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Thoth is a real-time operating system which is 
designed to be portable over a large set of machines. It 
is currently running on two minicomputers with quite 
different architectures. Both the system and application 
programs which use it are written in a high-level 
language. Because the system is implemented by the 
same software on different hardware, it has the same 
interface to user programs. Hence, application 
programs which use Thoth are highly portable. Thoth 
encourages structuring programs as networks of 
communicating processes by providing efficient 
interprocess communication primitives. 
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I. Introduction 

This paper describes a portable real-time operating 
system called Thoth which has been developed at the 
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University of Waterloo as part of a research study into 
the feasibility of portable operating systems. Thoth sup- 
ports multiple processes, dynamic memory allocation, 
device-independent input/output, a file system, multiple 
terminals, and swapping. It is currently running on two 
minicomputers with quite different architectures (Texas 
Instruments 990 and Data General NOVA). 

This research is motivated by the difficulties encoun- 
tered when moving application programs from one sys- 
tem to another; these difficulties arise when interfacing 
with the hardware and system software of the target 
machine. The problems encountered interfacing with 
new system software are generally more difficult than 

• those of interfacing with new hardware because of the 
wide variety of abstract machines presented by the com- 
pilers, assemblers, loaders, file systems and operating 
systems of the various target machines. We have taken 
the approach of developing portable system software and 
porting it to "bare" hardware. The same system software 
is used on different hardware, thus the same abstract 
machine is available to application programs. Thus most 
application programs which use Thoth are portable if 
not machine independent. 

Most previous work on software portability has fo- 
cused on problems of porting programs over different 
operating systems as well as different hardware. To our 
knowledge, this is the first time an entire system has 
been designed for portability. Our experience indicates 
that this approach is practical both in the cost of porting 
the system and its time and space performance. 

An earlier experiment in operating system portability 
has been reported by Cox [4]. More recently, the UNIX 
operating system [13] has been moved from a PDP-I 1/ 
45 to an INTERDATA 7/32; this port was done independ- 
ently by Miller [ll] at the University of Wollongong, 
and Johnson and Ritchie [7] at Bell Telephone Labora- 
tories. 

The design of Thoth strives for more than portability. 
A second design goal is to provide a system in which 
programs may be structured using many small concur- 
rent processes. We have aimed for efficient interprocess 
communication and inexpensive processes to make this 
structuring technique attractive. 

A third design goal is that the system meet the 
demands of real-time applications. To help meet this 
goal, the system guarantees that the worst-case time for 
response to certain external events (interrupt requests) is 
bounded by a small machine-dependent constant. 

A fourth design goal is that the system be adaptable 
to a variety of real-time applications. A range of system 
configurations is possible: A stand-alone application pro- 
gram can use a version of the kernel which supports 
dynamic memory allocation and interprocess communi- 
cation. Larger configurations support process destruc- 
tion, a device-independent input-output system, a tree- 
structured file system, multiple terminals, and swapping. 

Thoth as described in this paper has evolved through 
several versions. It was originally developed using a 
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compiler and other support software running on a Hon- 
eywell 6050. The first version was running on a Data 
General NOVA in May 1976. It was ported to a Texas 
Instruments 990 in August 1976 using the Honeywell for 
software development. Since that time, new versions 
have been developed for either the TI or the NOVA, then 
ported to the other machine when complete. Larger 
configurations of  Thoth can be used to develop software; 
in particular, all system maintenance and development 
are now done using a multiterminal Thoth system. 

2. The Thoth Machine 

Thoth implements an abstract machine referred to as 
the Thoth machine. The Thoth machine is implemented 
as a base language and a set of  system functions imple- 
mented in this language. 

The base language, described by Braga [l], models 
the hardware facilities available on a large number of  
machines. It was designed to conceal hardware idiosyn- 
crasies while avoiding being a barrier between the pro- 
grammer and the hardware. This is a stack-oriented 
language derived from B [6], which is a descendant of  
BCPL [12]. As in BCPL, programs in  our base language 
are written as a set of  functions and data modules which 
have global scope. Variables local to a particular func- 
tion, including its parameters, are dynamically allocated 
on a stack so that functions can be reentrant. 

The language includes statements for disabling and 
enabling hardware interrupts to provide indivisible exe- 
cutions of  sections of  code. There is also a twit statement 
which provides a way of  inserting assembly language 
directly into the code. This makes it possible to insert 
special I /O  instructions, and makes the presence of  such 
machine-dependent code obvious. The name of  the state- 
ment was chosen to suggest its low-level nature, and to 
discourage its indiscriminant use. These statements are 
used almost exclusively for implementing primitive func- 
tions in the operating system, and are seldom necessary 
or desirable in user programs. 

Under  Thoth, a function is invoked as either a sub- 
routine or as a separate process. When invoked as a 
subroutine, the function uses the caller's stack. When 
invoked as a process, a new stack is allocated separate 
from that of  the invoking process. 

A program comprises a tree of  processes which inter- 
face with the Thoth machine via system function calls. 
This tree of  "user processes" is actually a subtree of the 
tree of  system processes. 

With small configurations, the system functions are 
all linked with the user program into an executable core 
image. We have used the convention of  beginning all 
global system names with a "." so the user can avoid 
inadvertently replacing a system function or data module 
by starting identifiers with some other character. 

