
9/14/22

1

CS 422/522 Design & Implementation
of Operating Systems

Lectures 6-8: Synchronization

Zhong Shao
Dept. of Computer Science

Yale University

1

Independent vs. cooperating threads

! Independent threads
– no state shared with other threads
– deterministic --- input state determines result
– reproducible
– scheduling order does not matter
– still not fully isolated (may share files)

! Cooperating threads
– shared state
– non-deterministic
– non-reproducible

Non-reproducibility and non-determinism means that bugs can be
intermittent. This makes debugging really hard!

2

9/14/22

2

Example: two threads, one counter

! A web site gets millions of hits a day. Uses multiple
threads (on multiple processors) to speed things up.

! Simple shared state error: each thread increments a
shared counter to track the number of hits today:

! What happens when two threads execute this code
concurrently?

…
hits = hits + 1;
…

3

Problem with shared counters

! One possible result: lost update!

! One other possible result: everything works.
– Bugs are frequently intermittent. Makes debugging hard.
– This is called “race condition”

hits = 0 + 1

read hits (0)

hits = 0 + 1
read hits (0)

T1 T2

hits = 1

hits = 0
time

4

9/14/22

3

Race conditions

! Race condition: timing dependent error involving
shared state.
– whether it happens depends on how threads scheduled

! *Hard* because:
– must make sure all possible schedules are safe. Number of

possible schedules permutations is huge.

* Some bad schedules aaccdd, acadcd, … (how many?)
– they are intermittent. Timing dependent = small changes (adding a

print stmt, different machine) can hide bug.

if(n == stack_size) /* A */
return full; /* B */

stack[n] = v; /* C */
n = n + 1; /* D */

5

Thread a:
i = 0;
while(i < 10)

i = i + 1;
print “A won!”;

More race condition example:

Thread b:
i = 0;
while(i > -10)

i = i - 1;
print “B won!”;

• Who wins?
• Guaranteed that someone wins?
• What if both threads on its own identical speed CPU
executing in parallel? will it go on forever?

6

9/14/22

4

Preventing race conditions: atomicity

! atomic unit = instruction sequence guaranteed to
execute indivisibly (also, a “critical section”).

* If two threads execute the same atomic unit at the same time, one
thread will execute the whole sequence before the other begins.

! How to make multiple inst’s seem like one atomic one?

hits = hits + 1

T1 T2

hits = 2

hits = 0
time

hits = hits + 1

7

Synchronization motivation

! When threads concurrently read/write shared memory,
program behavior is undefined à race conditions
– Two threads write to the same variable; which one should win?

! Thread schedule is non-deterministic
– Behavior changes when re-run program

! Compiler/hardware instruction reordering

! Multi-word operations are not atomic

8

9/14/22

5

Question: can this panic?

Thread 1

p = someComputation();
pInitialized = true;

Thread 2

while (!pInitialized)
;

q = someFunction(p);
if (q != someFunction(p))

panic

9

Why reordering?

! Why do compilers reorder instructions?
– Efficient code generation requires analyzing control/data

dependency
– If variables can spontaneously change, most compiler

optimizations become impossible
! Why do CPUs reorder instructions?

– Write buffering: allow next instruction to execute while
write is being completed

Fix: memory barrier
– Instruction to compiler/CPU
– All ops before barrier complete before barrier returns
– No op after barrier starts until barrier returns

10

9/14/22

6

Example: the Too-Much-Milk problem

3:00
3:05
3:10
3:15
3:20
3:25
3:30

Person A
Look in fridge. Out of milk
Leave for store
Arrive at store
Buy milk
Arrive home, put milk away

Person B

Look in fridge. Out of milk
Leave for store
Arrive at store
Buy milk
Arrive home, put milk away
Oh no !

Goal: 1. never more than one person buys
2. someone buys if needed

11

Too much milk: solution #1

! Basic idea:
– leave a note (kind of like “lock”)
– remove note (kind of like “unlock”)
– don’t buy if there is a note (wait)

if (noMilk) {
if (noNote) {

leave Note;
buy milk;
remove Note

}
}

12

9/14/22

7

Why solution #1 does not work ?

