
9/14/17	

1	

CS 422/522 Design & Implementation
of Operating Systems

Lecture 5: Concurrency and Threads

Zhong Shao
Dept. of Computer Science

 Yale University

Acknowledgement: some slides are taken from previous versions of the CS422/522 lectures taught by Prof. Bryan Ford
and Dr. David Wolinsky, and also from the official set of slides accompanying the OSPP textbook by Anderson and Dahlin.

Motivation

◆  Operating systems (and application programs) often need
to be able to handle multiple things happening at the
same time
–  Process execution, interrupts, background tasks, system

maintenance
◆  Humans are not very good at keeping track of multiple

things happening simultaneously
◆  Threads are an abstraction to help bridge this gap

9/14/17	

2	

Why concurrency?

◆  Servers (expressing logically concurrent tasks)
–  Multiple connections handled simultaneously

◆  Parallel programs
–  To achieve better performance

◆  Programs with user interfaces
–  To achieve user responsiveness while doing computation

◆  Network and disk bound programs
–  To hide network/disk latency

The multi-threading illusion

◆  Each thread has its illusion of own CPU
–  yet on a uni-processor all threads share

the same physical CPU!
–  How does this work?

◆  Two key pieces:
–  TCB --- thread control block, one per

thread, holds execution state

–  dispatching loop:

CPU

while(1)
 interrupt thread
 save state
 get next thread
 load state, jump to it

9/14/17	

3	

Definitions

◆  A thread is a single execution sequence that represents a
separately schedulable task
–  Single execution sequence: familiar programming model
–  Separately schedulable: OS can run or suspend a thread at any time

◆  Protection is an orthogonal concept
–  Can have one or many threads per protection domain

–  Different processes have different privileges (& address spaces);
switch OS’s idea of who is running

*  switch page table, etc.

–  Problems for processes: How to share data? How to communicate?

–  The PL world does not know how to model “process” yet.

Thread abstraction

◆  Infinite number of processors
◆  Threads execute with variable speed

–  Programs must be designed to work with any schedule

Programmer Abstraction Physical Reality

Threads

Processors 1 2 3 4 5 1 2

Running
Threads

Ready
Threads

9/14/17	

4	

Programmer vs. processor view

Programmer·s
View

.

.

.
x = x + 1 ;
y = y + x ;
z = x + 5 y ;

.

.

.

Possible
Execution

#1
.
.
.

x = x + 1 ;
y = y + x ;
z = x + 5 y ;

.

.

.

Possible
Execution

#2
.
.
.

x = x + 1 ;
.

Thread is suspended.
Other thread(s) run.
Thread is resumed.
.
y = y + x ;
z = x + 5 y ;

Possible
Execution

#3
.
.
.

x = x + 1 ;
y = y + x ;

.
Thread is suspended.
Other thread(s) run.
Thread is resumed.
.

z = x + 5 y ;

Possible executions

Thread 1

Thread 2

Thread 3

One Execution Another Execution

Thread 1

Thread 2

Thread 3

Another Execution

Thread 1

Thread 2

Thread 3

9/14/17	

5	

Thread operations

◆  thread_create(thread, func, args)
–  Create a new thread to run func(args)

◆  thread_yield()
–  Relinquish processor voluntarily

◆  thread_join(thread)
–  In parent, wait for forked thread to exit, then return

◆  thread_exit
–  Quit thread and clean up, wake up joiner if any

Example: threadHello

#define NTHREADS 10
thread_t threads[NTHREADS];

main() {
 for (i = 0; i < NTHREADS; i++)

 thread_create(&threads[i], &go, i);

 for (i = 0; i < NTHREADS; i++) {
 exitValue = thread_join(threads[i]);
 printf("Thread %d returned with %ld\n", i, exitValue);
 }
 printf("Main thread done.\n");
}

void go (int n) {
 printf("Hello from thread %d\n", n);
 thread_exit(100 + n);
 // REACHED?
}

9/14/17	

6	

threadHello: example output

◆  Why must “thread returned” print
in order?

◆  What is maximum # of threads
running when thread 5 prints
hello?

◆  Minimum?