The remainder of  this section describes the system 
functions. 
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Memory allocation. A contiguous vector of  memory 
is allocated by the function call 

vec = .Alloc_vec(size) 

This returns a pointer to a vector of  size+ 1 words, which 
can be indexed as vet[0] through vec[size]. The allocation 
is done by means of  a next-fit algorithm based on the 
boundary-tag method of  Knuth [8]. The vector is re- 
turned to the free list by 

.Free(vec) 

Process  creation. A process is created with a specified 
stack size by 

id -- .Create(funct, stack_size) 

where funct is a pointer to the function to be invoked as 
a process. A unique nonzero process id is returned which 
is used in future references to the new process. The 
created process becomes a direct descendant of  its creator 
in the tree of  processes. The process is created in the 
embryonic state and cannot execute until it is readied: 

.Ready(id, argument_list) 

.Ready passes the (optional) arguments to the new pro- 
cess and makes it eligible for execution. 

An optional third argument can be passed to 
.Create to specify the priority of  the new process; the 
default priority level is 0. 

CPU allocation. Processes are allocated the CPU as 
follows. A process eligible for execution is said to be 
ready. A process which is not ready is said to be blocked. 
Of the highest priority ready processes, the process ready 
for the longest time is allocated the CPU, and is said to 
be active. 

The active process relinquishes the CPU either by 
blocking or by being preempted when a higher priority 
process becomes ready. The latter is caused either by a 
hardware interrupt or by an action of  the active process. 
The active process may block by attempting to commu- 
nicate with another process or by waiting for an interrupt 
to occur. Certain system functions, st/ch as input and 
output primitives, use interprocess communication and 
may block the active process. 

It follows that on a single processor machine, a 
process executes indivisibly with respect to processes of  
the same or lower priority until it blocks. This relative 
indivisibility is a useful property of  Thoth processes. 

The priority of  a process remains fixed throughout 
its lifetime. The highest user priority is 0; lower priorities 
are greater than 0. The root of  a subtree of  user processes 
normally has priority 0. Thoth system processes have 
higher priorities than user processes with the exception 
of  a default process which has lower priority than all 
user processes and is always ready. 

Interprocess communication. There are four primi- 
tives for passing messages between processes. All mes- 
sages are 8 words in length. 
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A process sends a message to another process by 

id = .Send(msg, id) 

The contents of the 8-word msg vector is sent to the 
process specified by id. The sending process blocks until 
the receiving process has received the message and sent 
back an 8-word reply with .Reply. The reply message 
overwrites the original msg vector. 

If  the receiving process does not exist, .Send returns 
0 and the msg vector remains unchanged. Normally 
.Send returns the id of the process which sent the reply. 

The receiving process uses 

id = .Receive(msg) 

or 

id = .Receive(msg, id) 

The receiving process blocks, if necessary, to receive an 
8-word message in its msg vector. When the optional id 
parameter is present, the message must come from the 
specified process. When the id parameter is not present, 
the first process sending to the receiving process will 
satisfy the receive. The id of  the sending process is 
returned for later use in .Reply: 

.Reply(msg, id) 

The 8-word reply containing in the msg vector is sent to 
the specified process awaiting a reply from the receiving 
process. The sending process is readied upon receiving 
the reply, and the replying process does not block. 

An attempt to receive from a nonexistent process 
results in an undefined message and a 0 being returned 
by .Receive. A .Reply to a nonexistent process is a null 
operation. 

Instead of replying to a sender, the receiving process 
can forward the message, possibly changing its contents, 
to another process: 

.Forward(msg, from id, to id) 

The process specified by from_id must be blocked await- 
ing a reply from the forwarding process. The effect of 
.Forward is the same as if the from_id process had 
performed a .Send to the process specified by to_id of 
the 8-word message in the forwarding process's msg 
vector. The forwarding process does not block. 

The interprocess communication primitives can be 
used for synchronizing and eliminate the need for prim- 
itives like semaphores. These primitives have changed a 
number of times as the system has evolved. Their se- 
mantics and efficiency have considerable impact on the 
system and seem worthy of further study. 

Interrupts. Interrupts are handled by system proc- 
esses. These processes use the function call 

.Await_interrupt(device id) 

to block until an interrupt occurs for the specified device. 
Such an interrupt can only occur when no processes of 
the same or higher priority are active. Hence an interrupt 
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causes its associated process to become both ready and 
active. 

Process destruction. Any process can destroy a proc- 
ess (possibly itself) by 

.Destroy(id) 

The destroyed process ceases to exist in the sense that its 
id becomes invalid, it can no longer execute, and its stack 
and all memory it has allocated are returned to the free 
list. When a process is destroyed, all of its descendants 
are also destroyed. 

For any process blocked doing a .Send to or .Receive 
from a process which is destroyed, the result is the same 
as if the .Send or .Receive had been executed for a 
nonexistent process. In particular, when a process is 
destroyed, all blocked processes attempting the send to 
or receive from the deceased process become ready. 

Teams. Each process belongs to a team which is a set 
of processes sharing a common address space and a 
common free list of memory resources. Processes on the 
same team can share data. Processes on different teams 
cannot share data, but they can communicate via the 
interprocess communication primitives. There are two 
types of teams: resident and transient. Processes on resi- 
dent teams remain in memory and are higher priority 
than those on transient teams. Transient teams may be 
swapped to secondary storage when primary memory 
becomes scarce. Transient teams can be created dynam- 
ically while resident teams are created only when the 
system is initialized. The priority, and hence the relative 
indivisibility property, of a process on a transient team 
applies only with respect to other processes on the same 
team. 

Teams allow the use of physical memories larger than 
the logical address space on machines with memory 
management hardware, and greater concurrency via 
swapping on machines with a secondary storage device 
suitable for swapping. 

Clock. Machines with a source of periodic interrupts 
can be configured to support a clock abstraction. The 
current date and time of day is maintained. 

