Dullding Software SeCUrely...............c.ccene..n.......

EROS: A Principle-Driven
Operating System from the
Ground Up

Design principles are
highly advocated
in software
construction

but are rarely
systematically
anplied. The
authors describe
the principles on
which they buiit an
operating system
from the ground
up, and how those
principies atfected
the design,
anplication
structure, and
system security
and testability.

26

Jonathan S. Shapire, jo/ns Hopkins University

Norm Hardy, Agorics, Inc.

he Extremely Reliable Operating System! is a capability-based op-
erating system designed to support the security and reliability
needs of active systems. Users of active systems can introduce and
run arbitrary code at any time, including code that is broken or

even hostile. Active systems are shared platforms, so they must simultaneously

support potentially adversarial users on a single machine at the same time.

Because active systems run user-supplied
code, we cannot rely on boundary security
to keep out hostile code. In the face of such
code, EROS provides both security and per-
formance guarantees (see Www.eros-0s.0rg
for downloadable software). An application
that executes hostile code (such as viruses)
cannot harm other users or the system as a
whole and cannot exploit a user’s authority
0 as to compromise other parts of the user’s
environment.

The EROS project started as a clean-
room reimplementation of KeyKOS,? an op-
erating system Norm Hardy and his col-
leagues created for the IBM System/370 (see
www.cis.upenn.edu/"KeyKOS for earlier
documents from the KeyKOS system). The
key contributions of EROS are formal veri-
fication of some of the architecture’s critical
security properties and performance engi-
neering. These security and performance ca-
pabilities come from two sources.

First, the primary system architecture is

IEEE SOFTWARE January/February 2002

uncompromisingly principle-driven. Wher-
ever a desired feature collided with a secu-
rity principle, we consistently rejected the
feature. The result is a small, internally con-
sistent architecture whose behavior is well
specified and lends itself to a careful and ro-
bust implementation. Second, the system’s
lead architects had prior experience as
processor architects. This helped us avoid
certain kinds of abstraction that modern op-
erating systems generally include and seek a
design that maps directly onto the features
that modern hardware implementations
provide; very little performance is lost in
translating abstractions.

Figure 1 shows the core EROS design prin-
ciples. Jeremy Saltzer and Michael Schroeder
first enumerated many of these in connection
with the Multics project® and incorporated
others based on our experiences from other
projects (see the “Related Work” sidebar).
There are no magic bullets in the principles
we adopted for EROS. The system’s perform-

0740-7459/02/$17.00 © 2002 IEEE

ance and design coherency results solely from
finding better ways to adhere consistently to
these principles at fine granularity without
sacrificing performance.

We maintained strong adherence to de-
sign principles in the EROS/KeyKOS design
for three reasons:

B We wanted to know that the system
worked and why it worked. Unless you
can trace each piece of the system code
back to a motivating principle or a neces-
sary correctness constraint, achieving this
is difficult. Traceability of this type is also
required for high-assurance evaluation.

B We expected that a clean design would
lead to a high-performance implementa-
tion. Based on microbenchmarks, this
expectation has been validated.!

B We wanted to formally and rigorously
verify some of the security mechanisms
on which the system relies. A rigorous
verification of the EROS confinement
mechanism, which is a critical security
component in the system, was recently
completed.*

This article provides some examples of
how these principles affected the EROS sys-
tem design. We also describe the application
structure that naturally emerged in the re-
sulting system and how this affected the sys-
tem’s security and testability.

The EROS kernel design

The most direct impact of design princi-
ples in EROS is in the kernel’s structure and
implementation. In several cases, our strict
adherence to design principles led to un-
usual design outcomes, some of which we
discuss here. (Except where made clear by
context, references to the EROS system
throughout the article refer interchangeably
to both EROS and KeyKOS.)

Safe restart

In secure systems, we must ensure that the
system has restarted in a consistent and se-
cure state. In most operating systems, there
is an initial set of processes that the kernel
specially creates. These processes perform
consistency checks, reduce their authorities
to their intended steady-state authority, and
then initiate the rest of the programs in the
system. This creates two problems:

Principles from the Multics Project

Economy of mechanism: Keep the design as simple as possible.
Fail-safe defaults: Base access decisions on permission rather
than exclusion.