Fork/Join concurrency

◆  Threads can create children, and wait for their
completion

◆  Data only shared before fork/after join
◆  Examples:

–  Web server: fork a new thread for every new connection
*  As long as the threads are completely independent

–  Merge sort
–  Parallel memory copy

9/14/17	

7	

bzero with fork/join concurrency
void blockzero (unsigned char *p, int length) {
 int i, j;
 thread_t threads[NTHREADS];
 struct bzeroparams params[NTHREADS];

 // For simplicity, assumes length is divisible by NTHREADS.
 for (i=0, j=0; i<NTHREADS; i++, j+=length/NTHREADS) {
 params[i].buffer = p + i * length/NTHREADS;
 params[i].length = length/NTHREADS;
 thread_create_p(&(threads[i]), &go, ¶ms[i]);
 }
 for (i = 0; i < NTHREADS; i++) {
 thread_join(threads[i]);
 }
}

Thread data structures

Thread 1·s
Perï7hread State

Stack

Thread �·s
Perï7hread State

Shared
State

Thread
Metadata

Saved
Registers

Stack
Information

Thread Control
Block (TCB)

Stack

Thread
Metadata

Saved
Registers

Stack
Information

Thread Control
Block (TCB)

Global
Variables

Heap

Code

9/14/17	

8	

Thread context

◆  Can be classified into two types:
–  Private
–  Shared

◆  Shared state
–  Contents of memory (global variables, heap)
–  File system

◆  Private state
–  Program counter
–  Registers
–  Stack

Classifying program variables

int x;

void foo() {
 int y;
 x = 1;
 y = 1;
}

main() {
 int *p;
 p = (int *)malloc(sizeof(int));
 *p = 1;
}

stack variable

heap access

global variable

9/14/17	

9	

Classifying program variables (cont’d)

void foo() {
 int x;
 printf(“%x”, &x);
}
void bar() {
 int y;
 foo();
}
main() {
 foo();
 bar();
} // different addresses will get printed

Addresses of stack variables defined at “call-time”

Thread control block (TCB)

–  Current state
*  Ready: ready to run
*  Running: currently running
*  Waiting: waiting for resources

–  Registers
–  Status (EFLAGS)
–  Program counter (EIP)
–  Stack

9/14/17	

10	

Thread lifecycle

Thread Creation

s thread_create()

Scheduler
Resumes Thread

Thread Exit

s t h r e a d _ e x i t ()
Thread Yield/Scheduler

Suspends Thread
s t h r e a d _ y i e l d ()

Thread Waits for Event
s t h r e a d _ j o i n ()

Event Occurs
0ther Thread Calls

s t h r e a d _ j o i n ()

Init Ready

Waiting

Running Finished

Implementing threads

◆  Thread_create(thread, func, args)
–  Allocate thread control block
–  Allocate stack
–  Build stack frame for base of stack (stub)
–  Put func, args on stack
–  Put thread on ready list
–  Will run sometime later (maybe right away!)

◆  stub(func, args):
–  Call (*func)(args)
–  If return, call thread_exit()

9/14/17	

11	

Pseudo code for thread_create
// func is a pointer to a procedure; arg is the argument to be passed to that procedure.
void thread_create(thread_t *thread, void (*func)(int), int arg) {
 TCB *tcb = new TCB(); // Allocate TCB and stack

 thread->tcb = tcb;
 tcb->stack_size = INITIAL_STACK_SIZE;
 tcb->stack = new Stack(INITIAL_STACK_SIZE);

 // Initialize registers so that when thread is resumed, it will start running at stub.
 tcb->sp = tcb->stack + INITIAL_STACK_SIZE;
 tcb->pc = stub;

 // Create a stack frame by pushing stub's arguments and start address onto the stack: func, arg
 *(tcb->sp) = arg; tcb->sp--;
 *(tcb->sp) = func; tcb->sp--;

 // Create another stack frame so that thread_switch works correctly
 thread_dummySwitchFrame(tcb);

 tcb->state = #\readyThreadState#;
 readyList.add(tcb); // Put tcb on ready list
}

void stub(void (*func)(int), int arg) {
 (*func)(arg); // Execute the function func()
 thread_exit(0); // If func() does not call exit, call it here.
}

Thread context switch

◆  Voluntary
–  Thread_yield
–  Thread_join (if child is not done yet)

