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CS 422/522  Design & Implementation  
of Operating Systems 

 
Lecture 4: Memory Management & 

The Programming Interface 
  

Zhong Shao 
Dept. of Computer Science 

 Yale University 

This lecture 

To support multiprogramming, we need “Protection” 

◆  Kernel vs. user mode 
◆  What is an address space? 
◆  How to implement it? 

Physical memory                     Abstraction: virtual memory 
No protection                                   Each program isolated from all 
                                                         others and from the OS 

 

Limited size                                      Illusion of “infinite” memory 
 

Sharing visible to programs              Transparent --- can’t tell if                 
                                                         memory is shared 
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The big picture 

◆  To support multiprogramming with protection, we need: 
–  dual mode operations 
–  translation between virtual address space and physical memory 

◆  How to implement the translation?  

CPU 

Translation Box 
 

(MMU) physical 
memory 

virtual  
address 

physical 
address 

Data read or write 
     (untranslated) 

Address translation 

◆  Goals 
–  implicit translation on every memory reference 
–  should be very fast 
–  protected from user’s faults 

◆  Options 
–  Base and Bounds 
–  Segmentation 
–  Paging 
–  Multilevel translation 
–  Paged page tables 



9/5/19	

3	

Base and Bounds 

                  virtual memory                        physical memory 
           0  
 
                                                                         code                 6250 (base) 
       
                                                                         data 
 
    bound 
                                                                         stack               6250+bound 
 
 
Each program loaded into contiguous 
regions of physical memory.  
Hardware cost: 2 registers, adder, comparator. 

 
Base and Bounds (cont’d) 

◆  Built in Cray-1 
◆  A program can only access 

physical memory in   [base,  
base+bound] 

◆  On a context switch: 
save/restore base, bound 
registers 

◆  Pros: Simple 
◆  Cons: fragmentation; hard 

to share (code but not 
data and stack); complex 
memory allocation 

virtual address 

base 

bound 

error 

+ 

> 

physical address 
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Segmentation 

◆  Motivation 
–  separate the virtual address space into several segments so 

that we can share some of them if necessary 

◆  A segment is a region of logically contiguous memory 
◆  Main idea: generalize base and bounds by allowing a 

table of base&bound pairs 
        (assume 2 bit segment ID, 12 bit segment offset) 

 

virtual segment #             physical segment start            segment size 
 

code   (00)                         0x4000                                   0x700 
data    (01)                         0                                             0x500 
-         (10)                         0                                             0 
stack  (11)                          0x2000                                   0x1000 

 
Segmentation (cont’d) 

◆  Have a table of (seg, size) 
◆  Protection: each entry has 

–  (nil,read,write) 
◆  On a context switch: save/

restore the table or a 
pointer to the table in 
kernel memory  

◆  Pros: efficient, easy to 
share 

◆  Cons: complex management 
and fragmentation within a 
segment 

physical address 

+ 

segment offset 

Virtual address 

seg size 

. . . 

> 
error 
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Segmentation example 
(assume 2 bit segment ID, 12 bit segment offset) 

 

v-segment #       p-segment          segment                                            physical memory 
                           start                   size                                               

                                                                                                                                                                

code   (00)          0x4000              0x700                                          
data    (01)          0                        0x500 
-         (10)           0                        0 
stack  (11)           0x2000              0x1000 

 

                  virtual memory 
              

  0 
             6ff 
 
            1000 
            14ff 
 
            3000 
 
             3fff 

0 

4ff 

2000 

2fff 

4000 

46ff 

Segmentation example (cont’d) 

Virtual memory  for  strlen(x) 
 
Main: 240                store 1108, r2 
         244                 store pc+8, r31 
         248                 jump 360 
         24c 
          … 
strlen: 360             loadbyte (r2), r3 
          … 
          420               jump (r31) 
         …  
 
    x: 1108                a b c \0 
         … 

physical memory  for  strlen(x) 
 
x:     108                a b c \0 
         … 
 
Main: 4240                store 1108, r2 
         4244                 store pc+8, r31 
         4248                 jump 360 
         424c 
          … 
strlen: 4360             loadbyte (r2), r3 
          … 
          4420               jump (r31) 
         …      
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Paging 

◆  Motivations 
–  both branch bounds and segmentation still require fancy 

memory management (e.g., first fit, best fit, re-shuffling to 
coalesce free fragments if no single free space is big enough 
for a new segment) 

–  can we find something simple and easy 

◆  Solution 
–  allocate physical memory in terms of fixed size chunks of 

memory, or pages. 
–  Simpler because it allows use of a bitmap  

00111110000001100   --- each bit represents one page of physical memory 
            1 means allocated, 0 means unallocated  

 
Paging (cont’d) 

◆  Use a page table to 
translate 

◆  Various bits in each entry 
◆  Context switch: similar to 

the segmentation scheme 
◆  What should be the page 

size? 
◆  Pros: simple allocation, 

easy to share 
◆  Cons: big page table and 

cannot deal with internal 
fragmentation easily 

VPage # offset 

Virtual address 

. . . 

> 
error 

PPage# ... 