Complete mediation: Check every access for authority.

Open design: The design should not be secret. (In EROS, both
design and implementation are public.)

Least privilege: Components should have no more authority
than they require (and sometimes less).

Least common mechanism: Minimize the amount of shared
instances in the system.

Commonly accepted principles

Separation of policy and mechanism: The kernel should im-
plement the mechanism by which resource controls are en-
forced but should not define the policy under which those
controls are exercised.

Least astonishment: The system’s behavior should match
what is naively expected.

Complete accountability: All real resources held by an appli-
cation must come from some accounted pool.

Safe restart: On restart, the system must either already have,
or be able to rapidly establish, a consistent and secure execu-
tion state.

Reproducibility: Correct operations should produce identical
results regardless of workload.

Principles specific to EROS

Credible policy: If a security policy cannot be implemented by
correct application of the system’s protection mechanisms, do
not claim to enforce it.

No kernel allocation: The kernel is explicitly prohibited from
creating or destroying resources. It is free, however, to use
main memory as a dynamic cache for these resources.
Atomicity of operations: All operations the kernel performs
are atomic—either they execute to completion in bounded
time, or they have no observable effect.

Relinquishable authority: If an application holds some au-
thority, it should (in principle) be able to voluntarily reduce
this authority.

Stateless kernel: The system’s security and execution state
should logically reside in user-allocated storage. The kernel is
free to cache this state.

Explicit authority designation: Every operation that uses au-
thority should explicitly designate the source of the authority
it is using.

. The consistency checks are heuristic,

Figure 1. Core EROS
design principles.

which makes establishing their correct-
ness difficult. The Unix £sck command,
for example, must decide which files to
throw away and which to keep without
knowing how these files interrelate. Con-
sequently, the state of the group and
password files might not be consistent
with each other.

January/February 2002

IEEE SOFTWARE 217

Related Work 2. The initial processes receive their author-

Henry Levy! and Ed Gehringer? provide overviews of several capability
systems. EROS borrows ideas directly from three prior capability systems. Like
Hydra,® EROS is an extensible capability system. Programs can implement
new objects that protected capabilities invoke. Like CAL/TSS,# EROS unifies
processes with protection domains. EROS designers also took to heart most of
the design lessons reported from the CAL/TSS project. The Cambridge CAP
computer,® while implemented in hardware, similarly used fine-grain capabili-
ties for memory protection. It's also the first example of a stateless kernel.

EROS uses kernel-protected capabilities. An alternative Amoeba® uses
treats capabilities as data, using unguessably sparse allocation for protec-
tion. This approach does not support confinement, because it is impossible
to determine which bits of the application represent data and which repre-
sent capabilities.

Simple cryptographic or signature schemes share this problem. One solu-
tion is password capabilities as used in Monash” and Mung;i,® which apply
a system-defined XOR before accepting capabilities. A concern with this ap-
proach is that any operation simple enough to be efficient (such as XOR) is
easily reverse-engineered. True cryptographic checks must be cached to
avoid prohibitive computational cost.

References

1. H.M. Levy, Capability-Based Computer Systems, Digital Press, 1984.

2. E.F. Gehringer, Capability Architectures and Small Objects, UMI Research Press, Ann Arbor,
Mich., 1982.

3. W.A. Wulf, R. Levin, and S.P. Harbison, HYDRA/C.mmp: An Experimental Computer Sys-
tem, McGraw Hill, New York, 1981.

4. B.W. Lampson and H.E. Sturgis, “Reflections on an Operating System Design,” Comm.
ACM, vol. 19, no. 4, May 1976, pp. 251-265.

5. M.V. Wilkes and R.M. Needham, The Cambridge CAP Computer and its Operating System,
Elsevier, North Holland, 1979.

6. A.S. Tannenbaum, S.J. Mullender, and R. van Renesse, “Using Sparse Capabilities in a Dis-
tributed Operating System,” Proc. 9th Int'l Symp. Distributed Computing Systems, IEEE Press,
Piscataway, N.J., 1986, pp. 558-563.