The clock can be used by a process to block for a 
period of time. This is done by either 

.Sleep(time_and_date) 

or  

.Delay(seconds) 

A process invoking .Sleep will block until the current 
time and date becomes equal to or later than that speci- 
fied by the time_and_date vector. A process invoking 
.Delay will block until the specified number of seconds 
has elapsed. Using an optional second argument to .De- 
lay, a process can sleep for as little as one clock interrupt 
(which is machine dependent). In both cases, the process 
then becomes ready. 
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The current date and time of day can be obtained by 

.Get_time(time_and_date) 

It can be set by 

•Set_time(time_and_date) 

Input/output.  The Thoth input/output  system pro- 
vides a reasonably uniform interface with peripheral 
devices and files so they can be used interchangeably by 
most programs• Each device is assigned a unique name. 
For example, terminals are named "$tty0", "$tty l", .... 
the disks are named "$disk0", . . . .  etc. The random- 
access memory can be treated as an input/output  device, 
cal led-"$mem".  This allows the use of input/output  
editing functions on strings of  characters stored in mem- 
ory. 

A file or device is accessed by 

fcb = .Open(pathname, mode) 

where pathname is a string specifying either the name of  
a device or the pathname of  a file (which will be defined 
later) and mode is a string specifying the mode of access 
(read, write, append or read/write). Append mode is 
equivalent to write mode on devices and is defined 
further for files in the next section. In the remainder of 
this section, we will use the word file to mean "file or 
device." 

The function .Open returns a pointer to afile control 
block which contains a description of the accessed file 
and any necessary buffer(s); this pointer serves as an 
identifier for the accessed file. The process is said to own 
the fcb and no other process can use it, although other 
processes can still access the file using separate fcbs. 

Each open file has a current byte position. When a 
file is opened (except for append mode), this current 
byte position is initialized to 0, the beginning of the file. 

An fcb can be used to transfer data to or from files 
after it is selected. An fcb is selected for input by 

•Select_input(fcb) 
An fcb is selected for output by: 

.Select output(fcb) 

These two functions verify the fcb ownership and access 
mode. 

Data is transferred one byte at a time from a file 
selected for input by 

data = .Get ( ) 

.Get returns the current byte right-adjusted and zero- 
padded on the left. Similarly, data is transferred to a file 
selected for output by 

.Put(data) 

.Put writes the rightmost byte of the data word to the 
current byte in the file. Both .Put and .Get have the 
effect of incrementing the current byte position. 

These data transfers are implemented with device- 
dependent buffering schemes• To guarantee that all bytes 
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transferred by .Put have actually been output to the file 

• Flush( ) 

flushes the buffers of the file selected for output. 
For devices and files on devices which allow direct 

access to bytes, 

.Seek(fcb, where, how) 

changes the current byte position. The "how" parameter 
specifies the interpretation of the "where" parameter• 
The three possibilities are: absolute byte which sets the 
current byte position to the where-th byte in the file; 
relative byte which increments the current byte position 
by where, which may be negative; absolute block which 
sets the current byte position to the first byte in the 
where-th block of  the file. Absolute block seeking applies 
only to devices and files on devices for which the concept 
of a block is appropriate. 

.Close(fcb) 

flushes output (if necessary), removes access to the file 
and releases memory used for the fcb. When a process 
is destroyed, all of  its accessed files are automatically 
closed. 

File system. Thoth can be configured to support a 
file system on target machines with one or more direct 
access secondary storage devices. The file system is struc- 
tured as a tree in which each node is a file. In addition, 
each node may have substructure consisting of  one or 
more descendant nodes. 

Each node has a name consisting of up to 32 char- 
acters and all the immediate descendants of a node have 
unique names. The root node of  the tree has the unique 
name *. A node is specified by a pathname which is a 
sequence of  names separated by the / character. A 
pathname describes a path through the tree. For exam- 
pie, the pathname * refers to the root node, and the 
pathname 

*/src/fsys/seek 

refers to the node named seek which is an immediate 
descendant of  fsys, which is an immediate descendant of  
src, and src is immediately under the root. 

The nodes which are direct descendants, or sons, of  
a given node, their father, are ordered• The file system 
provides functions which return the pathname of the 
father, the next brother or the first son of the node 
specified by a given pathname. This enables a program 
to traverse a subtree of the file system. 

Each process has an associated current node which is 
inherited from its parent; it may be changed by 

•Set_current_node(pathname) 
The concept of current node allows abbreviated refer- 
ences to files in the subtree rooted at the current node. 
A pathname starting with " / "  describes a path starting 
at the current node. The current node is referred to by 
@ .  For example, if the current node is */src/fsys then 
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the file */src/fsys/seek can also be referred to as either 

/seek 

or 

@/seek 

Two functions are used to modify the file system tree 
structure. A new node is created by 

•Make_node(pathname) 

The space occupied by a file is reclaimed and, if it is a 
leaf, the node is deleted by 

•Remove_node(pathname) 

A file system structure can be grafted as a subtree to 
the file system by 

.Graft(pathname, dev icename)  

The root node of  the file system structure on the device 
specified by device_name can subsequently be referred 
to as pathname. Nodes in the grafted file system structure 
can be referred to as described above using pathname as 
the name of  the root node. 

.Ungraft(pathname) 

ungrafts the file system structure rooted at pathname 
making the root of  the previously grafted substructure 
inaccessible using pathname. Grafts allow the use of  
multiple and removable secondary storage devices. 

The contents of  a file is regarded as an infinite 
sequence of  bytes. Initially all of  the bytes are null. The 
function .Put, described above, is used to modify indi- 
vidual bytes in a file when it is open with write or append 
access. A file is physically represented by one or more 
blocks, where the size of a block depends on what is 
convenient or efficient for the particular device. All bytes 
after the last physical block are null by definition. Files 
open with write or append access are automatically 
grown to contain the data written. A file open with write 
access can be explicitly changed to a specified size by 

.Change_file(fcb, size_in_blocks) 

after which it will only become smaller by another call 
to .Change_file or by removing the file, although the file 
will still be grown as required to contain data written. 