◆  Involuntary
–  Interrupt or exception
–  Some other thread is higher priority

9/14/17	

12	

Voluntary thread context switch

◆  Save registers on old stack
◆  Switch to new stack, new thread
◆  Restore registers from new stack
◆  Return
◆  Exactly the same with kernel threads or user threads

Pseudo code for thread_switch

// We enter as oldThread, but we return as newThread.
// Returns with newThread's registers and stack.

void thread_switch(oldThreadTCB, newThreadTCB) {
 pushad; // Push general register values onto the old stack.
 oldThreadTCB->sp = %esp; // Save the old thread's stack pointer.
 %esp = newThreadTCB->sp; // Switch to the new stack.
 popad; // Pop register values from the new stack.
 return;
}

9/14/17	

13	

Pseudo code for thread_yield
void thread_yield() {

 TCB *chosenTCB, *finishedTCB;

 // Prevent an interrupt from stopping us in the middle of a switch.
 disableInterrupts();

 // Choose another TCB from the ready list.
 chosenTCB = readyList.getNextThread();
 if (chosenTCB == NULL) {
 // Nothing else to run, so go back to running the original thread.
 } else {
 // Move running thread onto the ready list.
 runningThread->state = #\readyThreadState#;
 readyList.add(runningThread);
 thread_switch(runningThread, chosenTCB); // Switch to the new thread.
 runningThread->state = #\runningThreadState#;
 }

 // Delete any threads on the finished list.
 while ((finishedTCB = finishedList->getNextThread()) != NULL) {
 delete finishedTCB->stack;
 delete finishedTCB;
 }
 enableInterrupts();
}

A subtlety

◆  Thread_create puts new thread on ready list

◆  When it first runs, some thread calls thread_switch
–  Saves old thread state to stack
–  Restores new thread state from stack

◆  Set up new thread’s stack as if it had saved its state
in thread_switch
–  “returns” to stub at base of stack to run func

9/14/17	

14	

Pseudo code for dummySwitchFrame

// thread_create must put a dummy frame at the top of its stack:
// the return PC & space for pushad to have stored a copy of the
// registers. This way, when someone switches to a newly created
// thread, the last two lines of thread_switch work correctly.

void thread_dummySwitchFrame(newThread) {

 *(tcb->sp) = stub; // Return to the beginning of stub.
 tcb->sp--;
 tcb->sp -= SizeOfPopad;

}

Two threads call Yield

164 Chapter 4 Concurrency and Threads

Logical View

Thread 1 Thread 2
go(){ go(){

while(1){ while(1){
thread_yield(); thread_yield();

} }
} }

Physical Reality

Thread 1’s instructions Thread 2’s instructions Processor’s instructions
“return” from thread_switch “return” from thread_switch

into stub into stub
call go call go
call thread_yield call thread_yield
choose another thread choose another thread
call thread_switch call thread_switch
save thread 1 state to TCB save thread 1 state to TCB
load thread 2 state load thread 2 state

“return” from thread_switch “return” from thread_switch
into stub into stub

call go call go
call thread_yield call thread_yield
choose another thread choose another thread
call thread_switch call thread_switch
save thread 2 state to TCB save thread 2 state to TCB
load thread 1 state load thread 1 state

return from thread_switch return from thread_switch
return from thread_yield return from thread_yield
call thread_yield call thread_yield
choose another thread choose another thread
call thread_switch call thread_switch
save thread 1 state to TCB save thread 1 state to TCB
load thread 2 state load thread 2 state

return from thread_switch return from thread_switch
return from thread_yield return from thread_yield
call thread_yield call thread_yield
choose another thread choose another thread
call thread_switch call thread_switch
save thread 2 state to TCB save thread 2 state to TCB
load thread 1 state load thread 1 state

return from thread_switch return from thread_switch
return from thread_yield return from thread_yield
...

Figure 4.15: Interleaving of instructions when two threads loop and call thread_yield().

9/14/17	

15	

Involuntary thread switch

◆  Timer or I/O interrupt
–  Tells OS some other thread should run

◆  Simple version
–  End of interrupt handler calls switch()
–  When resumed, return from handler resumes kernel thread or

user process
–  Thus, processor context is saved/restored twice (once by

interrupt handler, once by thread switch)

A quick recap

◆  Thread = pointer to instruction + state
◆  Process = thread + address space + OS env (open files, etc.)