7. M. Anderson, R. Pose, and C.S. Wallace, “A Password Capability System,” The Computer
J., vol. 29, no. 1, 1986, pp. 1-8.

8. G. Heiser ef al., “Mungi: A Distributed Single Address-Space Operating System,” Proc.
17th Australiaision Computer Science Conf., ACM Press, New York, 1994, pp. 271-280.

Node capability
Node
0 31

\ Node ¢ Node

0 31 1
LT |

43

) \\g%\q\m\ﬁ\m D‘;

Pages

[/ Page capabhility
1 Void capability

Figure 2. An EROS [Node capability

28 |EEE SOFTWARE January/February 2002

ity by means that are outside the normal
mechanisms of granting or transferring
authority. The designers must make spe-
cialized arguments to demonstrate that
the system appropriately manages and
diminishes this authority. The complex-
ity of these arguments is comparable to
the complexity of the correctness argu-
ments for the remainder of the system.

EROS resolves both issues by using a
transacted checkpointing system. The sys-
tem periodically takes an efficient, asyn-
chronous snapshot of the entire state of
the machine, performs a consistency check
on this state, and then writes it down as a
single disk transaction. Because the system
is transacted as a whole, no possibility of
global inconsistency exists. On restart, the
system simply reloads the last completed
transaction. System installation consists of
writing (by hand) an initial system image;
the processes of this system image have no
unusual authority.

Stateless kernel

EROS is a stateless kernel—the system’s
execution state resides in user-allocated
storage. The kernel achieves performance
by caching this state. A caching design facil-
itates checkpointing and imposes a depend-
ency tracking discipline on the kernel. To
ensure that user-allocated storage always re-
veals correct values when examined, the
kernel must be able to restore this state on
demand. These dependencies provide a
form of self-checking. The kernel can some-
times compare its cached state to the user
state to detect whether the runtime kernel
state has become inconsistent, preventing a
bad state from transacting to disk.

EROS does not publish a memory map
abstraction, because this would violate the
stateless kernel principle. Instead, EROS re-
quires that the applications explicitly allo-
cate all of the pieces that comprise the map-
ping structure. Figure 2 shows a small
EROS address space. The application ex-
plicitly allocates (typically by a user-level
fault handler) every node and page in this
address space. The kernel builds the hard-
ware-memory-mapping tables by traversing
this structure and caching the results in the
hardware-mapping tables.

Complete mediation

In EROS, resources include pages of
memory, nodes (fixed-size arrays of capabil-
ities), CPU time, network connections, and
anything that is built out of these. Every
individual page, node, or other resource is
named by one or more capabilities. Each ca-
pability names an object that is implemented
by the kernel or another process in a sepa-
rate address space. Capabilities are the only
means of invoking operations on objects,
and the only operations that can be per-
formed with a capability are the operations
authorized by that capability. This means
that every resource is mediated and fully en-
capsulated. In most cases, a client cannot
distinguish between system objects and ob-
jects that the server software implements.
We can thus view an EROS system as a sin-
gle large space of protected objects. Table 1
illustrates some of the key differences be-
tween capability systems and current con-
ventional systems.

Complete accountability

Although many systems claim complete
accountability as a goal, few actually imple-
ment it at the kernel level. Failures of kernel
accountability commonly take two forms:

B The kernel might fail to account for ker-
nel metadata. Mapping metadata is par-
ticularly hard to account for, because
there is no direct correlation between
the number of pages mapped and the
amount of required metadata on most
hardware.

®m The kernel might account for synthesized
resources rather than real resources. A
process consists of two nodes. Because
they are not a fundamental unit of stor-
age, EROS does not maintain a separate
quota category for processes.

In EROS, all space-consuming resources
are in terms of two atomic units of stor-
age—nodes and pages—and these are the
units that are accounted for. Applications
explicitly perform all object allocations,
and user-level fault handlers handle page
faults. This is because a new page might
need to be allocated to service the page
fault, and the kernel can’t know the re-
source pool from which the new page
should come.

