
10/27/15	

1	

CS 422/522 Design & Implementation
of Operating Systems

Lecture 16: Storage Devices

Zhong Shao
Dept. of Computer Science

 Yale University

Acknowledgement: some slides are taken from previous versions of the CS422/522 lectures taught by Prof. Bryan Ford
and Dr. David Wolinsky, and also from the official set of slides accompanying the OSPP textbook by Anderson and Dahlin.

The big picture

◆  Lectures before the fall break:
–  Management of CPU & concurrency
–  Management of main memory & virtual memory

◆  Current topics --- “Management of I/O devices”
–  Last lecture: I/O devices & device drivers
–  This lecture: storage devices
–  Next week: file systems

*  File system structure
*  Naming and directories
*  Efficiency and performance
*  Reliability and protection

10/27/15	

2	

Main points

◆  File systems
–  Useful abstractions on top of physical devices

◆  Storage hardware characteristics
–  Disks and flash memory

◆  File system usage patterns

File systems

◆  Abstraction on top of persistent storage
–  Magnetic disk
–  Flash memory (e.g., USB thumb drive)

◆  Devices provide
–  Storage that (usually) survives across machine crashes
–  Block level (random) access
–  Large capacity at low cost
–  Relatively slow performance

*  Magnetic disk read takes 10-20M processor instructions

10/27/15	

3	

File system as illusionist: hide limitations of
physical storage

◆  Persistence of data stored in file system:
–  Even if crash happens during an update
–  Even if disk block becomes corrupted
–  Even if flash memory wears out

◆  Naming:
–  Named data instead of disk block numbers
–  Directories instead of flat storage
–  Byte addressable data even though devices are block-oriented

◆  Performance:
–  Cached data
–  Data placement and data structure organization

◆  Controlled access to shared data

File system abstraction

◆  File system
–  Persistent, named data
–  Hierarchical organization (directories, subdirectories)
–  Access control on data

◆  File: named collection of data
–  Linear sequence of bytes (or a set of sequences)
–  Read/write or memory mapped

◆  Crash and storage error tolerance
–  Operating system crashes (and disk errors) leave file system

in a valid state
◆  Performance

–  Achieve close to the hardware limit in the average case

10/27/15	

4	

Storage devices

◆  Magnetic disks
–  Storage that rarely becomes corrupted
–  Large capacity at low cost
–  Block level random access
–  Slow performance for random access
–  Better performance for streaming access

◆  Flash memory
–  Storage that rarely becomes corrupted
–  Capacity at intermediate cost (50x disk)
–  Block level random access
–  Good performance for reads; worse for random writes

A typical disk controller

◆  External connection
–  IDE / ATA, SATA
–  SCSI, SCSI-2, Ultra SCSI,

Ultra-160 SCSI, Ultra-320
SCSI

–  Fibre channel (FC)
◆  Cache

–  Buffer data between disk
and the I/O bus

◆  Controller
–  Details of read/write
–  Cache replacement algorithm
–  Failure detection and

recovery

Disk
controller
firmware

DRAM
cache

Interface

Controller

External connection

Disk

10/27/15	

5	

Caching inside a disk controller

◆  Method
–  Disk controller has DRAM to cache recently accessed blocks

*  Hitachi disk has 16MB
*  Some of the RAM space stores “firmware” (an embedded OS)

–  Blocks are replaced usually in an LRU order

◆  Pros
–  Good for reads if accesses have locality

◆  Cons
–  Expensive
–  Need to deal with reliable writes

Magnetic disk

10/27/15	

6	

Disk organization

◆  Disk surface
–  Circular disk coated with

magnetic material
◆  Tracks

–  Concentric rings around
disk surface, bits laid out
serially along each track

◆  Sectors
–  Each track is split into arc

of track (min unit of
transfer) sectors

Disk tracks

◆  ~ 1 micron wide
–  Wavelength of light is ~ 0.5 micron
–  Resolution of human eye: 50 microns
–  100K tracks on a typical 2.5” disk

◆  Separated by unused guard regions
–  Reduces likelihood neighboring tracks are corrupted during

writes (still a small non-zero chance)
◆  Track length varies across disk

–  Outside: More sectors per track, higher bandwidth
–  Disk is organized into regions of tracks with same # of

sectors/track
–  Only outer half of radius is used

*  Most of the disk area in the outer regions of the disk

10/27/15	

7	

Sectors

◆  Sectors contain sophisticated error correcting codes
–  Disk head magnet has a field wider than track
–  Hide corruptions due to neighboring track writes

◆  Sector sparing
–  Remap bad sectors transparently to spare sectors on the

same surface
◆  Slip sparing

–  Remap all sectors (when there is a bad sector) to preserve
sequential behavior

