
9/5/19	

1	

CS 422/522 Design & Implementation
of Operating Systems

Lecture 4: Memory Management &

The Programming Interface

Zhong Shao
Dept. of Computer Science

 Yale University

This lecture

To support multiprogramming, we need “Protection”

◆  Kernel vs. user mode
◆  What is an address space?
◆  How to implement it?

Physical memory Abstraction: virtual memory
No protection Each program isolated from all
 others and from the OS

Limited size Illusion of “infinite” memory

Sharing visible to programs Transparent --- can’t tell if
 memory is shared

9/5/19	

2	

The big picture

◆  To support multiprogramming with protection, we need:
–  dual mode operations
–  translation between virtual address space and physical memory

◆  How to implement the translation?

CPU

Translation Box

(MMU) physical
memory

virtual
address

physical
address

Data read or write
 (untranslated)

Address translation

◆  Goals
–  implicit translation on every memory reference
–  should be very fast
–  protected from user’s faults

◆  Options
–  Base and Bounds
–  Segmentation
–  Paging
–  Multilevel translation
–  Paged page tables

9/5/19	

3	

Base and Bounds

 virtual memory physical memory
 0

 code 6250 (base)

 data

 bound
 stack 6250+bound

Each program loaded into contiguous
regions of physical memory.
Hardware cost: 2 registers, adder, comparator.

Base and Bounds (cont’d)

◆  Built in Cray-1
◆  A program can only access

physical memory in [base,
base+bound]

◆  On a context switch:
save/restore base, bound
registers

◆  Pros: Simple
◆  Cons: fragmentation; hard

to share (code but not
data and stack); complex
memory allocation

virtual address

base

bound

error

+

>

physical address

9/5/19	

4	

Segmentation

◆  Motivation
–  separate the virtual address space into several segments so

that we can share some of them if necessary

◆  A segment is a region of logically contiguous memory
◆  Main idea: generalize base and bounds by allowing a

table of base&bound pairs
 (assume 2 bit segment ID, 12 bit segment offset)

virtual segment # physical segment start segment size

code (00) 0x4000 0x700
data (01) 0 0x500
- (10) 0 0
stack (11) 0x2000 0x1000

Segmentation (cont’d)

◆  Have a table of (seg, size)
◆  Protection: each entry has

–  (nil,read,write)
◆  On a context switch: save/

restore the table or a
pointer to the table in
kernel memory

◆  Pros: efficient, easy to
share

◆  Cons: complex management
and fragmentation within a
segment

physical address

+

segment offset

Virtual address

seg size

. . .

>
error

9/5/19	

5	

Segmentation example
(assume 2 bit segment ID, 12 bit segment offset)

v-segment # p-segment segment physical memory
 start size

code (00) 0x4000 0x700
data (01) 0 0x500
- (10) 0 0
stack (11) 0x2000 0x1000

 virtual memory

 0
 6ff

 1000
 14ff

 3000

 3fff

0

4ff

2000

2fff

4000

46ff

Segmentation example (cont’d)

Virtual memory for strlen(x)

Main: 240 store 1108, r2
 244 store pc+8, r31
 248 jump 360
 24c
 …
strlen: 360 loadbyte (r2), r3
 …
 420 jump (r31)
 …

 x: 1108 a b c \0
 …

physical memory for strlen(x)

x: 108 a b c \0
 …

Main: 4240 store 1108, r2
 4244 store pc+8, r31
 4248 jump 360
 424c
 …
strlen: 4360 loadbyte (r2), r3
 …
 4420 jump (r31)
 …

9/5/19	

6	

Paging

◆  Motivations
–  both branch bounds and segmentation still require fancy

memory management (e.g., first fit, best fit, re-shuffling to
coalesce free fragments if no single free space is big enough
for a new segment)

–  can we find something simple and easy

◆  Solution
–  allocate physical memory in terms of fixed size chunks of

memory, or pages.
–  Simpler because it allows use of a bitmap

00111110000001100 --- each bit represents one page of physical memory
 1 means allocated, 0 means unallocated

Paging (cont’d)

◆  Use a page table to
translate

◆  Various bits in each entry
◆  Context switch: similar to

the segmentation scheme
◆  What should be the page

size?
◆  Pros: simple allocation,

easy to share
◆  Cons: big page table and

cannot deal with internal
fragmentation easily

VPage # offset

Virtual address

. . .

