
Operations R.S. Gaines
Systems Editor

Thoth, a Portable
Real-Time Operating
System
David R. Cheriton, Michael A. Malcolm,
Lawrence S. Melen, and Gary R. Sager
University of Waterloo

Thoth is a real-time operating system which is
designed to be portable over a large set of machines. It
is currently running on two minicomputers with quite
different architectures. Both the system and application
programs which use it are written in a high-level
language. Because the system is implemented by the
same software on different hardware, it has the same
interface to user programs. Hence, application
programs which use Thoth are highly portable. Thoth
encourages structuring programs as networks of
communicating processes by providing efficient
interprocess communication primitives.

Key Words and Phrases: portability, real time,
operating systems, minicomputer

CR Categories: 3.80, 4.30, 4.35

I. Introduction

This paper describes a portable real-time operating
system called Thoth which has been developed at the

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is give n that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Authors' present addresses: D. Cheriton, Department of Computer
Science, University of British Columbia, Vancouver, B.C., Canada
V6T IW5; M.A. Malcolm and G.R. Sager, Department of Computer
Science, University of Waterloo, Waterloo, Ontario, Canada, N2L
3GI; L.S. Melen, Transport Canada, Air Traffic Services, Place de
Ville, Ottawa, Canada, KIA 0N8.

A version of this paper was presented at the Sixth Symposium on
Operating Systems Principles, West Lafayette, Indiana, November
16-18, 1977.

The remaining papers appear in Operating Systems.Review (ACM
SIGOPS Newsletter), Vol. 11, No. 5 (Special Issue). This special issue
is available prepaid from ACM, P.O. Box 12105, Church Street Station,
New York, NY 10249; ACM or SIGOPS members $9.00, all others
$12.00.
© t 979 ACM 0001-0782/79/0200-0105 $00.75

105

University of Waterloo as part of a research study into
the feasibility of portable operating systems. Thoth sup-
ports multiple processes, dynamic memory allocation,
device-independent input/output, a file system, multiple
terminals, and swapping. It is currently running on two
minicomputers with quite different architectures (Texas
Instruments 990 and Data General NOVA).

This research is motivated by the difficulties encoun-
tered when moving application programs from one sys-
tem to another; these difficulties arise when interfacing
with the hardware and system software of the target
machine. The problems encountered interfacing with
new system software are generally more difficult than

• those of interfacing with new hardware because of the
wide variety of abstract machines presented by the com-
pilers, assemblers, loaders, file systems and operating
systems of the various target machines. We have taken
the approach of developing portable system software and
porting it to "bare" hardware. The same system software
is used on different hardware, thus the same abstract
machine is available to application programs. Thus most
application programs which use Thoth are portable if
not machine independent.

Most previous work on software portability has fo-
cused on problems of porting programs over different
operating systems as well as different hardware. To our
knowledge, this is the first time an entire system has
been designed for portability. Our experience indicates
that this approach is practical both in the cost of porting
the system and its time and space performance.

An earlier experiment in operating system portability
has been reported by Cox [4]. More recently, the UNIX
operating system [13] has been moved from a PDP-I 1/
45 to an INTERDATA 7/32; this port was done independ-
ently by Miller [ll] at the University of Wollongong,
and Johnson and Ritchie [7] at Bell Telephone Labora-
tories.

The design of Thoth strives for more than portability.
A second design goal is to provide a system in which
programs may be structured using many small concur-
rent processes. We have aimed for efficient interprocess
communication and inexpensive processes to make this
structuring technique attractive.

A third design goal is that the system meet the
demands of real-time applications. To help meet this
goal, the system guarantees that the worst-case time for
response to certain external events (interrupt requests) is
bounded by a small machine-dependent constant.

A fourth design goal is that the system be adaptable
to a variety of real-time applications. A range of system
configurations is possible: A stand-alone application pro-
gram can use a version of the kernel which supports
dynamic memory allocation and interprocess communi-
cation. Larger configurations support process destruc-
tion, a device-independent input-output system, a tree-
structured file system, multiple terminals, and swapping.

Thoth as described in this paper has evolved through
several versions. It was originally developed using a

Communications February 1979
of Volume 22
the ACM ~ - m b e r 2

compiler and other support software running on a Hon-
eywell 6050. The first version was running on a Data
General NOVA in May 1976. It was ported to a Texas
Instruments 990 in August 1976 using the Honeywell for
software development. Since that time, new versions
have been developed for either the TI or the NOVA, then
ported to the other machine when complete. Larger
configurations of Thoth can be used to develop software;
in particular, all system maintenance and development
are now done using a multiterminal Thoth system.

2. The Thoth Machine

Thoth implements an abstract machine referred to as
the Thoth machine. The Thoth machine is implemented
as a base language and a set of system functions imple-
mented in this language.

The base language, described by Braga [l], models
the hardware facilities available on a large number of
machines. It was designed to conceal hardware idiosyn-
crasies while avoiding being a barrier between the pro-
grammer and the hardware. This is a stack-oriented
language derived from B [6], which is a descendant of
BCPL [12]. As in BCPL, programs in our base language
are written as a set of functions and data modules which
have global scope. Variables local to a particular func-
tion, including its parameters, are dynamically allocated
on a stack so that functions can be reentrant.

The language includes statements for disabling and
enabling hardware interrupts to provide indivisible exe-
cutions of sections of code. There is also a twit statement
which provides a way of inserting assembly language
directly into the code. This makes it possible to insert
special I /O instructions, and makes the presence of such
machine-dependent code obvious. The name of the state-
ment was chosen to suggest its low-level nature, and to
discourage its indiscriminant use. These statements are
used almost exclusively for implementing primitive func-
tions in the operating system, and are seldom necessary
or desirable in user programs.

Under Thoth, a function is invoked as either a sub-
routine or as a separate process. When invoked as a
subroutine, the function uses the caller's stack. When
invoked as a process, a new stack is allocated separate
from that of the invoking process.

A program comprises a tree of processes which inter-
face with the Thoth machine via system function calls.
This tree of "user processes" is actually a subtree of the
tree of system processes.