PPage# ... 

... 

PPage # offset 

Physical address 

Page table 

page table size 
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Paging example 

           virtual memory 
 
                    a 
                    b 
                    c 
                    d 

          

                    e 
                    f 
                    g 
                    h 

 

                    i 
                    j 
                    k 
                    l 

        physical memory 
 
                    i 
                    j 
                    k 
                    l 
 

          

                    e 
                    f 
                    g 
                    h 
                    a 
                    b 
                    c 
                    d 

  4 

   3 

   1 

page size: 4 bytes 

 

0 
4 

8 

12 

16 

 
Segmentation with paging 

VPage # offset 

Virtual address 

. . . 

> 

PPage# ... 

PPage# ... 

... 

PPage # offset 

Physical address 

Page table 
seg size 

. . . 

Vseg # 

error 

Each segment has 
its own page table ! 
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Two-level paging 

Directory . . . 

pte 

. . . 

. . . 

. . . 

dir table offset 
Virtual address 

Each directory 
entry points to a 
page table 

Two-level paging example 

◆  A logical address (on 32-bit machine with 4K page size) is 
divided into: 
–  a page number consisting of 20 bits. 
–  a page offset consisting of 12 bits. 

◆  Since the page table is paged, the page number is further 
divided into: 
–  a 10-bit page number.  
–  a 10-bit page offset. 

◆  Thus, a logical address is as follows: 
 
 
 
 
where pi is an index into the outer page table, and p2 is the 
displacement within the page of the outer page table. 

page number page offset

pi p2 d
10 10 12
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Segmentation with paging – Intel 386 

◆  As shown in the following diagram, the Intel 
386 uses segmentation with paging for 
memory management with a two-level paging 
scheme. 

Intel 30386 address translation 
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How many PTEs do we need ? 

◆  Worst case for 32-bit address machine 
–  # of processes × 220 (if page size is 4096 bytes) 

◆  What about 64-bit address machine? 
–  # of processes × 252  

Summary: virtual memory mapping 

◆  What?  
–  separate the programmer’s view of memory from the 

system’s view 
◆  How? 

–  translate every memory operation using table (page table, 
segment table).  

–  Speed: cache frequently used translations 
◆  Result? 

–  each user has a private address space 
–  programs run independently of actual physical memory 

addresses used, and actual memory size 
–  protection: check that they only access their own memory 
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Summary (cont’d) 

◆  Goal: multiprogramming with protection + illusion of 
“infinite” memory 

◆  Today’s lecture so far: 
–  HW-based approach for protection: dual mode operation + 

address space 
–  Address translation: virtual address -> physical address 

◆  Future topics 
–  how to make address translation faster? use cache (TLB) 
–  demand paged virtual memory 

◆  The rest of today’s lecture: 
–  The programming interface 

The programming interface 

System Call
Interface

Portable Operating
System Kernel

Portable
OS Library

Web ServersCompilers Source Code Control

Web Browsers Email

Databases Word Processing

x86 ARM PowerPC

10Mbps/100Mbps/1Gbps Ethernet

802.11 a/b/g/n SCSI IDE

Graphics Accelerators LCD Screens
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Abstraction: process & file system  

◆  Problem 
–  Multiple CPU cores, many I/O devices and lots of interrupts 
–  Users feel they have machine to themselves 

◆  Answer 
–  Decompose hard problems into simple ones 
–  Deal with one at a time 
–  Process is such a unit (reflecting something dynamic) 
–  File system is another high-level abstraction (for “data”) 

◆  Future 
–  How processes differ from threads? What is a process really? 
–  Generalizing “processes” to “containers” & “virtual machines” 

 

Simplest process 

◆  Sequential execution 
–  No concurrency inside a process 
–  Everything happens sequentially 
–  Some coordination may be required 

◆  Process state 
–  Registers 
–  Main memory 
–  I/O devices 

*  File system 
*  Communication ports 
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Program vs. process 

main() 
{ 
... 
foo() 
... 
} 
 
foo() 
{ 
    ... 
} 

 Program 

main() 
{ 
... 
foo() 
... 
} 
 
foo() 
{ 
    ... 
} 

 Process 

heap 

stack 
main 
foo 

registers 
PC 

Program vs. process (cont’d) 

◆  Process > program 
–  Program is just part of process state 
–  Example: many users can run the same program (but different 

processes) 

◆  Process < program 
–  A program can invoke more than one process 
–  Example: cc starts up cpp, cc1, cc2, as, ld (each are programs 

themselves) 
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Process control block (PCB) 

◆  Process management info 
–  State 

*  Ready: ready to run 
*  Running: currently running 
*  Blocked: waiting for resources 

–  Registers, EFLAGS, and other CPU state 
–  Stack, code and data segment 
–  Parents, etc 

◆  Memory management info 
–  Segments, page table, stats, etc 

◆  I/O and file management 
–  Communication ports, directories, file descriptors, etc. 

