
11/10/16	

1	

CS 422/522 Design & Implementation
of Operating Systems

Lecture 19: Security and Trust

Zhong Shao
Dept. of Computer Science

 Yale University

Acknowledgement: some slides are taken from previous versions of the CS422/522 lectures taught by Prof. Bryan Ford
and Dr. David Wolinsky, and also from the official set of slides accompanying the OSPP textbook by Anderson and Dahlin.

Self-replicating program (Thompson 84)

char s[] = {

 ‘\t’,
 ‘0’,
 ‘\n’,
 ‘}’,
 ‘;’,
 ‘\n’,
 ‘\n’,
 ‘/’,
 ‘*’,
 ‘\n’,
 (213 lines deleted)
 0

};

/*
 * The string s is a
 * representation of the body
 * of this program from ‘0’
 * to the end
 */

main()
{
 int i;
 printf (“char\ts[]={\n”);
 for (i=0; s[i]; i++)

 printf(“\t%d, \n”, s[i]);
 printf(“%s”, s);
}

11/10/16	

2	

Bootstrap a compiler (how a compiler learn?)
Initial C compiler

…
c = next ();
if (c != ‘\\’)
 return (c);
c = next ();
if (c == ‘\\’)
 return (‘\\’);
if (c == ‘n’)
 return (‘\n’);
….

C compiler that
supports ‘\v’

…
c = next ();
if (c != ‘\\’)
 return (c);
c = next ();
if (c == ‘\\’)
 return (‘\\’);
if (c == ‘n’)
 return (‘\n’);
if (c == ‘v’)
 return (11);
….

C compiler that
supports and uses
‘\v’

…
c = next ();
if (c != ‘\\’)
 return (c);
c = next ();
if (c == ‘\\’)
 return (‘\\’);
if (c == ‘n’)
 return (‘\n’);
if (c == ‘v’)
 return (‘\v’);
….

Thompson’s “cutest” program

◆  Proposed by Ken Thompson in his Turing award lecture
◆  Bury trojan horse in binaries, so no evidence in the source
◆  Replicates itself to every Unix system in the world, and even to

new Unixes on new platforms
◆  Two steps:

–  Make it possible (easy)
–  Hide it (tricky)

◆  Step 1: Modify login.c (code snippet A)

If (name == “ken”)
Don’t check password
Log in as root

◆  Next step: hide change, so no one can see it

11/10/16	

3	

Modify the C compiler

◆  Step 2: Instead of having the code in login.c, put it in
the compiler (code snippet B):

If see trigger
Insert A into input stream

◆  Whenever the compiler sees a trigger (/*
gobbledygook */), puts A into input stream of the
compiler
–  Now don’t need A in login.c, just need the trigger
–  Need to get rid of the problem in the compiler

Compiler:
 if (str == “gobbledygook”)
 emit code for
 trojan horse

login.c:

 /* gobbledygook */

Modify the C compiler (cont’d)

◆  Step 3: modify compiler to have (code snippet C)
If see trigger2

Insert B + C into input stream

–  This is where the self-replicating code comes in!
–  Question: can you write a program that has no inputs and

outputs itself (or a superset of itself)?

◆  Step 4: Compile the compiler with snippet C present
–  Now the intelligence is in the binary

Compiler binary:
 if (str == “gobbledygook2”)
 emit code for trojan check
 and replicate this check

Compiler code:

 /* gobbledygook2 */

11/10/16	

4	

Self-replicating program (contd.)

◆  Step 5: replace snippet C with trigger2
–  Result: all of the intelligence is only in the binary and not in the

source code!

◆  If you use binary to compile “login.c”, it will recognize trigger to
emit backdoor

◆  If you use binary to compile the compiler, it will recognize
trigger2
–  It will emit code in the generated binary to watch out for invocations

when you are compiling “login.c” or the compiler itself

◆  Summary: can’t stop loopholes, can’t tell if it’s happened, can’t
get rid of it!