With small configurations, the system functions are
all linked with the user program into an executable core
image. We have used the convention of beginning all
global system names with a "." so the user can avoid
inadvertently replacing a system function or data module
by starting identifiers with some other character.

The remainder of this section describes the system
functions.

106

Memory allocation. A contiguous vector of memory
is allocated by the function call

vec = .Alloc_vec(size)

This returns a pointer to a vector of size+ 1 words, which
can be indexed as vet[0] through vec[size]. The allocation
is done by means of a next-fit algorithm based on the
boundary-tag method of Knuth [8]. The vector is re-
turned to the free list by

.Free(vec)

Process creation. A process is created with a specified
stack size by

id -- .Create(funct, stack_size)

where funct is a pointer to the function to be invoked as
a process. A unique nonzero process id is returned which
is used in future references to the new process. The
created process becomes a direct descendant of its creator
in the tree of processes. The process is created in the
embryonic state and cannot execute until it is readied:

.Ready(id, argument_list)

.Ready passes the (optional) arguments to the new pro-
cess and makes it eligible for execution.

An optional third argument can be passed to
.Create to specify the priority of the new process; the
default priority level is 0.

CPU allocation. Processes are allocated the CPU as
follows. A process eligible for execution is said to be
ready. A process which is not ready is said to be blocked.
Of the highest priority ready processes, the process ready
for the longest time is allocated the CPU, and is said to
be active.

The active process relinquishes the CPU either by
blocking or by being preempted when a higher priority
process becomes ready. The latter is caused either by a
hardware interrupt or by an action of the active process.
The active process may block by attempting to commu-
nicate with another process or by waiting for an interrupt
to occur. Certain system functions, st/ch as input and
output primitives, use interprocess communication and
may block the active process.

It follows that on a single processor machine, a
process executes indivisibly with respect to processes of
the same or lower priority until it blocks. This relative
indivisibility is a useful property of Thoth processes.

The priority of a process remains fixed throughout
its lifetime. The highest user priority is 0; lower priorities
are greater than 0. The root of a subtree of user processes
normally has priority 0. Thoth system processes have
higher priorities than user processes with the exception
of a default process which has lower priority than all
user processes and is always ready.

Interprocess communication. There are four primi-
tives for passing messages between processes. All mes-
sages are 8 words in length.

Communicat ions February 1979
of Volume 22
the ACM Number 2

A process sends a message to another process by

id = .Send(msg, id)

The contents of the 8-word msg vector is sent to the
process specified by id. The sending process blocks until
the receiving process has received the message and sent
back an 8-word reply with .Reply. The reply message
overwrites the original msg vector.

If the receiving process does not exist, .Send returns
0 and the msg vector remains unchanged. Normally
.Send returns the id of the process which sent the reply.

The receiving process uses

id = .Receive(msg)

or

id = .Receive(msg, id)

The receiving process blocks, if necessary, to receive an
8-word message in its msg vector. When the optional id
parameter is present, the message must come from the
specified process. When the id parameter is not present,
the first process sending to the receiving process will
satisfy the receive. The id of the sending process is
returned for later use in .Reply:

.Reply(msg, id)

The 8-word reply containing in the msg vector is sent to
the specified process awaiting a reply from the receiving
process. The sending process is readied upon receiving
the reply, and the replying process does not block.

An attempt to receive from a nonexistent process
results in an undefined message and a 0 being returned
by .Receive. A .Reply to a nonexistent process is a null
operation.

Instead of replying to a sender, the receiving process
can forward the message, possibly changing its contents,
to another process:

.Forward(msg, from id, to id)

The process specified by from_id must be blocked await-
ing a reply from the forwarding process. The effect of
.Forward is the same as if the from_id process had
performed a .Send to the process specified by to_id of
the 8-word message in the forwarding process's msg
vector. The forwarding process does not block.

The interprocess communication primitives can be
used for synchronizing and eliminate the need for prim-
itives like semaphores. These primitives have changed a
number of times as the system has evolved. Their se-
mantics and efficiency have considerable impact on the
system and seem worthy of further study.

Interrupts. Interrupts are handled by system proc-
esses. These processes use the function call

.Await_interrupt(device id)

to block until an interrupt occurs for the specified device.
Such an interrupt can only occur when no processes of
the same or higher priority are active. Hence an interrupt

107

causes its associated process to become both ready and
active.

Process destruction. Any process can destroy a proc-
ess (possibly itself) by

.Destroy(id)

The destroyed process ceases to exist in the sense that its
id becomes invalid, it can no longer execute, and its stack
and all memory it has allocated are returned to the free
list. When a process is destroyed, all of its descendants
are also destroyed.

For any process blocked doing a .Send to or .Receive
from a process which is destroyed, the result is the same
as if the .Send or .Receive had been executed for a
nonexistent process. In particular, when a process is
destroyed, all blocked processes attempting the send to
or receive from the deceased process become ready.

Teams. Each process belongs to a team which is a set
of processes sharing a common address space and a
common free list of memory resources. Processes on the
same team can share data. Processes on different teams
cannot share data, but they can communicate via the
interprocess communication primitives. There are two
types of teams: resident and transient. Processes on resi-
dent teams remain in memory and are higher priority
than those on transient teams. Transient teams may be
swapped to secondary storage when primary memory
becomes scarce. Transient teams can be created dynam-
ically while resident teams are created only when the
system is initialized. The priority, and hence the relative
indivisibility property, of a process on a transient team
applies only with respect to other processes on the same
team.

Teams allow the use of physical memories larger than
the logical address space on machines with memory
management hardware, and greater concurrency via
swapping on machines with a secondary storage device
suitable for swapping.

Clock. Machines with a source of periodic interrupts
can be configured to support a clock abstraction. The
current date and time of day is maintained.

The clock can be used by a process to block for a
period of time. This is done by either

.Sleep(time_and_date)

or

.Delay(seconds)

A process invoking .Sleep will block until the current
time and date becomes equal to or later than that speci-
fied by the time_and_date vector. A process invoking
.Delay will block until the specified number of seconds
has elapsed. Using an optional second argument to .De-
lay, a process can sleep for as little as one clock interrupt
(which is machine dependent). In both cases, the process
then becomes ready.