◆  Thread encapsulates concurrency; address space
encapsulates protection

◆  Key aspects:
–  per-thread state
–  picking a thread to run
–  switching between threads

◆  The Future:
–  how to share state among threads?
–  how to pick the right thread/process to run?
–  how to communicate between two processes?

9/14/17	

16	

Threads in the kernel and at user-level

◆  Multi-threaded kernel
–  multiple threads, sharing kernel data structures, capable of

using privileged instructions

◆  Multiprocess kernel
–  Multiple single-threaded processes
–  System calls access shared kernel data structures

◆  Multiple multi-threaded user processes
–  Each with multiple threads, sharing same data structures,

isolated from other user processes

Threads revisited

(a) Three processes each with one thread
(b) One process with three threads

9/14/17	

17	

Implementation of processes

Potential fields of a PCB

Implementation of processes (cont’d)

Skeleton of what lowest level of OS does when an interrupt
occurs

9/14/17	

18	

Threads (cont’d)

Each thread has its own stack

Threads (cont’d)

◆  Items shared by all threads in a process
◆  Items private to each thread

9/14/17	

19	

Thread usage

A word processor with three threads

Thread usage (cont’d)

A multithreaded Web server

9/14/17	

20	

Thread usage (cont’d)

◆  Rough outline of code for previous slide
(a) Dispatcher thread
(b) Worker thread

Implementing threads: roadmap

◆  Kernel threads
–  Thread abstraction only available to kernel
–  To the kernel, a kernel thread and a single threaded user

process look quite similar

◆  Multithreaded processes using kernel threads (Linux,
MacOS)
–  Kernel thread operations available via syscall

◆  User-level threads
–  Thread operations without system calls

9/14/17	

21	

Multithreaded OS Kernel

Kernel

User-Level Processes

Heap

Code

Globals TCB 1

Kernel Thread 1

Stack

TCB 2

Kernel Thread 2

Stack

TCB 3

Kernel Thread 3

Stack Stack Stack

PCB 1

Process 1

PCB 2

Process 2

Heap

Code

Globals

Stack

Process 1
Thread

Heap

Code

Globals

Stack

Process 2
Thread

Faster thread/process switch

◆  What happens on a timer (or other) interrupt?
–  Interrupt handler saves state of interrupted thread
–  Decides to run a new thread
–  Throw away current state of interrupt handler!
–  Instead, set saved stack pointer to trapframe
–  Restore state of new thread
–  On resume, pops trapframe to restore interrupted thread

9/14/17	

22	

Multithreaded user processes (Take 1)

◆  User thread = kernel thread (Linux, MacOS)
–  System calls for thread fork, join, exit (and lock, unlock,…)
–  Kernel does context switch
–  Simple, but a lot of transitions between user and kernel mode

Multithreaded user processes (Take 1)

Kernel

User-Level Processes

Heap

Code

Globals TCB 1

Kernel Thread 1

Stack

TCB 2

Kernel Thread 2

Stack

TCB 3

Kernel Thread 3

Stack

TCB 1.B

Stack

TCB 1.A

Stack

Process 1

PCB 1

TCB 2.B

Stack

TCB 2.A

Stack

Process 2

PCB 2

Heap

Code

Globals

Stack

Thread A

Stack

Thread B
Process 2

Heap

Code

Globals

Stack

Thread A

Stack

Thread B
Process 1

9/14/17	

23	

Multithreaded user processes (Take 2)

◆  Green threads (early Java)
–  User-level library, within a single-threaded process
–  Library does thread context switch
–  Preemption via upcall/UNIX signal on timer interrupt
–  Use multiple processes for parallelism

*  Shared memory region mapped into each process

Multithreaded user processes (Take 3)

◆  Scheduler activations (Windows 8)
–  Kernel allocates processors to user-level library
–  Thread library implements context switch
–  Thread library decides what thread to run next
–  Upcall whenever kernel needs a user-level scheduling decision

☛  Process assigned a new processor
☛  Processor removed from process
☛  System call blocks in kernel

