9/14/17

CS 422/522 Design & Implementation
of Operating Systems

Lecture 5: Concurrency and Threads

Zhong Shao
Dept. of Computer Science
Yale University

Acknowledgement: some slides are taken from previous versions of the C5422/522 lectures taught by Prof. Bryan Ford
and Dr. David Wolinsky, and also from the official set of slides accompanying the OSPP textbook by Anderson and Dahlin.

Motivation

¢ Operating systems (and application programs) often need
to be able to handle multiple things happening at the
same time
- Process execution, interrupts, background tasks, system
maintenance
+ Humans are not very good at keeping track of multiple
things happening simultaneously

¢ Threads are an abstraction to help bridge this gap

Why concurrency?

+ Servers (expressing logically concurrent tasks)
- Multiple connections handled simultaneously

+ Parallel programs
- To achieve better performance

Programs with user interfaces
- To achieve user responsiveness while doing computation

+ Network and disk bound programs
- To hide network/disk latency

The multi-threading illusion

¢ Each thread has its illusion of own CPU

- yet on a uni-processor all threads share
the same physical CPU!
- How does this work?

+ Two key pieces: CPU

- TCB --- thread control block, one per
thread, holds execution state

- dispaTching 'OOp: while(1)
interrupt thread
save state
get next thread
load state, jump to it

9/14/17

Definitions

A thread is a single execution sequence that represents a
separately schedulable task
- Single execution sequence: familiar programming model
- Separately schedulable: OS can run or suspend a thread at any time

Protection is an orthogonal concept

- Can have one or many threads per protection domain

- Different processes have different privileges (& address spaces);
switch OS's idea of who is running
* switch page table, etc.

- Problems for processes: How to share data? How to communicate?

- The PL world does not know how to model “process” yet.

Thread abstraction

¢ Infinite number of processors

Threads execute with variable speed
- Programs must be designed to work with any schedule

Programmer Abstraction Physical Reality

ThreadS(S(SS(S(S 55555

Processors : 1 : 2 : 3 : 4 : 5 i 12

Running Ready
Threads Threads

9/14/17

Programmer vs. processor view

Programmer’s Possible Possible
View Execution Execution
#1 #2
X =Xx + 1; X =x + 1; X =x + 1
y =y + X; y =y + X,
zZ = x + 5y; z = x *+ 5y; Thread is suspended.

Other thread(s) run.
Thread is resumed.

Possible
Execution
#3

X+ 1;
y X

Thread is suspended.
Other thread(s) run.

Thread is resumed.

Possible executions

One Execution

Another Execution

Thread1 [| Thread1 [|
Thread 2 L 1 Thread2 [|
Thread 3 |:| Thread 3 |:|

Another Execution

Thread 1 [_] C 1]
Tread2 [1 [0 0L
Thread 3 |:| |:| :'

9/14/17

Thread operations

¢ thread_create(thread, func, args)
- Create a new thread to run func(args)

¢ thread_yield()

- Relinquish processor voluntarily

¢ thread_join(thread)

- In parent, wait for forked thread to exit, then return

¢ thread_exit
- Quit thread and clean up, wake up joiner if any

Example: threadHello

#define NTHREADS 10
thread t threads[NTHREADS];

main () {
for (1 = 0; i < NTHREADS; i++)
thread create (&threads[i], &go, 1);
for (i1 = 0; 1 < NTHREADS; i++) {
exitValue = thread join(threads[i]);
printf ("Thread %d returned with %1d\n", i, exitValue);
}
printf ("Main thread done.\n");
}

void go (int n) {
printf ("Hello from thread %d\n", n);
thread exit (100 + n);
// REACHED?

9/14/17

threadHello: example output

¢ Why must "thread returned” print
in order?

¢ What is maximum # of threads
running when thread 5 prints
hello?

¢ Minimum?

bash-3.2$

./threadHello

Hello from thread 0
Hello from thread 1
Thread 0 returned
Hello from thread
Hello from thread
Thread 1 returned
from thread
from thread
from thread
from thread
from thread
from thread

Hello
Hello
Hello
Hello
Hello
Hello
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

2
3
4
5
6
7
8

9

returned
returned
returned
returned
returned
returned
returned
returned

Main thread done.

