
10/17/22

1

CS 422/522 Design & Implementation
of Operating Systems

Lecture 17: Reliable Storage

Zhong Shao
Dept. of Computer Science

Yale University

1

Main points

! Problem posed by machine/disk failures
! Transaction concept
! Reliability

– Careful sequencing of file system operations
– Copy-on-write (WAFL, ZFS)
– Journaling (NTFS, linux ext4)
– Log structure (flash storage)

! Availability
– RAID

2

10/17/22

2

File system reliability

! What can happen if disk loses power or machine
software crashes?
– Some operations in progress may complete
– Some operations in progress may be lost
– Overwrite of a block may only partially complete

! File system wants durability (as a minimum!)
– Data previously stored can be retrieved (maybe after some

recovery step), regardless of failure

3

File system reliability

! For performance, all must be cached!
This is OK for reads but what about writes?

! Options for writing data:
Write-through: write change immediately to disk

Problem: slow! Have to wait for write to complete
before you go on

Write-back: delay writing modified data back to disk (for
example, until replaced)
Problem: can lose data on a crash!

4

10/17/22

3

Multiple updates

! If multiple updates needed to perform some
operations, crash can occur between them!

– Moving a file between directories:
* Delete file from old directory
* Add file to new directory

– Create new file
* Allocate space on disk for header, data
* Write new header to disk
* Add the new file to directory

What if there is a crash in the middle? Even with write-through
it can still have problems

5

Storage reliability problem

! Single logical file operation can involve updates to
multiple physical disk blocks
– inode, indirect block, data block, bitmap, …
– With remapping, single update to physical disk block can

require multiple (even lower level) updates

! At a physical level, operations complete one at a time
– Want concurrent operations for performance

! How do we guarantee consistency regardless of when
crash occurs?

6

10/17/22

4

Transaction concept

! Transaction is a group of operations
– Atomic: operations appear to happen as a group, or not at all

(at logical level)
* At physical level, only single disk/flash write is atomic

– Durable: operations that complete stay completed
* Future failures do not corrupt previously stored data

– Isolation: other transactions do not see results of earlier
transactions until they are committed

– Consistency: sequential memory model

7

Reliability approach #1: careful
ordering

! Sequence operations in a specific order
– Careful design to allow sequence to be interrupted safely

! Post-crash recovery
– Read data structures to see if there were any operations in

progress
– Clean up/finish as needed

! Approach taken in FAT, FFS (fsck), and many app-level
recovery schemes (e.g., Word)

8

10/17/22

5

FAT: Append data to file

! Add data block
! Add pointer to data

block
! Update file tail to

point to new MFT
entry

! Update access time
at head of file

9

FAT: Append data to file

Normal operation:
! Add data block
! Add pointer to data

block
! Update file tail to

point to new MFT
entry

! Update access time
at head of file

Recovery:
! Scan MFT
! If entry is unlinked,

delete data block
! If access time is

incorrect, update

10

10/17/22

6

FAT: Create new file

Normal operation:
! Allocate data block
! Update MFT entry

to point to data
block

! Update directory
with file name -> file
number

! Update modify time
for directory

Recovery:
! Scan MFT
! If any unlinked files

(not in any
directory), delete

! Scan directories for
missing update times

11

Unix approach (careful reordering)

Try to achieve consistency on both meta-data and user
data !

! Meta-data: needed to keep file system logically
consistent
– Directories
– Bitmap
– File headers
– Indirect blocks
– ……

! Data: user bytes

12

10/17/22

7

Meta-data consistency (ad hoc)

! For meta-data, Unix uses “synchronous write through”.
– If multiple updates needed, Unix does them in specific order
– If it crashes, run the special program “fsck” which scans the

entire disk for internal consistency to check for “in progress”
operations and then fixes up anything in progress.

Example:

File created, but not yet put in any directory è delete file

Blocks allocated, but not in bitmap è update bitmap

13

FFS: Create a file

Normal operation:
! Allocate data block
! Write data block
! Allocate inode
! Write inode block
! Update bitmap of free

blocks
! Update directory with

file name -> file number
! Update modify time for

directory

Recovery:
! Scan inode table
! If any unlinked files

(not in any directory),
delete

! Compare free block
bitmap against inode
trees

! Scan directories for
missing update/access
times

Time proportional to size
of disk

14

10/17/22

8

FFS: Move a file

Normal operation:
! Remove filename

from old directory
! Add filename to new

directory

Recovery:
! Scan all directories

to determine set of
live files

! Consider files with
valid inodes and not
in any directory
– New file being

created?
– File move?
– File deletion?