3:00
3:05
3:10
3:15
3:20
3:25
3:30

Thread A
if (noMilk) {

if (noNote) {

leave Note;
buy milk;
remove Note} }

Threads can get context-switched at any time !

Thread B

if (noMilk) {
if (noNote) {

leave Note;
buy milk;
remove Note } }

13

Too much milk: solution #2

Thread A
leave NoteA
if (noNoteB) {

if (noMilk)
buy milk

}
remove NoteA

Problem: neither thread to buy milk --- think
other is going to buy --- starvation !

Thread B
leave NoteB
if (noNoteA) {

if (noMilk)
buy milk

}
remove NoteB

14

9/14/22

8

Too much milk: solution #3

Thread A

leave NoteA
while (NoteB) // X

do nothing;
if (noMilk)

buy milk;
remove NoteA

Thread B

leave NoteB
if (noNoteA) { // Y

if (noMilk)
buy milk;

}
remove NoteB

Either safe for me to buy or others will buy !
It works but:

• it is too complex
• A’s code different from B’s (what if lots of threads ?)
• A busy-waits --- consumes CPU !

15

A better solution

! Have hardware provide better primitives than atomic
load and store.

! Build higher-level programming abstractions on this
new hardware support.

! Example: using locks as an atomic building block

Acquire --- wait until lock is free, then grabs it
Release --- unlock, waking up a waiter if any

These must be atomic operations --- if two threads are waiting
for the lock, and both see it is free, only one grabs it!

16

9/14/22

9

Too much milk: using a lock

! It is really easy !
lock -> Acquire();
if (nomilk)

buy milk;
lock -> Release();

! What makes a good solution?
– Only one process inside a critical section
– No assumption about CPU speeds
– Processes outside of critical section should not block other processes
– No one waits forever
– Works for multiprocessors

! Future topics:
– hardware support for synchronization
– high-level synchronization primitives & programming abstraction
– how to use them to write correct concurrent programs?

17

An ancedote

18

9/14/22

10

A few definitions

! Sychronization:
– using atomic operations to ensure cooperation between threads

! Mutual exclusion:
– ensuring that only one thread does a particular thing at a time. One

thread doing it excludes the other, and vice versa.

! Critical section:
– piece of code that only one thread can execute at once. Only one

thread at a time will get into the section of code.

! Lock: prevents someone from doing something
– lock before entering critical section, before accessing shared data
– unlock when leaving, after done accessing shared data
– wait if locked

19

A quick recap

! We talked about critical section

! We also talked about what is a good solution
– Only one process inside a critical section
– No assumption about CPU speeds
– Processes outside of critical section should not block other

processes
– No one waits forever
– Works for multiprocessors

Acquire(lock);
if (noMilk)

buy milk;
Release(lock);

Critical section

20

9/14/22

11

How to write concurrent programs?

Use shared objects (aka concurrent objects) --- always
encapsulate (hide) its shared state

Threads Shared Objects

Pu
bl

ic
 M

et
ho

ds

Synchronization
Variables

State
Variables

21

The big picture

Shared Objects

Synchronization Variables

Atomic Instructions

Hardware

Interrupt Disable

Bounded Bu!er

Multiple Processors

Semaphores Locks

Test-and-Set

Barrier

Hardware Interrupts

Condition Variables

Concurrent Applications

22

9/14/22

12

The big picture (cont’d)

! Shared object layer: all shared objects appear to have
the same interface as those for a single-threaded
program

! Synchronization variable layer: a synchronization
variable is a data structure used for coordinating
concurrent access to shared state

! Atomic instruction layer: atomic processor-specific
instructions

23

The big picture

Shared Objects

Synchronization Variables

Atomic Instructions

Hardware

Interrupt Disable

Bounded Bu!er

Multiple Processors

Semaphores Locks

Test-and-Set

Barrier

Hardware Interrupts

Condition Variables

Concurrent Applications

24

9/14/22

13

Locks

! Lock::acquire
– wait until lock is free, then take it

! Lock::release
– release lock, waking up anyone waiting for it

1. At most one lock holder at a time (safety)
2. If no one holding, acquire gets lock (progress)
3. If all lock holders finish and no higher priority

waiters, waiter eventually gets lock (progress)

25

Question: why only Acquire/Release

! Suppose we add a method to a lock, to ask if the lock
is free. Suppose it returns true. Is the lock:
– Free?
– Busy?
– Don’t know?