Communications February 1979
of Volume 22
the ACM Number 2

The current date and time of day can be obtained by

.Get_time(time_and_date)

It can be set by

•Set_time(time_and_date)

Input/output. The Thoth input/output system pro-
vides a reasonably uniform interface with peripheral
devices and files so they can be used interchangeably by
most programs• Each device is assigned a unique name.
For example, terminals are named "$tty0", "$tty l",
the disks are named "$disk0", etc. The random-
access memory can be treated as an input/output device,
cal led-"$mem". This allows the use of input/output
editing functions on strings of characters stored in mem-
ory.

A file or device is accessed by

fcb = .Open(pathname, mode)

where pathname is a string specifying either the name of
a device or the pathname of a file (which will be defined
later) and mode is a string specifying the mode of access
(read, write, append or read/write). Append mode is
equivalent to write mode on devices and is defined
further for files in the next section. In the remainder of
this section, we will use the word file to mean "file or
device."

The function .Open returns a pointer to afile control
block which contains a description of the accessed file
and any necessary buffer(s); this pointer serves as an
identifier for the accessed file. The process is said to own
the fcb and no other process can use it, although other
processes can still access the file using separate fcbs.

Each open file has a current byte position. When a
file is opened (except for append mode), this current
byte position is initialized to 0, the beginning of the file.

An fcb can be used to transfer data to or from files
after it is selected. An fcb is selected for input by

•Select_input(fcb)
An fcb is selected for output by:

.Select output(fcb)

These two functions verify the fcb ownership and access
mode.

Data is transferred one byte at a time from a file
selected for input by

data = .Get ()

.Get returns the current byte right-adjusted and zero-
padded on the left. Similarly, data is transferred to a file
selected for output by

.Put(data)

.Put writes the rightmost byte of the data word to the
current byte in the file. Both .Put and .Get have the
effect of incrementing the current byte position.

These data transfers are implemented with device-
dependent buffering schemes• To guarantee that all bytes

108

transferred by .Put have actually been output to the file

• Flush()

flushes the buffers of the file selected for output.
For devices and files on devices which allow direct

access to bytes,

.Seek(fcb, where, how)

changes the current byte position. The "how" parameter
specifies the interpretation of the "where" parameter•
The three possibilities are: absolute byte which sets the
current byte position to the where-th byte in the file;
relative byte which increments the current byte position
by where, which may be negative; absolute block which
sets the current byte position to the first byte in the
where-th block of the file. Absolute block seeking applies
only to devices and files on devices for which the concept
of a block is appropriate.

.Close(fcb)

flushes output (if necessary), removes access to the file
and releases memory used for the fcb. When a process
is destroyed, all of its accessed files are automatically
closed.

File system. Thoth can be configured to support a
file system on target machines with one or more direct
access secondary storage devices. The file system is struc-
tured as a tree in which each node is a file. In addition,
each node may have substructure consisting of one or
more descendant nodes.

Each node has a name consisting of up to 32 char-
acters and all the immediate descendants of a node have
unique names. The root node of the tree has the unique
name *. A node is specified by a pathname which is a
sequence of names separated by the / character. A
pathname describes a path through the tree. For exam-
pie, the pathname * refers to the root node, and the
pathname

*/src/fsys/seek

refers to the node named seek which is an immediate
descendant of fsys, which is an immediate descendant of
src, and src is immediately under the root.

The nodes which are direct descendants, or sons, of
a given node, their father, are ordered• The file system
provides functions which return the pathname of the
father, the next brother or the first son of the node
specified by a given pathname. This enables a program
to traverse a subtree of the file system.

Each process has an associated current node which is
inherited from its parent; it may be changed by

•Set_current_node(pathname)
The concept of current node allows abbreviated refer-
ences to files in the subtree rooted at the current node.
A pathname starting with " / " describes a path starting
at the current node. The current node is referred to by
@ . For example, if the current node is */src/fsys then

Communications February 1979
of Volume 22
the ACM Number 2

the file */src/fsys/seek can also be referred to as either

/seek

or

@/seek

Two functions are used to modify the file system tree
structure. A new node is created by

•Make_node(pathname)

The space occupied by a file is reclaimed and, if it is a
leaf, the node is deleted by

•Remove_node(pathname)

A file system structure can be grafted as a subtree to
the file system by

.Graft(pathname, dev icename)

The root node of the file system structure on the device
specified by device_name can subsequently be referred
to as pathname. Nodes in the grafted file system structure
can be referred to as described above using pathname as
the name of the root node.

.Ungraft(pathname)

ungrafts the file system structure rooted at pathname
making the root of the previously grafted substructure
inaccessible using pathname. Grafts allow the use of
multiple and removable secondary storage devices.

The contents of a file is regarded as an infinite
sequence of bytes. Initially all of the bytes are null. The
function .Put, described above, is used to modify indi-
vidual bytes in a file when it is open with write or append
access. A file is physically represented by one or more
blocks, where the size of a block depends on what is
convenient or efficient for the particular device. All bytes
after the last physical block are null by definition. Files
open with write or append access are automatically
grown to contain the data written. A file open with write
access can be explicitly changed to a specified size by

.Change_file(fcb, size_in_blocks)

after which it will only become smaller by another call
to .Change_file or by removing the file, although the file
will still be grown as required to contain data written.

The current byte position is determined by

position = .Where(fcb)

The file mark is a byte position in the file which is
remembered over accesses to the file. The mark is ini-
tialized to 0 when the file is created. The mark of the file
selected for output is set to the current byte position by

.Mark()

When a file open with only write or append access is
closed, the mark is set to the current byte position. The
current byte position is set to the mark by

109

.Seek mark(fcb)

or when a file is opened for append access.

.At_mark(fcb)

returns 1 if the current byte position is equal to the mark,
and 0 otherwise. The concept of mark generalizes that of
"end of file."

Environment enquiry, Environment enquiry is the
facility for a program to access parameters describing the
target machine. The availability of these parameters may
make an otherwise machine dependent program machine
independent. Some parameters, such as the number of
bits per word, the number of bits per byte, etc., are
known at compile time while others, especially those
describing the system configuration, are only available
at execution time.