15

User data consistency

! For user data, Unix uses “write back” --- forced to
disk every 30 seconds (or user can call “sync” to force
to disk immediately).
No guarantee blocks are written to disk in any order.

Sometimes meta-data consistency is good enough

How should vi save changes to a file to disk ?
Write new version in temp file
Move old version to other temp file
Move new version into real file
Unlink old version

If crash, look at temp area; if any files out there, send email to
user that there might be a problem.

16

10/17/22

9

Application level

Normal operation:
! Write name of each

open file to app folder
! Write changes to

backup file
! Rename backup file to

be file (atomic
operation provided by
file system)

! Delete list in app
folder on clean
shutdown

Recovery:
! On startup, see if any

files were left open
! If so, look for backup

file
! If so, ask user to

compare versions

17

Careful ordering

! Pros
– Works with minimal support in the disk drive
– Works for most multi-step operations

! Cons
– Can require time-consuming recovery after a failure
– Difficult to reduce every operation to a safely interruptible

sequence of writes
– Difficult to achieve consistency when multiple operations

occur concurrently

18

10/17/22

10

Reliability approach #2: copy-on-write file layout

! To update file system, write a new version of the file
system containing the update
– Never update in place
– Reuse existing unchanged disk blocks

! Seems expensive! But
– Updates can be batched
– Almost all disk writes can occur in parallel

! Approach taken in network file server appliances
(WAFL, ZFS)

19

Copy on write/write anywhere

Indirect
Blocks

Data
Blocks

Inode Array
(in Inode File)

Fixed
Location

Anywhere

Root Inode
Slots

Inode File’s
Indirect Blocks

20

10/17/22

11

Copy on write/write anywhere

Indirect
Blocks

Data
Blocks

Inode Array
(in Inode File)

Root Inode
Slots

Inode File’s
Indirect Blocks

Update Last
Block of File

21

Copy on write batch update

Root
Inode

Root
Inode’s

Indirect
Blocks

Inode
File

File’s
Indirect
Blocks

File’s
Data

Blocks

New
Data

Blocks

New
Data

Block of
Inode

File

New
Indirect
Nodes

New
Indirect

Nodes of
Inode

File

New
Root

Inode

22

10/17/22

12

Copy on write garbage collection

! For write efficiency, want contiguous sequences of
free blocks
– Spread across all block groups
– Updates leave dead blocks scattered

! For read efficiency, want data read together to be in
the same block group
– Write anywhere leaves related data scattered

=> Background coalescing of live/dead blocks

23

Copy on write

! Pros
– Correct behavior regardless of failures
– Fast recovery (root block array)
– High throughput (best if updates are batched)

! Cons
– Potential for high latency
– Small changes require many writes
– Garbage collection essential for performance

24

10/17/22

13

Logging file systems

! Instead of modifying data structures on disk directly,
write changes to a journal/log
– Intention list: set of changes we intend to make
– Log/Journal is append-only

! Once changes are on log, safe to apply changes to data
structures on disk
– Recovery can read log to see what changes were intended

! Once changes are copied, safe to remove log

25

Transaction concept

! Transactions: group actions together so that they are
– Atomic: either happens or it does not (no partial operations)
– Serializable: transactions appear to happen one after the other
– Durable: once it happens, stays happened

Critical sections are atomic and serializable, but not durable

Need two more items:
Commit --- when transaction is done (durable)
Rollback --- if failure during a transaction (means it didn’t happen at
all)

! Metaphor: do a set of operations tentatively. If get to commit,
ok. Otherwise, roll back the operations as if the transaction
never happened.

26

10/17/22

14

Transaction implementation

! Key idea: fix problem of how you make multiple updates to disk,
by turning multiple updates into a single disk write!