The current byte position is determined by 

position = .Where(fcb) 

The file mark is a byte position in the file which is 
remembered over accesses to the file. The mark is ini- 
tialized to 0 when the file is created. The mark of  the file 
selected for output is set to the current byte position by 

.Mark( ) 

When a file open with only write or append access is 
closed, the mark is set to the current byte position. The 
current byte position is set to the mark by 
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.Seek mark(fcb) 

or when a file is opened for append access. 

.At_mark(fcb) 

returns 1 if the current byte position is equal to the mark, 
and 0 otherwise. The concept of  mark generalizes that of  
"end of  file." 

Environment enquiry, Environment enquiry is the 
facility for a program to access parameters describing the 
target machine. The availability of  these parameters may 
make an otherwise machine dependent program machine 
independent. Some parameters, such as the number of 
bits per word, the number of  bits per byte, etc., are 
known at compile time while others, especially those 
describing the system configuration, are only available 
at execution time. 

Parameters known at compile time are provided in 
the form of  predefined manifest constants. A manifest 
constant is a base language identifier defined to represent 
a string of  text. Every occurrence of  a manifest constant 
is replaced by its definition via textual substitution in the 
source code during compilation. 

Parameters known only at execution time are made 
available as global variables, or through system function 
calls• 

3. Portability of Thoth 

In this section the notion of  portable system software 
is made more precise. We then characterize the set of 
machines over which Thoth is considered to be portable 
and discuss the work entailed in porting the system. 

With certain programs, such as compilers, assem- 
blers, loaders, etc., one can distinguish the host machine 
on which the program executes from the target machine 
for which the output of  the program is intended. We say 
that a program is portable over a set of machines if it 
costs significantly less to modify it for each machine than 
to implement and maintain separately. This cost should 
include the cost of running the program throughout its 
lifetime; hence, a program that is easy to convert for a 
new machine but grossly inefficient may not be consid- 
ered portable. If moving portable software to new host 
machines requires no modification, it is said to be ma- 
chine independent. Portable software is said to be machine 
invariant if it requires no modification for new target 
machines. Software that is not machine invariant is said 
to be machine specific. 

Portable software has advantages in development, 
maintenance and adaptability. It is usually less expensive 
to develop one program for several machines than to 
customize an ent i re ly  separate program for each ma- 
chine. Moreover, one can justify better design and doc- 
umentation because of  wider applicability. Also, it is 
easier to maintain one well-designed program than sev- 
eral programs. 
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Operating system portability is aimed at a problem 
most prevalent with minicomputers. The decision to 
acquire a new minicomputer must be largely predicated 
on the software available for the machine unless sub- 
stantial/time and resources are allocated to software 
development. Moreover a major task for the manufac- 
turer of  a new machine is to develop software for it. 
Porting Thoth to a new machine provides a substantial 
body of  system software plus a growing collection of  
machine-independent application programs. This re- 
duces the cost of  providing software for a new machine 
and in the case of  owning several different minicompu- 
ters, greatly reduces the software maintenance cost when 
all the machines are running Thoth. 

Three main portability problems were addressed dur- 
ing the development of  Thoth. The first problem was to 
design an abstraction of  a minicomputer that could be 
efficiently realized on a large number of  machines. The 
dual of  this problem is that of  choosing the domain of  
target machines so that a reasonable (and efficient) 
abstraction is possible. The second problem was to rep- 
resent the abstraction in such a form as to minimize the 
effort required to implement it on target machines. The 
third problem was to design and implement software 
tools to automate as much of  the implementation as 
possible. 

Implementability over a specific domain of machines 
was a maj or consideration during the design of  the Thoth 
Machine abstraction described in Section 2. Some desir- 
able ideas were not incorporated due to the apparent 
difficulty of  implementing them on certain machines. 
Similarly, some possible target machines were rejected 
due to their lack of  hardware to efficiently implement 
abstractions thought to be fundamental to any reasona- 
ble system. 

A high-level language has been used to represent 
most of  the system so that most of  the translation into 
machine code can be done by a compiler. The language 
has been designed to encourage the use of  machine- 
independent constructs; however machine-specific code 
can, and sometimes must, be used. To document machine 
dependencies, the software is divided into components 
which are stored in separate files, each of which contains 
either a single function, a set of  related global data 
modules, or a set of  related manifest definitions. Each 
file is classified as either machine-invariant or machine- 
specific; this classification is implied by the subtree of 
the file system in which the file is stored. The machine- 
specific components which need to be modified during 
a port are thus isolated from machine-invariant code, 
and easy to find. 

The tree structure of  the Thoth file system is used to 
structure the source files to reflect functionality as well 
as machine dependency. The subtree containing all 
source files is rooted at */src; immediately below this 
node are subtrees containing major functional compo- 
nents such as kernel, input/output,  file system, etc. Each 
of  these subtrees contains machine-invariant source files 

immediately below its root plus a further subtree of  
machine-specific code for each target machine type. 
Thus, for example, there is a subtree rooted at */src/  
kernel/nova containing the kernel source files which are 
specific to NOVA computers. 

The tree structure of  the file system has proved 
invaluable for managing the over 2000 files of  rapidly 
changing source code. The management of these files is 
a nontrivial job that will become more difficult as Thoth 
is ported to new machines. 