The rest of this lecture

◆  Types of misuse of computers:
–  Accidental
–  Intentional

◆  Protection is to prevent either accidental or intentional
misuse; security is to prevent intentional misuse

◆  The security environment
◆  User authentication
◆  Attacks from inside the system
◆  Attacks from outside the system
◆  Trusted systems

11/10/16	

5	

The security environment: threats

Security goals and threats

Intentional misuse: intruders

Common categories:
1.  Casual prying by non-technical users
2.  Snooping by insiders
3.  Determined attempt to make money
4.  Commercial or military espionage

11/10/16	

6	

Accidental misuse

Common Causes
1.  Acts of God

-  fires, floods, wars
2.  Hardware or software errors

-  CPU malfunction, bad disk, program bugs
3.  Human errors

-  data entry, wrong tape mounted

Three pieces to security

◆  Authentication
–  Who is the user?

◆  Authorization
–  Who is allowed to do what

◆  Enforcement
–  Make sure people do only what they are supposed to do

Loophole in any of these means problem:
1.  Login as super user and you have circumvented authentication
2.  Login as self and you can do anything you want to your own

resources. What if you run some program that decides to erase all
your files?

3.  Can you trust software to correctly enforce decisions about 1+2?

11/10/16	

7	

Authentication

◆  Common approach: passwords. Shared secret between
you and the machine --- since only you know the
password, machine can assume it is you.

◆  Private key encryption --- use an encryption algorithm
that can be easily reversed if given the correct key
(and hard to reverse without the key)

◆  Public key encryption --- an alternative (which
separates authentication from secrecy)

Problems with using passwords

◆  System must keep copy of secret, to check against
passwords. What if malicious user gains access to this
list of passwords ?

◆  Encryption --- transformation that is difficult to
reverse without the right key
Unix /etc/passwd file:
 passwd à one way transform (hash) à encrypted passwd

System stores only encrypted version, so OK even if someone

reads the file!
When you type in your password, system compares encrypted

versions

11/10/16	

8	

Passwords must be long and obscure

◆  Paradox: short passwords are easy to crack; long
ones, people write down.

◆  Technology means we have to use longer passwords.
Unix initially required only lowercase 5 letter
passwords
How long for an exhaustive search? 26^5 = 10 million

In 1975, 10ms to check a password à 1 day
In 2015, less than 10ms to do the entire search

Some people choose even simpler passwords such as English

words --- taken even less time to check for all words in the
dictionary.

Authentication using a physical object

◆  Magnetic cards
–  magnetic stripe cards
–  chip cards: stored value cards, smart cards

11/10/16	

9	

Authentication using biometrics

A device for measuring finger length.

Other ideas:
•  fingerprints, voices, retinal pattern analysis

•  crazy one: urine samples (cats do it this
way);

Secure password

 encrypt
 -----> plaintext ------->

Spy

Private key encryption

◆  Two roles for encryption
–  Authentication
–  Secrecy --- I don’t want anyone to know this data

Password Secure

decrypt
 -----> plaintext ------->

 CIA

cipher text

insecure
transmission

1.  From cipher text, can’t derive plain text (decode) without password;
2.  From plain text and ciper text, can’t derive password!

11/10/16	

10	

Private key encryption (cont’d)

◆  How do you get shared secret in both places ? Use
authentication server (example: Kerberos)

◆  Main idea:
–  Server keeps list of passwords, provides a way for parties, A

and B, to talk to one another, as long as they trust server.

◆  Notations
–  Kxy is a key for talking between x and y
–  K[…] means encrypt message (…) with the key K.

Example: using an authentication server

◆  A asks server for key

A à S (Hi, I’d like a key for talking between A and B)

◆  Server gives back special session key encrypted using
B’s key

S à A Ksa[use Kab; Ksb[This is A! Use Kab]]

◆  A gives B the ticket

A à B Ksb[This is A! Use Kab]

11/10/16	

11	

Using authentication server (cont’d)

Lots of details:
◆  Add in time stamps to limit how long a key will be used

and to prevent a machine from replaying messages
later

◆  Also have to include encrypted checksums to prevent
malicious user from inserting stuff into the message
or changing the message!