100
3
4
101
5

Noo N

102
103
104
105
106
107
108
109

Fork/Join concurrency

¢ Threads can create children, and wait for their

completion

¢ Data only shared before fork/after join

o Examples:

- Web server: fork a new thread for every new connection
* As long as the threads are completely independent

- Merge sort
- Parallel memory copy

9/14/17

9/14/17

bzero with fork/join concurrency

void blockzero (unsigned char *p, int length) {
int i, J;
thread t threads[NTHREADS];
struct bzeroparams params [NTHREADS];

// For simplicity, assumes length is divisible by NTHREADS.

for (i=0, §=0; i<NTHREADS; i++, j+=length/NTHREADS)
p + i1 * length/NTHREADS;

params[i] .buffer =

params[i].length = length/NTHREADS;

{

thread create p(&(threads[i]), &go, é¶ms[i]);
}
for (i = 0; i < NTHREADS; i++) {
thread join(threads[i]);
}
}
Thread data structures
Shared Thread 1’s Thread 2’s
State Per-Thread State Per-Thread State
Thread Control Thread Control
Code Block (TCB) Block (TCB)
Stack Stack
Information Information
Saved Saved
Registers Registers
Global | Jeeeeeeeerveieeeeeeeeeed e
Variables Thread Thread
Metadata Metadata
Heap

Thread context

Can be classified into two types:
- Private
- Shared

¢ Shared state
- Contents of memory (global variables, heap)
- File system

+ Private state
- Program counter
- Registers
- Stack

Classifying program variables

int ox; global variable
void foo() {)
int i stack variable
x = 1;
y = 1;
}
main () {
int *ps
p = (int *)malloc(sizeof (int));
*p = 1; heap access

9/14/17

Classifying program variables (cont'd)

”"

Addresses of stack variables defined at "call-time

void foo () {
int x;
printf (“&x”, &x);
}
void bar () {
int y;
foo();
}
main () {
foo();
bar () ;
} // different addresses will get printed

Thread control block (TCB)

Current state
* Ready: ready to run
* Running: currently running
* Waiting: waiting for resources

Registers

Status (EFLAGS)
Program counter (EIP)
Stack

9/14/17

Thread lifecycle

Scheduler
Thread Creation Ready | ResumesThread Thread Exit
ettt naen D eady ettt saes D)
sthread _create()\ 0 e sthread_exit()
Thread Yield/Scheduler
Suspends Thread

sthread_yield()

Event Occurs Thread Waits for Event
OtherThread Calls / sthread_join()
sthread_join()

Implementing threads

¢ Thread_create(thread, func, args)
- Allocate thread control block
Allocate stack
Build stack frame for base of stack (stub)
Put func, args on stack
Put thread on ready list
Will run sometime later (maybe right away!)

+ stub(func, args):
- Call (*func)(args)
- If return, call thread_exit()

9/14/17

10

Pseudo code for thread_create

// func is a pointer to a procedure; arg is the argument o be passed to that procedure.
void thread_create(thread_t *thread, void (*func)(int), int arg) {
TCB *tcb = new TCB(); // Allocate TCB and stack

thread->tcb = tcb;
tcb->stack_size = INITIAL_STACK_SIZE;
tcb->stack = new Stack(INITIAL_STACK_SIZE):

// Initialize registers so that when thread is resumed, it will start running at stub.
tcb->sp = tcb->stack + INITIAL_STACK_SIZE;
tcb->pe = stub;

// Create a stack frame by pushing stub's arguments and start address onto the stack: func, arg
*(tcb->sp) = arg; tcb->sp--;
*(tcb->sp) = func; tcb->sp--;

// Create another stack frame so that thread_switch works correctly
thread_dummySwitchFrame(tcb);

tcb->state = #\ready ThreadState#;
readyList.add(tcb); // Put tcb on ready list

}
void stub(void (*func)(int), int arg) {
(*func)(arg); // Execute the function func()
thread_exit(0); // If func() does not call exit, call it here.
}

Thread context switch

+ Voluntary

- Thread_yield

- Thread_join (if child is not done yet)
¢ Involuntary

- Interrupt or exception

- Some other thread is higher priority

9/14/17

11

Voluntary thread context switch

+ Save registers on old stack

& Switch to new stack, new thread

+ Restore registers from new stack

¢ Return

¢ Exactly the same with kernel threads or user threads

Pseudo code for thread_switch

// We enter as oldThread, but we return as newThread.
// Returns with newThread's registers and stack.