◆  How OS takes care of processes 
–  Resource allocation and process state transition 

Primitives of processes 

◆  Creation and termination 
–  Exec, Fork, Wait, Kill 

◆  Signals 
–  Action, Return, Handler 

◆  Operations 
–  Block, Yield 

◆  Synchronization 
–  We will talk about this later 
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Make a process 

◆  Creation 
–  Load code and data into memory 
–  Create an empty call stack 
–  Initialize state to same as after a process switch 
–  Make the process ready to run 

◆  Clone 
–  Stop current process and save state 
–  Make copy of current code, data, stack and OS state 
–  Make the process ready to run   

UNIX process management 

◆  UNIX fork – system call to create a copy of the 
current process, and start it running 
–  No arguments! 

◆  UNIX exec – system call to change the program being 
run by the current process 

◆  UNIX wait – system call to wait for a process to finish 

◆  UNIX signal – system call to send a notification to 
another process 
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UNIX process management 

p i d  =  f o r k ( ) ;
i f  ( p i d  = =  0 )
   e x e c ( . . . ) ;
e l s e
   w a i t ( p i d ) ;

p i d  =  f o r k ( ) ;
i f  ( p i d  = =  0 )
   e x e c ( . . . ) ;
e l s e
   w a i t ( p i d ) ;

m a i n  ( )  {
  . . .

}

p i d  =  f o r k ( ) ;
i f  ( p i d  = =  0 )
   e x e c ( . . . ) ;
e l s e
   w a i t ( p i d ) ;

e x e cf o r k

w a i t

Question: What does this code print? 

 
int child_pid = fork(); 

 

if (child_pid == 0) {           // I'm the child process 
    printf("I am process #%d\n", getpid()); 
    return 0; 
} else {                        // I'm the parent process 
    printf("I am parent of process #%d\n", child_pid); 
    return 0; 
} 
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Implementing UNIX fork & exec 

◆  Steps to implement UNIX fork 
–  Create and initialize the process control block (PCB) in the kernel 
–  Create a new address space 
–  Initialize the address space with a copy of the entire contents 

of the address space of the parent 
–  Inherit the execution context of the parent (e.g., any open files) 
–  Inform the scheduler that the new process is ready to run 

◆  Steps to implement UNIX exec 
–  Load the program into the current address space 
–  Copy arguments into memory in the address space 
–  Initialize the hardware context to start execution at ``start'' 
 

 

Process context switch  

◆  Save a context (everything that a process may damage) 
–  All registers (general purpose and floating point) 
–  All co-processor state 
–  Save all memory to disk? 
–  What about cache and TLB stuff? 

◆  Start a context 
–  Does the reverse 

◆  Challenges 
–  OS code must save state without changing any state 
–  How to run without touching any registers? 

*  CISC machines have a special instruction to save and restore all registers 
on stack 

*  RISC: reserve registers for kernel or have way to carefully save one and 
then continue  

Very machine 
dependent ! 
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Process state transition 

Running 

Blocked Ready 

W
ait for 

Resource 

 or Sleep  

Resource becomes 
available 

Create 
a process 

Terminate 
or Finish 

Running: executing now 
Ready: waiting for CPU 
Blocked: waiting for  I/O or lock 

Which ready process to pick?  

0 ready processes: run idle loop 
1 ready process: easy! 
> 1: what to do?   

◆  FIFO? 
–  put threads on back of list, pull them off from front 
–  (nachos does this: schedule.cc) 

◆  Pick random?  (could result in starvation) 
◆  Priority? 

–  give some threads a better shot at the CPU 
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Scheduling policies 

◆  Scheduling issues 
–  fairness: don’t starve process 
–  prioritize: more important first 
–  deadlines: must do by time ‘x’ (car brakes) 
–  optimization: some schedules >> faster than others 

◆  No universal policy: 
–  many variables, can’t maximize them all 
–  conflicting goals  

*  more important jobs vs starving others 
*  I want my job to run first, you want yours. 

◆  Given some policy, how to get control ? 

How to get control? 

◆  Traps: events generated by current process 
–  system calls 
–  errors (illegal instructions) 
–  page faults 

◆  Interrupts:  events external to the process 
–  I/O interrupt 
–  timer interrupt (every 100 milliseconds or so) 

◆  Process perspective:  
–  explicit: process yields processor to another 
–  implicit: causes an expensive blocking event, gets switched 
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UNIX I/O --- a key innovation (“files”) 

◆  Uniformity 
–  All operations on all files, devices use the same set of system 

calls: open, close, read, write 
◆  Open before use 

–  Open returns a handle (file descriptor) for use in later calls on 
the file 

◆  Byte-oriented 
◆  Kernel-buffered reads/writes 
◆  Explicit close 

–  To garbage collect the open file descriptor 
◆  Pipes (for interprocess communication à a kernel 

buffer with two file descriptors, one for reading, one 
for writing) 

UNIX file system interface 

◆  UNIX file open is a Swiss Army knife: 
–  Open the file, return file descriptor 
–  Options:  

*  if file doesn’t exist, return an error 
*  If file doesn’t exist, create file and open it 
*  If file does exist, return an error 
*  If file does exist, open file 
*  If file exists but isn’t empty, nix it then open 
*  If file exists but isn’t empty, return an error 
*  … 