26

9/14/22

14

Lock example: malloc/free

char *malloc (n) {

heaplock.acquire();

p = allocate memory

heaplock.release();

return p;
}

void free(char *p) {

heaplock.acquire();

put p back on free list

heaplock.release();
}

27

Rules for using locks

! Lock is initially free
! Always acquire before accessing shared data structure

– Beginning of procedure!
! Always release after finishing with shared data

– End of procedure!
– Only the lock holder can release
– DO NOT throw lock for someone else to release

! Never access shared data without lock
– Danger!

28

9/14/22

15

Will this code work?

if (p == NULL) {
lock.acquire();
if (p == NULL) {

p = newP();
}
lock.release();

}
use p->field1

newP() {
p = malloc(sizeof(p));
p->field1 = …
p->field2 = …
return p;

}

29

Example: thread-safe bounded queue

// Thread-safe queue interface

const int MAX = 10;

class TSQueue {
// Synchronization variables
Lock lock;

// State variables
int items[MAX];
int front;
int nextEmpty;

public:
TSQueue();
~TSQueue(){};
bool tryInsert(int item);
bool tryRemove(int *item);

};

lock
items[0]

…
front

items[1]

nextEmpty

queue2

lock
items[0]

…
front

items[1]

nextEmpty

queue1

lock
items[0]

…
front

items[1]

nextEmpty

queue3

30

9/14/22

16

Example: thread-safe bounded queue
// Initialize the queue to empty
// and the lock to free.
TSQueue::TSQueue() {

front = nextEmpty = 0;
}

// Try to insert an item.
// If the queue is full, return false;
// otherwise return true.

bool TSQueue::tryInsert(int item) {
bool success = false;

lock.acquire();
if ((nextEmpty - front) < MAX) {

items[nextEmpty % MAX] = item;
nextEmpty++;
success = true;

}
lock.release();
return success;

}

// Try to remove an item. If the queue
// is empty, return false;
// otherwise return true.

bool TSQueue::tryRemove(int *item) {
bool success = false;

lock.acquire();
if (front < nextEmpty) {

*item = items[front % MAX];
front++;
success = true;

}
lock.release();
return success;

}

31

Example: thread-safe bounded queue

The lock holder always maintain the following invariants
when releasing the lock:

– The total number of items ever inserted in the queue is
nextEmpty.

– The total number of items ever removed from the queue is
front.

– front <= nextEmpty

– The current number of items in the queue is nextEmpty –
front

– nextEmpty – front <= MAX

32

9/14/22

17

Example: thread-safe bounded queue
// TSQueueMain.cc
// Test code for TSQueue.
int main(int argc, char **argv) {

TSQueue *queues[3];
sthread_t workers[3];
int i, j;

// Start worker threads to insert.
for (i = 0; i < 3; i++) {

queues[i] = new TSQueue();
thread_create(&workers[i],

putSome, queues[i]);
}

// Wait for some items to be put.
thread_join(workers[0]);

// Remove 20 items from each queue.
for (i = 0; i < 3; i++) {

printf("Queue %d:\n", i);
testRemoval(&queues[i]);

}
}

// Insert 50 items into a queue.
void *putSome(void *p) {

TSQueue *queue = (TSQueue *)p;
int i;

for (i = 0; i < 50; i++) {
queue->tryInsert(i);

}
return NULL;

}

// Remove 20 items from a queue.
void testRemoval(TSQueue *queue) {

int i, item;

for (i = 0; i < 20; j++) {
if (queue->tryRemove(&item))
printf("Removed %d\n", item);

else
printf("Nothing there.\n");

}
}

}

33

The big picture

Shared Objects

Synchronization Variables

Atomic Instructions

Hardware

Interrupt Disable

Bounded Bu!er

Multiple Processors

Semaphores Locks

Test-and-Set

Barrier

Hardware Interrupts

Condition Variables

Concurrent Applications

34

9/14/22

18

How to use the lock ?