Parameters known at compile time are provided in
the form of predefined manifest constants. A manifest
constant is a base language identifier defined to represent
a string of text. Every occurrence of a manifest constant
is replaced by its definition via textual substitution in the
source code during compilation.

Parameters known only at execution time are made
available as global variables, or through system function
calls•

3. Portability of Thoth

In this section the notion of portable system software
is made more precise. We then characterize the set of
machines over which Thoth is considered to be portable
and discuss the work entailed in porting the system.

With certain programs, such as compilers, assem-
blers, loaders, etc., one can distinguish the host machine
on which the program executes from the target machine
for which the output of the program is intended. We say
that a program is portable over a set of machines if it
costs significantly less to modify it for each machine than
to implement and maintain separately. This cost should
include the cost of running the program throughout its
lifetime; hence, a program that is easy to convert for a
new machine but grossly inefficient may not be consid-
ered portable. If moving portable software to new host
machines requires no modification, it is said to be ma-
chine independent. Portable software is said to be machine
invariant if it requires no modification for new target
machines. Software that is not machine invariant is said
to be machine specific.

Portable software has advantages in development,
maintenance and adaptability. It is usually less expensive
to develop one program for several machines than to
customize an ent i re ly separate program for each ma-
chine. Moreover, one can justify better design and doc-
umentation because of wider applicability. Also, it is
easier to maintain one well-designed program than sev-
eral programs.

Communications February 1979
of Volume 22
the ACM Number 2

Operating system portability is aimed at a problem
most prevalent with minicomputers. The decision to
acquire a new minicomputer must be largely predicated
on the software available for the machine unless sub-
stantial/time and resources are allocated to software
development. Moreover a major task for the manufac-
turer of a new machine is to develop software for it.
Porting Thoth to a new machine provides a substantial
body of system software plus a growing collection of
machine-independent application programs. This re-
duces the cost of providing software for a new machine
and in the case of owning several different minicompu-
ters, greatly reduces the software maintenance cost when
all the machines are running Thoth.

Three main portability problems were addressed dur-
ing the development of Thoth. The first problem was to
design an abstraction of a minicomputer that could be
efficiently realized on a large number of machines. The
dual of this problem is that of choosing the domain of
target machines so that a reasonable (and efficient)
abstraction is possible. The second problem was to rep-
resent the abstraction in such a form as to minimize the
effort required to implement it on target machines. The
third problem was to design and implement software
tools to automate as much of the implementation as
possible.

Implementability over a specific domain of machines
was a maj or consideration during the design of the Thoth
Machine abstraction described in Section 2. Some desir-
able ideas were not incorporated due to the apparent
difficulty of implementing them on certain machines.
Similarly, some possible target machines were rejected
due to their lack of hardware to efficiently implement
abstractions thought to be fundamental to any reasona-
ble system.

A high-level language has been used to represent
most of the system so that most of the translation into
machine code can be done by a compiler. The language
has been designed to encourage the use of machine-
independent constructs; however machine-specific code
can, and sometimes must, be used. To document machine
dependencies, the software is divided into components
which are stored in separate files, each of which contains
either a single function, a set of related global data
modules, or a set of related manifest definitions. Each
file is classified as either machine-invariant or machine-
specific; this classification is implied by the subtree of
the file system in which the file is stored. The machine-
specific components which need to be modified during
a port are thus isolated from machine-invariant code,
and easy to find.

The tree structure of the Thoth file system is used to
structure the source files to reflect functionality as well
as machine dependency. The subtree containing all
source files is rooted at */src; immediately below this
node are subtrees containing major functional compo-
nents such as kernel, input/output, file system, etc. Each
of these subtrees contains machine-invariant source files

immediately below its root plus a further subtree of
machine-specific code for each target machine type.
Thus, for example, there is a subtree rooted at */src/
kernel/nova containing the kernel source files which are
specific to NOVA computers.

The tree structure of the file system has proved
invaluable for managing the over 2000 files of rapidly
changing source code. The management of these files is
a nontrivial job that will become more difficult as Thoth
is ported to new machines.

Some components of the system which are nearly
machine-invariant are rendered machine-invariant by
replacing machine dependencies with manifests. Then
only the manifest definitions occur in a machine-specific
source file. For example, the process which is activated
by each real-time clock interrupt executes the following
function:

.Chronographer(timer)
{

extra .Time_vec, .Wake_time_vec, .Time_mods;
auto i;

repeat
{

START_CLOCK;
.Await_interrupt(RTC);
STOP_CLOCK;
++.Time_vec[5];
for(i=5; .Time_vec[i] > = .Time_mods[i];)

{
.Time_vec[i] -- 0;
++.Time_vec[- - i] ;

)
if(i = = DAYS && .Time_vec[i] = = 365 &&

YEARS[.Time_vec] & 3) \ non-leap year test
{

DAYS[.Time_vec] -- 0;
++YEARS[.Time_vec];

)
if(.Compare_vec(.Wake_time_vec, .Time_vec, 5) != 1

&& STATE[timer] = = RECEIVE_BLOCKED)
{

disable;
MESSAGE[timer] = WAKE_UP;
BLOCKED_ON[~im, er] = 0;
.Add_ready(timer);
enable;

}
}

)

The manifests START_CLOCK and STOP_CLOCK
must be defined for each different target machine. The
machine-specific manifest definitions for the NOVA are:

#START_CLOCK = twit(.NIO.].IS., .RTC.);

S T O P C L O C K = twit(.NIO.l.IC., .RTC.);

For the TI 990 the definitions are:

S T A R T C L O C K = twit(.CKON.)

S T O P C L O C K = twit(.CKOF.)

Thoth is also made more portable by the readability
of its source code. The most accurate documentation of
a program is usually its source; internal and external
documentation is often out of date. For this reason, our

110 Communications February 1979
of Volume 22
the ACM Number 2

language design has been strongly influenced by aes-
thetic considerations which are often dismissed as "syn-
tactic sugar." Since the readability of source code de-
pends heavily on the style of coding, members of the
project have spent considerable time discussing detailed
style issues as well as reading each other's code. This has
resulted m our adopting a uniform style by consensus,
making it easier to read each other's code.