◆  Want to minimize number of times password must be
typed in, and minimize amount of time password is
stored on machine --- ask for a temporary password
and use the real password for authentication.

Public key encryption

◆  What if A and B don’t share a trusted authentication
server? Use public key encryption --- each key is now
a pair (Kpublic, Kprivate)

◆  With private key system (it is symmetric!)
K[text] = ciphertext K[ciphertext] = text

◆  With public key system
Kpublic[text] = ciphertext Kprivate[ciphertext] =text
Kprivate[text] = ciphertext’ (not same ciphertext as above)
Kpublic[ciphertext’] = text

Can’t derive Kpublic from Kprivate and vice versa
Idea: Kprivate kept secret, Kpublic put in a telephone directory

11/10/16	

12	

Example: using public key encryption

◆  Authentication:
 Kprivate[I am Anthony!]
 Everyone can read it, but only I can send it!

◆  Secrecy:
 Kpublic [Hi!]
 Anyone can send it, but only the target can read it

◆  Secure communication
 K’public [Kprivate [I am Anthony!] Hi!]
 Only I can send it, and only you can read it!

Implementing public key encryption

Public encryption key: (e, n)
Private key: (d, n)
 where e, d, n are positive integers
 n = p x q where p & q are two large (>=100 digits) prime numbers
 d satisfies GCD (d, (p-1)x(q-1)) = 1
 e satisfies (e x d) mod (p-1)x(q-1) = 1

Each message is represented as an integer between 0..n-1
(long message can be broken into smaller messages and each can be

represented as such an integer)

Encyption function: E(m) = m^e mod n = C
Decyption function: D(C) = C^d mod n

11/10/16	

13	

Authorization

◆  About who can do what
◆  Policy: access control matrix
◆  Mechanisms:

–  Access control list --- store all permissions for all users with
each object

–  Capability list --- each process stores all objects the process
has permission to touch

◆  The real problem
–  How fine-grained should authorization be?
Example: suppose you buy a copy of new game from “Joe’s Game

World” and then run it. It is running with your userid. It
removes all the files you own including the project due next
day. How to prevent this?

Authorization (cont’d)

◆  Have to run the program using some special games
userid (which has no write privileges).

◆  What if the game needs to write out a file recording
scores? Would need to modify the special userid to
allow to write to a special file.

◆  What about other non-game programs (e.g., Quicken)?
Need to create another special userid.

◆  What about word processor programs ? Need to have
read/write access to entire categories of files.

Semi-satisfactory solution: only use software from
sources you trust!

11/10/16	

14	

Authorization (cont’d)

◆  Bigger risk:
–  Programs can appear on your machine in the form of macros attached

to your documents (e.g., MS Word or Excel)
–  Java applets or Javascript programs that are part of the web pages!

Macros typically run with full privileges and may get automatically
invoked as part of initially accessing a document, or as part of saving
the document later on.

Macros can be used as virus vectors --- replicating themselves when

documents are opened and copied.

Java applets are sand-boxed: the JVM inside the web browser runs

them with no privileges except the ability to send and retrieve data
from the server that the applet is from.

Authorization (cont’d)

◆  Sophisticated applets need limited access to the
resources of the client machine !

◆  The general problems
–  How do I specify the exact privileges that something running

on my behalf should have?

–  How to avoid making this specification task so onerous that
nobody will put up with it.

11/10/16	

15	

Enforcement

◆  Enforcer checks passwords, access control lists, etc.
◆  Any bug in enforcer means: way for malicious user to

gain ability to do anything
–  In Unix, super user has all the powers of the Unix kernel ---

can do anything!
–  Because of coarse-grained access control, lots of stuff has to

run as super user in order to work. If bug in any one of these
programs, you are hosed!