Conventional systems

Capability systems

Based on (Uuser, object) pair Per-process capabilities
Lookup by rights (Object, process.user) rights(process[cap ndx])
Authority grant Program run by owning user can Can transfer if an authorized path

grant authority to anyone

of communication exists

Name resolution ~ String lookup (via open)

Direct designation

Explicit designation

In EROS, we can trace every operation a
program performs to some authorizing ca-
pability. If a line of code performs an oper-
ation that modifies an object, the capability
to that object is explicitly identified in the
procedure call arguments. Because this is
true, there is never any ambiguity about
how and why the operation was permitted,
and it becomes much harder for hostile
clients to entice services into misusing their
authority. Even the right to execute instruc-
tions is not innate—an application that does
not hold a schedule capability does not exe-
cute instructions (least authority).

Credible policy

This principle might be restated as “bad
security drives out good” and is best illus-
trated by example. A commonly desired se-
curity policy is, “Fred shouldn’t have access
to this object.” Unfortunately, if program A
has a capability letting it speak to program B,
and A also has a capability to some resource
R, then A is in a position to access R on be-
half of B (that is, to act as a proxy). If two
programs can communicate, they can col-
lude. An Interface Definition Language (IDL)
compiler can automatically generate the code
to do so. The only way to really prevent
Fred’s access is to isolate his programs com-
pletely from all other programs, which is gen-
erally not the policy that people want.

Because of this, EROS does not attempt
to prevent the transmission of capabilities
over authorized channels. Security is not
achieved by preventing this copy. EROS
stops programs from colluding if there is no
authorized communication path between
them, but its goal is to ensure that such
paths cannot arise. We have yet to identify a
feasible security policy that cannot be im-
plemented this way.

Least astonishment

For the most part, we can implement the
principles shown in Figure 1 without con-
flict. One exception is the principle of least

January/February 2002

IEEE SOFTWARE

29

| User file space |
T ‘)
Open/ Word processor ||| Edit buffer
save-as | | icati — {
Bl || e | v
[
(Trusted ! Non-TCB
Computing Non-TCB Interface Non-TCB
Base) Interface : Interface
Interface 1
' , :
| Window system |
Figure 3.
Components astonishment, which is violated in the capa-
connected by bility invocation specification. If a process
capabilities. specifies an undefined address as the desti-

30

nation of an incoming data string, the kernel
will truncate the message rather than let the
fault handler for that region run. The prob-
lem is that messages are unbuffered (as re-
quired by the stateless kernel principle), the
fault handler is untrusted, and the process
sending the message might be a shared serv-
ice. A denial-of-service attack against the
service can be constructed by providing a
fault handler that never returns. The kernel
therefore truncates the message rather than
risk a denial of service.

This is astonishing to such a degree that
one conference publication has cited it as a
design flaw. On examination, there is a fun-
damental collision of principles in this area,
and there are only three possible resolu-
tions: buffering, timeouts, or truncation.
Buffering violates several design principles
(stateless kernel, least common mechanism,
complete accountability, and no kernel allo-
cation), and timeouts preclude repeatability
under heavy load. So, given that a well-
intentioned application is always in a position
to provide a valid receive region, truncation
appears to be the least offensive strategy for
preventing denial of service.

We now turn our attention to the struc-
ture of EROS applications. It is now hope-
fully clear that the facilities the EROS ker-
nel directly provides are relatively low-level.
Application code implements most of the
system functions—even trusted functions.

For example, the EROS kernel directly
provides pages of disk storage but not a file
system. The file abstraction is built entirely at
the application level (separation of mecha-
nism and policy), and the file application
simply stores the file content in an address
space, growing the address space as necessary

IEEE SOFTWARE January/February 2002

to hold the entire file. The file application’s
responsibility is to implement operations
such as read and write that act on the file.
The checkpoint mechanism provides stabi-
lization. Because a distinct object implements
each file, this implementation maintains the
principle of least common mechanism.

This design pattern—creating higher-
level functions by composing the underlying
primitives of the operating system in
reusable components—is the basic strategy
for building EROS applications. A separate
process implements each component instance,
and the kernel provides a high-performance
interprocess communication mechanism
that enables these components to be effi-
ciently composed. In fact, it is rare for
EROS applications to manipulate kernel-
supplied objects directly. Most applications
reuse components that the system supplies
or implement new components that provide
a needed function in a structured way. This
naturally leads programmers to apply the
principle of least privilege in their applica-
tion designs, because these components are
designed to use only the capabilities they
need.