The machine-specific components of the system
which must be changed during a port may he viewed as
interfaces between system abstractions and machine
hardware. The main interface is provided by the com-
piler which maps the machine-independent high-level
language constructs into machine instructions. The code
generation phase of the compiler is thus an important
interface which must be changed during a port. Other
interfaces are represented by assembly code or twit state-
ments in the high-level language. Besides the compiler,
there are three main interfaces.

The first interface is in the primitive operations of
readying, blocking and preempting processes. The form
of these primitives is machine-mvariant, but a small
amount of interface code must be written to load and
store the volatile environments of processes as they ac-
quire and relinquish the CPU. The abstraction of inter-
rupts is a more complicated aspect of process preemption
and activation; this abstraction is implemented by an
assembly coded module called the interrupt handler.

A second interface is between the input/output sys-
tem and the hardware interfaces. For character-oriented
devices, such as teletypes, simple functions which "out-
put a character and wait for an interrupt", or "wait for
an interrupt and then input a character" are imple-
mented using twit statements. A direct access secondary
storage device is treated as an indexed sequence of fixed-
size blocks which may be read or written randomly by
referring to the index of the desired block. (The block
size may vary from one device to another.) This abstrac-
tion is easily implemented in the device handlers includ-
ing having several logical devices per physical device as
in UNIX [13]. For purposes of program loading and
swapping, the random access device handlers also sup-
port reading and writing of multiple contiguous blocks,
which is supported directly by the hardware on many
machines.

A third interface can be used when appropriate mem-
ory mapping hardware is available. This consists of a
small number of functions for changing memory maps.

Implementing these interfaces is relatively straight-
forward because, except for the memory mapping inter-
face, no design decisions need to be made. The interface
functions have simple well-defined semantics. In most
cases, the interface functions from a previous implemen-
tation for another machine can be used as prototypes in
which only the machine-specific parts must be changed,
and they serve as a model for the new implementation.

Interface code for the NOVA implementation includes
216 assembly language instructions and 201 twit instruc-

111

tions. For the T1990 implementation we have 638 assem-
bly language instructions and 334 twit instructions.

Thoth domain. It seems impractical to design system
software to be portable over all computers. We have
therefore restricted our attention to a subset of machines
which we call the Thoth domain. The characterizing
machine properties given below are based on assump-
tions made about the target machine in the base language
and in the machine independent parts of the operating
system. As such, a machine not in the Thoth domain
could still be a target machine for Thoth. Porting to such
a machine may require changes to machine independent
code or tolerating some degree of inefficiency. That is,
the characterization of the Thoth domain is not meant
to exclude machines as much as to document assump-
tions.

A machine in the Thoth domain must allow a unit of
storage called a word, which is some fixed number (one
or more) of consecutive storage units totaling at least 16
bits. It must be possible to indivisibly access or modify
the contents of a word (i.e. it must not be possible for an
interrupt to occur during an access or modification). It
should be possible to efficiently address consecutive
words using consecutive integers, called word pointers.
It must be possible to store any word pointer in a word.
These concepts of words and word pointers are funda-
mental to the base language and are therefore necessary
for any Thoth implementation.

Thoth does not use the concept of byte pointer be-
cause it does not appear to have an efficient implemen-
tation on some machines; several machines cannot store
a byte pointer in a word (e.g. Honeywell Level 6, Rolm
1602, MODCOMP, Tandem 16). However, on these ma-
chines, a byte may be addressed as a non-negative offset
relative to a word address. This is the abstraction used
for accessing bytes in the base language.

Every machine in the Thoth domain has a single
processor. This assumption is used to achieve relative
indivisibility as defined in Section 2. Porting to a multi-
processor machine would require additional process syn-
chronization; this seems feasible in some cases. However,
our experience has been limited to single processor ma-
chines. Preferably the processor uses binary two's com-
plement integer representation and arithmetic but rela-
tively minor changes to the code would circumvent this
restriction. It is assumed that the processor can be inter-
rupted by the device interfaces, but that it is able to
execute code to prevent interrupts from occurring (i.e.
disable interrupts). This allows the implementation of
the enable and disable statements of the base language
and the interrupt abstraction described in Section 2. It is
preferable that the processor be able to selectively pre-
vent devices or groups of devices from interrupting and
enable interrupts without negating any selective disa-
bling.

The base language requires an efficient means of
implementing a stack. Each function invocation uses a
part of the process' stack, called a stack frame, which is

Communications February 1979
of Volume 22
the ACM Number 2

used to store local variables, temporary results, and to
receive arguments. Words and bytes in a stack frame
m~y be referenced in an arbitrary order. Generally, a
dedicated index register suffices for an efficient stack
implementation. So-called "hardware stack" features
found on a number of minicomputers are generally not
appropriate for implementing this type of stack.

Porting Thoth. Porting the complete Thoth system to
new hardware includes porting a compiler, assembler,
loader, and library editor in addition to code which
implements the system primitives discussed in Section 2.

An "assembler generating kit" is used to build an
assembler for a specific target machine from a prototype
assembler. In our experience, it takes roughly 10 man
hours to produce the assembler this way (see [10]). The
assembler produced is not particularly fast and lacks
some features but it is adequate because the compiler
generates relocatable load code directly and only a small
part of the system is implemented in assembly code.
Assembly code is used for initializing interrupt vectors,
adapting the hardware interrupt structure to that of
Thoth and implementing intrinsic functions called by
compiled code. It has also been used to implement
efficient versions of frequently used functions.

The relocating linking loader is machine invariant as
well as machine independent; i.e. it requires no modifi-
cation for use with a new target machine in the Thoth
domain. Its design, discussed in [2], is based on a relo-
catable load code format suitable for machines in the
Thoth domain. The load code is a sequence of directives
which are executed by the loader to produce an execut-
able module. The initial directives specify target machine
parameters relevant to the loading process. Because the
load code format is the same for all target machines, the
library editor is also machine invariant.