◆  Bullet-proof enforcer --- only known way is to make
enforcer as small as possible.
(also known as “Trusted Computing Base” --- TCB)

Class of security problems

◆  Abuse of privilege --- if the super user is evil, we are
all in trouble. Solution: eliminate super user!

◆  Impostor --- break into system by pretending to be
someone else.

◆  Trojan horse --- appears helpful but really harmful
–  One army gave another a present of a wooden horse, army

hidden inside
◆  Salami attack --- steal and corrupt something a little

bit at a time
 (partial pennies from bank interest ……)

◆  Eavesdropping --- tap onto Ethernet and see
everything typed in.

11/10/16	

16	

More attack examples

◆  Trojan horses
◆  Login spoofing
◆  Logic bombs
◆  Trap doors
◆  Buffer overflow
◆  Covert channels
◆  Tenex --- early 70’s, BBN
◆  Internet worms
◆  Viruses
◆  Ken Thompson’s self-replicating programs
◆  Stuxnet, Heartbleed, car hacking, …

Trojan horses

◆  Free program made available to unsuspecting user
–  Actually contains code to do harm

◆  Place altered version of utility program on victim's
computer
–  trick user into running that program

11/10/16	

17	

Login spoofing

(a) Correct login screen
(b) Phony login screen

Logic bombs

◆  Company programmer writes program
–  potential to do harm
–  OK as long as he/she enters password daily
–  if programmer fired, no password and bomb explodes

11/10/16	

18	

Trap doors

(a) Normal code.
(b) Code with a trapdoor inserted

Buffer overflow

(a) Situation when main program is running
(b) After program A called
(c) Buffer overflow shown in gray

11/10/16	

19	

Tenex --- early 70’s, BNN

◆  Most popular system at universities before Unix
◆  Thought to be very secure --- created a team to find

loopholes (found all passwords in 48 hours).
◆  Here is the code for password check:

For (I = 0; I < 8; I++)
 if (userPasswd[I] != realPasswd[I])
 go to error

Looks innocuous --- like you have to try all combinations 256 ^ 8
Wrong ! Tenex also used virtual memory and it interacts badly

with the above code.

Tenex (cont’d)

◆  Key idea: force page faults at inopportune times --- can break
passwords quickly.

◆  Arrange first character in string to be the last character in page,
rest to be on the next page. Arrange for the page with the first
character to be in memory, and rest to be on disk

◆  By timing how long the password check takes, can figure out
whether the first character is correct.
–  If fast, first char is wrong
–  If slow, first char is right, page fault, one of the others are wrong

◆  Algorithm: try all first characters until one is slow. Then put first
2 chars in memory …… only takes a maximum of 256*8 attempts
to crack a password.

◆  Fix is easy, don’t stop until you look at all characters --- but how
do you know this in advance?

11/10/16	

20	

Tenex (cont’d)

Covert channels

◆  Pictures appear the same
◆  Picture on right has text of 5 Shakespeare plays

–  encrypted, inserted into low order bits of color values

Zebras
Hamlet, Macbeth, Julius Caesar
Merchant of Venice, King Lear

11/10/16	

21	

Internet worms

◆  1988: a worm broke into thousands of computers over internet.
Apparently initiated by Robert Morris Jr.

◆  Three attacks:
–  Dictionary lookup-based password cracking
–  Sendmail --- debug mode, if configured wrong, can let anybody log in
–  fingerd: “finger shao@cs.yale.edu”

*  fingerd didn’t check for length of string
*  Allocated a fixed size array for it on the stack

foo(char *s) {
 char buffer[200];
 …
 strcpy(s, buffer);
}

Attacks from outside the systems

◆  External threat
–  code transmitted to target machine
–  code executed there, doing damage

◆  Goals of virus writer
–  quickly spreading virus
–  difficult to detect
–  hard to get rid of

◆  Virus = program can reproduce itself
–  attach its code to another program
–  additionally, do harm