Application structure

EROS applications are structured as pro-
tected, capability-connected components
(see Figure 3). Each instance of a component
runs with individually specified capabilities
that define its authority. Capabilities are ker-
nel protected, as are the objects they desig-
nate. The only operations that can be per-
formed with a capability are the operations
the object defines. Because of this combina-
tion of protection and mediation, an appli-
cation that executes hostile code (such as a
virus) cannot harm the system as a whole or
other users and can’t exploit the user’s au-
thority to compromise other parts of the
user’s environment. Similarly, capabilities
control access to resources, preventing hos-
tile code from overconsuming resources and
making the rest of the system unusable.

In Figure 3, the word processor is fac-
tored into a container component and indi-
vidual editing components. The container
component has access to the user’s file sys-
tem only through a trusted “open/save-as”
dialog system, but the editing components
have no access to the user’s file system.
While the word processor has nontrusted

access to the window system, the open/save-as
tool has access through a special, trusted in-
terface. The window system decorates
trusted components with different window
decorations, letting users know that they are
interacting with a component that has po-
tentially sensitive authority.

Testability and defense in depth

Designing applications as compositions
of small components simplifies testing. Due
to complete mediation, each component can
be invoked only through its intended inter-
face. Because they tend to be small and well
isolated, EROS components also tend to be
easily tested. A well-written test suite can
typically reproduce and test all the states
that are actually reachable by client code.
An IDL compiler commonly generates ex-
ternal interfaces to components, which
largely eliminates the risk of buffer overrun
attacks. Because each component has a
well-defined, protected interface, it is often
possible to deploy new component versions
into the field and test them against real ap-
plications by running them side by side with
the current working version and comparing
the results.

Mediated components and least privilege
also make the propagation of viruses more
difficult. Compromising any single compo-
nent doesn’t really buy the attacker very
much, because the component’s actions are
restricted by the capabilities it can invoke.
Assuming that an attacker does compromise
some part of the system, he has no readily
exploited communication path by which to
expand the compromise. All his interactions
with the rest of the system are constrained
by the protocols defined at the capability
boundaries. Unlike firewalls, which must
operate at the network level with relatively
little knowledge of the application state, the
capability interfaces operate at the applica-
tion level with narrowly defined component-
specific interfaces. This provides the system
overall with a type of “defense in depth”
that is difficult (perhaps impossible) to
achieve in applications that are structured as
a single, undifferentiated address space.

Contrast this with current systems. Once
something compromises a piece of an appli-
cation, the entire application is compro-
mised. As a result, the virus gains all the au-
thority that the application holds—even if

the original application didn’t actually use
that authority. A Unix-based email reader
has the authority to overwrite any file that
the user can overwrite. The reader doesn’t
do this because the program is well-behaved,
but when a virus takes over the email
reader, it can run any code that it wishes,
usually with the full authority of the user
running the application. In a capability sys-
tem, this is not true.

Constructors

Closely related to the EROS component
model is a generic system utility component
called the constructor. When a developer
writes code for a new component, she needs
some mechanism to instantiate new copies
of this component. This is the constructor’s
job. There is a distinct constructor for each
type of object in the system. To instantiate
an object, the client invokes a capability to
its constructor.

The constructor’s second, more impor-
tant task is to prevent information leakage.
One of the key questions that a programmer
would like to ask about a component is, “If
I were to create one of these components
and give it some vital piece of information,
could the information be disclosed without
my permission?” The constructor can deter-
mine whether the component it creates is
“leak free.”

This is possible because all of a compo-
nent’s possible actions are determined by
the capabilities that the component initially
holds. If these initial capabilities are (transi-
tively) read-only, then the only way the
component can communicate is by using ca-
pabilities supplied by the program creating
the component. Such a component is said to
be confined.’ As long as the creator is selec-
tive in giving capabilities to the new compo-
nent, information cannot leak. Because the
constructor creates the component in the
first place, it is in a position to know all the
capabilities that the component holds and
therefore can certify the component’s safety.
In spite of its security features, the construc-
tor creates new processes very quickly. In
practice, we find that programmers use con-
structors as the generic program instantia-
tion tool for all programs (whether or not
they are confined).