! The lock provides mutual exclusion to the shared data
! Rules for using a lock:

– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock is initially free.

! Simple example: a synchronized queue

bool tryInsert()
{

lock.Acquire(); // lock before use
… put item on queue; // ok to access
lock.Release(); // unlock after done
return success;

}

bool tryRemove()
{ …

lock.Acquire();
if something on queue // can we wait?

remove it;
lock->Release();
return success;

}

35

Condition variables

! How to make tryRemove wait until something is on the
queue?
– can’t sleep while holding the lock
– Key idea: make it possible to go to sleep inside critical section,

by atomically releasing lock at same time we go to sleep.

! Condition variable: a queue of threads waiting for
something inside a critical section.
– Wait() --- Release lock, go to sleep, re-acquire lock

* release lock and going to sleep is atomic

– Signal() --- Wake up a waiter, if any
– Broadcast() --- Wake up all waiters

36

9/14/22

19

Synchronized queue using condition variables

! Rule: must hold lock when doing condition variable
operations

AddToQueue()
{

lock.acquire();

put item on queue;
condition.signal();

lock.release();
}

RemoveFromQueue()
{

lock.acquire();

while nothing on queue
condition.wait(&lock);

// release lock; got to
// sleep; reacquire lock

remove item from queue;
lock.release();
return item;

}

37

Condition variable design pattern

methodThatWaits() {
lock.acquire();

// Read/write shared state

while (!testSharedState()) {
cv.wait(&lock);

}

// Read/write shared state

lock.release();
}

methodThatSignals() {
lock.acquire();

// Read/write shared state

// If testSharedState is now true
cv.signal(&lock);

// Read/write shared state

lock.release();
}

38

9/14/22

20

Example: blocking bounded queue

// Thread-safe blocking queue.

const int MAX = 10;

class BBQ{
// Synchronization variables
Lock lock;
CV itemAdded;
CV itemRemoved;

// State variables
int items[MAX];
int front;
int nextEmpty;

public:
BBQ();
~BBQ() {};
void insert(int item);
int remove();

};

39

Example: blocking bounded queue
//Wait until there is room and
// then insert an item.

void BBQ::insert(int item) {

lock.acquire();
while ((nextEmpty - front) == MAX) {

itemRemoved.wait(&lock);
}

items[nextEmpty % MAX] = item;
nextEmpty++;
itemAdded.signal();

lock.release();
}

// Wait until there is an item and
// then remove an item.
int BBQ::remove() {

int item;

lock.acquire();
while (front == nextEmpty) {

itemAdded.wait(&lock);
}
item = items[front % MAX];
front++;
itemRemoved.signal();
lock.release();
return item;

}

// Initialize the queue to empty,
// the lock to free, and the
// condition variables to empty.
BBQ::BBQ() {

front = nextEmpty = 0;
}

40

9/14/22

21

Pre/Post conditions & invariants

! What is state of the blocking bounded queue at lock
acquire?
– front <= nextEmpty
– front + MAX >= nextEmpty

! These are also true on return from wait

! And at lock release

! Allows for proof of correctness

41

Pre/Post conditions & invariants

methodThatWaits() {
lock.acquire();
// Pre-condition: State is consistent

// Read/write shared state

while (!testSharedState()) {
cv.wait(&lock);

}
// WARNING: shared state may
// have changed! But
// testSharedState is TRUE
// and pre-condition is true

// Read/write shared state
lock.release();

}

methodThatSignals() {
lock.acquire();
// Pre-condition: State is consistent

// Read/write shared state

// If testSharedState is now true
cv.signal(&lock);

// NO WARNING: signal keeps lock

// Read/write shared state
lock.release();

}

42

9/14/22

22

Condition variables

! ALWAYS hold lock when calling wait, signal, broadcast
– Condition variable is sync FOR shared state
– ALWAYS hold lock when accessing shared state

! Condition variable is memoryless
– If signal when no one is waiting, no op
– If wait before signal, waiter wakes up

! Wait atomically releases lock
– What if wait, then release?
– What if release, then wait?