>
error

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table

page table size

9/5/19	

7	

Paging example

 virtual memory

 a
 b
 c
 d

 e
 f
 g
 h

 i
 j
 k
 l

 physical memory

 i
 j
 k
 l

 e
 f
 g
 h
 a
 b
 c
 d

 4

 3

 1

page size: 4 bytes

0
4

8

12

16

Segmentation with paging

VPage # offset

Virtual address

. . .

>

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table
seg size

. . .

Vseg #

error

Each segment has
its own page table !

9/5/19	

8	

Two-level paging

Directory . . .

pte

. . .

. . .

. . .

dir table offset
Virtual address

Each directory
entry points to a
page table

Two-level paging example

◆  A logical address (on 32-bit machine with 4K page size) is
divided into:
–  a page number consisting of 20 bits.
–  a page offset consisting of 12 bits.

◆  Since the page table is paged, the page number is further
divided into:
–  a 10-bit page number.
–  a 10-bit page offset.

◆  Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the
displacement within the page of the outer page table.

page number page offset

pi p2 d
10 10 12

9/5/19	

9	

Segmentation with paging – Intel 386

◆  As shown in the following diagram, the Intel
386 uses segmentation with paging for
memory management with a two-level paging
scheme.

Intel 30386 address translation

9/5/19	

10	

How many PTEs do we need ?

◆  Worst case for 32-bit address machine
–  # of processes × 220 (if page size is 4096 bytes)

◆  What about 64-bit address machine?
–  # of processes × 252

Summary: virtual memory mapping

◆  What?
–  separate the programmer’s view of memory from the

system’s view
◆  How?

–  translate every memory operation using table (page table,
segment table).

–  Speed: cache frequently used translations
◆  Result?

–  each user has a private address space
–  programs run independently of actual physical memory

addresses used, and actual memory size
–  protection: check that they only access their own memory

9/5/19	

11	

Summary (cont’d)

◆  Goal: multiprogramming with protection + illusion of
“infinite” memory

◆  Today’s lecture so far:
–  HW-based approach for protection: dual mode operation +

address space
–  Address translation: virtual address -> physical address

◆  Future topics
–  how to make address translation faster? use cache (TLB)
–  demand paged virtual memory

◆  The rest of today’s lecture:
–  The programming interface

The programming interface

System Call
Interface

Portable Operating
System Kernel

Portable
OS Library

Web ServersCompilers Source Code Control

Web Browsers Email

Databases Word Processing

x86 ARM PowerPC

10Mbps/100Mbps/1Gbps Ethernet

802.11 a/b/g/n SCSI IDE

Graphics Accelerators LCD Screens

9/5/19	

12	

Abstraction: process & file system

◆  Problem
–  Multiple CPU cores, many I/O devices and lots of interrupts
–  Users feel they have machine to themselves

◆  Answer
–  Decompose hard problems into simple ones
–  Deal with one at a time
–  Process is such a unit (reflecting something dynamic)
–  File system is another high-level abstraction (for “data”)

◆  Future
–  How processes differ from threads? What is a process really?
–  Generalizing “processes” to “containers” & “virtual machines”

Simplest process

◆  Sequential execution
–  No concurrency inside a process
–  Everything happens sequentially
–  Some coordination may be required

◆  Process state
–  Registers
–  Main memory
–  I/O devices

*  File system
*  Communication ports

9/5/19	

13	

Program vs. process

main()
{
...
foo()
...
}

foo()
{
 ...
}

 Program

main()
{
...
foo()
...
}

foo()
{
 ...
}

 Process

heap

stack
main
foo

registers
PC

Program vs. process (cont’d)

◆  Process > program
–  Program is just part of process state
–  Example: many users can run the same program (but different

processes)

◆  Process < program
–  A program can invoke more than one process
–  Example: cc starts up cpp, cc1, cc2, as, ld (each are programs

themselves)

9/5/19	

14	

Process control block (PCB)

◆  Process management info
–  State

*  Ready: ready to run
*  Running: currently running
*  Blocked: waiting for resources

–  Registers, EFLAGS, and other CPU state
–  Stack, code and data segment
–  Parents, etc

◆  Memory management info
–  Segments, page table, stats, etc

◆  I/O and file management
–  Communication ports, directories, file descriptors, etc.

◆  How OS takes care of processes
–  Resource allocation and process state transition

Primitives of processes

◆  Creation and termination
–  Exec, Fork, Wait, Kill

◆  Signals
–  Action, Return, Handler

◆  Operations
–  Block, Yield

◆  Synchronization
–  We will talk about this later

9/5/19	

15	

Make a process

◆  Creation
–  Load code and data into memory
–  Create an empty call stack
–  Initialize state to same as after a process switch
–  Make the process ready to run

◆  Clone
–  Stop current process and save state
–  Make copy of current code, data, stack and OS state
–  Make the process ready to run

UNIX process management

◆  UNIX fork – system call to create a copy of the
current process, and start it running
–  No arguments!