Surprisingly, the “all capabilities must be
transitively read-only” restriction is almost

January/February 2002

Isolated, EROS

IEEE SOFTWARE

31

_ always enough. To date, the only applica-

EROS from most
other operating

32

The use of
transparent

persistence
distinguish

tions we have seen that can’t be straightfor-
wardly built under this restriction are things
like networking subsystems. The network
subsystem needs access to external devices,
and because of this, it is necessarily a poten-
tial source of information leakage. The whole
point of a network, after all, is to leak infor-
mation. Leaky programs aren’t inherently
bad, but they must be carefully examined.

The constructor is therefore the key to
safely executing untrusted code. If untrusted
code is executed within a confinement bound-
ary, it can’t communicate with the rest of
the system at large. Although resource at-
tacks (on the CPU or space, for example)
are possible, we can restrict both the CPU
time and space allocated to a confined sub-
system. This means, for example, that a
Web browser might be designed to instanti-
ate a new HTML rendering component for
each page. Within this component, it is per-
fectly safe to run untrusted scripting code,
because the component as a whole is con-
fined. The scripting code therefore does not
have access to anything sensitive.

Gosts and benefits

The use of capabilities and transparent
persistence distinguish EROS from most
other operating systems. Although compo-
nent-based designs are well accepted, they
require restructuring the application. Pro-
tection carries an associated performance
overhead, so it is reasonable to ask what
this design approach costs.

Adapting applications

Even if compatibility environments for
existing applications can be constructed (a
binary compatible Linux environment is in
progress), EROS imposes a significant cost
in development effort. To gain advantage
from the underlying kernel’s security prop-
erties, we must refactor critical applications
into components. The most critical of these
applications are external interfaces, such as
SMTP, LDAP, HTTP, and FTP servers.
These services run with a great deal of au-
thority and use security-critical code. When
completed, the EROS system will ship with
all these services.

After servers, the next most important cat-
egory is applications that execute active con-
tent such as scripting languages: browsers,

IEEE SOFTWARE January/February 2002

email agents, and word processors. In cur-
rent software, the refactoring points in these
applications often already exist and are eas-
ily modified. Word processors, for example,
typically open files for writing only after
putting up some form of a file dialog box.
Modifying the dialog box mechanism to be a
protected subsystem and return an open de-
scriptor rather than a string would go a long
way toward eliminating macro viruses.
Comparable protection can’t be achieved by
access control lists—in an access control list
system, the application runs with the same
authority as the user.

Trusting the user interface

The preceding discussion glosses over an
important point. As a user, how do I know
that T am talking to the real file dialog box?
This is a trusted user interface design issue,
and although work has been done on this, it
isn’t a simple problem. A capability-based
design helps, because, for example, the win-
dow system can implement distinguished
trusted and untrusted interfaces (see Figure
3) and decorate trusted windows in a user-
visible way. Because capabilities are un-
forgeable, an untrusted application cannot
contrive to appear trustworthy. In two short
sentences, we have reduced the problem of
application security to properly designing
the file dialog and ensuring the operating
system’s security and trustworthiness, which
is something we can solve.

In a capability system, this type of mech-
anism is readily enforceable. If the installer
doesn’t give the application trusted access to
the window system, there is no way that the
application can forge a trusted dialog box.
Similarly, if the only access to the user file
system is provided through the file dialog
tool, the application has no means to bypass
the user’s consent when writing user files.

Performance

Current performance measurements for
EROS are based on microbenchmarks.! The
results are limited but encouraging. Process
creation in EROS, for example, involves five
components: the requesting application, a
constructor, a process creator, a storage al-
locator, and the newly created components.
In spite of this highly decomposed design,
the EROS process creation mechanism is
three times faster than the Linux fork and

exec mechanism. Page faults and mapping
management in EROS are over 1,000 times
faster than Linux. This is not a noticeable
source of delay in typical Linux applica-
tions, but it is an absolutely critical per-
formance issue in component systems.
Because EROS does not yet have a Unix
emulator, it is difficult to directly compare
applications. KeyKOS included a binary-
compatible Posix implementation that was
directly comparable with the performance
of the Mach-based Unix implementation.®
We expect that the EROS compatibility im-
plementation will do significantly better.

t is difficult to measure how much of

the testability and performance of the

EROS family is due to principles versus
careful implementation and design. Proba-
bly the clearest impact of principles on the
design results is from the accountability
principle, because it has forced us as archi-
tects to think carefully about resource ma-
nipulation and protection.