! Example: money transfer from account x to account y:

Begin transaction
x = x + 1
y = y – 1

Commit

! Keep “redo” log on disk of all changes in transaction.
– A log is like a journal, never erased, record of everything you’ve done
– Once both changes are on log, transactions are committed.
– Then can “write behind” changes to disk --- if crash after commit,

replay log to make sure updates get to disk

27

Transaction implementation (cont’d)

Disk
Memory cache

X: 0 X: 0
Y: 2 Y: 2

Sequence of steps to execute transaction: X=1 Y=1 commit
1. Write new value of X to log
2. Write new value of Y to log write-ahead log (on disk or
3. Write commit tape or non-volatile RAM)
4. Write x to disk
5. Write y to disk
6. Reclaim space on log

28

10/17/22

15

Transaction implementation (cont’d)

X=1 Y=1 commit

1. Write new value of X to log
2. Write new value of Y to log
3. Write commit
4. Write x to disk
5. Write y to disk
6. Reclaim space on log

! What if we crash after 1?
! No commit, nothing on disk, so

just ignore changes
! What if we crash after 2? Ditto
! What if we crash after 3 before 4

or 5?
! Commit written to log, so replay

those changes back to disk

! What if we crash while we are
writing “commit” ?
! As with concurrency, we need

some primitive atomic operation
or else can’t build anything.
(e.g., writing a single sector on
disk is atomic!)

29

Another example: before transaction start

Log:
Storage

Mike = $100Tom = $200

Mike = $100Tom = $200Cache

Nonvolatile

30

10/17/22

16

After updates are logged

Tom = $100 Mike = $200
Storage

Mike = $100Tom = $200

Mike = $200Tom = $100Cache

Log:

Nonvolatile

31

After commit logged

Tom = $100 Mike = $200 COMMIT
Storage

Mike = $100Tom = $200

Mike = $200Tom = $100Cache

Log:

Nonvolatile

32

10/17/22

17

After copy back

Tom = $100 Mike = $200 COMMIT
Storage

Mike = $200Tom = $100

Mike = $200Tom = $100Cache

Log:

Nonvolatile

33

After garbage collection

Log:
Storage

Mike = $200Tom = $100

Mike = $200Tom = $100Cache

Nonvolatile

34

10/17/22

18

Redo logging

! Prepare
– Write all changes (in

transaction) to log
! Commit

– Single disk write to
make transaction
durable

! Redo
– Copy changes to disk

! Garbage collection
– Reclaim space in log

! Recovery
– Read log
– Redo any operations

for committed
transactions

– Garbage collect log

35

Performance

! Log written sequentially
– Often kept in flash storage

! Asynchronous write back
– Any order as long as all changes are logged before commit, and

all write backs occur after commit

! Can process multiple transactions
– Transaction ID in each log entry
– Transaction completed iff its commit record is in log

36

10/17/22

19

Redo log implementation

Volatile Memory

Complete

Mixed:

WB Complete

Committed

Uncommitted

Free Free... ...

older newerAvailable for

New Records
Eligible for GC In UseGarbage Collected

Log−head pointer

Log:

Persistent Storage

Log−head pointer Log−tail pointer
Pending write−backs

Writeback

37

Transaction isolation

Process A

move file from x to y
mv x/file y/

Process B

grep across x and y
grep x/* y/* > log

What if grep starts
after changes are
logged, but before
commit?

38

10/17/22

20

Two-phase locking

! Don’t allow “unlock” before commit.

! First phase: only allowed to acquire locks (this avoids
deadlock concerns).

! Second phase: all unlocks happen at commit

! Thread B can’t see any of A’s changes, until A
commits and releases locks. This provides
serializability.

39

Transaction isolation

Process A

Lock x, y
move file from x to y

mv x/file y/
Commit and release x,y

Process B

Lock x, y, log
grep across x and y

grep x/* y/* > log
Commit and release x, y,

log

Grep occurs either
before or after move

40

10/17/22

21

Serializability

! With two phase locking and redo logging, transactions
appear to occur in a sequential order (serializability)
– Either: grep then move or move then grep

! Other implementations can also provide serializability
– Optimistic concurrency control: abort any transaction that

would conflict with serializability

41

Caveat

! Most file systems implement a transactional model
internally
– Copy on write
– Redo logging

! Most file systems provide a transactional model for
individual system calls
– File rename, move, …

! Most file systems do NOT provide a transactional
model for user data

42

10/17/22

22

Question

! Do we need the copy back?
– What if update in place is very expensive?
– Ex: flash storage, RAID

43

Log structure

! Log is the data storage; no copy back
– Storage split into contiguous fixed size segments

* Flash: size of erasure block
* Disk: efficient transfer size (e.g., 1MB)

– Log new blocks into empty segment
* Garbage collect dead blocks to create empty segments

– Each segment contains extra level of indirection
* Which blocks are stored in that segment

! Recovery
– Find last successfully written segment

44

10/17/22

23

Storage availability

! Storage reliability: data fetched is what you stored
– Transactions, redo logging, etc.