43

Question 1: wait replaced by unlock + sleep?

methodThatWaits() {
lock.acquire();

// Read/write shared state

while (!testSharedState()) {
lock.release()
cv.sleep(&lock);

}

// Read/write shared state

lock.release();
}

methodThatSignals() {
lock.acquire();

// Read/write shared state

// If testSharedState is now true
cv.signal(&lock);

// Read/write shared state

lock.release();
}

44

9/14/22

23

Question 2: wait does not acquire lock?

methodThatWaits() {
lock.acquire();

// Read/write shared state

while (!testSharedState()) {
cv.wait (&lock);
lock.acquire();

}

// Read/write shared state

lock.release();
}

methodThatSignals() {
lock.acquire();

// Read/write shared state

// If testSharedState is now true
cv.signal(&lock);

// Read/write shared state

lock.release();
}

45

Condition variables, cont’d

! When a thread is woken up from wait, it may not run
immediately
– Signal/broadcast put thread on ready list
– When lock is released, anyone might acquire it

! Wait MUST be in a loop
while (needToWait()) {

condition.Wait(lock);
}

! Simplifies implementation
– Of condition variables and locks
– Of code that uses condition variables and locks

46

9/14/22

24

Structured synchronization

! Identify objects or data structures that can be
accessed by multiple threads concurrently

! Add locks to object/module
– Grab lock on start to every method/procedure
– Release lock on finish

! If need to wait
– while(needToWait()) { condition.Wait(lock); }
– Do not assume when you wake up, signaller just ran

! If do something that might wake someone up
– Signal or Broadcast

! Always leave shared state variables in a consistent state
– When lock is released, or when waiting

47

Monitors and condition variables

! Monitor definition:
– a lock and zero or more condition variables for managing

concurrent access to shared data

! Monitors make things easier:
– “locks” for mutual exclusion
– “condition variables” for scheduling constraints

48

9/14/22

25

Monitors embedded in prog. languages (1)

! High-level data abstraction that unifies handling of:
– Shared data, operations on it, synch and scheduling

* All operations on data structure have single (implicit) lock
* An operation can relinquish control and wait on condition

– Java from Sun; Mesa/Cedar from Xerox PARC

! Monitors easier and safer than semaphores
– Compiler can check, lock implicit (cannot be forgotten)

// only one process at time can update instance of Q
class Q {

int head, tail; // shared data
void enq(v) { locked access to Q instance }
int deq() { locked access to Q instance }

}

49

Monitors embedded in prog. languages (2)

! Wait()
– Block on “condition”

! Signal()
– Wakeup a blocked

process on “condition”
Shared

data

...
Entry queue

operations

x
y

Queues
associated
with x, y
condition
s

50

9/14/22

26

Java language manual

When waiting upon a Condition, a “spurious wakeup” is
permitted to occur, in general, as a concession to the
underlying platform semantics. This has little practical
impact on most application programs as a Condition
should always be waited upon in a loop, testing the
state predicate that is being waited for.

51

Remember the rules

! Use consistent structure
! Always use locks and condition variables
! Always acquire lock at beginning of procedure, release

at end
! Always hold lock when using a condition variable
! Always wait in while loop
! Never spin in sleep()

52

9/14/22

27

Mesa vs. Hoare semantics

! Mesa
– Signal puts waiter on ready list
– Signaller keeps lock and processor

! Hoare
– Signal gives processor and lock to waiter
– When waiter finishes, processor/lock given back to signaller
– Nested signals possible!

! For Mesa-semantics, you always need to check the
condition after wait (use “while”). For Hoare-semantics
you can change it to “if”

53

The big picture: more examples

Shared Objects

Synchronization Variables

Atomic Instructions

Hardware

Interrupt Disable

Bounded Bu!er

Multiple Processors

Semaphores Locks

Test-and-Set

Barrier

Hardware Interrupts

Condition Variables

Concurrent Applications

54

9/14/22

28

Producer-consumer with monitors

Condition full;
Condition empty;
Lock lock;

Producer() {
lock.Acquire();

while (the buffer is full)
full.wait(&lock);

put 1 Coke in machine;

if (the buffer was empty)
empty.signal();

lock.Release();
}

Consumer() {
lock.Acquire();

while (the buffer is empty)
empty.wait(&lock);

take 1 Coke;

if (the buffer was full)
full.signal();

lock.Release();
}

55

Example: the readers/writers problem

! Motivation
– shared database (e.g., bank balances / airline seats)
– Two classes of users:

* Readers --- never modify database
* Writers --- read and modify database

– Using a single lock on the database would be overly restrictive
* want many readers at the same time
* only one writer at the same time

! Constraints
* Readers can access database when no writers (Condition okToRead)
* Writers can access database when no readers or writers (Condition

okToWrite)
* Only one thread manipulates state variable at a time

56

9/14/22

29

Design specification (readers/writers)

! Reader
– wait until no writers
– access database
– check out - wake up waiting writer

! Writer
– wait until no readers or writers
– access data base
– check out --- wake up waiting readers or writer

! State variables
– # of active readers (AR); # of active writers (AW);
– # of waiting readers (WR); # of waiting writers (WW);

! Lock and condition variables: okToRead, okToWrite

57

Solving readers/writers

Reader() {
// first check self into system
lock.Acquire();
while ((AW+WW) > 0) {

WR ++;
okToRead.Wait(&lock);
WR --;

}
AR++;
lock.Release();

Access DB;

// check self out of system
lock.Acquire();
AR--;
if (AR == 0 && WW > 0)

okToWrite.Signal(&lock);
lock.Release();

}

Writer() {
// first check self into system
lock.Acquire();
while ((AW+AR) > 0) {

WW ++;
okToWrite.Wait(&lock);
WW --;

}
AW++;
lock.Release();

Access DB;

// check self out of system
lock.Acquire();
AW--;
if (WW > 0) okToWrite.Signal(&lock);

else if (WR > 0) okToRead.Broadcast(&lock);
lock.Release();

}

58

9/14/22

30

Example: the one-way-bridge problem

! Problem definition
– a narrow light-duty bridge on a public highway
– traffic cross in one direction at a time
– at most 3 vehicles on the bridge at the same time (otherwise

it will collapses)

! Each car is represented as one thread:
OneVechicle (int direc)
{

ArriveBridge (direc);
… crossing the bridge …;
ExitBridge(direc);

}

59

One-way bridge with condition variables

Lock lock;
Condition safe; // safe to cross bridge
int currentNumber; // # of cars on bridge
int currentDirec; // current direction

ArriveBridge(int direc) {
lock.Acquire();
while (! safe-to-cross(direc)) {

safe.wait(lock)
}
currentNumber++;
currentDirec = direc;
lock.Release();

}

ExitBridge(int direc) {
lock.Acquire();
currentNumber--;
safe.signal(lock);
lock.Release();

}

safe-to-cross(int direc) {
if (currentNumber == 0)

return TRUE; // always safe if empty
else if ((currentNumber < 3) &&

(currentDirec == direc))
return TRUE;

else
return FALSE;

}

60

9/14/22

31

The mating-whales problem

! You have been hired by Greenpeace to help the environment. Because
unscrupulous commercial interests have dangerously lowered the whale
population, whales are having synchronization problems in finding a mate.

! To have children, three whales are needed, one male, one female, and one
to play matchmaker --- literally, to push the other two whales together
(I'm not making this up!).

! Write the three procedures:

void Male()
void Female()
void Matchmaker()

using locks and Mesa-style condition variables. Each whale is represented by a
separate thread. A male whale calls Male() which waits until there is a waiting
female and matchmaker; similarly, a female whale must wait until a male whale and
a matchmaker are present. Once all three are present, all three return.

61

Step 1 --- two-way rendezvous

Lock* lock;
Condition* malePresent;
Condition* maleToGo;
int numMale = 0;
bool maleCanGo = FALSE;

void Male() {
lock->Acquire();
numMale++;
malePresent->Signal();

while (! maleCanGo) {
maleToGo->Wait(lock);

}
maleCanGo = FALSE;
lock->Release()

}

void MatchMaker() {
lock->Acquire();

while (numMale == 0) {
malePresent->Wait(lock);

}
numMale--;

maleCanGo = TRUE;
maleToGo->Signal();

lock->Release()
}

62

9/14/22

32

Step 2 --- three-way rendezvous

Lock* lock;
Condition* malePresent;
Condition* maleToGo;
int numMale = 0;
bool maleCanGo = FALSE;

