
CS 422/522 Design & Implementation
of Operating Systems

Lecture 20: Midterm Review

Zhong Shao
Dept. of Computer Science

 Yale University

Acknowledgement: some slides are taken from previous versions of the CS422/522 lectures taught by Prof. Bryan Ford
and Dr. David Wolinsky, and also from the official set of slides accompanying the OSPP textbook by Anderson and Dahlin.

The big picture

◆  OS roles: referee, illusionist, and glue (AD 1.1)

◆  Kernel and process abstraction (AD 2.1-2.4, 3.1-3.5)
–  Why process abstraction?
–  Dual-mode operation (privileged instructions; timer interrupts;

memory protection)
–  Safe control transfer
–  Interrupts vs. exceptions vs. system calls

◆  CPU & concurrency (AD 4.1-4.8, 5.1-5.8, 6.5, 7.1-7.2)

◆  Memory management (AD 8.1-8.3, 9.1-9.6)

◆  I/O devices (AD 11, 12, 13, 14)

CPU & concurrency

◆  Thread vs. process
◆  How to implement threads/processes ?

*  thread/process state transition diagram & context switch
*  thread/process creation / finish & fork-join parallelism
*  kernel vs. user threads

◆  How to write concurrent programs ?
*  how to eliminate race condition ? how to synchronize?
*  what is the “shared-objects” approach?
*  what are locks, condition variables, monitors, and semaphores?
*  how to use locks & condition variables to support synchronization?
*  how to implement locks & condition variables on uni- & multi-processors?

◆  How to deal with deadlocks
*  banker’s algorithm

◆  Uniprocessor and multiprocessor scheduling

Memory management

◆  Address translation
–  segmentation + paging + multilevel paging
–  efficiency via TLB
–  virtually addressed vs. physically addressed caches

◆  Caching and virtual memory
–  cache concept & memory hierarchy (Figure 9.3)
–  when caches work: working set vs. Zipf model
–  cache replacement policies & Belady’s anomaly
–  memory-mapped files

I/O devices

◆  File system abstraction & device drivers

◆  Storage devices
*  magnetic disk access and performance
*  various disk scheduling algorithms
*  flash storage vs magnetic disk: how they differ?

◆  Files and directories
*  how are they implemented?
*  How Unix (FFS) file system works? What is an inode?
*  FAT vs FFS vs NTFS (Fig 13.8)

◆  Reliable storage
*  What is transaction? Why we need it?
*  How to use redo-logging to implement transaction
*  What are RAID1 and RAID5?