Some components of  the system which are nearly 
machine-invariant are rendered machine-invariant by 
replacing machine dependencies with manifests. Then 
only the manifest definitions occur in a machine-specific 
source file. For  example, the process which is activated 
by each real-time clock interrupt executes the following 
function: 

.Chronographer(timer) 
{ 

extra .Time_vec, .Wake_time_vec, .Time_mods; 
auto i; 

repeat 
{ 

START_CLOCK; 
.Await_interrupt(RTC); 
STOP_CLOCK; 
++.Time_vec[5]; 
for(i=5; .Time_vec[i] > =  .Time_mods[i];) 

{ 
.Time_vec[i] -- 0; 
++.Time_vec[ - - i ] ;  

) 
if(i = =  DAYS && .Time_vec[i] = =  365 && 

YEARS[.Time_vec] & 3) \ non-leap year test 
{ 

DAYS[.Time_vec] -- 0; 
++YEARS[.Time_vec]; 

) 
if(.Compare_vec(.Wake_time_vec, .Time_vec, 5) != 1 

&& STATE[timer] = =  RECEIVE_BLOCKED) 
{ 

disable; 
MESSAGE[timer] = WAKE_UP; 
BLOCKED_ON[~im, er] = 0; 
.Add_ready(timer); 
enable; 

} 
} 

) 

The manifests START_CLOCK and STOP_CLOCK 
must be defined for each different target machine. The 
machine-specific manifest definitions for the NOVA are: 

#START_CLOCK = twit(.NIO.].IS., .RTC.); 

# S T O P C L O C K  = twit(.NIO.l.IC., .RTC.); 

For the TI 990 the definitions are: 

# S T A R T C L O C K  = twit(.CKON.) 

# S T O P C L O C K  = twit(.CKOF.) 

Thoth is also made more portable by the readability 
of  its source code. The most accurate documentation of  
a program is usually its source; internal and external 
documentation is often out of date. For  this reason, our 
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language design has been strongly influenced by aes- 
thetic considerations which are often dismissed as "syn- 
tactic sugar." Since the readability of source code de- 
pends heavily on the style of coding, members of the 
project have spent considerable time discussing detailed 
style issues as well as reading each other's code. This has 
resulted m our adopting a uniform style by consensus, 
making it easier to read each other's code. 

The machine-specific components of the system 
which must be changed during a port may he viewed as 
interfaces between system abstractions and machine 
hardware. The main interface is provided by the com- 
piler which maps the machine-independent high-level 
language constructs into machine instructions. The code 
generation phase of the compiler is thus an important 
interface which must be changed during a port. Other 
interfaces are represented by assembly code or twit state- 
ments in the high-level language. Besides the compiler, 
there are three main interfaces. 

The first interface is in the primitive operations of 
readying, blocking and preempting processes. The form 
of these primitives is machine-mvariant, but a small 
amount of interface code must be written to load and 
store the volatile environments of processes as they ac- 
quire and relinquish the CPU. The abstraction of inter- 
rupts is a more complicated aspect of process preemption 
and activation; this abstraction is implemented by an 
assembly coded module called the interrupt handler. 

A second interface is between the input/output sys- 
tem and the hardware interfaces. For character-oriented 
devices, such as teletypes, simple functions which "out- 
put a character and wait for an interrupt", or "wait for 
an interrupt and then input a character" are imple- 
mented using twit statements. A direct access secondary 
storage device is treated as an indexed sequence of fixed- 
size blocks which may be read or written randomly by 
referring to the index of the desired block. (The block 
size may vary from one device to another.) This abstrac- 
tion is easily implemented in the device handlers includ- 
ing having several logical devices per physical device as 
in UNIX [13]. For purposes of program loading and 
swapping, the random access device handlers also sup- 
port reading and writing of multiple contiguous blocks, 
which is supported directly by the hardware on many 
machines. 

A third interface can be used when appropriate mem- 
ory mapping hardware is available. This consists of a 
small number of functions for changing memory maps. 

Implementing these interfaces is relatively straight- 
forward because, except for the memory mapping inter- 
face, no design decisions need to be made. The interface 
functions have simple well-defined semantics. In most 
cases, the interface functions from a previous implemen- 
tation for another machine can be used as prototypes in 
which only the machine-specific parts must be changed, 
and they serve as a model for the new implementation. 

Interface code for the NOVA implementation includes 
216 assembly language instructions and 201 twit instruc- 
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tions. For the T1990 implementation we have 638 assem- 
bly language instructions and 334 twit instructions. 

Thoth domain. It seems impractical to design system 
software to be portable over all computers. We have 
therefore restricted our attention to a subset of machines 
which we call the Thoth domain. The characterizing 
machine properties given below are based on assump- 
tions made about the target machine in the base language 
and in the machine independent parts of the operating 
system. As such, a machine not in the Thoth domain 
could still be a target machine for Thoth. Porting to such 
a machine may require changes to machine independent 
code or tolerating some degree of inefficiency. That is, 
the characterization of the Thoth domain is not meant 
to exclude machines as much as to document assump- 
tions. 

A machine in the Thoth domain must allow a unit of 
storage called a word, which is some fixed number (one 
or more) of consecutive storage units totaling at least 16 
bits. It must be possible to indivisibly access or modify 
the contents of a word (i.e. it must not be possible for an 
interrupt to occur during an access or modification). It 
should be possible to efficiently address consecutive 
words using consecutive integers, called word pointers. 
It must be possible to store any word pointer in a word. 
These concepts of words and word pointers are funda- 
mental to the base language and are therefore necessary 
for any Thoth implementation. 

Thoth does not use the concept of byte pointer be- 
cause it does not appear to have an efficient implemen- 
tation on some machines; several machines cannot store 
a byte pointer in a word (e.g. Honeywell Level 6, Rolm 
1602, MODCOMP, Tandem 16). However, on these ma- 
chines, a byte may be addressed as a non-negative offset 
relative to a word address. This is the abstraction used 
for accessing bytes in the base language. 