◆  UNIX exec – system call to change the program being
run by the current process

◆  UNIX wait – system call to wait for a process to finish

◆  UNIX signal – system call to send a notification to
another process

9/5/19	

16	

UNIX process management

p i d = f o r k () ;
i f (p i d = = 0)
 e x e c (. . .) ;
e l s e
 w a i t (p i d) ;

p i d = f o r k () ;
i f (p i d = = 0)
 e x e c (. . .) ;
e l s e
 w a i t (p i d) ;

m a i n () {
 . . .

}

p i d = f o r k () ;
i f (p i d = = 0)
 e x e c (. . .) ;
e l s e
 w a i t (p i d) ;

e x e cf o r k

w a i t

Question: What does this code print?

int child_pid = fork();

if (child_pid == 0) { // I'm the child process
 printf("I am process #%d\n", getpid());
 return 0;
} else { // I'm the parent process
 printf("I am parent of process #%d\n", child_pid);
 return 0;
}

9/5/19	

17	

Implementing UNIX fork & exec

◆  Steps to implement UNIX fork
–  Create and initialize the process control block (PCB) in the kernel
–  Create a new address space
–  Initialize the address space with a copy of the entire contents

of the address space of the parent
–  Inherit the execution context of the parent (e.g., any open files)
–  Inform the scheduler that the new process is ready to run

◆  Steps to implement UNIX exec
–  Load the program into the current address space
–  Copy arguments into memory in the address space
–  Initialize the hardware context to start execution at ``start''

Process context switch

◆  Save a context (everything that a process may damage)
–  All registers (general purpose and floating point)
–  All co-processor state
–  Save all memory to disk?
–  What about cache and TLB stuff?

◆  Start a context
–  Does the reverse

◆  Challenges
–  OS code must save state without changing any state
–  How to run without touching any registers?

*  CISC machines have a special instruction to save and restore all registers
on stack

*  RISC: reserve registers for kernel or have way to carefully save one and
then continue

Very machine
dependent !

9/5/19	

18	

Process state transition

Running

Blocked Ready

W
ait for

Resource

 or Sleep

Resource becomes
available

Create
a process

Terminate
or Finish

Running: executing now
Ready: waiting for CPU
Blocked: waiting for I/O or lock

Which ready process to pick?

0 ready processes: run idle loop
1 ready process: easy!
> 1: what to do?

◆  FIFO?
–  put threads on back of list, pull them off from front
–  (nachos does this: schedule.cc)

◆  Pick random? (could result in starvation)
◆  Priority?

–  give some threads a better shot at the CPU

9/5/19	

19	

Scheduling policies

◆  Scheduling issues
–  fairness: don’t starve process
–  prioritize: more important first
–  deadlines: must do by time ‘x’ (car brakes)
–  optimization: some schedules >> faster than others

◆  No universal policy:
–  many variables, can’t maximize them all
–  conflicting goals

*  more important jobs vs starving others
*  I want my job to run first, you want yours.

◆  Given some policy, how to get control ?

How to get control?

◆  Traps: events generated by current process
–  system calls
–  errors (illegal instructions)
–  page faults

◆  Interrupts: events external to the process
–  I/O interrupt
–  timer interrupt (every 100 milliseconds or so)

◆  Process perspective:
–  explicit: process yields processor to another
–  implicit: causes an expensive blocking event, gets switched

9/5/19	

20	

UNIX I/O --- a key innovation (“files”)

◆  Uniformity
–  All operations on all files, devices use the same set of system

calls: open, close, read, write
◆  Open before use

–  Open returns a handle (file descriptor) for use in later calls on
the file

◆  Byte-oriented
◆  Kernel-buffered reads/writes
◆  Explicit close

–  To garbage collect the open file descriptor
◆  Pipes (for interprocess communication à a kernel

buffer with two file descriptors, one for reading, one
for writing)

UNIX file system interface

◆  UNIX file open is a Swiss Army knife:
–  Open the file, return file descriptor
–  Options:

*  if file doesn’t exist, return an error
*  If file doesn’t exist, create file and open it
*  If file does exist, return an error
*  If file does exist, open file
*  If file exists but isn’t empty, nix it then open
*  If file exists but isn’t empty, return an error
*  …