11/10/16	

22	

Virus damage scenarios

◆  Blackmail
◆  Denial of service as long as virus runs
◆  Permanently damage hardware
◆  Target a competitor's computer

–  do harm
–  espionage

◆  Intra-corporate dirty tricks
–  sabotage another corporate officer's files

How viruses work (1)

◆  Virus written in assembly language
◆  Inserted into another program

–  use tool called a “dropper”
◆  Virus dormant until program executed

–  then infects other programs
–  eventually executes its “payload”

11/10/16	

23	

How viruses work (2)

Recursive
procedure
that finds
executable
files on a
UNIX system

Virus could
infect them all

How viruses work (3)

◆  An executable program
◆  With a virus at the front
◆  With the virus at the end
◆  With a virus spread over free space within program

11/10/16	

24	

How viruses work (4)

◆  After virus has captured interrupt, trap vectors
◆  After OS has retaken printer interrupt vector
◆  After virus has noticed loss of printer interrupt vector and

recaptured it

How viruses spread

◆  Virus placed where likely to be copied
◆  When copied

–  infects programs on hard drive, floppy
–  may try to spread over LAN

◆  Attach to innocent looking email
–  when it runs, use mailing list to replicate

11/10/16	

25	

Antivirus and anti-antivirus techniques

(a) A program
(b) Infected program
(c) Compressed infected program
(d) Encrypted virus
(e) Compressed virus with encrypted compression code

Antivirus and anti-antivirus techniques (cont’d)

Examples of a polymorphic virus
All of these examples do the same thing

11/10/16	

26	

Antivirus and anti-antivirus techniques (cont’d)

◆  Integrity checkers
◆  Behavioral checkers
◆  Virus avoidance

–  good OS
–  install only shrink-wrapped software
–  use antivirus software
–  do not click on attachments to email
–  frequent backups

◆  Recovery from virus attack
–  halt computer, reboot from safe disk, run antivirus

Stuxnet

◆  Primary target: industrial control systems
–  Reprogram Industrial Control Systems (ICS)
–  On Programmable Logic Controllers (PLCs)

*  Specific Siemens Simatic (Step 7) PLC

◆  Code changes are hidden

◆  Vast array of components used:
–  Zero-day exploits
–  Windows rootkit
–  PLC rootkit (first ever)
–  Antivirus evasion
–  Peer-to-Peer updates
–  Signed driver with a valid certificate

◆  Command and control interface

11/10/16	

27	

Securing Cyber-Physical Systems: State of the Art

Control Systems
• Air gaps & obscurity

Cyber Systems
• Anti-virus scanning, intrusion detection

systems, patching infrastructure

This approach cannot solve the problem. •
•

•

Not convergent with the threat

Focused on known vulnerabilities; can miss
zero-day exploits

Can introduce new vulnerabilities and
privilege escalation opportunities

• Trying to adopt cyber approaches, but
technology is not a good fit:

• Resource constraints, real-time deadlines

• Extreme cost pressures

• Patches may have to go through lengthy
verification & validation processes

• Patches could require recalls

•

Distribution Statement A - Approved for Public Release, Distribution Unlimited

We need a fundamentally
different approach

1/3 of the vulnerabilities are
in security software!

Forget the myth of the air gap – the control
system that is completely isolated is history.
-- Stefan Woronka, 2011
Siemens Director of Industrial Security Services

DARPA HACMS Program Briefing (Kathleen Fisher)

	
/10/2010

/09/2010

/06/2010

/05/2010

Additional security layers often create vulnerabilities…

October 2010 vulnerability watchlist

Color Code Key:

Approved for Public Release, Distribution Unlimited

Vendor Replied – Fix in development Awaiting Vendor Reply/Confirmation Awaiting CC/S/A use validation