◆  Track skewing
–  Sector numbers offset from one track to the next, to allow

for disk head movement for sequential ops

Moving-head disk mechanism

10/27/15	

8	

Disk cylinder and arm

◆  CD’s and floppies come
individually, but magnetic disks
come organized in a disk pack

◆  Cylinder
–  Certain track of the platter

◆  Disk arm
–  A disk arm carries disk heads

◆  Read/write operation
–  Disk controller receives a

command with <track#, sector#>
–  Seek the right cylinder (tracks)
–  Wait until the right sector comes
–  Perform read/write

seek a cylinder

Disk performance

Disk Latency =
Seek Time + Rotation Time + Transfer Time
Seek Time: time to move disk arm over track (1-20ms)

Fine-grained position adjustment necessary for head to “settle”
Head switch time ~ track switch time (on modern disks)

Rotation Time: time to wait for disk to rotate under disk head
Disk rotation: 4 – 15ms (depending on price of disk)
On average, only need to wait half a rotation

Transfer Time: time to transfer data onto/off of disk
Disk head transfer rate: 50-100MB/s (5-10 usec/sector)
Host transfer rate dependent on I/O connector (USB, SATA, …)

10/27/15	

9	

Toshiba disk (2008)

Question

◆  How long to complete 500 random disk reads, in FIFO
order?

10/27/15	

10	

Question

◆  How long to complete 500 random disk reads, in FIFO
order?
–  Seek: average 10.5 msec
–  Rotation: average 4.15 msec
–  Transfer: 5-10 usec

◆  500 * (10.5 + 4.15 + 0.01)/1000 = 7.3 seconds

Question

◆  How long to complete 500 sequential disk reads?

10/27/15	

11	

Question

◆  How long to complete 500 sequential disk reads?
–  Seek Time: 10.5 ms (to reach first sector)
–  Rotation Time: 4.15 ms (to reach first sector)
–  Transfer Time: (outer track)

500 sectors * 512 bytes / 128MB/sec = 2ms

Total: 10.5 + 4.15 + 2 = 16.7 ms
Might need an extra head or track switch (+1ms)
Track buffer may allow some sectors to be read off disk out of

order (-2ms)

Question

◆  How large a transfer is needed to achieve 80% of the
max disk transfer rate?

10/27/15	

12	

Question

◆  How large a transfer is needed to achieve 80% of the
max disk transfer rate?
Assume x rotations are needed, then solve for x:
0.8 (10.5 ms + (1ms + 8.5ms) x) = 8.5ms x

Total: x = 9.1 rotations, 9.8MB

Disk scheduling

◆  FIFO
–  Schedule disk operations in order they arrive
–  Downsides?

10/27/15	

13	

FIFO (FCFS) order

◆  Method
–  First come first serve

◆  Pros
–  Fairness among requests
–  In the order applications

expect
◆  Cons

–  Arrival may be on random
spots on the disk (long
seeks)

–  Wild swing can happen

0 199

98, 183, 37, 122, 14, 124, 65, 67

53

SSTF (Shortest Seek Time First)

◆  Method
–  Pick the one closest on disk
–  Rotational delay is in calculation

◆  Pros
–  Try to minimize seek time

◆  Cons
–  Starvation

◆  Question
–  Is SSTF optimal?
–  Can we avoid the starvation?

0 199

98, 183, 37, 122, 14, 124, 65, 67
(65, 67, 37, 14, 98, 122, 124, 183)

53

10/27/15	

14	

Disk scheduling

◆  SCAN: move disk arm in
one direction, until all
requests satisfied, then
reverse direction

◆  Also called “elevator
scheduling”

1

2

34
Disk Arm

6

7

5

Elevator (SCAN)

◆  Method
–  Take the closest request in

the direction of travel
–  Real implementations do not

go to the end (called LOOK)
◆  Pros

–  Bounded time for each
request

◆  Cons
–  Request at the other end will

take a while

0 199

98, 183, 37, 122, 14, 124, 65, 67
(37, 14, 65, 67, 98, 122, 124, 183)

53

10/27/15	

15	

Disk scheduling

◆  CSCAN: move disk
arm in one direction,
until all requests
satisfied, then start
again from farthest
request 1

2

34
Disk Arm

6

5

7

C-SCAN (Circular SCAN)

◆  Method
–  Like SCAN
–  But, wrap around
–  Real implementation doesn’t

go to the end (C-LOOK)
◆  Pros

–  Uniform service time
◆  Cons

–  Do nothing on the return

0 199

98, 183, 37, 122, 14, 124, 65, 67
(65, 67, 98, 122, 124, 183, 14, 37)

53

10/27/15	

16	

Disk scheduling

◆  R-CSCAN: CSCAN
but take into account
that short track
switch is < rotational
delay

1

3

24
Disk Arm

6

5

7

Question

◆  How long to complete 500 random disk reads, in any
order?

