to the working directory, otherwise translation
happens as before

◆  Shells track a default list of active contexts
–  a “search path”
–  given a search path { A, B, C } a shell will check in A, then

check in B, then check in C
–  can escape using explicit paths: “./foo”

Default context: working directory

11/1/16	

28	

◆  More than one dir entry can refer to a given file
–  Unix stores count of pointers (“hard links”) to inode

–  to make: “ln foo bar” creates a
 synonym (‘bar’) for ‘foo’

◆  Soft links:
–  also point to a file (or dir), but object can be deleted from

underneath it (or never even exist).
–  Unix builds like directories: normal file holds pointer to name, with

special “sym link” bit set

–  When the file system encounters a symbolic link it automatically
translates it (if possible).

Creating synonyms: hard and soft links

ref = 2
...

foo bar

/bar “baz”

Example: basic system calls in Unix

What happens when you open and read a file?

◆  open
◆  read
◆  close
◆  lseek
◆  create
◆  write

11/1/16	

29	

Example: the open-read-close cycle

1. The process calls open (“DATA.test”, RD_ONLY)
2. The kernel:

–  Get the current working directory of the process:
Let’s say “/c/cs422/as/as3

–  Call “namei”:
Get the inode for the root directory “/”

For (each component in the path) {
 can we open and read the directory file ?
 if no, open request failed, return error;
 if yes, read the blocks in the directory file;
 Based on the information from the I-node, read through the directory file
 to find the inode for the next component;
}
At the end of the loop, we have the inode for the file DATA.test

Example: open-read-close (cont’d)

1. The process calls open (“DATA.test”, RD_ONLY)
2. The kernel:

–  Get the current working directory of the process:
–  Call “namei” and get the inode for DATA.test;
–  Find an empty slot “fd” in the file descriptor table for the process;
–  Put the pointer to the inode in the slot “fd”;
–  Set the initial file pointer value in the slot “fd” to 0;
–  Return “fd”.

3. The process calls read(fd, buffer, length);
4. The kernel:

–  From “fd” find the file pointer
–  Based on the file system block size (let’s say 1 KB), find the blocks

where the bytes (file_pointer, file_pointer+length) lies;
–  Read the inode

11/1/16	

30	

Example: open-read-close (cont’d)

4. The kernel:
–  From “fd” find the file pointer
–  Based on the file system block size (let’s say 1 KB), find the blocks

where the bytes (file_pointer, file_pointer+length) lies;
–  Read the inode
–  For (each block) {

*  If the block # < 11, find the disk address of the block in the entries in the inode
*  If the block # >= 11, but < 11 + (1024/4): read the “single indirect” block to find the

address of the block
*  If the block # >= 11+(1024/4) but < 11 + 256 + 256 * 256: read the “double indirect”

block and find the block’s address
*  Otherwise, read the “triple indirect” block and find the block’s address }

–  Read the block from the disk
–  Copy the bytes in the block to the appropriate location in the buffer

5. The process calls close(fd);
6. The kernel: deallocate the fd entry, mark it as empty.

Example: the create-write-close cycle

1. The process calls create (“README”);
2. The kernel:

–  Get the current working directory of the process:
Let’s say “/c/cs422/as/as3

–  Call “namei” and see if a file name “README” already exists in that
directory

–  If yes, return error “file already exists”;
–  If no:

Allocate a new inode;
Write the directory file “/c/cs422/as/as3” to add a new entry for the
 (“README”, disk address of inode) pair

–  Find an empty slot “fd” in the file descriptor table for the process;
–  Put the pointer to the inode in the slot “fd”;
–  Set the file pointer in the slot “fd” to 0;
–  Return “fd”;

11/1/16	

31	

Example: create-write-close (cont’d)

3. The process calls write(fd, buffer, length);
4. The kernel:

–  From “fd” find the file pointer;
–  Based on the file system block size (let’s say 1 KB), find the blocks

where the bytes (file_pointer, file_pointer+length) lies;
–  Read the inode
–  For (each block) {

*  If the block is new, allocate a new disk block;
*  Based on the block no, enter the block’s address to the appropriate places in the

inode or the indirect blocks; (the indirect blocks are allocated as needed)
*  Copy the bytes in buffer to the appropriate location in the block }

–  Change the file size field in inode if necessary
5. The process calls close(fd);
6. The kernel deallocate the fd entry --- mark it as empty.

NTFS

◆  Master File Table
–  Flexible 1KB storage for metadata and data

◆  Extents
–  Block pointers cover runs of blocks
–  Similar approach in linux (ext4)
–  File create can provide hint as to size of file

◆  Journaling for reliability

11/1/16	

32	

NTFS small file

Std. Info. File Name Data (resident) (free)

MFT Record (small file)

Master File Table

NTFS medium-sized file
MFT

MFT Record

Start

Length

Start

Length

Std. Info. File Name (free)Data (nonresident)

D
ata Extent

D
ata Extent

11/1/16	

33	

NTFS indirect block
MFT

MFT Record
(part 2)

Std. Info. (free)Data (nonresident)

MFT Record
(part 1)

Std. Info. Attr.list Data (nonresident)File Name

Data Extent

Data Extent

Data Extent

Data Extent

Data Extent

NTFS files in four stages of growth

MFT Record
(normal file)

MFT

Std. Info. Data (nonresident)

MFT Record
(small file)

Std. Info. Data (resident)

MFT Record
(big/fragmented file)

Std. Info. Attr.list Data (nonresident)

Data (nonresident)

Data (nonresident)

Data (nonresident)

MFT

MFT Record
(huge/badly-fragmented file)

Std. Info. Attr.list (nonresident)

Data (nonresident)

Data (nonresident)

Data (nonresident)

Data (nonresident)

Extent with part of attribute list

Extent with part of attribute list

Data (nonresident)