void thread_switch(oldThread TCB, new Thread TCB) {

pushad; // Push general register values onto the old stack.

oldThreadTCB->sp = %esp; // Save the old thread's stack pointer.
%oesp = newThread TCB->sp; // Switch to the new stack.

popad; // Pop register values from the new stack.
return;

9/14/17

12

Pseudo code for thread_yield

void thread_yield() {
TCB *chosenTCB, *finished TCB;

// Prevent an interrupt from stopping us in the middle of a switch.
disableInterrupts():

// Choose another TCB from the ready list.
chosenTCB = readyList.getNextThread();
if (chosenTCB == NULL) {
// Nothing else to run, so go back to running the original thread.
}else {
// Move running thread onto the ready list.
runningThread->state = #\ready ThreadState#;
readyList.add(runningThread);
thread_switch(runningThread, chosenTCB); // Switch to the new thread.
runningThread->state = #\runningThreadState#:;
}

// Delete any threads on the finished list.

while ((finishedTCB = finishedList->getNextThread()) = NULL) {
delete finished TCB->stack;
delete finishedTCB;

enableInterrupts();

A subtlety

¢ Thread_create puts new thread on ready list

¢ When it first runs, some thread calls thread_switch
- Saves old thread state to stack
- Restores new thread state from stack

Set up new thread's stack as if it had saved its state
in thread_switch
- "returns” to stub at base of stack to run func

9/14/17

13

Pseudo code for dummySwitchFrame

// thread_create must put a dummy frame at the top of its stack:
// the return PC & space for pushad to have stored a copy of the

// registers. This way, when someone switches to a newly created
// thread, the last two lines of thread_switch work correctly.

void thread_dummySwitchFrame(newThread) {

*(tcb->sp) = stub; // Return to the beginning of stub.

tcb->sp--;
tcb->sp -= SizeOfPopad;

Two threads call Yield

Thread 1’s instructions Thread 2’s instructions
“return” from thread_switch
into stub
call go
call thread_yield
choose another thread
call thread_switch
save thread 1 state to TCB
load thread 2 state
“return” from thread_switch
into stub
call go
call thread_yield
choose another thread
call thread_switch
save thread 2 state to TCB
load thread 1 state
return from thread_switch
return from thread_yield
call thread_yield
choose another thread
call thread_switch

Processor’s instructions

“return” from thread_switch
into stub

call go

call thread_yield

choose another thread

call thread_switch

save thread 1 state to TCB

load thread 2 state

“return” from thread_switch
into stub

call go

call thread_yield

choose another thread

call thread_switch

save thread 2 state to TCB

load thread 1 state

return from thread_switch

return from thread_yield

call thread_yield

choose another thread

call thread_switch

9/14/17

14

Involuntary thread switch

¢ Timer or I/0 interrupt
- Tells OS some other thread should run

+ Simple version
- End of interrupt handler calls switch()
- When resumed, return from handler resumes kernel thread or
user process
- Thus, processor context is saved/restored twice (once by
interrupt handler, once by thread switch)

A quick recap

¢ Thread = pointer fo instruction + state
Process = thread + address space + OS env (open files, etc)
Thread encapsulates concurrency; address space
encapsulates protection
+ Key aspects:

- per-thread state

- picking a thread to run
- switching between threads

* o

¢ The Future:
- how to share state among threads?
- how to pick the right thread/process to run?
- how to communicate between two processes?

9/14/17

15

Threads in the kernel and at user-level

& Multi-threaded kernel

- multiple threads, sharing kernel data structures, capable of
using privileged instructions

¢ Multiprocess kernel
- Multiple single-threaded processes
- System calls access shared kernel data structures

¢ Multiple multi-threaded user processes

- Each with multiple threads, sharing same data structures,
isolated from other user processes

Threads revisited

Process 1 Process 1 Process 1 Process
\\ | | i
User
space
Thread Thread
Kernel
space Kernel Kernel
(a) (b)

(a) Three processes each with one thread
(b) One process with three threads

9/14/17

16

Implementation of processes

Process management
Registers

Program counter
Program status word
Stack pointer

Process state

Priority

Scheduling parameters
Process ID

Parent process
Process group

Signals

Time when process started
CPU time used
Children’s CPU time
Time of next alarm

Memory management
Pointer to text segment
Pointer to data segment
Pointer to stack segment

File management
Root directory
Working directory
File descriptors
User ID

Group ID

Potential fields of a PCB

Implementation of processes (cont’ d)

CoONO UG h~WMND—

. Hardware stacks program counter, etc.
. Hardware loads new program counter from interrupt vector.
. Assembly language procedure saves registers.