10/27/15	

17	

Question

◆  How long to complete 500 random disk reads, in any
order?
–  Disk seek: 1ms (most will be short)
–  Rotation: 4.15ms
–  Transfer: 5-10usec

◆  Total: 500 * (1 + 4.15 + 0.01) = 2.2 seconds
–  Would be a bit shorter with R-CSCAN
–  vs. 7.3 seconds if FIFO order

Question

◆  How long to read all of the bytes off of a disk?

10/27/15	

18	

Question

◆  How long to read all of the bytes off of a disk?
–  Disk capacity: 320GB
–  Disk bandwidth: 54-128MB/s

◆  Transfer time =
Disk capacity / average disk bandwidth
~ 3500 seconds (1 hour)

Flash memory

Control
Gate

Floating
Gate

Source Drain

ControlSource Drain

10/27/15	

19	

Flash memory

◆  Writes must be to “clean” cells; no update in place
–  Large block erasure required before write
–  Erasure block: 128 – 512 KB
–  Erasure time: Several milliseconds

◆  Write/read page (2-4KB)
–  50-100 usec

Flash drive (2011)

10/27/15	

20	

Question

◆  Why are random writes so slow?
–  Random write: 2000/sec
–  Random read: 38500/sec

Flash translation layer

◆  Flash device firmware maps logical page # to a physical
location
–  Garbage collect erasure block by copying live pages to new

location, then erase
*  More efficient if blocks stored at same time are deleted at same time

(e.g., keep blocks of a file together)
–  Wear-levelling: only write each physical page a limited number

of times
–  Remap pages that no longer work (sector sparing)

◆  Transparent to the device user

10/27/15	

21	

File system – flash

◆  How does Flash device know which blocks are live?
–  Live blocks must be remapped to a new location during erasure

◆  TRIM command
–  File system tells device when blocks are no longer in use

File system workload

◆  File sizes
–  Are most files small or large?
–  Which accounts for more total storage: small or large files?

10/27/15	

22	

File system workload

◆  File sizes
–  Are most files small or large?

*  SMALL
–  Which accounts for more total storage: small or large files?

*  LARGE

File system workload

◆  File access
–  Are most accesses to small or large files?
–  Which accounts for more total I/O bytes: small or large files?

10/27/15	

23	

File system workload

◆  File access
–  Are most accesses to small or large files?

*  SMALL
–  Which accounts for more total I/O bytes: small or large files?

*  LARGE

File system workload

◆  How are files used?
–  Most files are read/written sequentially
–  Some files are read/written randomly

*  Ex: database files, swap files
–  Some files have a pre-defined size at creation
–  Some files start small and grow over time

*  Ex: program stdout, system logs

10/27/15	

24	

File system design

◆  For small files:
–  Small blocks for storage efficiency
–  Concurrent ops more efficient than sequential
–  Files used together should be stored together

◆  For large files:
–  Storage efficient (large blocks)
–  Contiguous allocation for sequential access
–  Efficient lookup for random access

◆  May not know at file creation
–  Whether file will become small or large
–  Whether file is persistent or temporary
–  Whether file will be used sequentially or randomly

File system abstraction

◆  Directory
–  Group of named files or subdirectories
–  Mapping from file name to file metadata location

◆  Path
–  String that uniquely identifies file or directory

–  Ex: /cse/www/education/courses/cse451/12au
◆  Links

–  Hard link: link from name to metadata location
–  Soft link: link from name to alternate name

◆  Mount
–  Mapping from name in one file system to root of another

10/27/15	

25	

UNIX file system API

◆  create, link, unlink, createdir, rmdir
–  Create file, link to file, remove link
–  Create directory, remove directory

◆  open, close, read, write, seek
–  Open/close a file for reading/writing
–  Seek resets current position

◆  fsync
–  File modifications can be cached
–  fsync forces modifications to disk (like a memory barrier)

File system interface

◆  UNIX file open is a Swiss Army knife:
–  Open the file, return file descriptor
–  Options:

*  if file doesn’t exist, return an error
*  If file doesn’t exist, create file and open it
*  If file does exist, return an error
*  If file does exist, open file
*  If file exists but isn’t empty, nix it then open
*  If file exists but isn’t empty, return an error
*  …

10/27/15	

26	

Interface design question

◆  Why not separate syscalls for open/create/exists?
–  Would be more modular!

if (!exists(name))
 create(name); // can create fail?
fd = open(name); // does the file exist?