The base language compiler consists of five phases
which communicate via intermediate representations of
source programs stored in files. Phases 1 and 2 do lexical
and syntactic analysis. Phase 3 performs machine invar-
iant global and local optimizations and modifies expres-
sion trees to facilitate code generation. Phases 4 and 5
do code generation. All phases are machine independent
and the first 4 phases are machine invariant. Phase 5
requires substantial modification to generate code for a
new machine. Converting the compiler to generate work-
ing code seems to take a few weeks although converting
it to generate quality code may take up to several months
depending on the complexity of the target machine. Most
of this time is spent designing the stack and code bursts
for expression evaluation which is one of the most time-
consuming and challenging parts of porting Thoth.

After the compiler is ported, a simple version of the
system can be running in a few days. Additional device
drivers have been added to the system in times ranging
from under one hour to two weeks.

Accurately quantifying the effort required to port the
system is difficult because the system has been under
development during the times we have ported it and the

112

porting has been done by the designers/implementors.
In general, the effort required is dependent on the knowl-
edge and ability of the porters, the architecture, config-
uration and documentation of the target machine and
the software support available for performing the port.
Thus, although we feel confident that porting Thoth
requires considerably less effort than implementing sim-
ilar software from scratch, we refrain from stricter esti-
mates of time requirements until more experience has
been gained.

4. Performance of Thoth

Measurements of operating system performance are
important to the design of application programs, partic-
ularly real-time applications. Such measurements are
also useful for evaluating the efficiency of the system
design and implementation.

Space performance. The user can tailor the configu-
ration of Thoth to a particular application. The config-
uration table is a matrix o f constants and function names.
This table is used during system initialization to create
system processes and data structures. Some of the entries
in the configuration table determine what input/output
devices will be supported. The basic Thoth configuration
includes support for the following:

dynamic memory allocation
process creation
interprocess communication
input/output
Stty0

Optional entries in the configuration table cause func-
tions to be loaded from the library to support

clock
process destruction
additional devices
file system
multiple teams and swapping

Thoth may be used in two different modes: multiple
team and single team. In a multiple team system, the
system code is loaded into primary memory before (i.e.
separately from) any of the user teams. In a single team
system, all system code is linked with the user code as a
single core image. A configuration which allows multiple
teams also provides the ability to load executable teams
from files, swap teams when the primary memory re-
source becomes scarce, enforce an equitable sharing of
the CPU resource among the teams, and reclaim re-
sources from teams which terminate either normally or
abnormally. For these reasons, any configuration which
includes multiple teams must also include the file system,
clock and process destruction options. If the system is
configured to run a single user team "stand alone," there
is no interdependence of the options; thus, the user's
requirements alone dictate the options to be included.

Communicat ions February 1979
of Volume 22
the ACM Number 2

The space requirements for a null user team are given
in Table I; the figures are separated into requirements
for code and data. Code includes instructions and exter-
nal variables, while data includes team descriptors, pro-
cess descriptors, stacks and buffers allocated during sys-
tem initialization.

A substantial decrease in size can be realized by
eliminating the input/output primitives and support for
$tty0. The code size for a stripped version of Thoth can
be reduced to approximately 2000 words for the NOVA/
2 and 2700 words for the TI 990. The stripped versions
are indicative of the sizes possible for specialized control
applications.

The difference in code size between the TI 990 and
N o v a results mainly from the fact that the base language
is word-oriented and typeless. Since the TI 990 is byte-
addressed, every use of a word pointer requires conver-
sion to a byte address. These conversions are not required
on the NOVA because it is a word-addressed machine.

Time performance. Many real-time application pro-
grams are best structured as networks of processes pass-
ing data via interprocess communication primitives.
Hence the speed of the communication primitives deter-
mines the maximum capacity of the network. Since
Thoth itself relies on this structuring philosophy, the
efficiency of these primitives is important to the effi-
ciency of other aspects of the system.

Measurement of the time required for the commu-
nication primitives is accomplished with a Thoth team.
The team's root process creates two processes which
repeatedly call matching sets of communication func-
tions. One of the processes counts the number of calls
made and, after a fixed time has elapsed, the parent
process divides this number into the elapsed time to
obtain an estimate of the time per communication. The
results of these measurements are presented in Table II.
This meaurement technique includes all overhead for
dispatching, handling clock interrupts, and some artifact
due to loop control and counting.

Similar techniques obtain estimates of the time re-
quired to create, ready and destroy a process and the
time required for byte I /O primitives (.Get and .Put).
These times are also included in Table II. Input and
output which is block, rather than byte, oriented can be
done in a portable manner using facilities not described
in Section 2. Such an approach is used by the file Copy
utility; to copy a file of 10,000 bytes to a new file on the
same disk drive requires 6 seconds on our TI 990/10
using a DS-25 moving head disk and 4 seconds on our
NOVA/2 with a fixed head disk. Most of this time is spent
creating and opening the files. To copy a portion of a
disk pack containing a 9.4 million-byte file system from
one drive to another takes 116 seconds on our TI 990/10
using two T-25 disk drives.

Real-time response. One measure of the effectiveness
of a real-time system is the maximum amount of time
required to respond to an interrupt. For this reason, all
algorithms in Thoth which require the disabling of in-

113

T a b l e 1. Sizes o f T h o t h c o n f i g u r a t i o n s .

NOVA T I 9 9 0

C o d e D a t a C o d e D a t a

Basic c o n f i g u r a t i o n 3595* 1024 5778 1166

C l o c k 336 142 227 198

Process d e s t r u c t i o n 356 84 446 270

M e m o r y I / O 127 0 312 0
Fi le sys tem 4743 415 5627 602

E a c h a d d i t i o n a l t ty 24 152 25 721

Mul t ip l e t e a m s 2828 t 4396 t

* All sizes are given in 16-bit words. The total space required by a given-configuration
can be computed by adding the requirements of the options to those of the basic system. Note
that since the second tty shares code with the first, it requires only the space for an entry in the
configuration table and data for additional driver processes.

t The data size for multiple teams is decided when the system is generated: the data
space required depends on the maximum number of user teams and processes and the number
of devices supported by the system. Systems currently running use from 3600 to 6300 words.

T a b l e II. T i m e s in m i c r o s e c o n d s for T h o t h pr imit ives .