Every machine in the Thoth domain has a single 
processor. This assumption is used to achieve relative 
indivisibility as defined in Section 2. Porting to a multi- 
processor machine would require additional process syn- 
chronization; this seems feasible in some cases. However, 
our experience has been limited to single processor ma- 
chines. Preferably the processor uses binary two's com- 
plement integer representation and arithmetic but rela- 
tively minor changes to the code would circumvent this 
restriction. It is assumed that the processor can be inter- 
rupted by the device interfaces, but that it is able to 
execute code to prevent interrupts from occurring (i.e. 
disable interrupts). This allows the implementation of 
the enable and disable statements of the base language 
and the interrupt abstraction described in Section 2. It is 
preferable that the processor be able to selectively pre- 
vent devices or groups of devices from interrupting and 
enable interrupts without negating any selective disa- 
bling. 

The base language requires an efficient means of 
implementing a stack. Each function invocation uses a 
part of the process' stack, called a stack frame, which is 
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used to store local variables, temporary results, and to 
receive arguments. Words and bytes in a stack frame 
m~y be referenced in an arbitrary order. Generally, a 
dedicated index register suffices for an efficient stack 
implementation. So-called "hardware stack" features 
found on a number of minicomputers are generally not 
appropriate for implementing this type of stack. 

Porting Thoth. Porting the complete Thoth system to 
new hardware includes porting a compiler, assembler, 
loader, and library editor in addition to code which 
implements the system primitives discussed in Section 2. 

An "assembler generating kit" is used to build an 
assembler for a specific target machine from a prototype 
assembler. In our experience, it takes roughly 10 man 
hours to produce the assembler this way (see [10]). The 
assembler produced is not particularly fast and lacks 
some features but it is adequate because the compiler 
generates relocatable load code directly and only a small 
part of the system is implemented in assembly code. 
Assembly code is used for initializing interrupt vectors, 
adapting the hardware interrupt structure to that of 
Thoth and implementing intrinsic functions called by 
compiled code. It has also been used to implement 
efficient versions of frequently used functions. 

The relocating linking loader is machine invariant as 
well as machine independent; i.e. it requires no modifi- 
cation for use with a new target machine in the Thoth 
domain. Its design, discussed in [2], is based on a relo- 
catable load code format suitable for machines in the 
Thoth domain. The load code is a sequence of directives 
which are executed by the loader to produce an execut- 
able module. The initial directives specify target machine 
parameters relevant to the loading process. Because the 
load code format is the same for all target machines, the 
library editor is also machine invariant. 

The base language compiler consists of five phases 
which communicate via intermediate representations of 
source programs stored in files. Phases 1 and 2 do lexical 
and syntactic analysis. Phase 3 performs machine invar- 
iant global and local optimizations and modifies expres- 
sion trees to facilitate code generation. Phases 4 and 5 
do code generation. All phases are machine independent 
and the first 4 phases are machine invariant. Phase 5 
requires substantial modification to generate code for a 
new machine. Converting the compiler to generate work- 
ing code seems to take a few weeks although converting 
it to generate quality code may take up to several months 
depending on the complexity of the target machine. Most 
of this time is spent designing the stack and code bursts 
for expression evaluation which is one of the most time- 
consuming and challenging parts of porting Thoth. 

After the compiler is ported, a simple version of the 
system can be running in a few days. Additional device 
drivers have been added to the system in times ranging 
from under one hour to two weeks. 

Accurately quantifying the effort required to port the 
system is difficult because the system has been under 
development during the times we have ported it and the 
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porting has been done by the designers/implementors. 
In general, the effort required is dependent on the knowl- 
edge and ability of the porters, the architecture, config- 
uration and documentation of the target machine and 
the software support available for performing the port. 
Thus, although we feel confident that porting Thoth 
requires considerably less effort than implementing sim- 
ilar software from scratch, we refrain from stricter esti- 
mates of time requirements until more experience has 
been gained. 

4. Performance of Thoth 

Measurements of operating system performance are 
important to the design of application programs, partic- 
ularly real-time applications. Such measurements are 
also useful for evaluating the efficiency of the system 
design and implementation. 

Space performance. The user can tailor the configu- 
ration of Thoth to a particular application. The config- 
uration table is a matrix o f  constants and function names. 
This table is used during system initialization to create 
system processes and data structures. Some of the entries 
in the configuration table determine what input/output 
devices will be supported. The basic Thoth configuration 
includes support for the following: 

dynamic memory allocation 
process creation 
interprocess communication 
input/output 
Stty0 

Optional entries in the configuration table cause func- 
tions to be loaded from the library to support 

clock 
process destruction 
additional devices 
file system 
multiple teams and swapping 

Thoth may be used in two different modes: multiple 
team and single team. In a multiple team system, the 
system code is loaded into primary memory before (i.e. 
separately from) any of the user teams. In a single team 
system, all system code is linked with the user code as a 
single core image. A configuration which allows multiple 
teams also provides the ability to load executable teams 
from files, swap teams when the primary memory re- 
source becomes scarce, enforce an equitable sharing of 
the CPU resource among the teams, and reclaim re- 
sources from teams which terminate either normally or 
abnormally. For these reasons, any configuration which 
includes multiple teams must also include the file system, 
clock and process destruction options. If  the system is 
configured to run a single user team "stand alone," there 
is no interdependence of the options; thus, the user's 
requirements alone dictate the options to be included. 
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The space requirements for a null user team are given 
in Table I; the figures are separated into requirements 
for code and data. Code includes instructions and exter- 
nal variables, while data includes team descriptors, pro- 
cess descriptors, stacks and buffers allocated during sys- 
tem initialization. 