Condition* femalePresent;
Condition* femaleToGo;
int numFemale = 0;
bool femaleCanGo = FALSE

void Male() {
lock->Acquire();
numMale++;
malePresent->Signal();

while (! maleCanGo) {
maleToGo->Wait(lock);

}
maleCanGo = FALSE;
lock->Release()

}

void MatchMaker() {
lock->Acquire();

while (numMale == 0) {
malePresent->Wait(lock);

}
numMale--;
while (numFemale == 0) {

femalePresent->Wait(lock);
}
maleCanGo = TRUE;
maleToGo->Signal();

numFemale--;
femaleCanGo = TRUE;
femaleToGo->Signal();

lock->Release()
}

void Female() {
lock->Acquire();
numFemale++;
femalePresent->Signal();

while (! femaleCanGo) {
femaleToGo->Wait(lock);

}
femaleCanGo = FALSE;
lock->Release()

}

63

Step 3 --- a simplified version

Lock* lock;

Condition* malePresent;
Condition* maleToGo;
int numMale = 0;

Condition* femalePresent;
Condition* femaleToGo;
int numFemale = 0;

void MatchMaker() {
lock->Acquire();

while (numMale == 0) {
malePresent->Wait(lock);

}
numMale--;
while (numFemale == 0) {

femalePresent->Wait(lock);
}

maleToGo->Signal();
numMale--;
femaleToGo->Signal();
numFemale--;

lock->Release()
}

void Male() {
lock->Acquire();
numMale++;
malePresent->Signal();
maleToGo->Wait(lock);
lock->Release();

}

void Female() {
lock->Acquire();
numFemale++;
femalePresent->Signal();
femaleToGo->Wait(lock);
lock->Release()

}

64

9/14/22

33

Example: A MapReduce single-use barrier
// A single use synch barrier.
class Barrier{
private:
// Synchronization variables
Lock lock;
CV allCheckedIn;

// State variables
int numEntered;
int numThreads;

public:
Barrier(int n);
~Barrier();
void checkin();

};

Barrier::Barrier(int n) {
numEntered = 0;
numThreads = n;

}

// No one returns until all threads
// have called checkin.
void checkin() {

lock.acquire();
numEntered++;
if (numEntered < numThreads) {

while (numEntered < numThreads)
allCheckedIn.wait(&lock);

} else { // last thread to checkin
allCheckedIn.broadcast();

}
lock.release();

}

Create n threads; Create barrier;
Each thread executes map operation;
barrier.checkin();
Each thread sends data to reducers;
barrier.checkin();
Each thread executes reduce operation;
barrier.checkin();

65

Example: A reusable synch barrier
class Barrier{
private:
// Synchronization variables
Lock lock;
CV allCheckedIn;
CV allLeaving;

// State variables
int numEntered;
int numLeaving;
int numThreads;

public:
Barrier(int n);
~Barrier();
void checkin();

};
Barrier::Barrier(int n) {

numEntered = 0;
numLeaving = 0;
numThreads = n;

}

// No one returns until all threads have called checkin.
void checkin() {

lock.acquire();
numEntered++;
if (numEntered < numThreads) {

while (numEntered < numThreads)
allCheckedIn.wait(&lock);

} else {
// no threads in allLeaving.wait
numLeaving = 0;
allCheckedIn.broadcast();

}
numLeaving++;
if (numLeaving < numThreads) {

while (numLeaving < numThreads)
allLeaving.wait(&lock);

} else {
// no threads in allCheckedIn.wait
numEntered = 0;
allLeaving.broadcast();

}
lock.release();

}

66

9/14/22

34

Example: blocking bounded queue [review]

// Thread-safe blocking queue.

const int MAX = 10;

class BBQ{
// Synchronization variables
Lock lock;
CV itemAdded;
CV itemRemoved;

// State variables
int items[MAX];
int front;
int nextEmpty;

public:
BBQ();
~BBQ() {};
void insert(int item);
int remove();

};

67

Example: blocking bounded queue [review]
//Wait until there is room and
// then insert an item.