! Storage availability: data is there when you want it
– More disks => higher probability of some disk failing
– Data available ~ Prob(disk working)^k

* If failures are independent and data is spread across k disks

– For large k, probability system works -> 0

45

RAID

! Replicate data for availability
– RAID 0: no replication
– RAID 1: mirror data across two or more disks

* Google File System replicated its data on three disks, spread across
multiple racks

– RAID 5: split data across disks, with redundancy to recover
from a single disk failure

– RAID 6: RAID 5, with extra redundancy to recover from two
disk failures

46

10/17/22

24

RAID 1: Mirroring

! Replicate writes to
both disks

! Reads can go to either
disk

Data Block 0
Data Block 1
Data Block 2
Data Block 3

Disk 0

...

Data Block 4
Data Block 5
Data Block 6
Data Block 7
Data Block 8
Data Block 9

Data Block 10
Data Block 11
Data Block 12
Data Block 13
Data Block 14
Data Block 15
Data Block 16
Data Block 17
Data Block 18
Data Block 19

Data Block 0
Data Block 1
Data Block 2
Data Block 3

Disk 1

...

Data Block 4
Data Block 5
Data Block 6
Data Block 7
Data Block 8
Data Block 9

Data Block 10
Data Block 11
Data Block 12
Data Block 13
Data Block 14
Data Block 15
Data Block 16
Data Block 17
Data Block 18
Data Block 19

47

Parity

! Parity block: Block1 xor block2 xor block3 …

10001101 block1
01101100 block2
11000110 block3

00100111 parity block

! Can reconstruct any missing block from the others

48

10/17/22

25

RAID 5: Rotating parity

Parity (0,0,0)
Parity (1,0,0)
Parity (2,0,0)
Parity (3,0,0)

Strip (0,0)

Data Block 16
Data Block 17
Data Block 18
Data Block 19

Strip (0,1)

Data Block 32
Data Block 33
Data Block 34
Data Block 35

Strip (0,2)

Data Block 0
Data Block 1
Data Block 2
Data Block 3

Strip (1,0)

Parity (0,1,1)
Parity (1,1,1)
Parity (2,1,1)
Parity (3,1,1)

Strip (1,1)

Data Block 36
Data Block 37
Data Block 38
Data Block 39

Strip (1,2)

Data Block 4
Data Block 5
Data Block 6

Strip (2,0)

Data Block 7

Data Block 20
Data Block 21
Data Block 22
Data Block 23

Strip (2,1)

Parity (0,2,2)
Parity (1,2,2)
Parity (2,2,2)
Parity (3,2,2)

Strip (2,2)

Data Block 8
Data Block 9

Data Block 10
Data Block 11

Strip (3,0)

Data Block 24
Data Block 25
Data Block 26
Data Block 27

Strip (3,1)

Data Block 40
Data Block 41
Data Block 42
Data Block 43

Strip (3,2)

Disk 3

...

Data Block 12
Data Block 13
Data Block 14
Data Block 15

Strip (4,0)

Data Block 28
Data Block 29
Data Block 30
Data Block 31

Strip (4,1)

Data Block 44
Data Block 45
Data Block 46
Data Block 46

Strip (4,2)

Stripe 0

Disk 0

... ...

Disk 1 Disk 2

...

Disk 4

...

Stripe 1

Stripe 2

49

RAID update

! Mirroring
– Write every mirror

! RAID-5: to write one block
– Read old data block
– Read old parity block
– Write new data block
– Write new parity block

* Old data xor old parity xor new data

! RAID-5: to write entire stripe
– Write data blocks and parity

50

10/17/22

26

Non-recoverable read errors

! Disk devices can lose data
– One sector per 10^15 bits read
– Causes:

* Physical wear
* Repeated writes to nearby tracks

! What impact does this have on RAID recovery?

51

Read errors and RAID recovery

! Example
– 10 1 TB disks, and 1 fails
– Read remaining disks to reconstruct missing data

! Probability of recovery =
(1 – 10^-15)^(9 disks * 8 bits * 10^12 bytes/disk)
= 93%

! Solutions:
– RAID-6: two redundant disk blocks

* parity, linear feedback shift

– Scrubbing: read disk sectors in background to find and fix
latent errors

52