. Assembly language procedure sets up new stack.

. C interrupt service runs (typically reads and buffers input).

. Scheduler decides which process is to run next.

. C procedure returns to the assembly code.
. Assembly language procedure starts up new current process.

Skeleton of what lowest level of OS does when an interrupt

occurs

9/14/17

17

Threads (cont’ d)

Thread 2

Thread 3

Thread 1 \
iry /

| —~Process

— Thread 3's stack

SN
S - : -

stack

Kernel

Each thread has its own stack

Threads (cont’ d)

Per process items Per thread items
Address space Program counter
Global variables Reqgisters

Open files Stack

Child processes State

Pending alarms

Signals and signal handlers

Accounting information

+ Items shared by all threads in a process
+ Items private to each thread

9/14/17

18

Thread usage

Kernel

Keyboard Disk
A word processor with three threads
’
Thread usage (cont’ d)
Web server process
| |
Dispatcher thread
Worker thread User
space
Web page cache
J
Kernel
Kernel space
Network
connection

A multithreaded Web server

9/14/17

19

Thread usage (cont’ d)

while (TRUE) { while (TRUE) {
get_next_request(&buf); wait_for_work(&buf)
handoff_work(&buf); look _for_page_in_cache(&buf, &page);
} if (page_not_in_cache(&page)

read_page_from_disk(&buf, &page);
return_page(&page);

(2) (b)

+ Rough outline of code for previous slide
(a) Dispatcher thread
(b) Worker thread

Implementing threads: roadmap

+ Kernel threads
- Thread abstraction only available to kernel

- To the kernel, a kernel thread and a single threaded user
process look quite similar

+ Multithreaded processes using kernel threads (Linux,
MacOS)

- Kernel thread operations available via syscall

+ User-level threads
- Thread operations without system calls

9/14/17

20

Multithreaded OS Kernel

Kernel Thread 1 Kernel Thread 2 Kernel Thread 3 Process 1 Process 2

Kernel [tee1] [tee2]| [T1cea] [peer] [pes2]
Stack Stack Stack Stack Stack

Heap |:::::::::::| |:::::::::::| |:::::::::::| | | | |

User-Level Processes

Globals Globals

Faster thread/process switch

¢ What happens on a timer (or other) interrupt?
- Interrupt handler saves state of interrupted thread
- Decides to run a new thread
- Throw away current state of interrupt handler!
- Instead, set saved stack pointer to trapframe
- Restore state of new thread
- On resume, pops trapframe to restore interrupted thread

9/14/17

21

9/14/17

Multithreaded user processes (Take 1)

o User thread = kernel thread (Linux, MacOS)
- System calls for thread fork, join, exit (and lock, unlock,...)
- Kernel does context switch
- Simple, but a lot of transitions between user and kernel mode

Multithreaded user processes (Take 1)

Kernel Thread 1 Kernel Thread 2 Kernel Thread 3 Process 1 Process 2

S S S
Kernel [[tc1] [1c82] [183] [71ce1a] [tece18] [T1cB2A] [1cB28]
Stack Stack Stack Stack Stack Stack Stack
I s s e [T O O
Process 1 Process 2

User-Level Processes Thread A Thread B Thread A Thread B

S5 S5

Stack Stack Stack Stack

22

Multithreaded user processes (Take 2)

¢ Green threads (early Java)

User-level library, within a single-threaded process
Library does thread context switch

Preemption via upcall/UNIX signal on timer interrupt

Use multiple processes for parallelism
* Shared memory region mapped into each process

Multithreaded user processes (Take 3)

Scheduler activations (Windows 8)

- Kernel allocates processors to user-level library

- Thread library implements context switch

- Thread library decides what thread to run next

- Upcall whenever kernel needs a user-level scheduling decision
~ Process assigned a new processor
~ Processor removed from process
~ System call blocks in kernel

9/14/17

23