A substantial decrease in size can be realized by 
eliminating the input/output  primitives and support for 
$tty0. The code size for a stripped version of Thoth can 
be reduced to approximately 2000 words for the NOVA/ 
2 and 2700 words for the TI 990. The stripped versions 
are indicative of the sizes possible for specialized control 
applications. 

The difference in code size between the TI 990 and 
N o v a  results mainly from the fact that the base language 
is word-oriented and typeless. Since the TI 990 is byte- 
addressed, every use of  a word pointer requires conver- 
sion to a byte address. These conversions are not required 
on the NOVA because it is a word-addressed machine. 

Time performance. Many real-time application pro- 
grams are best structured as networks of processes pass- 
ing data via interprocess communication primitives. 
Hence the speed of the communication primitives deter- 
mines the maximum capacity of  the network. Since 
Thoth itself relies on this structuring philosophy, the 
efficiency of  these primitives is important to the effi- 
ciency of  other aspects of  the system. 

Measurement of  the time required for the commu- 
nication primitives is accomplished with a Thoth team. 
The team's root process creates two processes which 
repeatedly call matching sets of  communication func- 
tions. One of the processes counts the number of calls 
made and, after a fixed time has elapsed, the parent 
process divides this number into the elapsed time to 
obtain an estimate of  the time per communication. The 
results of  these measurements are presented in Table II. 
This meaurement technique includes all overhead for 
dispatching, handling clock interrupts, and some artifact 
due to loop control and counting. 

Similar techniques obtain estimates of  the time re- 
quired to create, ready and destroy a process and the 
time required for byte I /O primitives (.Get and .Put). 
These times are also included in Table II. Input and 
output which is block, rather than byte, oriented can be 
done in a portable manner using facilities not described 
in Section 2. Such an approach is used by the file Copy 
utility; to copy a file of  10,000 bytes to a new file on the 
same disk drive requires 6 seconds on our TI 990/10 
using a DS-25 moving head disk and 4 seconds on our 
NOVA/2 with a fixed head disk. Most of this time is spent 
creating and opening the files. To copy a portion of  a 
disk pack containing a 9.4 million-byte file system from 
one drive to another takes 116 seconds on our TI 990/10 
using two T-25 disk drives. 

Real-time response. One measure of the effectiveness 
of  a real-time system is the maximum amount of time 
required to respond to an interrupt. For this reason, all 
algorithms in Thoth which require the disabling of in- 
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T a b l e  1. Sizes o f  T h o t h  c o n f i g u r a t i o n s .  

NOVA T I 9 9 0  

C o d e  D a t a  C o d e  D a t a  

Basic  c o n f i g u r a t i o n  3595* 1024 5778 1166 

C l o c k  336 142 227 198 

Process  d e s t r u c t i o n  356 84 446 270 

M e m o r y  I / O  127 0 312 0 
Fi le  sys tem 4743 415 5627 602 

E a c h  a d d i t i o n a l  t ty 24 152 25 721 

Mul t ip l e  t e a m s  2828 t 4396 t 

* All sizes are given in 16-bit words. The total space required by a given-configuration 
can be computed by adding the requirements of the options to those of the basic system. Note 
that since the second tty shares code with the first, it requires only the space for an entry in the 
configuration table and data for additional driver processes. 

t The data size for multiple teams is decided when the system is generated: the data 
space required depends on the maximum number of user teams and processes and the number 
of devices supported by the system. Systems currently running use from 3600 to 6300 words. 

T a b l e  II. T i m e s  in m i c r o s e c o n d s  for  T h o t h  pr imit ives .  

NOVA/2 TI  9 9 0 / 1 0  

. S e n d / . R e c e i v e / . R e p l y  656 1862 

. F o r w a r d  323 1025 

. C r e a t e / . R e a d y / . D e s t r o y  5000 22700 

.Put  88 176 

.Ge t  69 137 

T a b l e  I l l .  W o r s t  case  d i sab le  t imes  in m i c r o s e c o n d s  for  the  NOVA/2. 

(The  a s soc i a t ed  f u n c t i o n  n a m e  ind ica tes  w h e r e  the d i s ab l ed  code  

begins . )  

D i sab le  t ime  Sys t em f u n c t i o n  

297 .Send  

266 .Free  

254 .Receive  
187 c lock  processes  

162 . R e a d y  
111 .Alloc vec  

107 . A w a i t _ i n t e r r u p t  

58 .Crea te  
54 i n t e r rup t  supe rv i so r  

22 .Kill  

17 .Rep ly  

terrupts have been designed to disable for an amount of  
time which can be bounded by a machine-dependent 
constant. Unfortunately, a rather sophisticated hardware 
monitor is required to measure this aspect of system 
performance. In the case of  the NOVA/2, however, the 
measurements are available through the use of a Fortran 
program designed to simulate execution of programs on 
the NOVA/2 and gather detailed hardware level infor- 
mation about the program executed [14]. The timings 
from the simulator are considered comparable to those 
in Table II because the NovA simulator reproduces the 
behavior of  the timing programs to within 3 percent of  
our NOVA/2. This simulator proved to be of great use 
during the early stages of  Thoth development, and tests 
are still run occasionally. 

The observed results from programs run on the sim- 
ulator are presented in Table III; the data represents 
worst-case disable times and their associated functions. 
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Of the functions presented in Table III, all but the 
interrupt handler are machine-independent. Since the 
interrupt handier and the machine-dependent functions 
called by the other functions all have a similar structure 
in both the NOVA and TI 990 implementations, it is 
reasonable to estimate disable times for the TI 990 from 
the ratios of speeds indicated in Table II. 