NOVA/2 TI 9 9 0 / 1 0

. S e n d / . R e c e i v e / . R e p l y 656 1862

. F o r w a r d 323 1025

. C r e a t e / . R e a d y / . D e s t r o y 5000 22700

.Put 88 176

.Ge t 69 137

T a b l e I l l . W o r s t case d i sab le t imes in m i c r o s e c o n d s for the NOVA/2.

(The a s soc i a t ed f u n c t i o n n a m e ind ica tes w h e r e the d i s ab l ed code

begins .)

D i sab le t ime Sys t em f u n c t i o n

297 .Send

266 .Free

254 .Receive
187 c lock processes

162 . R e a d y
111 .Alloc vec

107 . A w a i t _ i n t e r r u p t

58 .Crea te
54 i n t e r rup t supe rv i so r

22 .Kill

17 .Rep ly

terrupts have been designed to disable for an amount of
time which can be bounded by a machine-dependent
constant. Unfortunately, a rather sophisticated hardware
monitor is required to measure this aspect of system
performance. In the case of the NOVA/2, however, the
measurements are available through the use of a Fortran
program designed to simulate execution of programs on
the NOVA/2 and gather detailed hardware level infor-
mation about the program executed [14]. The timings
from the simulator are considered comparable to those
in Table II because the NovA simulator reproduces the
behavior of the timing programs to within 3 percent of
our NOVA/2. This simulator proved to be of great use
during the early stages of Thoth development, and tests
are still run occasionally.

The observed results from programs run on the sim-
ulator are presented in Table III; the data represents
worst-case disable times and their associated functions.

C o m m u n i c a t i o n s F e b r u a r y 1979
o f V o l u m e 22
the A C M N u m b e r 2

Of the functions presented in Table III, all but the
interrupt handler are machine-independent. Since the
interrupt handier and the machine-dependent functions
called by the other functions all have a similar structure
in both the NOVA and TI 990 implementations, it is
reasonable to estimate disable times for the TI 990 from
the ratios of speeds indicated in Table II.

The simulator also provides response times to inter-
rupts from each of the devices. Response time for a
specific device is defined to be the elapsed real time from
"device completion" until the CPU "services" the result-
hag interrupt. For the NOVA computer, device completion
occurs when the device sets its DONE flip-flop to 1, and
the-CPU services the interrupt by setting the device's
DONE tlip-flop to 0. The NOVA is capable of selectively
disabling devices for interrupts; this allows the use of
multiple priority levels for interrupt handler processes.
When a device's handler process is active, interrupts are
selectively disabled for devices with handler processes of
the same or lower priority; those with handier processes
of higher priority may still interrupt and thereby preempt
the lower priority process.

The best response time for the $tty0 output is 68
microseconds. The best response time for the real-time
clock is also 68 microseconds. The worst cases occur
when both devices complete just as a lower priority
process enters the worst-case disabled section of code
(see Table III). Since the real-time clock handier process
(which executes the .Chronographer code given in Sec-
tion 3) has a higher priority than the $tty0 output han-
dler, the worst case time for the clock is 68 + 297 = 365
microseconds, assuming there are no other devices with
a same or higher priority handler process. With this
assumption the worst case time for the $tty0 output is 68
+ 68 + 297 + x > 433 microseconds, where x is the time
spend in .Chronographer from the STOP_CLOCK
through the .Await_interrupt function call. Unfortu-
nately, we have no convenient way of measuring the
worst case value for x which would occur at the begin-
ning of some year. This is consistent with the observed
worst-case response times of 316 microseconds for the
real-time clock and 594 microseconds for Stty0 output.

5. Concluding Remarks

The original objectives of developing Thoth were to
investigate the feasibility of portable operating systems
and to provide a tool for teaching real-time programming
of minicomputers. To these ends, we feel Thoth has been
highly successful.

As a research project, Thoth has demonstrated the
feasibility of a portable operating system for a specified
class of machines. Thoth has also facilitated writing
machine-independent utility, communication and appli-
cation programs. The approach of porting the entire
system to a "bare machine" has many advantages but
cames the penalty of requiring that other software either

114

be discarded or ported to Thoth. Because Thoth cur-
rently supports only the one language, porting "foreign"
software to Thoth involves a complete rewrite.

As a pedagogic tool, Thoth has been used at several
levels. Undergraduates taking a course in real-time pro-
gramming of minicomputers have written Thoth pro-
grams to control a model train set and to race model cars
on a slot car track interfaced to a minicomputer. Because
Thoth is written in a high-level language, students have
been able to read the source code to gain insight into
operating system structure. In this respect, portability
and pedagogy seem complementary; exemplary and
portable techniques both strive for general applicability.
At the graduate level, Thoth has been studied and
critically analyzed as part of a weekly seminar. It has
been used for various graduate programming projects,
and for several faculty members' research.

A commercial firm is applying Thoth to real-time
control problems. Thoth is also proving to be valuable
for our own minicomputer applications.

A major deficiency with the system currently is the
language. Because it is untyped, there are no unsigned
or double precision integers thus limiting the maximum
positive integer on most machines to 32767. For example,
files can easily be too big for .Where (see Section 2) to
always return a meaningful value. Of more consequence
is the lack of a pointer type. Because all pointers are
word pointers, the use of a pointer on a byte-addressable
machine involves conversion to a byte address on every
use with the resulting penalty in speed and size of code.
We plan to introduce types into the language to solve
these problems. It is interesting to note that our desire
for types in the language is based entirely on considera-
tions of efficiency and portability over diverse machines.

Much remains to be done in the development of
Thoth and the study of portable operating systems in
general. We are currently working on several problems.
First, more work is required on a portable abstraction
for the use of memory management and protection hard-
ware. The system running on the TI 990/10 uses the
memory mapping hardware option but we have yet to
use such hardware on other machines. Second, there is
the continual effort to correct deficiencies and inefficien-
cies in the design of the system and extend its function-
ality. That is, we continue to address problems of devel-
oping an operating system in addition to the portability
considerations. Finally, more experience with porting the
system is required to fully evaluate the portability of
Thoth. The system is currently being ported to the
Honeywell Level 6 minicomputer and we plan to port to
the PDP- 11 later on.