In terms of impact, security principles
run a close second. Whether EROS will ul-
timately be successful remains to be seen,
but the EROS family has achieved some-
thing fairly unusual: a verified security ar-
chitecture with a running, high-perform-
ance implementation. As a result, EROS is
currently being evaluated for incorporation
into various commercial consumer devices.
EROS is also being evaluated for reliability-
critical services such as lightweight direc-
tory access protocol implementations and
Web servers.

Two anecdotal facts are encouraging indi-
cators: it has been well over eight years since
we have found an EROS kernel bug that an
assertion check didn’t catch. This suggests
that the principle-driven design has helped
us build a more reliable system by letting us
check for errors effectively.

The Systems Research Laboratory at Johns
Hopkins University is building a second ver-
sion of EROS, restructured to support real-
time and embedded applications. We antici-
pate seeking EAL7 assurance evaluation—the
highest level currently defined—for this sys-
tem under the Common Criteria process.”

We have also observed that programmers
using EROS develop their programs in a
qualitatively different way than, say, Unix

vania. Contact him at shap@cs.jhu.edu.

Norm Hardy is a senior architect at Agorics, Inc. His research interests include operating
systems, security, and programming languages. He received a BS in mathematics and physics
from the University of California at Berkeley. Contact him at norm@agorics.com.

developers. The system architecture encour-
ages them to factor applications into man-
ageable pieces, and the protection bound-
aries help make these pieces more testable.
There are other features of the system that
encourage this as well—most notably, the
event-driven style of component code. EROS
is the first system in the EROS/KeyKOS fam-
ily that has been exposed to a significant
number of programmers. It is still too early
for a list of design patterns to clearly emerge.
It is striking, however, that students can
master the system and build applications
quickly, even though various simplifying ab-
stractions are not provided. The greatest
practical impediment to learning seems to be
abandoning their Unix-based assumptions
about how processes work. Often, we find
that they ask questions such as, “How do I
duplicate this Unix functionality?” when
they can achieve their real objective more
simply using the mechanisms provided. @

References

1.].S. Shapiro, J.M. Smith, and D.]. Farber, “EROS: A
Fast Capability System,” Proc. 17th ACM Symp. Oper-
ating Systems Principles, ACM Press, New York, 1999,
pp. 170-185.

2. N. Hardy, “The KeyKOS Architecture,” Operating Sys-
tems Rev., vol. 19, no. 4, Oct. 1985, pp. 8-25.

3. J.H. Saltzer and M.D. Schroeder, “The Protection of In-
formation in Computer Systems,” Proc. [EEE, vol. 9,
no. 63, 1975, pp. 1278-1308.

4.].S. Shapiro and S. Weber, “Verifying the EROS Con-
finement Mechanism,” Proc. 2000 IEEE Symp. Security
and Privacy, IEEE Press, Piscataway, N.]J., 2000, pp.
166-176.

5. B.W. Lampson, “A Note on the Confinement Problem,”
Comm. ACM, vol. 16, no. 10, 1973, pp. 613-615.

6. A.C. Bomberger et al., “The KeyKOS Nanokernel Archi-
tecture,” Proc. Usenix Workshop Micro-Kernels and
other Kernel Architectures, Usenix, San Diego, 1992, pp.
95-112.

7. Common Criteria for Information Technology Security,
ISO/IS 15408, Int’l Standards Organization, Final Com-
mittee Draft, version 2.0, 1998.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

January/February 2002

About the Authors

Jonathan Shapiro is an assistant professor in the Department of Computer Science at
Johns Hopkins University. His research interests include computer security, operating systems,
and development fools. He received a PhD in computer science from the University of Pennsyl-

IEEE SOFTWARE

33