The simulator also provides response times to inter- 
rupts from each of the devices. Response time for a 
specific device is defined to be the elapsed real time from 
"device completion" until the CPU "services" the result- 
hag interrupt. For the NOVA computer, device completion 
occurs when the device sets its DONE flip-flop to 1, and 
the-CPU services the interrupt by setting the device's 
DONE tlip-flop to 0. The NOVA is capable of selectively 
disabling devices for interrupts; this allows the use of 
multiple priority levels for interrupt handler processes. 
When a device's handler process is active, interrupts are 
selectively disabled for devices with handler processes of 
the same or lower priority; those with handier processes 
of higher priority may still interrupt and thereby preempt 
the lower priority process. 

The best response time for the $tty0 output is 68 
microseconds. The best response time for the real-time 
clock is also 68 microseconds. The worst cases occur 
when both devices complete just as a lower priority 
process enters the worst-case disabled section of code 
(see Table III). Since the real-time clock handier process 
(which executes the .Chronographer code given in Sec- 
tion 3) has a higher priority than the $tty0 output han- 
dler, the worst case time for the clock is 68 + 297 = 365 
microseconds, assuming there are no other devices with 
a same or higher priority handler process. With this 
assumption the worst case time for the $tty0 output is 68 
+ 68 + 297 + x > 433 microseconds, where x is the time 
spend in .Chronographer from the STOP_CLOCK 
through the .Await_interrupt function call. Unfortu- 
nately, we have no convenient way of measuring the 
worst case value for x which would occur at the begin- 
ning of some year. This is consistent with the observed 
worst-case response times of 316 microseconds for the 
real-time clock and 594 microseconds for Stty0 output. 

5. Concluding Remarks 

The original objectives of developing Thoth were to 
investigate the feasibility of portable operating systems 
and to provide a tool for teaching real-time programming 
of minicomputers. To these ends, we feel Thoth has been 
highly successful. 

As a research project, Thoth has demonstrated the 
feasibility of a portable operating system for a specified 
class of machines. Thoth has also facilitated writing 
machine-independent utility, communication and appli- 
cation programs. The approach of porting the entire 
system to a "bare machine" has many advantages but 
cames the penalty of requiring that other software either 
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be discarded or ported to Thoth. Because Thoth cur- 
rently supports only the one language, porting "foreign" 
software to Thoth involves a complete rewrite. 

As a pedagogic tool, Thoth has been used at several 
levels. Undergraduates taking a course in real-time pro- 
gramming of minicomputers have written Thoth pro- 
grams to control a model train set and to race model cars 
on a slot car track interfaced to a minicomputer. Because 
Thoth is written in a high-level language, students have 
been able to read the source code to gain insight into 
operating system structure. In this respect, portability 
and pedagogy seem complementary; exemplary and 
portable techniques both strive for general applicability. 
At the graduate level, Thoth has been studied and 
critically analyzed as part of a weekly seminar. It has 
been used for various graduate programming projects, 
and for several faculty members' research. 

A commercial firm is applying Thoth to real-time 
control problems. Thoth is also proving to be valuable 
for our own minicomputer applications. 

A major deficiency with the system currently is the 
language. Because it is untyped, there are no unsigned 
or double precision integers thus limiting the maximum 
positive integer on most machines to 32767. For example, 
files can easily be too big for .Where (see Section 2) to 
always return a meaningful value. Of more consequence 
is the lack of a pointer type. Because all pointers are 
word pointers, the use of a pointer on a byte-addressable 
machine involves conversion to a byte address on every 
use with the resulting penalty in speed and size of code. 
We plan to introduce types into the language to solve 
these problems. It is interesting to note that our desire 
for types in the language is based entirely on considera- 
tions of efficiency and portability over diverse machines. 

Much remains to be done in the development of 
Thoth and the study of portable operating systems in 
general. We are currently working on several problems. 
First, more work is required on a portable abstraction 
for the use of memory management and protection hard- 
ware. The system running on the TI 990/10 uses the 
memory mapping hardware option but we have yet to 
use such hardware on other machines. Second, there is 
the continual effort to correct deficiencies and inefficien- 
cies in the design of the system and extend its function- 
ality. That is, we continue to address problems of devel- 
oping an operating system in addition to the portability 
considerations. Finally, more experience with porting the 
system is required to fully evaluate the portability of 
Thoth. The system is currently being ported to the 
Honeywell Level 6 minicomputer and we plan to port to 
the PDP- 11 later on. 
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A note on the name: in Egyptian mythc ogy [9], 
Thoth ruled Egypt for 3226 years. He was endowed with 
complete knowledge and wisdom, inventing all arts and 
sciences including arithmetic, geometry, astronomy, 
soothsaying, magic, medicine, drawing, and writing. In 
some stories, creation was accomplished by the sound of 
his voice. After his death, Thoth went to the skies where 
he became god of letters, god of wisdom, messenger for 
the gods, upholder of justice, and searcher after truth. 
He measured time, divided the world, kept divine ar- 
chives, and was patron of history. When Egyptians died, 
Thoth weighed their hearts and proclaimed them 
"guilty" or "not guilty." He then revealed the magic 
formulae needed to traverse the underworld in safety. 
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Synchronization of concurrent processes requires 
controlling the relative ordering of events in the 
processes. A new synchronization mechanism is 
proposed, using abstract objects called eventcounts and 
sequencers, that allows processes to control the 
ordering of events directly, rather than using mutual 
exclusion to protect manipulations of shared variables 
that control ordering of events. Direct control of 
ordering seems to simplify correctness arguments and 
also simplifies implementation in distributed systems. 
The mechanism is defined formally, and then several 
examples of its use are given. The relationship of the 
mechanism to protection mechanisms in the system is 
explained; in particular, eventcounts are shown to be 
applicable to situations where confinement of 
information matters. An implementation of eventcounts 
and sequencers in a system with shared memory is 
described. 
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