Vulnerability Title Fix Avail? Date Added

XXXXXXXXXXXX XXXXXXXXXXXX Local Privilege Escalation Vulnerability No 8/25/2010

XXXXXXXXXXXX XXXXXXXXXXXX Denial of Service Vulnerability Yes 8/24/2010

XXXXXXXXXXXX XXXXXXXXXXXX Buffer Overflow Vulnerability No 8/20/2010

XXXXXXXXXXXX XXXXXXXXXXXX Sanitization Bypass Weakness No 8/18/2010

XXXXXXXXXXXX XXXXXXXXXXXX Security Bypass Vulnerability No 8/17/2010

XXXXXXXXXXXX XXXXXXXXXXXX Multiple Security Vulnerabilities Yes 8/16/2010

XXXXXXXXXXXX XXXXXXXXXXXX Remote Code Execution Vulnerability No 8/16/2010

XXXXXXXXXXXX XXXXXXXXXXXX Use-After-Free Memory Corruption Vulnerability No 8/12/2010

XXXXXXXXXXXX XXXXXXXXXXXX Remote Code Execution Vulnerability No 8/10/2010

XXXXXXXXXXXX XXXXXXXXXXXX Multiple Buffer Overflow Vulnerabilities No 6 of the
vulnerabilities
are in security
software

XXXXXXXXXXXX XXXXXXXXXXXX Stack Buffer Overflow Vulnerability Yes 8

XXXXXXXXXXXX XXXXXXXXXXXX Security-Bypass Vulnerability No 8

XXXXXXXXXXXX XXXXXXXXXXXX Multiple Security Vulnerabilities No 8

XXXXXXXXXXXX XXXXXXXXXXXX Buffer Overflow Vulnerability No 7/29/2010

XXXXXXXXXXXX XXXXXXXXXXXX Remote Privilege Escalation Vulnerability No 7/28/2010

XXXXXXXXXXXX XXXXXXXXXXXX Cross Site Request Forgery Vulnerability No 7/26/2010

XXXXXXXXXXXX XXXXXXXXXXXX Multiple Denial Of Service Vulnerabilities No 7/22/2010

DARPA Cyber Security Program Briefing

11/10/16	

28	

Ground truth…

45,000

40,000

35,000

10.0 30,000
Cyber Incidents

Reported to 25,000 8.0 [1] US-CERT Federal Defensive
[2] by Federal

agencies
Cyber Spending
($B)

20,000
6.0

15,000
4.0

10,000

2.0 5,000

0 0.0
2006 2007 2008 2009 2010

Federal Cyber Incidents and Defensive Cyber Spending
fiscal years 2006 – 2010 [1] GAO analysis of US-CERT data.

GAO-12-137 Information Security: Weaknesses Continue
Amid New Federal Efforts to Implement Requirements
[2] INPUT reports 2006 – 2010

Approved for Public Release, Distribution Unlimited.

DARPA Cyber Security Program Briefing

We are divergent with the threat…

x
10,000,000 Management

8,000,000

6,000,000

4,000,000

2,000,000 Milky Way

x
Malware:
125 lines of code* Snort DEC Seal Stalker

x x x
0
1985 1990 1995 2000 2005 2010

* Public sources of malware averaged over 9,000 samples
(collection of exploits, worms, botnets, viruses, DoS tools)

Approved for Public Release, Distribution Unlimited

Li
ne

s
of

 C
od

e

DARPA Cyber Security Program Briefing

11/10/16	

29	

Multilevel security (1)

The Bell-La Padula multilevel security model

Multilevel security (2)

The Biba Model

◆  Principles to guarantee integrity of data

1.  Simple integrity principle
•  process can write only objects at its security level or lower

2.  The integrity * property
•  process can read only objects at its security level or higher

11/10/16	

30	

Lessons

◆  Hard to re-secure after penetration
–  Rewrite everything in assembler, maybe the assembler is

corrupted
–  Toggle in everything from scratch everytime you log into the

computer
◆  Hard to detect when system has been penetrated
◆  Any system with bugs has loopholes (and every system

has bugs!)

Summary: can’t stop loopholes, can’t tell if it’s
happened, can’t get rid of it.

How to fix security?