Acknowledgments. We gratefully acknowledge the
support given this project by the National Research
Council of Canada. This research could not have been
done without the facilities and environment of the Uni-
versity of Waterloo's Mathematics Faculty Computing
Facility directed by Professor W. Morven Gentleman. A

Communications February 1979
of Volume 22
the ACM Number 2

number of individuals have made notable contributions
to Thoth and the Portable System Software Project.
Included in this group are Mike Afheldt, Bert Bon-
kowski, Otmar Bochardt, Reinaldo Braga, Morven
Gentleman, Sam Henning, Tom Miller, Alfedo Piquer,
Patricio Poblete, Laurie Rapsey, Gary Stafford, Ian Tel-
ford, and Fred Young. We also thank John Corman for
keeping our hardware running. We have drawn from
many sources in the design of the Thoth Machine de-
scribed in Section 2. The main influence has been other
operating systems, particularly: Brinch-Hansen's RC
4000 system, Multics, Data General's RTOS, Honey-
well's GCOS, and Bell Laboratories' UNIX.

A note on the name: in Egyptian mythc ogy [9],
Thoth ruled Egypt for 3226 years. He was endowed with
complete knowledge and wisdom, inventing all arts and
sciences including arithmetic, geometry, astronomy,
soothsaying, magic, medicine, drawing, and writing. In
some stories, creation was accomplished by the sound of
his voice. After his death, Thoth went to the skies where
he became god of letters, god of wisdom, messenger for
the gods, upholder of justice, and searcher after truth.
He measured time, divided the world, kept divine ar-
chives, and was patron of history. When Egyptians died,
Thoth weighed their hearts and proclaimed them
"guilty" or "not guilty." He then revealed the magic
formulae needed to traverse the underworld in safety.

Received August 1977

References
(Note. References [3] and [5] are not cited in the text.)
i. Braga, R.S.C. Eb ref. manual. Res. Rep. CS-76-45, Dept. of
Computer Sci., U. of Waterloo, November 1976.
2. Braga, R.S.C., Malcolm, M.A., and Sager, G.R. A portable
linking loader. Symp. on Trends and Applications 1976: MICRO and
MINI Systems (an IEEE/NBS conf.), May 1976, pp. 124-128.
3. Brinch-Hansen, P. The nucleus of a multipregramming system.
Comm. ACM 13, 4 (April 1970), 238-241,250.
4, Cox, G.W. Portability and adaptability in operating system
design. Ph.D. Th., Purdue U., Indiana, 1975.
5. Feiertag, R.J., and Organick, E.I. The Multics input-output
system. Proc. Third Symp. on Oper. Sys. Princ., Oct. 1971, pp. 35-41
(available from ACM, New York).
6. Johnson, S.C., and Kernighan, B.W. The programming language
B. Bell Lab. Comput. Sci. Tech. gep. No. 8, January 1973.
7. Johnson, S.C., and Ritchie, D.R. Personal communications, 1977.
8. Knuth, D.E. The Art of Computer Programming, Vol. 1:
Fundamental Algorithms. Addison-Wesley, Reading, Mass., 1973.
9. Lons, Veronica. Egyptian Mythology. The Hamlyn Pub. Group,
Ltd., 1968.
10. Malcolm, M.A., and Stafford, G.J. The Thoth assembler writing
kit. Res. Rep. CS-77-14, Dept. of Computer Sci., U. of Waterloo,
October 1977.
I1. Miller, R. UNIX--a portable operating system. Proc. of the
Australian Universities Computer Sci. Seminar, Feb. 1978, pp. 23-25.
12. Richards, M. BCPL: a tool for compiler writing and system
programming. Proc. Spring Joint Computer Conf., 1969, pp. 557-566.
13. Ritchie, D.M., and Thompson, K. The UNIX time sharing
system. Comm. ACM 17, 7 (July 1974), 365-375.
14. Sager, G.R. Emulation for program measurement/debugging. In
Minicomputer Software, J.R. Bell and C.G. Bell, Eds. North-Holland
Pub. Co., Amsterdam, 1976, pp. 107-123.

115

Operating R.S. Gaines
Systems Editor

Synchronization with
Eventcounts and
Sequencers
David P. Reed
Rajendra K. Kanodia
Massachusetts Institute of Technology

Synchronization of concurrent processes requires
controlling the relative ordering of events in the
processes. A new synchronization mechanism is
proposed, using abstract objects called eventcounts and
sequencers, that allows processes to control the
ordering of events directly, rather than using mutual
exclusion to protect manipulations of shared variables
that control ordering of events. Direct control of
ordering seems to simplify correctness arguments and
also simplifies implementation in distributed systems.
The mechanism is defined formally, and then several
examples of its use are given. The relationship of the
mechanism to protection mechanisms in the system is
explained; in particular, eventcounts are shown to be
applicable to situations where confinement of
information matters. An implementation of eventcounts
and sequencers in a system with shared memory is
described.

Key Words and Phrases: process synchronization,
interprocess communication, distributed systems,
security models, mutual exclusion, semaphores

CR Categories: 4.30, 4.32

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This research was performed in the Computer Systems Research
Division of the M.I.T. Laboratory for Computer Science. It was
sponsored in part by Honeywell Information Systems, Inc., and in part
by the Air Force Information Systems Technology Applications Office
(ISTAO), and by the Advanced Research Projects Agency (ARPA) of
the Department of Defense under ARPA order 2641, which was
monitored by I STAO under Contract F 19628-74-C-0193.

Authors' present addresses: D.P. Reed, Laboratory for Computer
Science, Massachusetts Institute of Technology, Cambridge MA 02139;
R.K. Kanodia, Bell Laboratories, Hohndel, NJ 07733

A version of this paper was presented at the Sixth Symposium on
Operating Systems Principles, West Lafayette, Indiana, November
16-18, 1977.

The remaining papers appear in Operating Systems Review (ACM
SIGOPS newsletter), Vol. 11, No. 5 (Special Issue). This special issue
is available prepaid from ACM, P.O. Box 12105, Church Street Station,
New York, NY 10249; ACM or SIGOPS members $9.00, all others
$12.00.
© 1979 ACM 0001-0782/79/0200-0115 $00.75

Communications February 1979
of Volume 22
the ACM Number 2