void BBQ::insert(int item) {

lock.acquire();
while ((nextEmpty - front) == MAX) {

itemRemoved.wait(&lock);
}

items[nextEmpty % MAX] = item;
nextEmpty++;
itemAdded.signal();

lock.release();
}

// Wait until there is an item and
// then remove an item.
int BBQ::remove() {

int item;

lock.acquire();
while (front == nextEmpty) {

itemAdded.wait(&lock);
}
item = items[front % MAX];
front++;
itemRemoved.signal();
lock.release();
return item;

}

// Initialize the queue to empty,
// the lock to free, and the
// condition variables to empty.
BBQ::BBQ() {

front = nextEmpty = 0;
}

68

9/14/22

35

Starvation-Free (FIFO) BBQ [Fig. 5.14 OSPP]

ConditionQueue insertQueue, removeQueue;
int numRemoveCalled = 0; // # of times remove has been called
int numInsertCalled = 0; // # of times insert has been called
int FIFOBBQ::remove() {

int item, myPosition;
CV *myCV, *nextWaiter;
lock.acquire();
myPosition = numRemoveCalled++;
myCV = new CV; // Create a new condition variable to wait on.
removeQueue.append(myCV);
// Even if I am woken up, wait until it is my turn.
while (front < myPosition || front == nextEmpty) {

myCV->Wait(&lock);
}
delete myCV; // The condition variable is no longer needed.
item = items[front % MAX];
front++;
// Wake up the next thread waiting in insertQueue, if any.
nextWaiter = insertQueue.removeFromFront();
if (nextWaiter != NULL) nextWaiter->Signal(&lock);
lock.release();
return item;

}

69

Starvation-Free (FIFO) BBQ (cont’d)
ConditionQueue insertQueue, removeQueue;
int numRemoveCalled = 0; // # of times remove has been called
int numInsertCalled = 0; // # of times insert has been called

void FIFOBBQ::insert(int item) {
int myPostition;
CV *myCV, nextWaiter;

lock.acquire ();
myPosition = numInsertCalled++;
myCV = new CV;
insertQueue.append(myCV);

while (nextEmpty < myPosition || (nextEmpty - front) == MAX) {
myCV->wait(&lock);

}

delete myCV;
items[nextEmpty % MAX] = item;
nextEmpty ++;

nextWaiter = removeQueue.removeFromFront();
if (nextWaiter != NULL) nextWaiter->Signal();
lock.release();

}

70

9/14/22

36

Starvation-Free (FIFO) BBQ
! Bug 1: keeping destroyed CVs inside the removeQueue

– Buffer size MAX=1, one producer and one consumer
– Producer inserts one item when the buffer is empty
– Producer tries to insert again and sleep on a 2nd allocated CV
– Consumer calls remove successfully and wakes up the first CV in

the insertQueue; the CV is NULL, so Consumer moves on;
– Consumer calls removes again but had to sleep because the

buffer is empty.
! Bug 2: starvation when multiple CVs are waken up

– Buffer size MAX=2; one producer and two consumers (C1,C2)
– Two consumers run first and sleeps on empty buffer
– Producer inserts one item and wakes up C1; P inserts another

one and wakes up C2;
– C2 is scheduled first; but (front < myPosition), so it is not C2’s

turn; so it goes to sleep; then C1 finishes; C2 will never wake up

71

Starvation-Free (FIFO) BBQ [Bug Fixed]

int FIFOBBQ::remove () {
int item,myPostition;
CV *myCV,*nextWaiter;
lock.acquire ();
myPosition = numRemoveCalled++;
myCV = new CV;
removeQueue.append(myCV);
while (front < myPosition || front == nextEmpty) {

myCV->wait(&lock);
}

delete myCV;
item = items[front % MAX];
front ++;

nextWaiter = insertQueue.peekFront();
if (nextWaiter != NULL) nextWaiter->Signal();

removeQueue.removeFromFront(); // the remover now responsible for removing itself from the removeQueue
nextWaiter = removeQueue.peekFront(); // the remover responsible for waking up the next in the removeQueue
if (nextWaiter != NULL) nextWaiter->Signal();

lock.release();
return item;

}

72

